表示两个变量之间的关系

合集下载

七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版

七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版

例1 新成药业集团研究了一种新药,在试验药效时发现,如果儿童按规 定剂量服用,那么2时时血液中的含药量最高,接着逐步衰减,每毫升血液 中的含药量y(微克)随时间x(时)的变化情况如图3-3-1所示,当儿童按规 定剂量服药后:
图3-3-1
(1)何时血液中的含药量最高?是多少微克? (2)A点表示什么意义? (3)每毫升血液中含药量为2微克以上时治疗疾病有效,那么这个有效时 间多长?
解析 (1)2时时血液中的含药量最高,为4微克. (2)A点表示体内的含药量衰减到0微克. (3)服药后达到2微克的时间是1时,衰减到2微克的时间是6时,因此有效 时间是5时.
知识点二 行程问题 “路程与时间”图象和“速度与时间”图象 (1)在路程与时间关系的图象中,通常用横轴表示时间,用纵轴表示路程, “水平线”表示停止. (2)在速度与时间关系的图象中,通常用横轴表示时间,用纵轴表示速度, “水平线”表示匀速运动. (3)在行程问题中,“速度与时间”图象和“路程与时间”图象是从两 个不同的角度描述行程问题中变量之间的关系,它们既有区别又有联 系.现将“速度与时间”图象和“路程与时间”图象各部分所表示的意 义作如下对比:
易错警示 由于不理解函数的意义,特别是不理解函数图象中平行于x 轴的线段表示“一段时间内离家的距离保持不变”,只能根据图象的形 状来选择行走的路线.
从图象中获取信息的直观想象 素养解读 直观想象是指借助几何直观和空间想象感知事物的形态与 变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括: 借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、 分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决 问题的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形 成论证思路、进行数学推理、构建抽象结构的思维基础. 在直观想象核心素养的形成过程中,学生能提升数形综合的能力,发展 几何直观和空间想象能力;增强运用几何直观和空间想象思考问题的意 识;形成数学直观,在具体的情境中感悟事物的本质.

用图象表示的变量间关系(绝对经典)

用图象表示的变量间关系(绝对经典)

度更快?
80
(3)当小明到达终点时,小亮所跑 60
的路程是多少?
40
小明 小亮
(4)小明和小亮到达终点后如果 20
各自继续以原速度往前跑,他们 能否相遇?利用图象加以解释.
0
2 4 6 8 10 12 12.5
(1)小明和小亮的百米成绩各是多少?(2)两人的速度各是多少?谁的速度更 快?(3)当小明到达终点时,小亮所跑的路程是多少?(4)小明和小亮到达终点 后如果各自继续以原速度往前跑,他们能否相遇?利用图象加以解释.
A
S D
4
B
P
C
图(1)
0
4 图(2)
6x
如图一,在长方形MNPQ中,动点R从点N出发,沿
路程相同的情况发生,所以两人不会
相遇.
0 2 4 6 8 10 12 12.5
如图(1),在长方形ABCD中,AB=2,动点P从点B出发,
沿路线B→C→D作匀速运动,图(2)是此运动过程中,
三角形PAB的面积S与点P运动的路程x之间的关系图
D 象,则BC+CD的长为 A.3 B.4 C.5 D.6
1.一个变化过程中,有变量和常量。 2.两个变量: 自变量和因变量,表示的意义,书写形式 3.变量间的关系表示法 第一表格法 第二关系式法 (1)利用公式(2)根据表格(3)实际问题 第三图像法
第三章变量之间关系
用图象表示的变量间关系
知识点1用图象表示两个变量之间的关系
1.图象法:是指用图象来表示两个变量之间 关系的方法。 2.图象的基本特征:横轴(x轴)上的点表示自 变量,纵轴(y轴)上的点表示因变量.图象上 的每个点表示自变量和因变量之间的相互 关系. 3.优点:能直观、形象地反映因变量随着自 变量变化的趋势

两个变量之间的关系(经典和完整版)(强力推荐)

两个变量之间的关系(经典和完整版)(强力推荐)

领航两个变量之间的关系一、知识要点表示变量的三种方法:列表法、解析法(关系式法)、图象法◆要点1 变量、自变量、因变量(1) 在一变化的过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量,常量和变量往往是相对的,相对于某个变化过程。

(2) 在一变化的过程中,主动发生变化的量,称为自变量,而因变量是随着自变量的变化而发生变化的量。

例如小明出去旅行,路程S、速度V、时间T三个量中,速度V一定,路程S则随着时间T的变化而变化。

则T为自变量,路程为因变量。

◆要点2 列表法与变量之间的关系(1) 列表法是表示变量之间关系的方法之一,可表示因变量随自变量的变化而变化的情况。

(2) 从表格中获取信息,找出其中谁是自变量,谁是因变量。

找自变量和因变量时,主动发生变化的是自变量,因变量随自变量的增大而增大或减小◆要点3 用关系式表示变量之间的关系(1) 用来表示自变量与因变量之间关系的数学式子,叫做关系式,是表示变量之间关系的方法之一。

(2) 写变化式子,实际上根据题意,找到等量关系,列方程,但关系式的写法又不同于方程,必须将因变量单独写在等号的左边。

即实质是用含自变量的代数式表示因变量。

(3) 利用关系式求因变量的值,①已知自变量与因变量的关系式,欲求因变量的值,实质就是求代数式的值;②对于每一个确定的自变量的值,因变量都有一个确定的与之对应的值。

◆要点4 用图象法表示变量的关系(1) 图象是刻画变量之间关系的又一重要方式,特点是非常直观。

(2) 通常用横轴(水平方向的数轴)上的点表示自变量,用纵轴(竖直方向的数轴)上的点表示因变量。

(3) 从图象中可以获取很多信息,关键是找准图象上的点对应的横轴和纵轴上的位置,才能准确获取信息。

如利用图象求两个变量的对应值,由图象得关系式,进行简单计算,从图象上变量的变化规律进行预测,判断所給图象是否满足实际情景,所给变量之间的关系等。

(4) 对比看:速度—时间、路程—时间两图象★若图象表示的是速度与时间之间的关系,随时间的增加即从左向右,“上升的线段”①表示速度在增加;“水平线段”②表示速度不变,也就是做匀速运动,“下降的线段”③表示速度在减少。

相关关系 因果关系 共变关系

相关关系 因果关系 共变关系

相关关系因果关系共变关系相关关系、因果关系和共变关系是统计学中常用的概念。

它们可以帮助我们更好地理解数据之间的关系,从而做出更准确的分析和预测。

相关关系是指两个或多个变量之间的关系。

当一个变量的值发生变化时,另一个变量的值也会发生变化。

相关关系可以用相关系数来衡量,相关系数的取值范围为-1到1。

当相关系数为1时,表示两个变量完全正相关;当相关系数为-1时,表示两个变量完全负相关;当相关系数为0时,表示两个变量之间没有相关关系。

因果关系是指一个变量的变化会导致另一个变量的变化。

因果关系可以用实验来验证,例如在实验中改变一个变量的值,观察另一个变量的变化。

如果改变一个变量的值确实导致了另一个变量的变化,那么就可以认为这两个变量之间存在因果关系。

共变关系是指两个变量之间存在相关关系,但是不能确定其中一个变量是另一个变量的原因。

例如,两个变量之间可能存在正相关关系,但是不能确定哪个变量是因,哪个变量是果。

在这种情况下,需要进一步的研究来确定两个变量之间的因果关系。

在实际应用中,相关关系、因果关系和共变关系都有很重要的作用。

例如,在市场营销中,可以通过分析顾客的购买记录和个人信息来确定哪些因素与购买行为有关系,从而制定更有效的营销策略。

在医学研究中,可以通过实验来确定某种药物对疾病的治疗效果,从而为临床治疗提供依据。

总之,相关关系、因果关系和共变关系是统计学中非常重要的概念,它们可以帮助我们更好地理解数据之间的关系,从而做出更准确的分析和预测。

在实际应用中,需要根据具体情况选择合适的方法来分析数据之间的关系,从而得出有用的结论。

两个变量之间的关系(经典和完整版)(强力推荐)

两个变量之间的关系(经典和完整版)(强力推荐)

领航两个变量之间的关系一、知识要点表示变量的三种方法:列表法、解析法(关系式法)、图象法◆要点1 变量、自变量、因变量(1) 在一变化的过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量,常量和变量往往是相对的,相对于某个变化过程。

