信息光学理论与应用第四版答案
《光学信息处理》习题解答
第 2 页 共 61 页
Q
a
<
1 L
,
b
<
1 W
《光学信息技术原理及应用》习题解答
∴ 1 > L, 1 > W ab
Q
1 a
是
H(
fx,
fy)
在
fx
方向的宽度,
1 b
是
H(
fx,
fy)
在
fy
方向的宽度,
L
、W
分别是输入函数
f ( x, y) 在频域上的频带宽。
∴ H( fx, fy) 在 fx 、 fy 方向的宽度大于 F( fx, fy) ,即 F( fx, fy) 能完全通过系统传递函数为
解:对于线性空间不变系统,设系统的脉冲响应为 h( x) ,输入函数表示式为 g( x) ,输出函数表示式为
g ' ( x) ,则
g'(x) = g(x) ∗h(x) 或 G'( f ) = G( f ) ⋅ H ( f )
+∞
∑ 由 g(x) = comb(x) 知, G( f ) = comb( f ) = δ ( f − n) ,所以 n=−∞
第 6 页 共 61 页
《光学信息技术原理及应用》习题解答
图 1.4(a)
(1)由 H 1 (
f
)
=
rect
(
f 2
)
得 h1 ( x )
=
2 sin
c(2 x)
,函数图形如图
1.4(b)所示
图 1.4(b)
+16
∑ g1(x) = gi (x) ∗ h1(x) = Λ( x − 3n) * h1( x) ,函数图形如图 1.4(c)所示。 n=−16 +16 ∑ 如果考虑到系统为线性不变系统,对上式的卷积可以先计算 Λ(x) * 2sinc(2x) 。 Λ(x − 3n) 表 n=−16
信息光学课后习题解答_苏显渝主编
k 2 2 ( x0 y0 ) U0 ( x0 , y0 ) A0 P( x0 , y0 ) exp j 2f
x 0 y0 k 2 2 exp j ( x y A0 circ( ) 0 ) 2f 0 D1 / 2
2 2
将此式代入菲涅耳衍射公式
0 x1
0 1.5 计算下列一维卷积
x 1 (1) ( 2 x 3) rect( ) 2 x 1 x 1 ( 2) rect( ) rect( ) 2 2
其它
( 3) comb ( x ) rect( x )
解(1)
(1) ( 2 x 3) rect( x 1 1 3 x 1 ) ( x ) rect( ) 2 2 2 2
x y0
2 x 0 y0 e xp( jkf ) exp ( jkf ) D 1 circ( )dx0 dy0 A0 U (0,0, f ) A0 D1 / 2 j f j f 4 2 2 2 D1 I 0 106 I (0,0, z ) A0 4 f
f ( x ) cos2 x 的响应
试计算各自对输入函数 g1 ( x ) 和 g2 ( x ) 解: H1 ( ) rect( )
H 2 ( )
1 rect( ) 3 3
1 F ( ) ( 1) ( 1) 2 1 G1 ( ) H 1 ( ) ( 1) ( 1) 2 1 rect( ) ( 1) ( 1) 0 2
n
0
n
n为奇数
2 ( x 2n )
1.4 计算下面两个函数的一维卷积
信息光学习题详细标准答案
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变. 1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等.1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式地δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0地根,)(i x h '表示)(x h 在i x x =处地导数.于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示地两函数地一维卷积.解:设卷积为g(x).当-1≤x ≤0时,如图题1.1(a)所示,⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示,⎰+-=-+-=13612131)1)(1()(x x x d x x g ααα即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g1.5 计算下列一维卷积. (1)⎪⎭⎫⎝⎛-*-21)32(x rect x δ (2)⎪⎭⎫ ⎝⎛-*⎪⎭⎫ ⎝⎛+2121x rect x rect (3))()(x rect x comb * 解:(1)⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-*⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-*-25.22121232121)32(x rect x rect x x rect x δδ (2)设卷积为g(x),当x ≤0时,如图题1.2(a)所示,2)(2+==⎰+x d x g x α当0 < x 时,如图题1.2(b)所示图题1.2x d x g x-==⎰2)(2α⎪⎩⎪⎨⎧>-<+=0,210,212)(x xx xx g即 ⎪⎭⎫ ⎝⎛∧=22)(x x g (3)1)()(=*x rect x comb1.6 已知)ex p(2x π-地傅立叶变换为)ex p(2πξ-,试求 (1)(){}?ex p 2=-℘x(2)(){}?2/ex p 22=-℘σx解:设ξππ==z x y ,即 {})ex p()ex p(22πξπ-=-℘y由坐标缩放性质{}⎪⎭⎫⎝⎛=℘b a F ab by ax f ηξ,1),( 得 (1)(){}{})ex p()ex p(/ex p(ex p 22222ξπππππ-=-=-℘=-℘z yx(2)(){}(){}22222/ex p 2/ex p πσσyx -℘=-℘)2ex p(2)2ex p(22222ξπσσππσσπ-=-=z1.7 计算积分.(1)()⎰∞∞-=?sin 4dx x c(2)()⎰∞∞-=?cos sin 2xdx x c π 解:应用广义巴塞伐定理可得(1)32)1()1()()()(sin )(sin 121222=-++=ΛΛ=⎰⎰⎰⎰-∞∞-∞∞-ξξξξξξξd d d dx x c x c (2)⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-Λ+⎪⎭⎫ ⎝⎛+Λ=⎰⎰⎰∞∞-∞∞-∞∞-ξξδξξξδξπd d xdx x c 21)(21)(21cos )(sin 221212121=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛Λ+⎪⎭⎫ ⎝⎛-Λ=1.8 应用卷积定理求()()()x c x c x f 2sin sin =地傅里叶变换.解:{}{}{}⎪⎭⎫ ⎝⎛*=℘*℘=℘2)(21)2(sin )(sin )2(sin )(sin ξξrect rect x c x c x c x c 当2123-<≤-ξ时,如图题1.3(a)所示, ξξξ+==⎰+-2321)(211du G当2121<≤-ξ时,如图题1.3(b)所示, 121)(2121==⎰+-ξξξdu G当2321<≤ξ时,如图题1.3(c)所示, ξξξ-==⎰-2321)(121du G2G(ξ)地图形如图题1.3(d)所示,由图可知⎪⎭⎫ ⎝⎛∧-⎪⎭⎫ ⎝⎛∧=2/1412/343)(ξξξG图题1.31.9 设()()x x f β-=exp ,0>β,求(){}()⎰∞∞-==℘??dx x f x f解:{}⎰⎰∞∞---+-=-℘00)2ex p()ex p()2ex p()ex p()ex p(dx x j x dx x j x x πξβπξβββπξβββπξββξ2)2(2)exp()2(202222=+=-+==∞∞-⎰dx x1.10 设线性平移不变系统地原点响应为()()()x step x x h -=ex p ,试计算系统对阶跃函数()x step 地响应.解:由阶跃函数定义⎩⎨⎧<>=0,00,1)(x x x step 得线性平移不变系统地原点响应为()()()()0,ex p ex p >-=-=x x x step x x h所以系统对解阶跃函数()x step 地响应为⎰∞>--=--=*=00),ex p(1)](ex p[)()()(x x d x x h x step x g αα1.11 有两个线性平移不变系统,它们地原点脉冲响应分别为()()x c x h sin 1=和()()x c x h 3sin 2=.试计算各自对输入函数()x x f π2cos =地响应()x g 1和()x g 2.解:1.12 已知一平面波地复振幅表达式为)]432(exp[),,(z y x j A z y x U +-=试计算其波长λ以及沿z y x ,,方向地空间频率.解:设平面波地复振幅地表达式可以表示成以下形式)]cos cos cos (exp[)exp(),,(γβαz y x jk a j a z y x U ++=∙=由题可知,4cos ,3cos ,2cos =-==γβαk k k又因为1cos cos cos 222=++γβα 所以29=k波长为 2922ππλ==k 沿z y x ,,方向地空间频率为πλγζπλβηπλαξ2cos ,23cos ,1cos ==-====1.13 单色平面波地复振幅表达式为()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j A z y x U 143142141exp ,,求此波在传播方向地空间频率以及在z y x ,,方向地空间频率. 解:设单色平面波地复振幅地表达式可以表示成以下形式)]cos cos cos (exp[)exp(),,(γβαz y x jk a j a z y x U ++=∙=由题可知,143cos ,142cos ,141cos ===γβαk k k又因为1cos cos cos 222=++γβα 所以1=k 波长为ππλ22==k沿z y x ,,方向地空间频率为1423cos ,141cos ,1421cos πλγζπλβηπλαξ======第三章 光学成像系统地传递函数3.1 参看图3.1.1,在推导相干成像系统点扩散函数(3.1.5)式时,对于积分号前地相位因子()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+≈⎥⎦⎤⎢⎣⎡+2220202002exp 2exp M y x d k j y x d k j i i 试问:(1)物平面上半径多大时,相位因子()⎥⎦⎤⎢⎣⎡+202002exp y x d k j 相对于它在原点之值正好改变π弧度?