七年级数学思维探究(20)丰富的图形世界(含答案)
丰富的图形世界(七年级上数学提优练习与答案)
丰富的图形世界1.如图5-1-1所示,组成“陀螺”的几何体有( )A.长方体和圆锥 B.长方形和三角形C.圆和三角形 D.圆柱和圆锥2.(2020独家原创试题)如图5—1—2所示的几何体中,属于柱体的有 ( )A.1个 B.2个 C.3个 D.4个3.在几何图形“线段、圆、圆锥、正方体、角、棱锥”中.属于立体图形的共有个.4.(2020独家原创试题)下列的立体图形中,有4个面的是 ( )A.三棱锥 8.三棱柱 C.四棱锥 D.四棱柱5.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.图5-1-3是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是 ( ) A.五棱柱 B.六棱柱C.七棱柱 D.八棱柱6.如果一个六棱柱的所有侧棱长之和是48 cm,则它的侧棱长为________cm.7.围成圆柱的面有 ( )A.1个 B.2个 C.3个D.4个8.推导猜测:(1)三棱锥有条棱,四棱锥有条棱,五棱锥有条棱:(2) 棱锥有30条棱;(3)一个棱锥的棱数是l00,则这个棱锥是棱锥.9.如图5一l一4,下列几何体是由几个面围成的?并指出对应的面是曲的还是平的.10.用边长为1的正方形纸板.制成一副七巧板(如图5一1-5①),将它拼成“小天鹅”图案(如图5—1-5②),其中阴影部分的面积为 ( )11.已知七巧板的结构如图5-1-6所示.请运用七巧板拼出1~9这九个数中的任意2个数字.说明:七巧板中的七块板可以不用完.拼好后将对应的编号写在拼出的图形中.12.(2020江苏南京高淳期末,2,★☆☆)如图5一l一7,含有曲面的几何体的编号是 ( )A.①② B.①③ C.②③ D.②④13.(2018江苏连云港东海月考,5,★★☆)一个六棱柱模型如图5—1—8所示,底面边长都是5 cm.侧棱长为4cm,这个六棱柱的侧面积是 ( )A.20 cm2 B.60 cm2C.120 cm2 D.240 cm214.(2020江苏无锡宜兴一模,10,★☆☆)若一个棱柱有7个面.则它是棱柱.15.(2019上海南洋模范中学月考,1’,★☆☆)用一个平面去截下列几何体:①正方体;②圆柱;③圆锥;④正三棱柱,得到的截面形状可能为三角形的有___________________(写出所有正确结果的序号).16.(2019江苏淮安金湖期末.21,★☆☆)如果一个正棱柱一共有l2个顶点,底面边长是侧棱长的一半,并且所有的棱长的和是120 cm,求每条侧棱的长.17.(2019甘肃白银中考,1,★☆☆)下列四个几何体中,是三棱柱的为 ( )18.(2017江苏南京中考,3,★☆☆)不透明的袋子中装有一个几何体模型.两位同学摸该模型并描述它的特征.甲同学:“它有4个面是三角形.”乙同学:“它有8条棱.”该模型的形状对应的立体图形可能是 ( )A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥19.(2017江苏扬州l中考,5,★-k☆☆)经过圆锥顶点的截面的形状可能是( )20.(2017浙江湖州中考,9.★☆☆)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图5一1-9所示的七巧板拼成的,则不是小明拼成的那幅图是 ( )21.对于棱柱而言,不同的棱柱由不同的面构成:三棱柱由2个底面,3个侧面,共5个面构成;四棱柱由2个底面,4个侧面,共6个面构成;五棱柱由2个底面。
七上第五章丰富的图形世界典型例题及答案
七上第五章《丰富的图形世界》例题解析 例1、画出下图中由几个正方体组成的几何体的三视图。
19解、1.解:三视图如下图:例2、一个正方体,六个面上分别写有六个连续的整数(如图所示),且每两个相对面上的数字和相等,本图所能看到的三个面所写的数字分别是3,6,7,问:与它们相对的三个面的数字各是多少?为什么?2解、从3、6、7三个数字看出可能是2、3、4、5、6、7或3、4、5、6、7、8,因为相对面上的数字和相等,所以第一种情况必须3、6处于对面,所以这六个数字只能是3、4、5、6、7、8,所以3与8、6与5、7与4处于对面位置。
例3.如图绕虚线旋转得到的几何体是( ).(D ) (B ) (C ) (A ) 6 3 7 6 3 7第5题图 3解:D例4.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是()4解:C例5.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是( )(A )235、、π-- (B)235、、π- (C )π、、235- (D)235-、、π5.解:A例6. 如图所示是由几个小立方体所组成几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的主视图、左视图。
(6分)2 3 4 2 1 16解、例7.(4分)7解、例8.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码。