(2) 在一变化的过程中,主动发生变化的量,称为自变量,而因变量是随着自变量的变化而发生变化的量。

例如小明出去旅行,路程S、速度V、时间T三个量中,速度V一定,路程S则随着时间T的变化而变化。

则T为自变量,路程为因变量。

◆要点2 列表法与变量之间的关系(1) 列表法是表示变量之间关系的方法之一,可表示因变量随自变量的变化而变化的情况。

(2) 从表格中获取信息,找出其中谁是自变量,谁是因变量。

找自变量和因变量时,主动发生变化的是自变量,因变量随自变量的增大而增大或减小◆要点3 用关系式表示变量之间的关系(1) 用来表示自变量与因变量之间关系的数学式子,叫做关系式,是表示变量之间关系的方法之一。

(2) 写变化式子,实际上根据题意,找到等量关系,列方程,但关系式的写法又不同于方程,必须将因变量单独写在等号的左边。

即实质是用含自变量的代数式表示因变量。

(3) 利用关系式求因变量的值,①已知自变量与因变量的关系式,欲求因变量的值,实质就是求代数式的值;②对于每一个确定的自变量的值,因变量都有一个确定的与之对应的值。

◆要点4 用图象法表示变量的关系(1) 图象是刻画变量之间关系的又一重要方式,特点是非常直观。

(2) 通常用横轴(水平方向的数轴)上的点表示自变量,用纵轴(竖直方向的数轴)上的点表示因变量。

(3) 从图象中可以获取很多信息,关键是找准图象上的点对应的横轴和纵轴上的位置,才能准确获取信息。

如利用图象求两个变量的对应值,由图象得关系式,进行简单计算,从图象上变量的变化规律进行预测,判断所給图象是否满足实际情景,所给变量之间的关系等。

BL—01(4) 对比看:速度—时间、路程—时间两图象★若图象表示的是速度与时间之间的关系,随时间的增加即从左向右,“上升的线段”①表示速度在增加;“水平线段”②表示速度不变,也就是做匀速运动,“下降的线段”③表示速度在减少。

9.1用表格表示变量之间的关系

9.1用表格表示变量之间的关系

在小车下滑的时间t 随着支撑物高 度的变化的过程中, 支撑物高度 h 和 小车下滑的时间t 都是变量。
• 小车下滑的时间t 是随支撑物高度h 的 变化而变化的,也就是说支撑物高度h的变 化引起了小车下滑时间t 的变化。 • 即时间t随着高度h的变化而变化。
我们把支撑物高度h 称为自变量, 小车下滑时间t 称为因变量。
用表格表示变量之间的关系
习目标:
能从表格的数据中分清什么是变量、自变 量、因变量以及因变量随自变量的变化情 况。
自学指导:
自学课本P126到P127内容 1. 理解什么是变量,自变量,因变量。
2. 能从表格中获取变量之间关系的信息, 并能用表格表示两个 变量之间的关系。 6分钟后,比谁能快速完成与例题类似的 题目
当堂达标
研究表明,当钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施 用量有如下关系:
氮肥施用量 (千克/公顷) 0 34 67 101 135 202 259 336 404 471
土豆产量 (吨/公顷)
15.18
21.36
25.72
32.29
34.03
39.45
43.15
43.46
40.83
30.75
依据此表回答下列问题: (1)此表反映了哪两个变量之间的关系?哪个是自变量? 哪个是因变量? (2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少? 如果不施氮肥呢? (3)根据表格中的数据,你认为氮肥的施用量是多少时比较适宜? 说一说你的理由。 (4)粗略说一说氮肥的施用量对土豆产量的影响。
自学检测
某河受暴雨袭击,某天此河水的水位记录为下表
时间/小时 0 4 8 12 16 20 24 水位/米 2 2.5 3 4 5 6 8