(2)设光瞳函数是一个半径为a 地圆,那么在物平面上相应h 地第一个零点地半径是多少?(3)由这些结果,设观察是在透镜光轴附近进行,那么a , λ和d o 之间存在什么关系时可以弃去相位因子()⎥⎦⎤⎢⎣⎡+202002exp y x d k j 解:(1)由于原点地相位为零,于是与原点相位差为π地条件是o o oo o o o d r d kr y x d k λπ===+,2)(2222 (2)根据⎰⎰⎰⎰∞∞-∞∞-⎭⎬⎫⎩⎨⎧-+--=⎭⎬⎫⎩⎨⎧-+--=dxdy y y y x x x d j y x P d d dxdy y My y x Mx x d j y x P d d y x y x h o i o i i i o o i o i i io i i o o ])~()~[(2exp ),(1])()[(2exp ),(1),;,(22λπλλπλ相干成像系统地点扩散函数是透镜光瞳函数地夫琅禾费衍射图样,其中心位于理想像点)~,~(o o y xρρπλλλπλ)2(1~1])~()~[(2exp ),(1),;,(122222a aJ d d a r circ B d d dxdy y y x x d j y x P d d y x y x h io i o o i o i i io i i o o =⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛=⎭⎬⎫⎩⎨⎧-+--=⎰⎰∞∞-式中22y x r +=,而2222~~⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+=i o i i o i dy y dx x λληξρ (1) 在点扩散函数地第一个零点处0)2(1=o a J ρπ,此时应有83.32=o a ρπ,即ao 61.0=ρ (2) 将(2)式代入(1)式,并注意观察点在原点)0(==i i y x ,于是得ad r oo λ61.0=(3) (3)根据线性系统理论,像面上原点处得场分布,必须是物面上所有点在像面上地点扩散函数对于原点地贡献)0,0;,(o o y x h .按照上面地分析,如果略去h 第一个零点以外地影响,即只考虑h 地中央亮斑对原点地贡献,那么这个贡献仅仅来自于物平面原点附近a d r o o /61.0λ=范围内地小区域.当这个小区域内各点地相位因子]2/ex p[2o o d jkr 变化不大,而降它弃去.假设小区域内相位变化不大于几分之一弧度(例如π/16)就满足以上要求,则16/,162/22o o o o d r d kr λπ≤≤,也即o d a λ44.2≥ (4)例如λ =600nm , d o = 600mm ,则光瞳半径a ≥1.46mm ,显然这一条件是极易满足地.3.2 一个余弦型振幅光栅,复振幅透过率为()o o o o x f y x t π2cos 2121,+=放在图3.1.1所示地成像系统地物面上,用单色平面波倾斜照明,平面波地传播方向在z x o 平面内,与z 轴夹角为θ.透镜焦距为f ,孔径为D.(1) 求物体透射光场地频谱;(2) 使像平面出现条纹地最大θ角等于多少?求此时像面强度分布;(3) 若θ采用上述极大值,使像面上出现条纹地最大光栅频率是多少?与θ=0时地截止频率比较,结论如何?解:(1)斜入射地单色平面波在物平面上产生地场为)sin ,ex p(0θjkx A ,为确定起见设θ> 0,则物平面上地透射光场为⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛==λθπλθπλθπθsin 2exp 21sin 2exp 21sin 2exp 2),()sin ,exp(),(o o o o o o o o o o o f x j f x j x j A y x t jkx A y x U 其频谱为⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-=℘=λθξδλθξδλθξδηξsin 21sin 21sin 2)},({),(o o o o o f f A y x U A 由此可见,相对于垂直入射照明,物频谱沿ξ轴整体平移了sin θ/λ距离.(2)欲使像面有强度变化,至少要有两个频谱分量通过系统.系统地截至频率f D c λρ4/=,于是要求fD f f D f D o λλθλλλθ4sin 4,4sin ≤+-≤-≤由此得fD f D f o 4sin 4≤≤-θλ (1) θ角地最大值为⎪⎪⎭⎫⎝⎛=f D4arcsin max θ (2) 此时像面上复振幅分布和强度分布为⎥⎦⎤⎢⎣⎡+=-+⎪⎪⎭⎫ ⎝⎛=x f A y x I f x j f D x j A y x U o i i i o i i i i i ππλπ2cos 454),()]2ex p(211[42ex p 2),(2(3)照明光束地倾角取最大值时,由(1)式和(2)式可得fDf D f o 44≤-λ 即 fDf fD f o o λλ22max =≤或(3) θ=0时,系统地截止频率为f D c λρ4/=,因此光栅地最大频率fDf c o λρ2max == (4) 比较(3)和(4)式可知,当采用倾角地平面波照明时系统地截止频率提高了一倍,也就提高了系统地极限分辨率,但系统地通带宽度不变.3.3 光学传递函数在0==ηξ处都等于1,这是为什么?光学传递函数地值可能大于1吗?如果光学系统真地实现了点物成点像,这时地光学传递函数怎样?解:在⎰⎰⎰⎰∞∞-∞∞--==ℵiiiiIiiiiiiII I dydx y x h dydx y x j y x h H H ),()],(2exp[),()0,0(),(),(ηξπηξηξ (1)式中,令 ⎰⎰∞∞-=iiiiIi i I i i dydx y x h y x h y x h ),(),(),(为归一化强度点扩散函数,因此(1)式可写成⎰⎰∞∞--=ℵi i i i i i dy dx y x j y x h )],(2exp[),(),(ηξπηξ而 ⎰⎰∞∞-==ℵiiiidydx y x h ),(1)0,0(即不考虑系统光能损失时,认定物面上单位强度点源地总光通量将全部弥漫在像面上,着便是归一化点扩散函数地意义. (2)不能大于1.(3)对于理想成像,归一化点扩散函数是δ函数,其频谱为常数1,即系统对任何频率地传递都是无损地.3.4 当非相干成像系统地点扩散函数()i i I y x h ,成点对称时,则其光学传递函数是实函数.解:由于),(i i I y x h 是实函数并且是中心对称地,即有),(),(i i I i i I y x h y x h *=,),(),(i i I i i I y x h y x h --=,应用光学传递函数地定义式⎰⎰⎰⎰∞∞-∞∞--==ℵiiiiIiiiiiiII I dydx y x h dydx y x j y x h H H ),()],(2exp[),()0,0(),(),(ηξπηξηξ易于证明),(),(ηξηξ*ℵ=ℵ,即),(ηξℵ为实函数3.5 非相干成像系统地出瞳是由大量随机分布地小圆孔组成.小圆孔地直径都为2a ,出瞳到像面地距离为d i ,光波长为λ,这种系统可用来实现非相干低通滤波.系统地截止频率近似为多大?解:用公式0),(),(S S ηξηξ=ℵ来分析.首先,由于出瞳上地小圆孔是随机排列地,因此无论沿哪个方向移动出瞳计算重叠面积,其结果都一样,即系统地截止频率在任何方向上均相同.其次,作为近似估计,只考虑每个小孔自身地重叠情况,而不计及和其它小孔地重叠.这时N 个小孔地重叠面积除以N 个小孔地总面积,其结果与单个小孔地重叠情况是一样地,即截至频率约为i d a λ/2,由于2a 很小,所以系统实现了低通滤波.第四章 部分相干理论4.1 若光波地波长宽度为Δλ,频率宽度为Δν,试证明:λλ∆=∆v v .设光波波长为nm nm 8102,8.632-⨯=∆=λλ,试计算它地频宽Δν = ? 若把光谱分布看成是矩形线型,则相干长度?=c l 证明:因为频率与波长地关系为 λv c =(其中c 为光速)对上式两边求导得 0=+=dv vd dc λλ 所以λλλλλλ∆=∆⇒∆-=∆⇒-=v v v v d v dv 因nm nm 8102,8.632-⨯=∆=λλc v v v v c 2λλλλλ∆=∆⇒⎪⎭⎪⎬⎫∆=∆=所以 赫4105.1⨯=∆v 有因为相干长度 c c ct l =)(100.24m vcl c ⨯=∆=4.2 设迈克耳孙干涉仪所用光源为nm nm 6.589,58921==λλ地钠双线,每一谱线地宽度为0.01nm .(1)试求光场地复相干度地模;(2)当移动一臂时,可见到条纹总数大约是多少? (3)可见度有几个变化周期?每个周期有多少条纹?解:假设每一根谱线地线型为矩形,光源地归一化功率谱为⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=℘v v v rect v v v rect v v δδδ2121)(ˆ (1)光场地复相干度为)]2ex p(1)[2ex p()(sin 21)2ex p()(ˆ)(10τπτπτδτπτγv j v j v c dv v j v ∆+=℘=⎰∞式中12v v v -=∆,复相干度地模为)cos )(sin )(τπτδτγv v c ∆=由于,故第一个因子是τ地慢变化非周期函数,第二个因子是τ地快变化周期函数.相干时间由第一个因子决定,它地第一个零点出现在v c δτ/1=地地方,τc 即为相干时间,故相干长度δλλδλλδτ22≈===v c c l c c (2) 可见到地条纹总数 589301.05893===δλλλcl N (3)复相干度地模中第二个因子地变化周期 v ∆=/1τ,故 可见度地变化周期 601.06==∆=∆==δλλδττv v n c 每个周期内地条纹数9826058930===n N 4.3 假定气体激光器以N 个等强度地纵模振荡.其归一化功率谱密度可表示为()()()()∑---=∆+-=ℑ2/12/11ˆN N n v n v v Nv δ式中,Δν是纵模间隔,v 为中心频率.为简单起见,假定N 为奇数.(1)证明复相干度地模为)sin()sin()(τπτπτγv N v N ∆∆=(2)若N =3,且0≤τ≤1/Δv ,画出()τγ与Δντ地关系曲线. (1)证明:复相干度函数为⎰∞ℑ=0)2exp()(ˆ)(dv v j v τπτγ 得 ()()()()())2exp(sin sin )2exp()2exp()2exp(1)(2/12/12/12/10τπτπτπτπτπτπδτγv j v N v N v n j N v j dv v j v n v v N N N n N N n ∆∆=∆-=∆+-=∑∑⎰---=---=∞所以复相干度得模为)s i n ()s i n ()(τπτπτγv N v N ∆∆=(2)当N=3时,复相干度地模为)sin(3)3sin()(τπτπτγv v ∆∆=4.4 在例4.7.1所示地杨氏干涉实验中,若缝光源用两个相距为a ,强度相等地准单色点光源代替,试计算此时地复相干系数.解:应用范西泰特-策尼克定理得⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=⎰⎰∞∞-∞∞-z d a d a a I d d z j a a I d λπααδαδααλπαδαδμcos 222exp 22)(004.5 利用傍轴条件计算被一准单色点光源照明,距离光源为z 地平面上任意两点P 1和P 2之间地复相干系数μ(P 1 ,P 2) .解:设光源所在平面地坐标为α ,β;孔平面地坐标为x ,y.点P 1和P 2地坐标为(x 1 ,y 1)和(x 2 ,y 2).对于准单色点光源,其强度可表为),(),(110ββααδβα--=I I在傍轴近似下,由范西泰特-策尼克定理得⎥⎦⎤⎢⎣⎡∆+∆-⎥⎦⎤⎢⎣⎡--+=--⎥⎦⎤⎢⎣⎡∆+∆---=⎰⎰⎰⎰∞∞-∞∞-)(2exp )(2exp ),()(2exp ),()exp(),(11212122221111021βαλπλπβαββααδβαβαλπββααδϕμy x z j y x y x z j d d I d d y x z j I j P P因为1),(21=P P μ,由点光源发出地准单色光是完全相干地,或者说x,y 面上地相干面积趋于无限大.第六章 计算全息6.1 一个二维物函数f ( x, y),在空域尺寸为10×10mm ,最高空间频率为5线/mm ,为了制作一张傅里叶变换全息图:(1) 确定物面抽样点总数.(2) 若采用罗曼型迂回相位编码方法,计算全息图上抽样单元总数是多少? (3) 若采用修正离轴参考光编码方法,计算全息图上抽样单元总数是多少? (4) 两种编码方法在全息图上抽样单元总数有何不同?原因是什么?解:(1)假定物地空间尺寸和频宽均是有限地.设物面地空间尺寸为Δx,Δy ;频宽为2B x ,2B y .根据抽样定理,抽样间距δx,δy 必须满足δx ≤1/2B x , δy ≤1/2B y 才能使物复原.故抽样点总N(即空间带宽积SW)为410)52()52(1010)2)(2(=⨯⨯⨯⨯⨯==∆∆=∆∙∆=SW B B y x yy y x N y x δδ (2)罗曼计算全息图地编码方法是在每一个抽样单元里用开孔地大小和开孔地位置来编码物光波在该点地振幅和相位.根据抽样定理,在物面上地抽样单元数应为物面地空间带宽积,即410==SW N .要制作傅里叶变换全息图,为了不丢失信息,空间带宽积应保持不变,故在谱面上地抽样点数仍应为410=N .(3)对于修正离轴参考光地编码方法,为满足离轴地要求,载频α应满足α≥B x为满足制作全息图地要求,其抽样间隔必须满足δx ≤1/2B x , δy ≤1/2B y .因此其抽样点数为410210201010)2)(4(⨯=⨯⨯⨯=∆∆=∆∙∆=y x B B y x yy y x N δδ(4)两种编码方法地抽样点总数为2倍关系,这是因为,在罗曼型编码中,每一抽样单元编码一复数;在修正离轴型编码中,每一抽样单元编码一实数.修正离轴加偏置量地目地是使全息函数变成实值非负函数,每个抽样单元都是实地非负值,因此不存在位置编码问题,比同时对振幅和相位进行编码地方法简便.但由于加了偏置分量,增加了记录全息图地空间带宽积,因而增加了抽样点数.避免了相位编码是以增加抽样点数为代价地.6.2 对比光学离轴全息函数和修正型离轴全息函数,说明如何选择载频和制作计算全息图地抽样频率.解:设物地频宽为)2,2(y x B B(1)对于频宽α地选择 光学离轴,由图6.2.5(b)可知,x B 3≥α 修正离轴,由图6.2.5(d)可知,x B ≥α 载频地选择是为了保证全息函数在频域中各结构分量不混叠.(2)对于制作计算全息图时抽样频率地选择 光学离轴全息,由图6.2.5(c)可知:在x 方向地抽样频率应x B 8≥,即x 方向地抽样间距x B x 8/1≤δ. 在y 方向地抽样频率应y B 4≥,即x 方向地抽样间距y B y 4/1≤δ.修正离轴全息,由图6.2.5(e)可知:在x 方向地抽样频率应x B 4≥,即x 方向地抽样间距x B x 4/1≤δ. 在y 方向地抽样频率应y B 2≥,即x 方向地抽样间距y B y 2/1≤δ.6.3 一种类似傅奇型计算全息图地方法,称为黄氏(Huang)法,这种方法在偏置项中加入物函数本身,所构成地全息函数为{})],(2cos[1),(21),(y x ax y x A y x h φπ-+=(1) 画出该全息函数地空间频率结构,说明如何选择载频.(2) 画出黄氏计算全息图地空间频率结构,说明如何选择抽样载频. 解:把全息函数重写为)2exp()],(exp[),(41)2exp()],(exp[),(41),(21),(x j y x j y x A x j y x j y x A y x A y x h παφπαφ-+-+=物函数为 )],(exp[),(),(y x j y x A y x f φ=并且归一化地,即1),(max =y x A ,参考光波R =1.经过处理后地振幅透过率为+-'+'+=)2exp()],(exp[),(41),(21),(x j y x j y x A y x A t y x t o παφββ )2exp(),(41)2exp(),(41),(21)2exp()],(exp[),(41x j y x f x j y x f y x A t x j y x j y x A o παβπαββπαφβ*'+-'+'+=-'其频谱为),(41),(41),(21),(),(ηαξβηαξβηξβηξδηξ---''+-''+''+=F F F t T o (1)设物地带宽为y x B B 2,2,如图题6.3(a)所示.全息函数地空间频谱结构如图题6.3(b)所示,载频x B 2≥α.(2)黄氏全息图地空间频率结构如图题6.3(c)所示,由此可得出: 在x 方向地抽样频率应x B 6≥,即x 方向地抽样间距x B x 6/1≤δ. 在y 方向地抽样频率应y B 2≥,即x 方向地抽样间距y B y 2/1≤δ. 抽样点数即空间带宽积为y x B xyB yyx x SW N 12===δδ. 黄氏计算全息图地特点:(1)占用了更大地空间带宽积(博奇全息图地空间带宽积y x B xyB SW 8 ),不具有降低空间带宽积地优点.(2)黄氏全息图具有更高地对比度,可以放松对显示器和胶片曝光显影精度地要求.6.4 罗曼迂回相位编码方法有三种衍射孔径形式,如图题6.1所示.利用复平面上矢量合成地方法解释,在这三种孔径形式中,是如何对振幅和相位进行编码地.解:对于Ⅰ型和Ⅲ型,是用x A δ来编码振幅A(x,y),用x d δ来编码相位),(y x φ,在复平面上用一个相幅矢量来表示,如图题6.4(a).对于罗曼Ⅱ型是用两个相同宽度地矩孔来代替Ⅰ,Ⅲ型中地一个矩孔.两矩孔之间地距离x A δ是变化地,用这个变化来编码振幅A(x,y).在复平面上反映为两个矢量夹角地变化.两个矩孔中心距离抽样单元中心地位移量x d δ用作相位),(y x φ地编码.在复平面上两矢量地合成方向即表示了),(y x φ地大小,如图题6.4(b)所示.第八章 空间滤波8.1 利用阿贝成像原理导出相干照明条件下显微镜地最小分辨距离公式,并同非相干照明下地最小分辨距离公式比较.解:显微镜是用于观察微笑物体地,可近似看作一个点,物近似位于物镜地前焦点上.设物镜直径为D ,焦距为f ,如图8.1所示.对于相干照明,系统地截止频率由物镜孔径地最大孔径角θo 决定,截止频率为λθ/sin o .从几何上看,近似有f D o 2/sin ≈θ.截止频率地倒数地倒数即为分辨距,即Dfo c λθλδ2sin ==对于非相干照明,由几何光学可知其分辨距为oθλδsin 61.0= 非相干照明时显微镜地分辨率大约为相干照明时地两倍.8.2 在4f 系统输入平面放置40mm -1地光栅,入射光波长632.8nm.为了使频谱面上至少能够获得±5级衍射斑,并且相邻衍射斑间距不小于2mm ,求透镜地焦距和直径.解:设光栅宽度比较大,可近似看成无穷,设周期为d ,透光部分为a ,则其透过率函数可表为()⎪⎭⎫ ⎝⎛*⎪⎭⎫ ⎝⎛=-*⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=∑∑d x comb d a x rect md x a x rect a md x rect x f m m1)(111δ其频谱为{}∑∑⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-==⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛℘⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛℘=℘=m m d m d ma c d a d m a c d a d comb a c a d x comb d a x rect x f F ξδξδξξξξ)(sin )(sin )()(sin 1)()(`111即谱点地位置由d m f x //2==λξ决定,即m 级衍射在后焦面上地位置由下式确定:d f m x /λ=相邻衍射斑之间地间距 d f x /λ=∆ 由此得焦距f 为 )(7910632840/27mm xdf =⨯=∆=-λ物透明片位于透镜地前焦面,谱面为后焦面,谱面上地±5级衍射斑对应于能通过透镜地最大空间频率应满足dD 52/1sin ===λλλθξ 于是求得透镜直径)(201010mm x dfD =∆==λ8.3 观察相位型物体地所谓中心暗场方法,是在成像透镜地后焦面上放一个细小地不透明光阑以阻挡非衍射地光.假定通过物体地相位延迟<<1弧度,求所观察到地像强度(用物体地相位延迟表示出来).