变量之间的关系讲解

变量之间的关系讲解

变量之间的关系讲解【根底知识】知识点一:有关变量的根本概念1、变量:在某一过程中发生变化的量,其中包括自变量与因变量.2、自变量是最初变动的量,它在研究对象反响形式、特征、目的上是独立的;3、因变量是由于自变量变动而引起变动的量,它“依赖于〞自变量的改变.4、常量:一个变化过程中数值始终保持不变的量叫做常量^知识点二:变量的表示方法1 .列表法采用数表相结合的形式,运用表格可以表示两个变量之间的关系.列表时一般第一行代表自变量,第二行代表因变量,选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出对应的因变量的值.优点:直观,可以直接从表中找出自变量与因变量的对应值,缺点:具有局限性,只能表示因变量的一局部.2 .图象法对于在某一变化过程中的两个变量,把自变量x与因变量y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出这些点,这些点所组成的图形就是它们的图象〔这个图象就叫做平面直角坐标系〕.它是我们所表示两个变量之间关系的另一种方法.特点:非常直观.缺乏之处是所画的图象是近似的、局部的,通过观察或由图象所确定的因变量的值往往是不准确的.表示的步骤是:①列表:列表给出自变量与因变量的一些特殊的对应值.一般给出的数越多,画出的图象越精确.②描点:在用图象表示变量之间的关系时,通常用水平方向的数轴〔横轴或x轴〕上的点来表示自变量,用竖直方向的数轴〔纵轴或y轴〕上的点来表示因变量.③连线:根据自变量从小到大的顺序, 用平滑的曲线把所描的各点连结起来. 注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义〔坐标〕^3 .关系式法〔解析法〕关系式〔即解析式〕是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以因变量的值求出相应的自变量的值.注意:三种表示方法的关系表格、图象与关系式都能表示两个变量之间的关系,关系式可以列出表格,画出图象,表格、图象却不一定有相应的关系式.但是,关系式确实定也是根据表格、图象所提供的信息,用从特殊到一般的数学思想,经过类比、比拟和归纳,从而猜测得出结论进行验证后的结果.知识点三:事物变化趋势的描述对事物变化趋势的描述一般有两种:1 .随着自变量x的逐渐增加〔大〕,因变量y逐渐增加〔大〕〔或者用函数语言描述也可:因变量y 随着自变量x的增加〔大〕而增加〔大〕〕;2 .随着自变量x的逐渐增加〔大〕,因变量y逐渐减小〔或者用函数语言描述也可:因变量y随着自变量x的增加〔大〕而减小〕注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加〔大〕,因变量y逐渐增加〔大〕等等. 知识点四:估计〔或者估算〕对事物的估计〔或者估算〕有三种:1.利用事物的变化规律进行估计〔或者估算〕.例如:自变量x每增加一定量, 因变量y的变化情况;平均每次〔年〕的变化情况〔平均每次的变化量=〔尾数—首数〕/次数或相差年数〕等等;2 .利用图象:首先根据假设干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3 .利用关系式:首先求出关系式,然后直接代入求值即可^知识点五:两种图像的区别 ---平行于横轴的意义1、v-t 〔速度与时间〕说明:线段.■OA表示汽车正在加速行驶:/ \/Jt.X_L——OC p T线段AB 表小汽车正在匀速行驶,线段BC 表小汽车正在减速行驶;线段CD 表不 汽车停止了行驶.1、s-t (距离与时间)1 .某校办工厂现在年产值是 15万元,方案以后每年增加 2万元.(1) 写出年产值y (万元)与年数 x 之间的关系式.(2) 用表格表示当x 从0变化到6 (每次增加1) y 的对应值. (3)求5年后的年产值.说明:线段OA 表小汽车正在离开出发地,线段AB 表小汽车停止了行驶(V=0, S 不变)线段BC 表示汽车正在返回出发地,线段CD 表示汽车已经回到了出发地并停止了. (S=0, V=0) 注意:理解平行于横轴的线段的不同含义(在这段时间内因变量不变)、 知识点六:变化速度的比拟在相同时间内因变量变化速度的比拟,哪一支图像更陡一些,这支图像代表 的因变量的变化会更快一些.1、增长速度2 .如图10,反映了小明从家到超市的时间与距离之间关系的一幅图.(1) 图中反映了哪两个变量之间的关系?⑵.超市离家多远? (2) 小明到达超市用了多少时间?⑸.小明往返花了多少时间? (3) 小明离家出发后20分钟到30分钟内可以在做什么?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?甲图像更陡,所以甲增长的更快.2、下降速度3 .如图,它表示甲乙两人从同一个地点出发后的情况.到十点时,甲大约走了13千米.根据图象答复:甲图像更陡,所以甲速度下降的更快. 【例题讲解】(1)甲是几点钟出发?(2)乙是几点钟出发,到十点时,他大约走了多少千米?(3)到十点为止,哪个人的速度快?(4)两人最终在几点钟相遇?(5)你能将图象中得到信息,编个故事吗?【随堂练习】-、选择题1.下面的图表列出了一项试验的统计数据,表示将皮球从高处d落下时,反弹高度b与的是〔〕A. b=2d B, b=2 C, b=d+25 D, b = d-252 .皮球从空中落下时从地面弹起的高度y 〔米〕与其下落的高度x 〔米〕存在一定的关系.下表是一组试验数据.以下能表示这种关系的是〔〕卜落的局度x 〔米〕50100150200弹起的高度y 〔米〕2550751002A. y=x B,y=2x C, y=x-251D, y=2x33 .三峡大坝从6月1日开始下闸蓄水,如果平均每天流入库区的水量为am ,平均每天流出的水量限制为bm 3,当蓄水水位低于135m时,b<a;当蓄水水位到达135m时,b=a,设库区的蓄水量y〔m3〕是随时间t 〔天〕变化而变化4 .如图是反映两个变量关系的图,以下的四个情境比拟适宜该图的是〔〕A.一杯热水放在桌子上,它的水温与时间的关系B, 一辆汽车从起动到匀速行驶,速度与时间的关系C, 一架飞机从起飞到降落的速度与时间的关系D,踢出的足球的速度与时间的关系5.如图,射线l甲、l乙分别表示甲、乙两名运发动在自行车比赛中所走路程与6.如图,以下图是汽车行驶速度〔千米/时〕,和时间〔分〕的关系图,以下说法其中正确的个数为〔〕〔1〕汽车行驶时间为40分钟;〔2〕 AB表示汽车匀速行驶;〔3〕在第30分路程〔千米〕钟时,汽车的速度是 90千米/时;〔4〕第40分钟时,汽车停下来了 A. 1个B. 2个C. 3个D. 4个某校办工厂今年前5个月每月生产某种产品总量〔件〕与时间〔月〕的关系如以下图所示,那么对于该厂生产这种产品的说法正确的选项是〔〕A. 1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少B. 1月至3月每月生产总量逐月增加,4、5两月每月生产总量与 3月持平C. 1月至3月每月生产总量逐月增加,4、5两月均停止生产D. 1月至3月每月生产总量不变,4、5两月均停止生产如图、是某地一天的气温随时间变化的图像,根据图像可知,在这一天中最高气温与到达最高气温的时刻分别是〔〕A. 14 C, 12 时B. 4 C, 2 时C. 12C, 14 时D. 2 C, 4 时〔不超过局部仍按每立方米2元计算〕.现假设该市某户居民某月用水X 立方米 水费为y 元,那么y 与x 的函数关系用图象表示正确的选项是〔〕10.甲乙两同学约定游戏规那么:甲先骑自行车到终点后跑步回起点,而乙那么跑步到 终点后骑自行车回起点,两人同时出发,最后两人同时回到起点.甲骑自行车速度比乙骑自行车速度快,假设某人离开起点的距离与所用时间的关系 可用图象表示,那么以下选项正确的选项是〔〕2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民 用水收费标准:①假设每月每户居民用水不超过4立方米,那么按每立方米2元计算;②假设每月每户居民用水超过4立方米,那么超过局部按每立方米4.5元计算13 .长方形白^宽为6cm,那么它的周长L 与长a 之间的关系为14 .声音在空气中传播的速度y 〔m/s 〕与气温x 〔oC 〕之间在如下关系:CD ,与文t 博]A.甲是图〔1〕,乙是图〔2〕; C.甲是图〔1〕,乙是图〔4〕;、填空题:B.甲是图〔3〕,乙是图〔2〕; D.甲是图〔3〕,乙是图〔4〕;11 _________________________________________________ .假设x 是自变量,y 是因变量,那么 y 应随x 的 而 12.某人以每小时 m 千米的速度从甲地向乙地行走,假设甲、乙两地相距S 千米,那么当他行走了 x 小时后,他距乙地还有y 千米,在这个问题中,与 是常量,—是自变量;—是因变量. 7. 8. 9.3 y =-x +331.5 (1)当气温 x=15 oC 时,声音的速度 y= m/s o (2)当气温 地相距x=22 oC 时,某人看到烟花燃放 5s 后才听到声响,那么此人与燃放 间的关系的图象如图.根据图象解决以下问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间? (2)分别求出甲、乙两人的行驶速度 .(3)乙经过几分钟追上甲?这时两人距B 地还有多远?m. 15. 汽车以60km/h 速度匀速行驶,随着时间 也随着变化,那么它们之间的关系式为t (时)的变化,汽车的行驶路程 s 16. 一辆汽车以45km/h 的速度行驶,设行驶的路程为s(km),行驶的时间为t(h),那么s 与t 的关系式为,自变量与因变量分别是17. 拖拉机工作时,油箱中的余油量 Q (升)与工作时间t (时)的关系式为Q=4018. 19. 20. 21. 22. 23. —6to 当 t=4 时,Q=小时一个长方形周长为 关系式是,从关系式可知道这台拖拉机最多可工作12, 一边长为x,―,当x=2时,等腰三角形的底角的度数为x, 为.在弹性限度内,一弹簧长度 y (cm)小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况如图面积y 随x 的变化而变化,那么y 与x 的y=顶角的度数为y,那么y 关于x 的关系式与所挂物体的质量x (kg)之间的关系(1) (2) (3)(4)(5)(6)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量? 10时和13时,他分别离家多远? 他到达离家最远的地方是什么时间?离家多远? 11时到12时他行驶了多少千米? 他可能在哪段时间内休息,并吃午餐? 他由离家最远的地方返回时的平均速度是多少?式是y= 2 x+10 ,如果该弹簧最长可以拉伸到20cm ,那么它所挂物体的最大质5量是.一圆锥的底面半径是 5cm,当圆锥的高由2cm 变到10cm 时,圆锥的体积由 3 一〜,cm 变到 3 cm 小雨拿5元钱去邮局买面值为 80分的邮票,小雨买邮票后所剩钱数y (元) 与买邮票的枚数x (枚)之间的关系式为 . 解做题:甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时24.时间/分1 2 3 4 5 6 7卜表是佳佳往妹妹家打长途 的几次收费记载:费/元0.6 1. 2 1. 8 2. 4 3. 0 3. 6 4. 2(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用x表示时间,用y表示费,那么随着x的变化,y的变化趋势是什么?(3)佳佳某次打所用时间为5分钟,那么需付费多少元?(4)你能帮佳佳预测一下,如果她打用时间是10分钟,那么需付多少电话费?【课后练习】1、如图,L甲、L乙分别表示甲、乙两名运发动在自行车比赛中所走路程与时间的关系,那么它们的平均速度的关系是()A.甲比乙快B,乙比甲快C.甲、乙同速D.不一定信」2、李老师骑自行车上班,最初以某一速度匀速行驶,中途由于自行车发生故障,停卜修车耽误了几分钟,为了按时到校,李老师加快了速度,但仍保持匀速行驶, 结果准时到校.在课堂上,李老师请学生画出表示自行车行驶路程s(km)与行驶时间;(h)关系的示意图,同学们画出的示意图有如下四种,你认为哪幅图能较好地刻画李老师行驶的路程与时间的变化关系()3、某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好伊F来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如用s表示此人离家的距离,t为时间,在下面给出的四个表示s与t的关系的图象中,符合以上情况的是()山……一人申…r「4、某校举行趣味运动会,甲、乙两名学生[/同时从A地到B地,甲先骑自行车到B地后//跑步回A地,乙那么是先跑步到B地,后骑自,,一* 为1口c1Q| J(C)(D)/.1行车回A地(骑自行车速度快于跑上/一步速度),最后两人恰好同时回到A门g 1r '门心'地;甲骑自行车比乙骑自行车的速度快,假设学生离开A地的距离S与所用时间t的关系用图象表示(实线表示甲的图象,虚线表示乙的图象),那么图中正确的选项是()ji S t L^*本~~/ o r O f °(A)(H)(C)U»5、“龟兔赛跑〞讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来, 睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还时先到达了终点••….・用S I、S2分别表示乌龟和兔子所行的路程,t为时间,那么以下图象中与故事情节相吻合的是()(A)(B)(C)<D)6、如图,以下图是汽车行驶速度〔千米/时〕和时间〔分〕 的关系图,以下说法其中正确的个数为(1) (2) (3) (4)A.7、某气象研究中央观测一场沙尘暴从发生到结束的全过程. /h. 4h 后,沙尘暴经过开阔荒漠地,风速变为平均增速9、某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为 Q1吨,加油飞机的加油油箱余 油量为Q2吨,加油时间为t 分钟,Q1、Q2与t 之间的函数图象如下图,结合 图象答复以下问题:〔1〕加油飞机的加油油箱中装载了 吨油,将这些油全部加给运输飞机需 分钟.〔2〕运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?请说明理由.速保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减少 1km/ h,最终 停止.结合风速与时间的图象,答复以下问题.8、一位农民带上假设干千克自产的土豆进城出售.为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数 〔含备用零钱〕的关系,如图,结合图象答复以下问题:〔1〕农民自带的零钱是多少? 〔2〕求出降价前每千克的土豆价格是多少?〔3〕降价后他按每千克 0.4元将剩余土豆售完,这时他手中的钱〔含备用零钱〕10、汽车在行驶过程中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停止,我们称这段距离为 刹车距离岁同类车而言,速度越大,刹车距离〞越长;速度越小,“刹车距离〞越短.交警同志在处理交通撞车事故时,通常把 刹 车距离〞作为一重要分析数据,现有一个限速 40km/h 以内的弯道上,甲、乙两车 相向而行,各自发现情况后,同时刹车,但还是相撞了,事故后,现测得甲车的是26元,试问他一共带了多少千克土豆?开始时平均增速 2 km4km/h. 一段时间内风汽车行驶时间为 40分钟;AB 表示汽车匀速行驶;在第30分钟时,汽车的速度是 第40分钟时,汽车停下来了B. 2个C. 3个刹车距离为5m,乙车的刹车距离超过10m,但小于12m,甲车的刹车距离S甲米?何时到达终点?〔2〕摩托车何时开得最快?2〔m〕与车速V甲〔km/h〕有以下关系:S? 二一V甲,乙车的刹车距离S乙〔m〕151与车速V乙〔km/h〕有如下关系:5乙=-V乙,假假设你是一名交警,这次事故谁应4摩托车何时第一次停驶?此时离家多远?摩托车第二次停驶了多长时间?摩托车在11:00到12:00这段时间内的平均速度是多少求摩托车在全部行驶时间内的平均速度?该负主要责任?【拓展练习】1、地向一个如下图的容器中注水,最后把容器注满,在注水的过程中水面的高度h随时间t变化的函数图象大致是〔34.,•就;160 ♦14.■120 ,10.小80 •40 -20时间[时->-►13 14 1511、下页这张曲线图〔图6T2〕表示某人骑摩托车旅行情况,他上午8:00离开家,请仔细观察曲线图, 答复以下问题:〔1〕他从家到达终点共骑了多少千2、的向一个容器中注水,最后把容器注满,在注水过程中,时间t〔s〕的变化规律如下图, 〔图中OABC为一折线〕D水面高度h 〔cm〕随,这个容器的形状是图中⑶(4)⑸(6)为保证航行平安,只有当船底与港内水底间的距离不少于3.5m 时,才能进出该 港.根据题目中所给的条件,答复以下问题:(1)要使该船能在当天卸完货并平安出港,那么出港时水深不能少于 m,卸货最多只能用 小时;(2)该船装有1200吨货,先由甲装卸队单独卸,每小时卸180吨,工作了一段时间后,交由乙队接着单独卸,每小时卸120吨.如果要保证该船能在当天 卸完货并平安出港,那么甲队至少应工作几小时,才能交给乙队接着卸?5、动车出发前油箱内有 42升油,行驶假设干小时后,途中在加油站加油假设干升.油箱中余油量 Q (升)与行驶时间t (小时)之间的函数关系如下图,根据下 图答复以下问题:(1)机动车行驶几小时后加油?加了多少油?(2)试求加油前油箱余油量 Q (L)与行驶时间t (h)之间的函数关系式;(3如果加油站离目的地还有 230公里,车速为40公里/小时,要到达目的地,油 箱中的油是否够用?请说明理由.4、如图,长方形 ABCD 中,当点P 在边AD (不包括A 、D 两点)上从 A 向D 移动时,有的线段的长度和三角形的面积始终保持不变,而有些那么发生了变化.、(1)试分别列举出长度变化与不变化线段的长度、以及面积变化与不变化的二)三角形;L 二1(2)假设长方形的长 AD 为10 cm,宽CD 为4 cm,线段AP 的长度为x cm, 匚口分别写出线段 PD 的长度y (cm)、△ PCD 的面积S ( cm 2)与x (cm)之间的关系式,并指出自变量 x 的取值范围.。