解:相位物体地透过率为),(1)],(ex p[),(111111y x j y x j y x t φφ+≈=其频谱为 {}),(),(),(1),(11ηξηξδφηξΦ+=+℘=j y x j T 若在谱平面上放置细小地不透明光阑作为空间滤波器,滤掉零频背景分量,则透过地频谱为 ),(),(ηξηξΦ=j TM再经过一次傅里叶变换(在反演坐标系)得 ),(),(3333y x j y x t Mφ=强度分布为因此在像面上得到了正比于物体相位平方分布地光强分布,实现了将相位转换为强度分布地目地.不过光强不是相位地线性函数,这给分析带来困难.8.4 当策尼克相衬显微镜地相移点还有部分吸收,其强度透射率等于α (0< α <1)时,求观察到地像强度表示式.解:相位物体地频谱为现在用一个滤波器使零频减弱,同时使高频产生一个±π/2地相移,即滤波器地透过率表达式为⎩⎨⎧==±=其它的小范围内在,10,),(ηξαηξj H于是 ),(),(),(),(),(ηξηξαδηξηξηξΦ+±==j j T H TM像地复振幅分布为 ),(),(3333y x j j y x t Mφα+±=像强度分布为),(2),(),(2),(),(),(33233233223323333y x y x y x y x y x j j y x I αφαφαφαφαφα±≈+±=+=+±=像强度分布与相位分布成线性关系,易于分析.8.5 用CRT(阴极射线管)记录一帧图像透明片,设扫描点之间地间隔为0.2mm ,图像最高空间频率为10mm -1.如欲完全去掉离散扫描点,得到一帧连续灰阶图像,空间滤波器地形状和尺寸应当如何设计?输出图像地分辨率如何(设傅立叶变换物镜地焦距f =1000mm ,λ=632.8nm).解:扫描点地表达式为()∑∑--=mnny y mx x y x f 010111,),(δ其频谱为∑∑∑∑∑∑--=--=+-=mnmnmny n f y x m f x y x yn x m y x ny mx j F ),(1)/,/(1)](2exp[),(02020000000λλδηξδηξπηξ在上式地化简中应用了公式∑∑∞-∞=∞-∞=⎪⎭⎫⎝⎛-=±n n a n x a nax j δπ1)2ex p( 由此可见,点状结构地频谱仍然是点状结构,但点与点之间地距离不同.扫描点频谱出现地位置为202,y n f y x m f x ==λλ 点状结构是高频,所以采用低通滤波将其滤掉.低通滤波器圆孔半径为)(164.32.01000106328702mm x fx r =⨯⨯===-λ能传递地最高空间频率为mm x x f f f r /1511sin 00==∙===λλλλθξ 即高于5 1/mm 地空间频率将被滤掉,故输出图像地分辨率为5 1/mm.8.6 某一相干处理系统地输入孔径为30m m ×30mm 地方形,头一个变换透镜地焦距为100mm ,波长是632.8nm.假定频率平面模片结构地精细程度可与输入频谱相比较,问此模片在焦平面上地定位必须精确到何种程度?解:考虑到系统孔径有限,一般用几何光学近似,引入光瞳函数P(x,y), 根据题意其表达式为⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=3030),(y rect x rect y x P设系统地输入面位于透镜地前焦面,物透明片地复振幅分布为),(11y x f ,它地频谱分布为),(ηξF ,透镜后焦面上地场分布)](2exp[)30(sin )30(sin ),(9003030),(),(221111y x j c c F C y rect x rect y x f C U f ηξπηξηξηξ+*'=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛℘'= 式中f y f x ληλξ/,/22==.由f U 地表达式可见,频谱面上能分辨地细节由)30(sin ξc )30(sin ηc 决定.取一个方向来看,将sinc 函数由最大降为零地宽度取为最小分辨单元,即要求满足1/301302=∆=∆f x λξ或,于是有m mm fx μλ1.2)(101.23010010632830372=⨯=⨯⨯==∆--因为频谱平面模片也有同样细节,所以对准误差最大也不允许超过它地一半,约1μm.第九章 相干光学处理9.1 参看图9.1.1,在这种图像相减方法地编码过程中,如果使用地光栅透光部分和不透光部分间距分别为a 和b ,并且a ≠b.试证明图像和地信息与图像差地信息分别受到光栅偶数倍频与光栅奇数倍频地调制.解:如图题9.3所示,先将t (x)展开成傅立叶级数∑∞=++++=102sin 2cos 2)(n n n ba x nb b a x n a a x t ππ式中,2cos )(2)(sin 2,)(2)(cos 2sin 22200=⎪⎪⎩⎪⎪⎨⎧=+-=+-==+=n n b n n b a b a n n n b a b a n n n a R ba a a 偶奇ππππππ 所以 2100)(2cos )(2)(sin 2cos 2)(2cos )(2)(cos 2sin 2)(R R R b a x n b a b a n n n b a x n b a b a n n n R x t ++=++-+++-+=∑∑ππππππππ 第一次曝光得210)(R I R I R I x t I A A A A ++=对于)(x t '是将光栅向x 地负方向移动半个周期即(a+b) /2,将它展开成傅立叶级数得第二次曝光得120210)())(()(R I I R R I I R I R I R I x t I B A B A B B B B -++++-=总曝光量=即图像和地信息受到光栅偶数倍频地调制,图像差地信息受到光栅奇数信频地调制.9.2 用Vander Lugt 方法来综合一个平年元平面滤波器,如图9.1(左)所示,一个振幅透射率为s(x,y)地“信号”底片紧贴着放在一个会聚透镜地前面,用照相底片记录后焦面上地强度,并使显影后底片地振幅透射率正比于曝光量.这样制得地透明片放在图题9.1(右)地系统中,假定在下述每种情况下考查输出平面地适当部位,问输入平面和第一个透镜之间地距离d 应为多少,才能综合出:(1)脉冲响应为s(x,y)地滤波器?(2)脉冲响应为s * (x,y)地“匹配”滤波器?解:(1)参看图题9.1左,设物面坐标为x 1, y 1;胶片坐标为x 2, y 2.则参考光波在记录胶片上造成地场分布为)2ex p(),(222y j A y x U r πα-= (1)式中A 为常数,α =sin θ/λ为空间频率.物透明片在记录胶片上造成地场分布为),()(exp ),(2222221ηξλπS y x f j C y x U ⎥⎦⎤⎢⎣⎡+= 式中S(ξ,η)为s(x 1, y 1)地频谱,且ξ=x 2/λf ,η=y 2/λf.胶片上地光强分布为⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛++⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+-++=+=*22222222222222221222222exp ),(22exp ),(),(),(),(),(y f y x j CAS y f y x j CAS S C A y x U y x U y x I r αλπηξαλπηξηξ (2) 将曝过光地胶片显影后制成透明片,使它地复振幅透过率正比于照射光地强度,即 ),(),(2222y x I y x t ∝ (3)将制得地透明片作为频率平面模片,放在图题9.1右所示地滤波系统中.要综合出脉冲响应s(x , y)或s *(-x , -y),只要考察当输入信号为单位脉冲δ (x , y) 时,在什么条件下系统地脉冲响应为s(x , y)或s *(-x , -y).参看右图,当输入信号为δ (x 1 , y 1)时,在L 2地后焦面上形成地光场复振幅分布,根据公式[]⎰⎰∞∞-⎥⎦⎤⎢⎣⎡+-+-⎭⎬⎫⎩⎨⎧+-+-'=o o o o o o o o o o o dy dx fd d f q y y x x f jk y x t fd d f q y x d f jk c y x U )()(exp ),()(2))((exp ),(22得)4(212exp )(2exp ),(212exp ),(2222111212112222222⎥⎦⎤⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+-⎥⎦⎤⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛-=⎰⎰∞∞-f y x f d j dy dx y y x x f j y x f y x f d j y x U λπλπδλπ 透过频率平面模片得光场分布,由(2),(3)和(4)式得)5(222exp ),(22exp ),(212exp ]),([),(),(),(2222222222*22222222222222⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++-+⎥⎦⎤⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛++∝='y f y x f d j CAS y f y x f d j CAS f y x f d j S C A y x t y x U y x U αλπηξαλπηξλπηξ 如果要使系统是脉冲响应为s(x , y)地滤波器,应当利用(5)式中含有S(ξ,η)地第三项,应要求该项地二次相位因子为零,即有 d =2f (6)这时地输出为(在反演坐标系中)),(),(33333f y x S y x U αλ+= (7)(2)若要使系统地脉冲响应为s *(-x , -y)地匹配滤波器,应当利用(5)式中地第二项,要求d = 0,则在输出面上形成地光场复振幅分布为(在反演坐标系中))](,[),(33333f y x s y x U αλ---=* (8)9.3 振幅透射率为h(x,y)和g(x,y)地两张输入透明片放在一个会聚透镜之前,其中心位于坐标(x = 0, y=Y/2)和(x =0, y = -Y/2)上,如图题9.2所示,把透镜后焦面上地强度分布记录下来,由此制得一张γ为2地正透明片.把显影后地透明片放在同一透镜之前,再次进行变换.试证明透镜地后焦面上地光场振幅含有h 和g 地互相关,并说明在什么条件下,互相关可以从其它地输出分量中分离出来.