两个变量之间的关系(经典和完整版)(强力推荐)

两个变量之间的关系(经典和完整版)(强力推荐)

两个变量之间的关系(经典和完整版)(强力推荐)领航两个变量之间的关系一、知识要点表示变量的三种方法:列表法、解析法(关系式法)、图象法◆要点1 变量、自变量、因变量(1) 在一变化的过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量,常量和变量往往是相对的,相对于某个变化过程。

(2) 在一变化的过程中,主动发生变化的量,称为自变量,而因变量是随着自变量的变化而发生变化的量。

例如小明出去旅行,路程S、速度V、时间T三个量中,速度V一定,路程S则随着时间T的变化而变化。

则T为自变量,路程为因变量。

◆要点2 列表法与变量之间的关系(1) 列表法是表示变量之间关系的方法之一,可表示因变量随自变量的变化而变化的情况。

(2) 从表格中获取信息,找出其中谁是自变量,谁是因变量。

找自变量和因变量时,主动发生变化的是自变量,因变量随自变量的增大而增大或减小◆要点3 用关系式表示变量之间的关系(1) 用来表示自变量与因变量之间关系的数学式子,叫做关系式,是表示变量之间关系的方法之一。

(2) 写变化式子,实际上根据题意,找到等量关系,列方程,但关系式的写法又不同于方程,必须将因变量单独写在等号的左边。

即实质是用含自变量的代数式表示因变量。

(3) 利用关系式求因变量的值,①已知自变量与因变量的关系式,欲求因变量的值,实质就是求代数式的值;②对于每一个确定的自变量的值,因变量都有一个确定的与之对应的值。

◆要点4 用图象法表示变量的关系(1) 图象是刻画变量之间关系的又一重要方式,特点是非常直观。

(2) 通常用横轴(水平方向的数轴)上的点表示自变量,用纵轴(竖直方向的数轴)上的点表示因变量。

(3) 从图象中可以获取很多信息,关键是找准图象上的点对应的横轴和纵轴上的位置,才能准确获取信息。

如利用图象求两个变量的对应值,由图象得关系式,进行简单计算,从图象上变量的变化规律进行预测,判断所給图象是否满足实际情景,所给变量之间的关系等。

两个变量之间的线性关系

两个变量之间的线性关系
感谢观看
其中,xi和yi分别是两个变量 的观测值,x̄和ȳ分别是它们
的均值。
相关系数的解释
01
02
03
相关系数的绝对值大小 表示两个变量之间的线 性关系的强度,绝对值 越接近1表示关系越强。
相关系数的正负号表示 线性关系的方向,正号 表示正相关,负号表示
负相关。
相关系数只衡量线性关 系,对于非线性关系无
法准确描述。
两个变量之间的线性 关系
目录
• 线性关系的定义 • 线性回归分析 • 线性相关系数 • 线性预测与决策 • 案例分析
01
线性关系的定义
什么是线性关系
线性关系是指两个变量之间存在一种 关系,其中一个变量(自变量)的变 化会导致另一个变量(因变量)按照 一定的比例变化。
在线性关系中,自变量和因变量之间 的关系可以用一条直线来描述,因此 称为线性关系。
案例二:气温与空调销量的线性关系
总结词:负相关
详细描述:气温与空调销量之间存在负相关关系。当气温升高时,人们对空调的需求增加,空调销量随之上升。反之,当气 温降低时,空调销量则会下降。这种关系可以用一条直线表示,斜率为负,表示两个变量呈负相关。
案例三:GDP与人口数量的线性关系
总结词
不完全正相关
03
预测值与实际值之间的差距最小化。
线性回归模型的建立
01
线性回归模型的建立需要收集两个变量之间的观测数据,并确定因变 量和自变量之间的关系。
02
在建立模型之前,需要对数据进行探索性分析和预处理,包括缺失值 处理、异常值处理、数据转换等。
03
线性回归模型的一般形式为:Y = β0 + β1X + ε,其中Y是因变量, X是自变量,β0和β1是回归系数,ε是误差项。