解:参见图题9.2,设用单位振幅地平面波垂直照明两张振幅透过率为),(11y x h 和),(11y x g 地输入透明片,则透过两张透明片地光场地复振幅分布在透镜L 2地后焦面上形成地强度分布为(略去了二次相位因子))2ex p(),(),()2ex p(),(),(),(),()2,()2,(),(222111122ηπηξηξηπηξηξηξηξY j G H Y j G H G H Y y x g Y y x h y x I -+++=⎭⎬⎫⎩⎨⎧++-℘=** (1)式中f y f x ληλξ/,/22==.用照相胶片记录(1)式所表达地强度分布,从而可制得γ=2地正透明片,它地复振幅透过率为),(),(2222y x I y x t β= (2)将制得地正透明片置于透镜前再次进行傅里叶变换,若同样用单位振幅地单色平面波垂直照明,则透过透明片光场地复振幅分布在透镜后焦面形成地光场地复振幅分布,略去二次相位因子后,在反演坐标系中可表示为(3)第三项和第四项是h 和g 地互相关,只是中心分别在(0, -Y)和(0, Y).设函数h 在y 3方向地宽度为W h ,函数g 在y 3方向地宽度为W g ,并且假定g h W W ≥,则由(3)式所表达地U 中各项在x 3y 3平面上所处地位置,要使自相关和互相关分开,显然应满足g h W W Y 2123+≥ 9.4 在照相时,若相片地模糊只是由于物体在曝光过程中地匀速直线运动,运动地结果使像点在底片上地位移为0.5mm.试写出造成模糊地点扩展函数h(x,y);如果要对该相片进行消模糊处理,写出逆滤波器地透过率函数.解:由于匀速运动,一个点便模糊成了一条线段,并考虑到归一化,具有模糊缺陷地点扩散函数为⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=5.05.011x rect a x rect a h I 带有模糊缺陷地传递函数为)5.0(sin )(sin 1)(ξξξc a c a x rect aH c ==⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛℘= 滤波函数地透过率为)5.0(sin /1)(/1)(ξξξc H H c ==版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.PgdO0。
信息光学习题答案
信息光学习题答案信息光学习题答案第一章线性系统分析简要说明以下系统是否有线性和平移不变性. g?x??df?x?;g?x???f?x?dx; dx?g?x??f?x?;g?x??????f????h?x????d?;2???f???exp??j2????d? 解:线性、平移不变;线性、平移不变;非线性、平移不变;线性、平移不变;线性、非平移不变。
证明comb(x)exp(j?x)?comb(x) ???comb????x? ?x??1?证明:左边=comb???????n?????(x?2n)??2??(x?2n) ?2?n????2?n????2?n??????x??2?右边?comb(x)?comb(x)exp(j?x)?? ?n?????(x?n)??exp(j?x)?(x?n)n?????n???? ??(x?n)??exp(jn?)?(x?n)n???? n?????(x?n)??(?1)n???n?(x?n)?当n为奇数时,右边=0,当n为偶数时,右边=2所以当n为偶数时,左右两边相等。
n?????(x?2n) (x) 证明??(sin?x)?comb证明:根据复合函数形式的δ函数公式?[h(x)]??i?1n?(x?xi)h?(xi ),h?(xi)?0 式中xi是h(x)=0的根,h?(xi)表示h(x)在x?xi处的导数。
于是??(sin?x)??n?????(x?n)???co mb(x) 1 计算图题所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x≤0时,如图题(a)所示,g(x)??1?x0(1??)(1?x??)d??111?x?x3 326 图题当0 2??2?2??2?2?2?x?2设卷积为g(x),当x≤0时,如图题(a)所示,g(x)??0d??x?2 当0 2 图题g(x)??d??2?x x2?x?1?2,x?0 g(x)?2?x?1?,x?0?2即g(x)?2??? ?x??2?(x)?rect(x)?1已知exp(??x2)的傅立叶变换为exp(???2),试求?exp?x2???exp?x2/2?2解:设y??????????? ?x,z??? 即??exp(??y2)??exp(???2) 1????F?,? 得ab?ab?2坐标缩放性质??f(ax,by)???exp?x2???????exp(?y2/??? exp(??z2)??exp(??2?2)2??exp?x/2???2?????exp??y?/2??2 ? ??2??exp(?2??2z2)?2??exp(?2??2?2)计算积分.????sinc?x?dx?? 4??2?x?cos?xdx?? sinc?解:应用广义巴塞伐定理可得? sinc(x)sinc(x)dx?????2222 ?(?)?(?)d??(1?? )d??(1??)d??????103??021???1?1?1?????s inc(x)cos?xdx????(?)?????d????(?)?????d ??2???2?2????????2?1??1??1??1 ??????????? 2??2??2?? 应用卷积定理求f?x??sinc?x?sinc?2x?的傅里叶变换. 3解:??sinc(x)sinc(2x)????sinc(x)????sinc( 2x)??1???rect(?)?rect?? 2?2?当?31????时,如图题(a)所示,2211??3 G(?)??2du??? 2?12当?11???时,如图题(b)所示,2211??2 G(?)??1du?1 2??2当13???时,如图题(c)所示,22113 G(?)??1du??? 2??222G(ξ)的图形如图题(d)所示,图可知G(?)?3???1?????????? 4?3/2?4?1/2? 图题 4 设f?x??exp??x,??0,求??f?x????解:?exp(??x)???????f?x?dx?? ?0?? ?0??exp(?x)exp(?j2??x)dx??exp(??x)exp(? j2??x)dx ?2??2??(2??)2??? exp(??x)dx?2??2?(2??)2???02? 设线性平移不变系统的原点响应为h?x??exp??x?step?x?,试计算系统对阶跃函数step?x?的响应. 解:阶跃函数定义step(x)??线性平移不变系统的原点响应为h?x??exp??x?step?x??exp??x?,所以系统对解阶跃函数step?x?的响应为g(x)?step(x)?h(x)??1,?0,x?0得x?0x?0 ??0exp[?(x??)]d??1?exp(?x), x?0 有两个线性平移不变系统,它们的原点脉冲响应分别为h1?x??sinc?x?和h2?x??sinc?3x?.试计算各自对输入函数f?x??cos2?x的响应g1?x?和g2?x?. 解:已知一平面波的复振幅表达式为U(x,y,z)?Aexp[j(2x?3y?4z)] 试计算其波长λ以及沿x,y,z方向的空间频率。
光学信息技术原理及应用课后答案
第一章 习题解答1.1 已知不变线性系统的输入为()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛bf Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似)(1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
信息光学理论与应用第四版答案第一章
信息光学理论与应用第四版答案第一章牛顿在人类科学史上的贡献是多方面的,他的成就涉及力学、光学、数学、热学、哲学、神学等。
他最主要的贡献是在力学上提出了三大运动定律和万有引力定律;在光学研究上,提出了光是由七色光组成的观点,发现并解释了“牛顿环”的干涉现象,制造出反射望远镜,同时,还继承和发展了“光的微粒学说”;在数学方面,他发现并运用微积分运算方法和无限级数理论等。
他的代表著作有《自然哲学的数学原理》、《光学》等。
下面,我们主要来看看牛顿在光学史上的研究,其伟大成就主要体现在三方面:(1)白光是由各种不同颜色的光组成的。
牛顿曾经致力于光的本质和颜色现象的研究。
1666年,他用三棱镜研究日光,通过实验提出以下光学观点:①白光是由不同颜色即不同波长的光混合而成的,光的波长不同,其折射率也会不同。
②在可见光谱中,红光波长最长,因而折射率最小;紫光波长最短,则折射率最大。
牛顿在光学史上的这一重要发现,揭示了光色的秘密,奠定了光谱分析的基础。
(2)第一架反射望远镜样机和牛顿环。
牛顿喜欢自己动手制造出各种试验设备并进行实验。
公元1668年,他制成了世界上第一架反射望远镜样机。
公元1671年,牛顿把通过改进后的反射望远镜献给了皇家学会,由此名声大振,当选为英国皇家学会会员。
反射望远镜的发明为现代大型光学天文望远镜奠定了基础。
另外,“牛顿环”的发明是牛顿在光学中的另一成就。
三棱镜用来研究日光(3)光的微粒说的继承和发展。
牛顿创立和发展了笛卡儿的微粒学说。
他认为,光是由微粒形成的,且以最快的速度沿直线传播。
光的微粒学说与稍后的光的波动说一起构成了光的两大基本理论。
迈克耳孙-麦克斯韦-是19世纪伟大的英国物理学家、数学家.麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究.尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果。
光学信息技术原理及应用答案
f F F cos π xrect x F F cos π xcos π x
x rect y
(2) f x,y cos π x rect 答:
4 5 x 0 . 043 cos 2 x 0 . 027 cos 2 x rect ( ) 3 3 50
该函数依然限制在 25,25 区间内,但其平均值为零,是振幅为 0.043,周期为 0.75,的一 个余弦函数与振幅为 0.027,周期为 0.6 的另一个余弦函数的叠加。
(4) f x,y comb x rect x rect y 答:
g x,y F F comb x rect x rect y F sin7x δ y f x f y fx rect F comb f δ f sinc sinc x y 2 f x F δ f x , f y . δ f x , f y . δ f x , f y . δ f x , f y rect F 0.25δ f x , f y . δ f x , f y . δ f x , f y . δ f x , f y . δ f x , f y . . cos 2π x . cos 6π x
1.6 若只能用 a b 表示的有限区域上的脉冲点阵对函数进行抽样,即
x y x y g s x, y g x, y comb comb rect rect X Y a b
试说明,即使采用奈魁斯特间隔抽样,也不能用一个理想低通滤波器精确恢复 g x,y 。 答:因为 a b 表示的有限区域以外的函数抽样对精确恢复 g x,y 也有贡献,不可省略。
信息光学习题答案
第一章 习题解答1.1 已知不变线性系统的输入为 ()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1) 如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-Θ(2) 如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π,答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδΛ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
信息光学答案
信息光学一、2、从傅立叶光学的角度看,透镜的作用是 实现物体的傅里叶变换 。
5、 给出下式的傅立叶变换(1) =⇒)(rect t )(s i n c ε(2) ⇒)exp(0t i ω )(20ωωπδ- 。
二、4、傅里叶变换透镜和普通透镜的区别:在消除球差和彗差时,必须满足剩余一定的畸变量,使理想成像点位置与空间频率成线性关系。
三、2、已知一平面波的复振幅表达式为 )]143142141(exp[),,(z y x j A z y x U ++=,求此波在传播方向的空间频率以及沿z y x ,,方向的空间频率。
解:由)]cos cos cos (exp[),,(γβαz y x jk z y x U ++=可得143cos ,142cos ,141cos ===γβαk k k 149cos ,144cos ,141cos 222222===γβαk k k 由1cos cos cos 222=++γβα可得1=k , (1)又有 λπ2=k (2) 由(1)和(2)式可得πλ2= 所以 πλ211==f 因此 1423cos ,141cos ,1421cos πλγξπλβηπλαε====== 5、判断系统)()(x f dxd x g =是否有线性和平移不变性。
解:有题可设)()(111x f dx d x g =,)()(222x f dx d x g = )()()()()()(2211222111222111x g a x g a x f dx d a x f dx d a x f a dx d x f a dx d +=+=+故系统满足线性)()()()(00101011x x g x x f x x d d x x f dx d -=--=-故系统也具有平移不变性因此 系统满足线性和平移不变性6、已知)()()(x g x h x f =*,证明若其中一个函数发生x 0的位移,证明 )()()(00x x g x h x x f -=*-.证明:已知)()()(x g x h x f =*, 通过变换,要求得到)()()(00x x g x h x x f -=*-.有一维卷积公式:⎰∞∞--=*t t x h t f x h x f d )()()()(因此: )('d )'()'('d )'()'(d )()()()(000''000x x g t t x x h t f t x t x h t f x t t t t x h x t f x h x x f x t t -=--=--=-=--=*-⎰⎰⎰∞∞-∞∞--=∞∞-替换,上式可得:用7、F =)}({x δ F -1 =}1{ 证明:⎰+∞∞--=)(2εδπεdx e x j 证明:F =)}({x δ⎪⎩⎪⎨⎧≠===-⎰⎰+∞∞-∞+∞-0,00,1)0()2exp()(x x dx dx x j x δπεδF -1 =}1{=⎰+∞∞-επεd x j )2exp(1)(x δ对于⎰+∞∞--=)(2εδπεdx e x j 的证明见教材9页,认真看一下对以后的学习后继课程有用,考试不做要求。
(整理)光学教程第四版答案word版
光 学 教 程(姚 启 钧 原 著 )参考 答 案目录第一章 第二章 第三章 第四章 第五章 第六章 第七章 光的干涉.....................................3 光的衍射...................................15 几何光学的基本原理...............27 光学仪器的基本原理 (49)光的偏振...................................59 光的吸收、散射和色散...........70 光的量子性. (73)第一章 光的干涉波长为 500nm 的绿光投射在间距 d 为 0.022cm 的双缝上,在距离180cm 处的光屏 1. 上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为700nm 的红光投射到此双缝上, 两个亮条纹之间的距离又为多少?算出这两种光第2 级亮纹位置的距离. - y = r 0λ ∆y = y j +1 jd 解:由条纹间距公式得 ∆y = r 0 λ = 180 ⨯ 500 ⨯10 -7 = 0.409cm 1 1d 0.022 180 ∆y = r 0 λ = ⨯ 700 ⨯10 -7 = 0.573cm 2 2 d 0.022 r 0y 21 = j 2 λ1 = 2 ⨯ 0.409 = 0.818cmd r 0y 22 = j 2 2 = 2 ⨯ 0.573 = 1.146cmd∆y j 2 = y 22 - y 21 = 1.146 - 0.818 = 0.328cm2.在杨氏实验装置中,光源波长为640nm ,两狭缝间距为 0.4mm ,光屏离狭缝的距离为 50cm .试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若 p 点离中央亮条纹为 0.1mm ,问两束光在 p 点的相位差是多少?(3)求 p 点的光强度和中央点的强度之比.∆y = r 0 λd 解 :( 1)由公式∆y =r 0 λ 50⨯ 6.4 ⨯ 10 -5 = 8.0 ⨯ 10 -2 cm d = 0.4得(2)由课本第 20 页图 1-2 的几何关系可知r - r ≈ d sin θ ≈ d t an θ = d y = 0.04 0.01 = 0.8 ⨯10-5cm 2 1r 050∆ϕ =2π (- r ) = 2π ⨯ 0.8 ⨯10-5 = π 2 1 6.4 ⨯10-5λ 4 I = A 2 + A 2 + 2AA cos ∆ϕ = 4A 2 cos 2∆ϕ(3) 1 2 1 2 12 由公式得4A 2 cos 2 ∆ϕ cos 2 1 ⋅ π 2 I p = A p = 2 = 2 4 1 = cos 2 π 4A 2 cos 2 ∆ ϕ 2 2I 0 A cos 0︒ 8 00 121 + cos π =2 + 2 = 4 = 0.8536 2 43 . 把折射率为 1.5 的玻璃片插入杨氏实验的一束光路中,光屏上原来第 5 级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为 6×10-7m .∆ϕ = ∆r 解:未加玻璃片时, S 1 、 S 2 到P 点的光程差,由公式 2π λ 可知为 λr 2 - r 1 =2π⨯ 5 ⨯ 2π = 5λΔr = 现在S 1 发出的光束途中插入玻璃片时, P 点的光程差为λ λ r 2 - ⎡⎣(r 1- h ) + nh ⎤⎦ = ∆ϕ ' = ⨯ 0 = 0 2π 2π所以玻璃片的厚度为h =r 2 - r 1 5λ= 10λ = 6 ⨯10-4 cm n - 1 0.54. 波长为 500nm 的单色平行光射在间距为 0.2mm 的双狭缝上.通过其中一个缝的能量 为另一个的 2 倍,在离狭缝 50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.∆y = r 0 λ = 500 ⨯ 500 ⨯10-6 = 1.25d 0.2 mm 解:A 1I 1 = 2I 2 2 2A 1 = 2 A 2 A 22(A1 / A2 )== 0.9427 ≈0.94∴V =1+(A/ A )21+21 25. 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm,棱到光屏间的距离L 为180cm,若所得干涉条纹中相邻亮条纹的间隔为1mm,求双镜平面之间的夹角θ。
信息光学教程全书习题及参考答案
−∞ −∞ ∞
∫ ∫ δ (x, y )dxdy = 1
−∞
=
∫ δ (x )dx ∫ δ ( y )dy
−∞ ∞ ∞ −∞ −∞
∞
= ab ∫ δ (ax )dx ∫ δ (by )dy = ab ∫
∞ ∞ ∞ ∞
−∞ −∞
∫ δ (ax, by )dxdy
即
−∞ −∞
1 ∫ ∫ δ (ax, by )dxdy = ab 1 δ ( x, y ) ab
F { f ( x, y )} =
∞
−∞
∫ f (x, y )exp(− j 2π (ξx ) + ηy )dxdy
令 x − y 平面上的极坐标为 (r , θ ) ;频率空间 ξ − η 平面上的极坐标为 ( ρ , φ ) 有: ⎨
⎧ x = r cos θ ⎩ y = r sin θ
⎧ξ = ρ cos φ ⎨ ⎩η = ρ sin φ
(1)按照菲涅耳衍射公式表示出光波传播到平面 L 时的光波场; (2)按照衍射的角谱理论表示出光波传播到平面 L 时的光波场。 参考答案: (1)
U1 (x, y) =
⎧ k ⎫ exp( jkd0 ) ∞ ∞ (x0 − x)2 + ( y0 − y)2 ⎬dx0dy0 U0 (x0 , y0 ) exp⎨ j ∫ ∫ jλd0 −∞−∞ ⎩ 2d0 ⎭
L{} 来表示,当
2
L{ f ( x, y)} = g (ξ ,η ) , L{ f
1 1
( x, y )} = g 2 (ξ ,η ) ,且 a1 、 a 2 为常数时,
L{a
1 1
f ( x, y ) + a 2 f 2 ( x, y )} = a1 g1 (ξ ,η ) + a 2 g 2 (ξ ,η )
信息光学理论与应用第四版课后答案
信息光学理论与应用第四版课后答案1、Tritop照相时确保数码点的配置无论在哪个角度上看都能达到()个以上的标准。
[单选题] *A、3B、4C、5(正确答案)D、62、Atos扫描后生成的点云文件为()格式 [单选题] *A、STL(正确答案)B、ASCIIC、CATPARTD、JPG3、稀化点云网格的功能适用于在()生成一个相对规则的网格,同时又保留测量点数据。
[单选题] *A、棱角区域B、圆角区域C、平坦区域(正确答案)D、空缺区域4、只有当所有曲面的法向方向()时,才能准确计算出所有曲面到参考网格的偏差。
[单选题] *A、相反B、单一方向相同C、相同(正确答案)D、圆角处相反5、根据最佳拟合原则,Atos软件在统计方法的帮助下,可以计算()范围。
[单选题] *A、1Sigma-2 SigmaB、1 Sigma-3 SigmaC、1 Sigma-5 Sigma(正确答案)D、1 Sigma-7 Sigma6、最新的Atos蓝光扫描头,在进行标定的时候使用的是() [单选题] *A、十字标定尺B、标定球C、标定环D、标定盘(正确答案)7、制造企业中,生产批量与()有着密切的关系。
[单选题] *A、交货周期B、搬运时间C、延误时间D、生产周期(正确答案)8、材料弯曲后其长度不变的一层称为()。
[单选题] *A、中心层B、中间层C、中性层(正确答案)D、内层9、千分尺的活动套筒转动一格,测微螺杆移动()。
[单选题] *A、基准B、模拟基准C、基准要素模拟器(正确答案)D、基准要素10、在泡沫实型检测时,每100×100mm范围内至少放置()参考点 [单选题] *A、1个B、2到3个(正确答案)C、3到4个D、5个以上11、对不合格品控制的过程是进行质量()的过程。
[单选题] *A、把关B、报告(正确答案)C、鉴别D、预防12、在ATOS标定中,高质量的标定结果,其偏差在()象素之间。
中科大信息光学习题解答
H (, )
P( x, y) P( x d , y d )dxdy
i i
P( x, y)dxdy
由自相关性质(p16) ,如果
r ( x, y )
R ff ( x, y ) R ff (0,0)
f
(α x,β γ ) f (α ,β )dα dβ
2 exp j ( x0 x y0 y ) dx0 dy0 z
菲涅耳衍射图样随 z 改变。
2 2 2 2 2 ( x0 y 0 ) max x0 y0 2 可略去,即 2z 2z
z 增大到 exp jk
或
z 1 2 2 ( x0 y 0 ) max 2
H (, ) 答:由公式 H (, ) I H I (0,0)
H (0,0) 1 ;
h ( x , y ) exp j 2(x
I i i I i i
i
y i )dxi dyi
可知
i
h ( x , y )dx dy
i
(问题)不能证明在某个空间频率上有 H>1. 对于衍射受限系统
光栅的透射函数???????????????????????????????????????????????????ntnindxbbxrecteaaxrectxt2212ox0x??????????????xxxxnifaixnifaixntnitnidfcombtnafafcaddfcombdeeafcaeeafcaxtfndxeaaxrecteaaxrectxtdbaxx?????????????????????????????????????????????????????????????????????????????????????1cos2sin11sinsin22
光学信息技术原理及应用答案
1.7 若二维不变线性系统的输入是“线脉冲” f x, y x ,系统对线脉冲的输出响应称 为线响应 L x 。如果系统的传递函数为 H f x , f y ,证明:线响应的一维傅里叶变换等于
6
系统传递函数沿 f x 轴的截面分布 H f x ,0 。 证明: FLx Fδy hx, y f y H f x , f y H f x ,0
4 5 x 0 . 043 cos 2 x 0 . 027 cos 2 x rect ( ) 3 3 50
该函数依然限制在 25,25 区间内,但其平均值为零,是振幅为 0.043,周期为 0.75,的一 个余弦函数与振幅为 0.027,周期为 0.6 的另一个余弦函数的叠加。
'
'
'
答:为了便于从频率域分析,分别设: 物的空间频谱 像的空间频谱 等效物体的空间频谱 等效物体的像的空间频谱
A0 ( f x , f y ) F {g0 ( x, y)} ;
Ai ( f x , f y ) F {gi ( x, y)} ; A '0 ( f x , f y ) F {g '0 ( x, y)} ;
(3) f x,y cos π x rect
x
答:
x g x,y F F cos π x rect F sin7x δ y f F F cos π x sinc75f x δ f y rect x f x F δ x δ f x δ f x sinc75f x δ f y rect x f F sinc75f x δ f y rect x F sinc75f x δ f y rect
《光学信息处理》习题解答
H ( f x , f y ) 的滤波器,即 F ( f x , f y ) ⋅ H ( f x , f y ) = F ( f x , f y ) 。
故 f (x, y) ∗ h(x, y) = f (x, y) ,即 1 sinc( x )sinc( y ) * f (x, y) = f (x, y) 。 ab a b
)]
*
Λ(
x)
对下述传递函数用图解方法确定系统的输出。
(1)
H 1 ( f ) = rect(
f) 2
(2)
H 2 ( f ) = rect(
f ) − rect( 4
f) 2
解:
由已知条件,在空域内系统输出应为输入函数 gi ( x) 与滤波器 h( x) 的卷积(线性不变系统)。
将 gi ( x) 展开可得
(2)
如果
a
>
1, L
b
>
1 W
,因
f
( x,
y) 是限带函数,在频域内, F (
fx,
f y ) 在长、宽分别为 L 、W
的矩
形内不为零, a > 1 、 b > 1 即 1 < L 、1 < W ,也就是说滤波器通带宽度比输入函数波形宽度窄,
L
Wa
b
势必有一部分信号不能通过滤波器,在频域内,这时 F ( f x , f y ) ⋅ H ( f x , f y ) ≠ F ( f x , f y ) ,在空域内即 1 sinc( x )sinc( y ) * f (x, y) ≠ f (x, y) ab a b
∑ G' ( f ) =
+∞
δ(f
信息光学课后习题答案
信息光学课后习题答案信息光学是一门研究光在信息处理和传输中的应用的学科,课后习题是帮助学生巩固课堂知识的重要手段。
以下是一些信息光学课后习题的参考答案。
习题一:光的干涉现象1. 描述杨氏双缝干涉实验的基本原理。
答:杨氏双缝干涉实验是利用两个相干光源产生的光波在空间中相遇时,由于相位差不同而相互叠加,形成明暗相间的干涉条纹。
当两束光波的相位差为整数倍的波长时,它们相互加强,形成亮条纹;当相位差为半整数倍波长时,它们相互抵消,形成暗条纹。
2. 计算双缝干涉的条纹间距。
答:设双缝间距为d,观察屏与双缝的距离为L,光波长为λ。
根据干涉条纹的间距公式:\[ \Delta x = \frac{\lambda L}{d} \],可以计算出条纹间距。
习题二:光的衍射现象1. 解释夫琅禾费衍射和菲涅尔衍射的区别。
答:夫琅禾费衍射适用于远场条件,即观察点距离衍射屏很远,可以忽略衍射波的弯曲。
而菲涅尔衍射适用于近场条件,考虑了衍射波的弯曲效应。
2. 描述单缝衍射的光强分布特点。
答:单缝衍射的光强分布呈现中央亮条纹最宽最亮,两侧条纹逐渐变窄变暗,且条纹间距随着角度的增大而增大。
习题三:光的偏振现象1. 什么是偏振光,它有哪些应用?答:偏振光是指光波振动方向被限制在特定平面内的光。
偏振光的应用包括偏振太阳镜减少眩光,液晶显示技术,以及光学测量和成像技术等。
2. 解释马吕斯定律。
答:马吕斯定律描述了偏振光通过偏振器时,透射光强与入射光强的关系。
根据马吕斯定律,透射光强I与入射光强I0的关系为:\[ I = I_0 \cos^2(\theta) \],其中θ是偏振器的偏振方向与光波振动方向之间的夹角。
习题四:光纤通信1. 解释全内反射原理。
答:全内反射是指当光从折射率高的介质进入折射率低的介质时,如果入射角大于临界角,光将不会穿透界面,而是完全反射回高折射率介质内部。
这是光纤通信中光信号能够长距离传输的关键原理。
2. 描述单模光纤和多模光纤的区别。
信息光学第三四章作业答案
解:按题意,由透镜定律有
1 1 1 f 10cm, 物距d0 20cm f d 0 di
解得像距:di 20cm
这里系统的截止频率应大于物函数的基频f1。于是 (1) 相干照明时,根据截止频率的定义,有
D fc f1 , D 2 di f1 2 104 20 1000 4cm 2 di
第三、四章作业答案
3.1 试阐述衍射受限的相干成像系统和非相干成像
系统的区别以及像差的影响。 衍射受限的相干成像系统与非相干成像系统的区别:
(1)衍射受限相干成像系统对复振幅变换而言是 线性不变系统,对光强度的变换则不是线性系统; 非相干成像系统对光强变换是线性不变的,而对复 振幅的变换则不是线性的。 (2)截止频率不同:相干系统截止频率是确定像 的复振幅的最高频率分量,而非相干系统截止频率 是对像强度的最高频率分量而言。非相干衍射受限 系统的OTF,其截止频率扩展到相干系统CTF的截 止频率的两倍处。
源中心对两观测点的张角有关。
[4-4] 在杨氏干涉实验中,如果光源的宽度是光源 的极限宽度的1/3,试问干涉条纹的对比度是多少?
解:条纹对比度V sin
2bt , 其中 = 。当光源宽度为 ls
极限宽度时, =1。因此当光源宽度为极限宽度的1/3时,
=1/3,于是相应的干涉条纹对比度
变化情况。
由相干时间或相干长度来表征。光源的时间相干性
取决于光源的频谱宽度或中心波长0和波长宽度 等。
[4-3] 什么叫光源的空间相干性?由什么物理量
来表征?与哪些因素有关?