变量之间的关系知识点及常见题型

变量之间的关系知识点及常见题型

变量之间的关系及常见题型一、基础知识1、常量:在变化过程中一组数据中或者关系式中数值保持不变的量;2、变量:数值发生变化的量在一变化过程中一般有两个变量1自变量:在一定范围内主动发生变化的变量;2因变量:随自变量的变化而变化的变量.二、表示方式1、表格法1一般第一栏表示自变量,第二栏表示因变量;2从表格中可以获取一些信息,发现因变量随自变量的变化存在一定规律;2、关系式1表示自变量与因变量之间关系的数学式子叫关系式;关系式一般用含自变量的代数式表示因变量的等式2能利用关系式进行计算;3、图像法(1)水平方向的数轴横轴表示自变量;竖直方向的数轴纵轴表示因变量;(2)利用图像尽可能地获取自变量因变量的信息,特点是直观.练习:1、明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是A、明明B、电话费C、时间D、爷爷2、某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:上述问题中,第五排、第六排分别有个、个座位;第排有个座位.3、据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的变化,地球上的人口数量在逐渐地增加,如果用t表示时间,y表示人口数量, 是自变量, 是因变量.4、下表中的数据是根据某地区入学儿童人数编制的:1上表反映了哪两个变量之间的关系哪个是自变量哪个是因变量2随着自变量的变化,因变量变化的趋势是什么3你认为入学儿童的人数会变成零吗5、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x单位:分之间有如下关系其中0≤x≤301上表中反映了哪两个变量之间的关系那个是自变量哪个是因变量2当提出概念所用时间是10分钟时,学生的接受能力是多少3根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强4从表格中可知,当时间x在什么范围内,学生的接受能力逐步增强当时间x 在什么范围内,学生的接受能力逐步降低5 根据表格大致估计当时间为23分钟时,学生对概念的接受能力是多少6 下表是某同学做“观察水的沸腾”实验时所记录的数据:1时间为8分钟时,水的温度是多少2上表反应了哪两个变量之间的关系哪个是自变量哪个是因变量3水的温度是怎样随时间变化的4根据表格,你认为13分钟、14分钟时水的温度是多少5为了节约能源,在烧开水时,你认为应在几分钟左右关闭煤气巩固练习:一、选择题每小题3分,共24分1.我们都知道,圆的周长计算公式是c=2πr,下列说法正确的是A. c,π,r 都是变量B. 只有r 是变量C. 只有c 是变量D. c,r 是变量2.一汽车以平均速度60千米/时速度在公路上行驶,则它所走的路程s 千米与所用的时间t 时的关系式为 A.t s +=60 B. ts 60= C. 60ts =D. t s 60= 3.雪撬手从斜坡顶部滑了下来,下图中可以大致刻画出雪撬手下滑过程中速度—时间变化情况的是4.“人间四月芳菲尽,山寺桃花始盛开”,说明温度随者海拔的升高而降低,已知某地面温度为20℃,且每升高1千米温度下降6℃,则山上距离地面h 千米处的温度t 为 A. 206t h =- B. 206h t =-C. 206h t -= D. 206t h -=5.根据图示的程序计算变量y 的对应值,若输入变量x 的值为-1,则输出的结果为A. –2B. 2C. –1D. 0 6.如下图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S 阴影部分,则S 与t 的大致图象为7.星期天,小王去朋友家借书,下图是他离家的距离y 千米与时间x 分钟的图象,根据图象信息,下列说法正确的是 A .小王去时的速度大于回家的速度 B .小王在朋友家停留了10分钟C .小王去时所花的时间少于回家所花的时间D .小王去时走上坡路,回家时走下坡路DCBA时间时间时间速度速度速度时间速度100y 千米x 分钟220 30 40 stOA .st OB .stOC .stOD .8.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A B C D →→→的路径以1cm/s 的速度运动点P 不与A D ,重合.在这个运动过程中,APD △的面积2(cm )S 随时间()t s 的变化关系用图象表示,正确的为二、填空题:每小题3分,共24分9.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中________是自变量, 是因变量.10.在体积为20的圆柱中,底面积S 高h 的关系式是 .11.飞机着陆后滑行的距离s 单位:米与滑行时间t 单位:秒之间的关系是s=60t -,当t=40时,s=______________.12.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩钱数y 元与买邮票的枚数x 枚之间的关系式为 .13.声音在空气中传播的速度y m/s 与气温x oC 之间在如下关系:33153+=x y .当气温x =15 oC 时,声音的速度y = m/s.若某人看到烟花燃放5s 后才听到声音响,则此人与燃放的烟花所在地相距 m.14.如图所示的图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时15.一支原长为20cm 的蜡烛,点燃后,其剩余长度与燃烧时间的关系可以从下表看出:则剩余长度y cm 与燃烧时间x 分的关系式为______________,估计这支A . O t s 1 2BO ts12CO ts 12 DO ts12 AD CB P蜡烛最多可燃烧___________分钟.16.有一本书,每20页厚为1mm,设从第1页到第x 页的厚度为y mm,则y 与x 之间的关系式为_______________.三、解答题:本大题共8小题,共52分17.本题6分小华粉刷他的卧室共花去10小时,他记录的完成工作量的百分数如下:15小时他完成工作量的百分数是 ; 2小华在 时间里工作量最大;3如果小华在早晨8时开始工作,则他在 时间没有工作.18.本题8分弹簧挂上物体后会伸长, 已知一弹簧的长度cm 与所挂物体的质量kg 之间的关系如下表:1上表反映的变量之间的关系中哪个是自变量 哪个是因变量 2当所挂物体是3kg 时,弹簧的长度是多少 不挂重物时呢19.本题8分如图,长方形ABCD 的边长分别为AB=12cm,AD=8cm,点P 、Q 都从点A 出发,分别沿AB,AD 运动,且保持AP=AQ,在这个变化过程中,图中的阴影部分的面积也随之变化.当AP 由2cm 变到8cm 时,图中阴影部分的面积是增加了,还是减少了增加或减少了多少平方厘米20.本题10分如图是一辆汽车的速度随时间变化的图象.根据图象填空: 1汽车在整个行驶过程中,最高时速是________千米/时;2汽车在________,________保持匀速行驶,时速分别是________,________;3汽车在________、________、________时段内加速行驶,在________、________时 段内减速行驶;4出发后,12分到14分之间可能发生________情况;21.本题10分如图,小明的爸爸去参加一个重要会议,小明坐在汽车上用所学知识绘制了一张反映小车速度与时间的关系图,第二天,小明拿着这张图给同学看,并向同学提出如下问题,你能回答吗 1在上述变化过程中,自变量是什么因变量是什么 2小车共行驶了多少时间最高时速是什么 3小车在哪段时间保持匀速行驶,时速达到多少 4用语言大致描述这辆汽车的行驶情况PQ DCBA102030405060708090100110102040503060速度(千米/时)时间/分课后练习:1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是A、沙漠B、体温C、时间D、骆驼2、正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同.下图反映了一天24小时内小明体温的变化情况,下列说法错误的是A.清晨5时体温最低 B.下午5时体温最高C.这一天中小明体温T单位:℃的范围是≤T≤D.从5时至24时,小明体温一直是升高的.3、下列图象中,哪个图象能大致刻画在太阳光的照射下,太阳能热水器里面的水的温度与时间的关系.水温水温水温水温0 时间 0 时间 0 时间 0A.B.C. D.4.某市一天的温度变化如图所示,看图回答下列问题:1这一天中什么时间温度最高是多少度什么时间温度最低是多少度2在这一天中,从什么时间到什么时间温度开始上升在这一天中,从什么时间到什么时间温度开始下降5某种动物的体温随时间的变化图如图示:1一天之内,该动物体温的变化范围是多少2一天内,它的最低和最高体温分别是多少是几时达到的.3一天内,它的体温在哪段时间内下降.4依据图象,预计第二天8时它的体温是多少课堂检测1、在平地上投掷手榴弹,下面哪幅图可以大致刻画出手榴弹投掷过程中落地前速度变化情况A B C D2、某种储蓄的月利率是%,现存入本金100元,本金与利息的和y 元与所存月数x 月之间的关系式为A 、x y 36.0100+=B 、x y 6.3100+=C 、x y 36.11+=D、x y 36.1001+= 3、有一旅客携带了30公斤行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是A 、1000元B 、800元C 、600元D 、400元4、某人骑车外出,所行的路程S 千米与时间t 小时的关系如图所示,现有下列四种说法:①第3小时中的速度比第1小时中的速度快; ②第3小时中的速度比第1小时中的速度慢; ③第3小时后已停止前进; ④第3小时后保持匀速前进.其中说法正确的是A 、②、③B 、①、③C 、①、④D 、②、④5、李老师骑车外出办事,离校不久便接到学校要他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是 S 距离距离 S 距离距离0 0 0 0t 时间 t 时间 t 时间t 时间A 、B 、C 、D 、6、三峡大坝从6月1日开始下闸蓄水,如果平均每天流入库区的水量为a 立方米米时,a b <;当天变化的大致图象是A 、B 、C 、D 、。

用关系式表示的变量间关系

用关系式表示的变量间关系

所挂物体的质量
0 1 2 3456
x/kg
弹簧长度y/cm
12 12.5 13 13.5 14 14.5 15
(1)请写出弹簧长度y与所挂物体质量x之间的关系式.
(2)当所挂物体质量为10kg时,弹簧长度是多少?
1)关系式y=0.5x+12
(2)当x=10时,代入y=0.5x+12,得y=17
(1)根据题意x>3时,y=8+(x-3)×1.6∴y=1.6x+3.2(x>3) (2)当x=4时,y=1.6x+3.2=1.6×4+3.2=9.6(元) (3)当y=16时,16=1.6x+3.2,所以x=8(km)
(3)当y=20时,代入y=0.5x+12,得20=0.5x+12,解得x=16
知识点2根据关系式求值
已 x(1(k知)若m油汽)之箱车间中行的剩驶关余1系油00式量km为y(,L求y)与油1汽0箱0车中59行0剩x驶余路油程量y.
(2)若油箱中剩余油量为64L,求汽车行驶的路
程x.
(1)将x 100代入y 100- 9 x,得y 100- 9 100 82(L)
第三章变量之间关系
用关系式表示的变量间关系
知识点1用关系式表示两个变量之间的关系
1.两个变量之间的关系用一个含有两个变 量及数学运算符号来表示,这种表示变量之 间关系的方法叫做关系式法.例如正方形边 长为x,面积为y则y=x2,这个关系是就表示 两个变量之间的关系,其中x是自变量y是因 变量。 2.关系式的基本特征:因变量写在等号左边, 含有自变量的代数式写在等号右边
50
50
(2)将y 64代入y 100- 9 x,得x 200(km)

变量之间的相关关系

变量之间的相关关系
知识点——
变量之间的相间确实存在关系,但又不 具备函数关系所要求的确定性,若它们的关系是 带有随机性的,就说两个变量具有相关关系. 注:相关关系是一种非确定性关系. 2、散点图:从一个统计数表中,为了更清楚地 看出x与y是否有相关关系,常将x的取值作为横 坐标,将y的相应取值作为纵坐标,在直角坐标 系中描点 i i ,这样的图形叫做散 点图.
温热度饮/℃杯数-5 与当0 天4气温7的对12比表15:19 23 27 31 36 热饮杯数 156 150 132 128 130 116 104 89 93 76 54
(1)画出散点图; (2)从散点图中发现气温与热饮销售杯数之间关系的 一般规律;
变量之间的相关关系
【典型例题】 解:(1)散点图如图所示
变量之间的相关关系
【分类】
线性相关关系:
正相关:指的是两个变量有相同的变化趋势,即从 整体上来看一个变量会随着另一个变量变大而变大. 这在散点图上的反映就是散点的分布在斜率大于0的 直线附近;
40
35
30
25
20
15
10
5
0
0
10
20
30
40
50
60
70
变量之间的相关关系
【分类】
负相关:指的是两个变量有相反的变化趋势,即 从整体上来看一个变量会随着另一个变量变大而 变小,这在散点图上的反映就是散点的分布在斜 率小于0的直线附近.
1.2 1
0.8 0.6 0.4 0.2
0 0
0.1
0.2
0.3
0.4
0.5
0.6
变量之间的相关关系
【典型例题】
1、某机构曾研究温度对翻车鱼的影响,在一定温 度下,经过x单位时间,翻车鱼的存活比例为y,数 据如下: (0.10,1.00),(0.15,0.95),(0.20,0.95), (0.25,0.90),(0.30,0.85),(0.35,0.70), (0.40,0.65),(0.45,0.60),(0.50,0.55), (0.55,0.40) (1)请作出这些数据的散点图; (2)关于这两个变量的关系,你能得出什么结论?

计量经济学协方差公式

计量经济学协方差公式

计量经济学协方差公式
协方差公式是计量经济学中用来衡量两个变量之间关系的重要工具。

它描述了两个变量的变化趋势是否同步,以及它们之间的线性相关性强弱程度。

协方差公式如下所示:
Cov(X,Y) = E[(X-E(X))(Y-E(Y))]
其中,Cov(X,Y)表示变量X和Y的协方差,E表示期望值,X和Y 分别表示两个变量的取值。

协方差公式的含义可以解读为:两个变量的协方差等于它们的离均差乘积的期望值。

当协方差为正值时,表示两个变量呈正相关关系,即一个变量增加时,另一个变量也增加;当协方差为负值时,表示两个变量呈负相关关系,即一个变量增加时,另一个变量减小;当协方差接近于零时,表示两个变量之间没有线性相关性。

协方差的计算可以帮助我们了解变量之间的关系,并在实际问题中提供有用的信息。

例如,在金融领域,协方差可以用来衡量不同资产之间的风险关联性;在经济学中,协方差可以用来研究不同变量对经济增长的影响。

然而,协方差公式只能衡量线性关系,而无法描述非线性关系。

此外,协方差还受到变量尺度的影响,因此在比较不同变量之间的关系时,需要进行标准化处理,例如使用相关系数来衡量变量之间的
关联程度。

协方差公式是计量经济学中重要的工具,可以帮助我们了解变量之间的关系。

通过计算协方差,我们可以得到关于变量之间关联性的信息,从而更好地理解和解释实际问题。

用关系式和图象表示的变量间关系(精讲)

用关系式和图象表示的变量间关系(精讲)