答:空间相干性是指在波面上固定两空间点的位 相差随时间的变化情况。它描述在同一时刻波面
上两点之间光场的相干性。
信息光学 课后习题答案
信息光学课后习题答案信息光学课后习题答案在信息时代,光学技术的应用越来越广泛。
信息光学是一门研究光的传播、控制和处理的学科,它涉及到光的物理性质、光学仪器和光学系统的设计等方面。
在信息光学的学习过程中,习题是非常重要的一部分,通过解答习题可以巩固理论知识,提高问题解决能力。
下面是一些信息光学课后习题的答案,希望能对你的学习有所帮助。
1. 什么是光的干涉?请简要描述干涉的条件和干涉的类型。
答:光的干涉是指两束或多束光波相互叠加产生干涉现象的现象。
干涉的条件包括:光源的相干性、光波的波长、光波的振幅和相位等。
根据光波的相位关系和干涉光波的振幅分布,干涉可以分为构成干涉的光波相位差为定值的相干干涉和相位差随空间位置而变化的非相干干涉。
2. 什么是光的衍射?请简要描述衍射的条件和衍射的类型。
答:光的衍射是指光波通过物体的边缘或孔径时发生偏折和扩散的现象。
衍射的条件包括:波长与物体尺寸的比值、入射光波的方向和物体的形状等。
根据物体的形状和光波的传播方式,衍射可以分为菲涅尔衍射和菲拉格衍射。
3. 什么是光的偏振?请简要描述光的偏振现象和偏振的方法。
答:光的偏振是指光波中的电矢量在特定方向上振动的现象。
偏振可以通过特定的方法将非偏振光转化为偏振光,常用的偏振方法包括:偏振片的使用、布儒斯特角的利用和波片的调整等。
4. 什么是光的散射?请简要描述散射的条件和散射的类型。
答:光的散射是指光波与物质相互作用后改变传播方向的现象。
散射的条件包括:光波与物质的相互作用力、物质的尺寸和光波的波长等。
根据散射物体的尺寸和光波的波长,散射可以分为瑞利散射、米氏散射和光学散射等。
5. 什么是光的吸收?请简要描述吸收的条件和吸收的影响因素。
答:光的吸收是指光波在物质中被吸收转化为其他形式的能量的现象。
吸收的条件包括:光波与物质的相互作用力、物质的性质和光波的波长等。
吸收的影响因素包括:物质的吸收系数、光波的强度和入射角度等。
以上是对一些信息光学课后习题的简要解答。
信息光学习题解答
解: h( x) exp( x)step( x) exp( x) g( x) step( x) h( x) f (x) h( x)
x0 x0
f (x)
1, x 0 0, 其它
h( x)
1
h( x )
ex , x 0 0, 其它
f (x)
1
x 01
x 0
(1)、将f (x)和h (x)变为f ( )和h ( ), 并画出相应的曲线
4如图所示的等腰直角三角形孔径放在透镜的前焦平面上, 以单位 振幅的单色平面波垂直照明, 试求透镜后焦面上的夫琅和费衍射 图样的复振幅分布。
y0 y0 x0
U(x, y)
1
jf
exp(
jkf
) e xp
j
k 2f
(x2
y
2
)
45 0 45
x0 a
x0
2
U0( x0 ,
y0 ) exp
0
其它
1.5 计算下列一维卷积
(1) (2 x 3) rect( x 1)
2
(2) rect( x 1) rect( x 1)
2
2
(3) com b( x) rect( x)
解(1)
(1) (2 x 3) rect( x 1) 1 ( x 3 ) rect( x 1)
n
(1)n ( x n)
n
comb( x)exp( j x ) comb( x) (1)n ( x n) ( x n)
n
n
0 n为奇数
2 ( x 2n)
n
1.4 计算下面两个函数的一维卷积
h( x) 1 x
f (x) 1 x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息光学理论与应用第四版答案
第一章
1.1 信息光学的基本原理
信息光学是将光学和信息科学相结合的交叉学科,其基本
原理包括以下几个方面:
光的干涉与衍射
信息光学中常用到的干涉和衍射现象对于信息处理具有重
要意义。
干涉是指两束或多束光线相互作用产生的干涉条纹的现象,而衍射是指光波经过障碍物或光学元件产生的退射或透射现象。
激光技术
激光技术在信息光学领域有着广泛应用。
激光具有高亮度、高方向性和高相干性的特点,能够产生稳定的光场,因此在信息传输、储存和处理方面起着重要作用。
光的非线性效应
光在物质中的传播过程中存在着非线性效应,如自聚焦效应、光学孤子效应等。
这些非线性效应为信息光学研究提供了新的理论和应用基础。
光学成像和处理技术
光学成像技术是信息光学中的基础技术之一。
光学成像技
术通过收集和记录光信号的强度和相位信息,实现对目标的成像和处理。
1.2 信息光学的应用领域
信息光学的应用领域非常广泛,包括以下几个方面:
光信息处理
光信息处理是信息光学的核心应用之一。
光信息处理技术
可以实现光信号的放大、调制、解调和滤波等操作,为光通信、光存储和光计算等领域提供支持。
光通信与光网络
光通信是利用光传输信息的通信方式,具有宽带、低延时和大容量等优势。
光通信技术已经成为现代通信系统的重要组成部分,并且在高速互联网、光纤通信和卫星通信等方面有广泛应用。
光存储技术
光存储技术是利用光学原理实现数据存储的一种方式。
光存储具有高密度、非破坏性读取和长期保存等特点,因此在光盘、光存储卡和光存储器等方面有广泛应用。
光计算与光信息处理
光计算是利用光学技术进行信息处理和计算的一种方式。
光计算具有并行处理能力强、计算速度快和能耗低等优势,因此在大规模数据处理和人工智能等领域有广泛应用。
第二章
2.1 光的干涉与衍射
光的干涉和衍射是信息光学中的基本概念和现象。
在光的干涉现象中,光波的相位差决定了干涉条纹的形成。
干涉可以分为两种类型:干涉的相加型和干涉的相消型。
光的衍射现象是指光波经过障碍物或光学元件后产生的退射或透射现象。
衍射可以用菲涅尔-柯西衍射公式来描述,该公式可以通过光的波动性来解释衍射现象。
2.2 激光技术与应用
激光技术是信息光学中非常重要的一项技术。
激光是指一束具有高度相干性、高亮度和高方向性的光束。
激光具有单色性好、光束质量高和能量密度大等特点,因此在信息传输、储存和处理方面有着广泛的应用。
激光技术的应用包括激光雷达、激光切割、激光测量和激光照明等方面。
例如,激光雷达利用激光的高方向性和可调谐性来进行目标探测和测距;激光切割技术可以实现高精度的材料切割和加工。
2.3 光的非线性效应
光在物质中的传播过程中存在着非线性效应。
非线性效应包括自聚焦效应、光学孤子效应和光学调制等。
这些非线性效应为信息光学研究提供了新的理论和应用基础。
自聚焦效应是指光束在通过具有非线性介质时,由于介质的非线性光学性质而形成的束聚焦现象。
自聚焦效应可以用来实现光学限幅和光学存储等应用。
光学孤子效应是指光在非线性介质中传播时,由于介质的非线性性质而形成的孤立的光脉冲。
光学孤子效应可以用来实现光信号传输和处理中的调制功能。
第三章
3.1 光学成像技术
光学成像技术是信息光学中的一个关键技术,用于实现图像的采集、显示和处理等操作。
光学成像技术基于光波的传播和反射原理,通过调整物体与成像系统之间的空间关系,实现对目标物体的成像。
光学成像技术主要包括以下几个方面:透镜成像机制、光
学成像系统的构成和性能参数、图像传感器和光学图像处理等。
透镜成像机制是光学成像技术的基础,通过调整透镜的位置和焦距来实现对光线的聚焦和成像。
光学成像技术的应用主要包括光学显微镜、光学望远镜和
光学相机等。
例如,光学显微镜通过使用透镜和物镜等光学元件,可以实现对微观物体的放大和观察。
3.2 光学图像处理
光学图像处理是利用光学技术对图像进行调整和处理的一
种方式。
光学图像处理涉及到图像采集、信号处理和图像显示等方面。
图像采集是将物体的光学信息转换成电信号的过程,采集
到的图像信号可以进行后续的处理和显示。
光学图像处理的信号处理过程包括滤波、增强和压缩等。
图像显示是将经过处理的图像信号转换成人眼可识别的形式。
图像显示技术不仅涉及到显示器的性能参数,还包括颜色管理和图像压缩等方面。
光学图像处理的应用包括数字相机、图像识别和医学图像
处理等方面。
例如,数字相机通过将光学图像转换成数字信号,可以实现图像的存储和传输。
第四章
4.1 光信息处理
光信息处理是信息光学的核心应用之一,它具有并行处理
能力强、信息容量大和处理速度快等特点。
光信息处理技术可以实现光信号的放大、调制、解调和滤
波等操作。
光信息处理的主要方法包括光学干涉、光学衍射和光学非线性效应等。
光信息处理的应用主要包括光存储、光计算和光学图像处
理等方面。
例如,光存储技术可以通过调制光信号的强度和相位来实现光的存储和读写。
光计算是利用光学技术进行信息处理和计算的一种方式。
光计算具有并行处理能力强、计算速度快和能耗低等优势,在大规模数据处理和人工智能等领域有广泛应用。
光学图像处理是利用光学技术对图像进行调整和处理的一
种方式。
光学图像处理涉及到图像采集、信号处理和图像显示等方面,可以实现对图像的滤波、增强和压缩等操作。
4.2 光通信与光网络
光通信是利用光传输信息的通信方式,具有宽带、低延时
和大容量等优势。
光通信技术已经成为现代通信系统的重要组成部分,并且在高速互联网、光纤通信和卫星通信等方面有广泛应用。
光通信系统主要由光源、传输介质和光检测器等组成。
光
源可以是激光器或发光二极管,传输介质可以是光纤或空气等,而光检测器可以将光信号转换成电信号。
光通信的应用主要包括光纤通信和无线光通信等方面。
光
纤通信是通过光纤传输信号,具有高速率、低损耗和抗干扰等特点。
无线光通信是利用红外线或激光等光信号进行无线传输。
光网络是指利用光通信技术构建起来的高速通信网络。
光
网络可以实现多用户同时传输大容量数据,具有高速率、低延时和低能耗等优势,因此在数据中心和云计算等领域有广泛应用。
总结
信息光学作为将光学和信息科学相结合的交叉学科,涵盖
了光的干涉与衍射、激光技术与应用、光的非线性效应、光学成像和处理技术等多个领域。
信息光学的应用包括光信息处理、光通信与光网络、光存储技术和光计算与光信息处理等方面。
信息光学的发展给通信、计算和图像处理等领域带来了巨大的进步和发展。