3.2&3.3用关系式和图象表示的变量间关系用关系式表示变量间关系1.关系式法两个变量之间的关系有时可以用一个含有两个变量及数学运算符号的等式来表示,这种表示变量之间关系的方法叫做关系式法.例如,正方形的边长为x,面积为y,则y=x²这个关系式就表示两个变量之间的关系,其中x是自变量,y是因变量.2.关系式的基本特征关系式一般是用含自变量的代数式表示因变量的等式,通常把表示因变量的字母单独写在等号的左边,含有自变量的代数式写在等号的右边.3.求两个变量之间关系式的常见类型(1)利用公式写出变量之间的关系式,如三角形的面积公式;((2)根据表格中所列的数据写出变量之间的关系式;(3)根据实际问题中的等量关系写出变量之间的关系式.题型1:用关系式表示表格中的数量关系1.某商店售货时,在进价基础上加一定利润,其数量x与售价y如下表所示,则售价y与数量x的函数关系式为()数量x(千克)1234…售价y(元)8+0.416+0.824+1.232+1.6…A.y=8+0.4x B.y=8x+0.4C.y=8.4x D.y=8.4x+0.4题型2:用关系式表示几何中的变量关系2.如图,一个矩形的长比宽多3cm,矩形的面积是Scm2.设矩形的宽为xcm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是()A.S=4x+6B.S=4x﹣6C.S=x2+3x D.S=x2﹣3x【变式2-1】如图,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm,AC与MN在同一直线上,点A从点N出发,以2cm/s的速度向左运动,运动到点M时停止运动,则重叠部分(阴影)的面积y(cm2)与时间x(s)之间的函数关系式为.【变式2-2】如图,矩形绿地的长、宽各增加xm,写出扩充后的绿地的面积y与x的关系式.题型3:用关系式表示实际问题中的变量关系3.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为.题型4:用关系式求两个变量的值4.汽车开始行驶时,油箱中有油40升,如果每小时耗油8升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为,该汽车最多可行驶小时.【变式4-1】同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.【变式4-2】在地球某地,温度T(℃)与高度d(m)的关系可以近似用T=10﹣来表示,根据这个关系式,当高度d的值是400时,T的值为.题型5:关系式及实际应用5.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y(元)与m(米)的函数关系式.(2)计算当m=3时,地砖的费用.用图象分析两个变量之间的关系1.图象法用图象来表示两个变量之间关系的方法叫做图象法.在用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.图象上的每一点表示自变量和因变量之间的相互关系.2. 用图象法表示两个变量间关系的优缺点优点∶能直观、形象地反映因变量随着自变量变化的趋势.缺点∶难以得到准确的对应值.题型6:用图象表示速度与时间之间的关系6.请找出符合以下情景的图象:小颖将一个球被竖直向上抛起,球升到最高点后垂直下落,直到地面,在此过程中,球的速度与时间的关系的图象()A.B.C.D.【变式6-1】如图是反映两个变量关系的图,下列的四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从启动到匀速行驶,速度与时间的关系C.一架飞机从起飞到降落的速度与时间的关系D.踢出的足球的速度与时间的关系【变式6-2】10月13日上午,2019“郑州银行杯”郑州国际马拉松赛在郑东新区CBD如意湖畔鸣枪开赛.今年的比赛共设置全程、半程马拉松和健康跑、家庭跑四个大项,吸引了来自全球32个国家和地区的2.6万名选手参加比赛在男子半程比赛中,中国选手刘洪亮起跑后,一直保持匀速前进,冲刺阶段突然加速,以1小时09分21秒的成绩获得男子半程冠军.下列能够反映刘洪亮在比赛途中速度v与时间t之间的函数关系的大致图象是()A.B.C.D.题型7:用图象表示路程与时间之间的关系7.星期日早晨,小明从家匀速跑到公园,在公园某处停留了一段时间,再沿原路匀速步行回家,小明离公园的路程y与时间x的关系的大致图象是()A.B.C.D.【变式7-1】小赵是一位自行车运动爱好者,小赵在一次秋游时的路程与时间变化情况如图所示,从图中可以看出平均车速为每小时10千米的时段是()A.前3小时B.第3至5小时C.最后1小时D.后3小时【变式7-2】如图,图中两条射线分别表示甲、乙两名同学运动的路程s(米)和时间t(秒)的关系图象,已知甲的速度比乙快.下面么给出四种说法:①射线AB表示甲的运动路程与时间的函数关系;②0秒时,甲与乙相距12米;③甲的速度比乙快1.5米/秒;④8秒后,甲超过了乙;其中正确的是.题型8:从图象中获取变量的信息8.如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为()A.30km/h B.60km/h C.70km/h D.90km/h【变式8-1】小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取,已知小明的速度为180米/分,他们各自距离小华家的路程y(米)与出发时间x(分)之间的函数关系如图所示,则下列说法正确的是()A.小明到达球场时小华离球场3150米B.小华家距离球场3500米C.小华到家时小明已经在球场待了8分钟D.整个过程一共耗时30分钟【变式8-2】如图是某地区一天的气温随时间变化的图象:(1)图中的变量是什么?(2)气温在哪段时间是下降的?(3)最高气温和最低气温分别是多少摄氏度?题型9:利用图象法解决容器注水问题9.如图所示,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:cm3)表示注入容器内的水量,则表示V与h的函数关系的图象大致是()A.B.C.D.【变式9-1】在课外实验活动中,一位同学以固定的速度向某一容器中注水,若水深h(cm)与时间t(s)之间的关系的图象大致如图所示,则这个容器是下列图中的()A.B.C.D.【变式9-2】如图1,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽,水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图2所示.如果将正方体铁块取出,又经过秒恰好将水槽注满,此水槽的底面面积为cm2.【变式9-3】如图1,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽,水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图2所示.如果将正方体铁块取出,又经过秒恰好将水槽注满,此水槽的底面面积为cm2.题型10:利用分段图象的特征解决问题10.一司机驾驶汽车从甲地到乙地,他以60km/h的平均速度行驶4h到达目的地,并按照原路返回甲地.(1)返回过程中,汽车行驶的平均速度v与行驶的时间t有怎样的函数关系?(2)如果要在3h返回甲地,求该司机返程的平均速度;(3)如图,是返程行驶的路程s(km)与时间t(h)之间的函数图象,中途休息了30分钟,休息后以平均速度为85km/h的速度回到甲地.求该司机返程所用的总时间.【变式10-1】图表示甲、乙两名选手在一次自行车越野赛中,各时间段的平均速度v(千米/小时)随时间t(分)变化的图象(全程),根据图象提供的信息:(1)求这次比赛全程是多少千米;(2)求比赛开始后多少分钟两人相遇.(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快?最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?。

高中数学必修三-变量间的相关关系

高中数学必修三-变量间的相关关系

变量间的相关关系知识集结知识元变量之间的相关关系知识讲解1、变量之间的相关关系两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系.当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系.相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系.2、线性相关和非线性相关:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系.3、两个变量相关关系与函数关系的区别和联系(1)相同点:两者均是两个变量之间的关系.(2)不同点:函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例题精讲变量之间的相关关系例1.用线性回归模型求得甲、乙、丙3组不同的数据的线性相关系数分别为0.81,-0.98,0.63,其中___(填甲、乙、丙中的一个)组数据的线性相关性最强.例2.如图所示,有A,B,C,D,E,5组数据,去掉___组数据后,剩下的4组数据具有较强的线性相关关系.(请用A、B、C、D、E作答)例3.对两个变量的相关系数r,有下列说法:(1)|r|越大,相关程度越大;(2)|r|越小,相关程度越大;(3)|r|趋近于0时,没有非线性相关系数;(4)|r|越接近于1时,线性相关程度越强,其中正确的是_________.例4.下列两个变量之间的关系是相关关系的是___.①正方体的棱长和体积;②单位圆中圆心角的度数和所对弧长;③单产为常数时,土地面积和总产量;④日照时间与水稻的亩产量.两个变量的线性相关知识讲解1.散点图【知识点的知识】1.散点图的概念:在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.2.曲线拟合的概念:从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这种近似的过程称为曲线拟合.3.正相关和负相关:(1)正相关:对于相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到右上角的区域内.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关,负相关时散点图的点散布在从左上角到右下角的区域.3、注意:画散点图的关键是以成对的一组数据,分别为此点的横、纵坐标,在平面直角坐标系中把其找出来,其横纵坐标的单位长度的选取可以不同,应考虑数据分布的特征,散点图只是形象的描述点的分布,如果点的分布大致呈一种集中趋势,则两个变量可以初步判断具有相关关系,如图中数据大致分布在一条直线附近,则表示的关系是线性相关,如果两个变量统计数据的散点图呈现如下图所示的情况,则两个变量之间不具备相关关系,例如学生的身高和学生的英语成绩就没有相关关系.4、散点图又称散点分布图,是以一个变量为横坐标,另一变量为纵坐标,利用散点(坐标点)的分布形态反映变量统计关系的一种图形.特点是能直观表现出影响因素和预测对象之间的总体关系趋势.优点是能通过直观醒目的图形方式反映变量间关系的变化形态,以便决定用何种数学表达方式来模拟变量之间的关系.散点图不仅可传递变量间关系类型的信息,也能反映变量间关系的明确程度.2.线性回归方程【概念】线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点将散布在某一直线周围.因此,可以认为关于的回归函数的类型为线性函数.【实例解析】例:对于线性回归方程,则=解:,因为回归直线必过样本中心(),所以.故答案为:58.5.方法就是根据线性回归直线必过样本中心(),求出,代入即可求.这里面可以看出线性规划这类题解题方法比较套路化,需要熟记公式.【考点点评】这类题记住公式就可以了,也是高考中一个比较重要的点.3.最小二乘法【概念】最小二乘法(又称最小平方法)是一种数学优化技术.它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达.【例题解析】例:关于x与y有如表数据:请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程为y=0.7x+0.35.解:∵由题意知,,∴=0.7∴要求的线性回归方程是y=0.7x+0.35,故答案为:y=0.7x+0.35.集体步骤就是先做出x,y的平均数,代入的公式,利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果.【考点解析】最小二乘法一般在线性拟合中应用的比较多,主要是一种方法,能够熟记如何操作就可以了,剩下的就是计算要认真.例题精讲两个变量的线性相关例1.'2018年9月17日,世界公众科学素质促进大会在北京召开,国家主席习近平向大会致贺信中指出,科学技术是第一生产力,创新是引领发展的第一动力某企业积极响应国家“科技创新”的号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据{x i,y i)(i=1,2,3,4,5,6),如表(1)求出p的值;(2)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价:x(百元)的线性国归方程y=bx+a(计算结果精确到整数位);(3)用表示用正确的线性回归方程得到的与x对应的产品销的估计值当销售数据(x i,y i)的残差的绝对值|y i-y|<1时,则将销售数据称为一个“有效数据”现从这6组销售数中任取2组,求抽取的2组销售数据都是“有效数据”的概率.参考公式及数据=y i=80,=1606,=91,,'例2.'某地种植常规稻α和杂交稻β,常规稻α的亩产稳定为485公斤,今年单价为3.70元/公斤,估计明年单价不变的可能性为10%,变为3.90元/公斤的可能性为70%,变为4.00的可能性为20%.统计杂交稻β的亩产数据,得到亩产的频率分布直方图如图①.统计近10年杂交稻β的单价(单位:元/公斤)与种植亩数(单位:万亩)的关系,得到的10组数据记为(x i,y i)(i=1,2,..10),并得到散点图如图②.(1)根据以上数据估计明年常规稻α的单价平均值;(2)在频率分布直方图中,各组的取值按中间值来计算,求杂交稻β的亩产平均值;以频率作为概率,预计将来三年中至少有二年,杂交稻β的亩产超过795公斤的概率;(3)①判断杂交稻β的单价y(单位:元/公斤)与种植亩数x(单位:万亩)是否线性相关?若相关,试根据以下的参考数据求出y关于x的线性回归方程;②调查得知明年此地杂交稻β的种植亩数预计为2万亩.若在常规稻α和杂交稻β中选择,明年种植哪种水稻收入更高?统计参考数据:=1.60,=2.82,(x i)(y i)=-0.52,(x i)2=0.65,附:线性回归方程=bx+a,b=.'当堂练习单选题练习1.用模型y=ce kx拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+2,则c=()A.e2B.e4C.2D.4练习2.根据最小二乘法由一组样本点(x i,y i)(其中i=1,2,…,300),求得的回归方程是=x+,则下列说法正确的是()A.至少有一个样本点落在回归直线=x+上B.若所有样本点都在回归直线=x+上,则变量间的相关系数为1C.对所有的解释变量x i(i=1,2….300).bx i+的值一定与y i有误差D.若回归直线=x+的斜率b>0,则变量x与y正相关练习3.已知一组数据点(x1,y1),(x2,y2),(x3,y3),…,(x7,y7),用最小二乘法得到其线性回归方程为,若数据x1,x2,x3,…x7的平均数为1,则=()A.2B.11C.12D.14练习4.根据如下样本数据得到的回归直线方程为=bx+a,则()A.a>0,b>0B.a>0,b<0C.a<0,b<0D.a<0,b>0练习5.下列表格所示的五个散点数据,用最小二乘法得出y与x的线性回归直线方程为,则表格中m的值应为()A.8.3B.8.2C.8.1D.8练习6.一车间为规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,测得的数据如下根据上表可得回归方程,则实数a的值为()A.37.3B.38C.39D.39.5练习1.如图所示,有A,B,C,D,E,5组数据,去掉___组数据后,剩下的4组数据具有较强的线性相关关系.(请用A、B、C、D、E作答)练习2.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中是相关关系的为_____.练习3.对两个变量的相关系数r,有下列说法:(1)|r|越大,相关程度越大;(2)|r|越小,相关程度越大;(3)|r|趋近于0时,没有非线性相关系数;(4)|r|越接近于1时,线性相关程度越强,其中正确的是_________.练习4.下列两个变量之间的关系是相关关系的是___.①正方体的棱长和体积;②单位圆中圆心角的度数和所对弧长;③单产为常数时,土地面积和总产量;④日照时间与水稻的亩产量.练习1.'2013年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由2012年底的10.2%下降到2018年底的1.4%,创造了人类减贫史上的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,2012年至2018年我国贫困发生率的数据如表:(1)从表中所给的7个贫困发生率数据中心任选两个,求两个都低于5%的概率;(2)设年份代码x=t-2015,利用线性回归方程,分析2012年至2018年贫困发生率y与年份代码x的相关情况,并预测2019年贫困发生率.'练习2.'某企业为确定下一年投入某种产品的研发费用,需了解年研发费用x(单位:千万元)对年销售量y(单位:千万件)的影响,统计了近10年投入的年研发费用x i与年销售量y i(i=1,2…,10)的数据,得到散点图如图所示.(1)利用散点图判断y=a+bx和y=c∙x d(其中c,d均为大于0的常数)哪一个更适合作为年销售量y和年研发费用x的回归方程类型(只要给出判断即可,不必说明理由);(2)对数据作出如下处理,令u i=lnx i,v i=lny i,得到相关统计量的值如表:根据第(1)问的判断结果及表中数据,求y关于x的回归方程;(3)已知企业年利润z(单位:千万元)与x,y的关系为z=18y-x(其中e≈2.71828),根据第(2)问的结果判断,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线=+的斜率和截距的最小二乘估计分别为=,=.'基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,设月份代码为x,市场占有率为y(%),得结果如表(1)观察数据看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明(精确到0.001):(2)求y关于x的线性回归方程,并预测该公司2019年4月份的市场占有率;(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的甲,乙两款车型报年限各不相同.考虑到公司的经济效益,该公司决定先对两款单车各100辆行科学模拟测试,得到两款单车使用寿命表如下经测算,平均每辆单车每年可以为公司带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据.如果你是该公司的负责人,你会选择采购哪款车型?参考数据(x i)2=17.5,(y i)2=76,(x i)(y i)=35,≈36.5参考公式:相关系数r=回归方程=x中斜率和截距的最小二乘估计公式分别为=,=近期,某公交公司与银行开展云闪付乘车支付活动,吸引了众多乘客使用这种支付方式.某线路公交车准备用20天时间开展推广活动,他们组织有关工作人员,对活动的前七天使用云闪付支付的人次数据做了初步处理,设第x天使用云闪付支付的人次为y,得到如图所示的散点图.由统计图表可知,可用函数y=a∙b x拟合y与x的关系(1)求y关于x的回归方程;(2)预测推广期内第几天起使用云闪付支付的人次将超过10000人次.附:①参考数据表中v i=lgy i,=lgy i②参考公式:对于一组数据(u1,v1),(u2,v2)…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=,α=-β.'习近平总书记在十九大报告中指出,必须树立和践行“绿水青山就是金山银山”的生态文明发展理念,某城市选用某种植物进行绿化,设其中一株幼苗从观察之日起,第x的高度为ycm,测得一些数据图如下表所示作出这组数的散点图如图.(1)请根据散点图判断,y=ax+b与y=c+d中哪一个更适宜作为幼苗高度y关于时间x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程,并预测第144天这株幼苗的高度(结果保留1位小数)附:=,参考数据:'某老小区建成时间较早,没有集中供暖,随着人们生活水平的日益提高热力公司决定在此小区加装暖气该小区的物业公司统计了近五年(截止2018年年底)小区居民有意向加装暖气的户数,得到如下数据(Ⅰ)若有意向加装暖气的户数y与年份编号x满足线性相关关系求y与x的线性回归方程并预测截至2019年年底,该小区有多少户居民有意向加装暖气;(Ⅱ)2018年年底郑州市民生工程决定对老旧小区加装暖气进行补贴,该小区分到120个名额物业公司决定在2019年度采用网络竞拍的方式分配名额,竞拍方案如下:①截至2018年年底已登记在册的居民拥有竞拍资格;②每户至多申请一个名额,由户主在竞拍网站上提出申请并给出每平方米的心理期望报价;③根据物价部门的规定,每平方米的初装价格不得超过300元;④申请阶段截止后,将所有申请居民的报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则认为申请时问在前的居民得到名额,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的50位居民进行调查统计了他们的拟报竞价,得到如图所示的频率分布直方图:(1)求所抽取的居民中拟报竞价不低于成本价180元的人数;(2)如果所有符合条件的居民均参与竞拍,请你利用样本估计总体的思想预测至少需要报价多少元才能获得名额(结果取整数)参考公式对于一组数据(x1,y1),(x2,y2),(x3,y3),…(x n,y n),其回归直线=x+的斜率和截距的最小二乘估计分别为,=,=-。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表示两个变量之间的关系
1. 两个变量之间可能存在正相关关系,即随着一个变量的增加,另一个变量也会增加。

例如,体重和身高之间可能存在正相关关系,即身高较高的人往往体重较重。

2. 两个变量之间可能存在负相关关系,即随着一个变量的增加,另一个变量会减少。

例如,温度和冷饮销量之间可能存在负相关关系,即温度越高,冷饮销量越低。

3. 两个变量之间可能存在线性关系,即两个变量之间的变化可以用一条直线来表示。

例如,时间和距离之间可能存在线性关系,即单位时间内的距离保持不变。

4. 两个变量之间可能存在非线性关系,即两个变量之间的变化无法用一条直线来表示。

例如,销售金额和广告投入之间可能存在非线性关系,即广告投入增加时,销售金额可能呈现递增迅速,然后逐渐趋于饱和。

相关文档
最新文档