(5分)A();B();C();D();E()。
8解、A(1、5、6);B(1、3、4);C(1、2、3、4);D(5);E(3、5、6)例9.用小立方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最多需要多少个小立方体?它最少需要多少个小立方体?请你画出这两种情况下的左视图。
(6分)A B C D E1 2 3 4 5左视图俯视图主视图主视图主视图左视图9解、这样的几何体不只一种,最多需要14个,最少需要10个。
北师大版七年级上册数学第一章 丰富的图形世界含答案
北师大版七年级上册数学第一章丰富的图形世界含答案一、单选题(共15题,共计45分)1、如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A. B. C. D.2、如图,该几何体的俯视图是()A. B. C. D.3、如图所示的几何体中,俯视图形状相同的是()A.①④B.②④C.①②④D.②③④4、将如图所示放置的一个直角三角形ABC,(∠C=90°),绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图中的( )A. B. C. D.5、如图是由几个相同的小正方体搭成的几何体的主视图和俯视图,组成这个几何体的小正方体的个数是( )A.5个或6个B.6个或7个C.7个或8个D.8个或9个6、若一个三角形的任意两条边都不相等, 则称之为“不规则三角形”. 那么顶点在一个正方体的顶点上的所有三角形中, 这样的“不规则三角形”的个数为 ( )A.30个B.24个C.18个D.12个7、如图,一个正方体的平面展开图,若在其中的三个正方形a,b,c内分别填入适当的数,使得它们折成正方体后相对的面上的数互为相反数,填入正方形a,b,c内的三个数依次为( )A.-1,-2,3B.-2,-1,3C.-1,-2,-3D.-3.-2,-18、一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是( )A. B. C. D.9、下列各几何体中,直棱柱的个数是()A.2B.3C.4D.510、如图是下面哪个图形的俯视图()A. B. C. D.11、如图,是几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是()个.A.4个B.5个C.6个D.7个12、如图,是由四个相同的小正方体组成的立体图形,它的主视图是()A. B. C. D.13、如左图所示的正三棱柱,其主视图正确的为()A. B. C. D.14、如图,由几个小正方体组成的立体图形的俯视图是()A. B. C. D.15、某几何体的三视图如图所示,则该几何体是()A.正方体B.长方体C.三棱柱D.三棱锥二、填空题(共10题,共计30分)16、圆锥由________面组成的,圆锥的侧面展开图是________ ;17、一个正方体的表面积是24㎡,那么这个正方体的所有棱长之和是________.18、如图,下面两个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么黄色的对面是________.19、一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为________.20、若相切两圆的半径分别是方程的两根,则两圆圆心距d的值是________ 。
七年级新思维20-丰富的图形世界
20.丰富的图形世界问题解决例1(四川省中考题)如图是一个正方体表面展开图,如果正方体相对的面上标注的值相等,那么x y+=_______.【答案】281014x y x y==+=,,.例2(成都市中考题)如图,由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是().左视图俯视图主视图A.5个B.6个C.7个D.8个【答案】D例3(贵阳课改实验区中考题)由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,求n的值.【答案】(1)左视图有以下5种情形:(2)891011n=,,,例4(江苏省常州市中考题)如图是由若干个正方体形状木块堆成的,平放于桌面上,其中,上面正方体的下底面四个顶点恰是下面相邻正方体上底面各边的中点,如果最下面的正方体的棱长为1,且这些正方体露在外面的面积和超过8,那么正方体的个数至少是多少?按此规律堆下去,这些正方体露在外面的面积和的最大值是多少?【答案】4;9 提示:最下面正方体1个面的面积是1,侧面露出的面积和是4,每相邻两个正方体中上面的1个正方体每个面的面积都正好是其下面正方体1个面面积的12,所有正方体侧面面积之和加上所有正方体的上面露出的面积和(正好是最下面正方体上底面的面积1)即是这些正方体露在外面的面积和.如:2个正方体露出的面积和是44172++=,3个正方体露出的面积和是4441824+++=,y2x81088俯视图主视图4个正方体露出的面积和是4441 4182482 ++++=,5个正方体露出的面积和是44443 418248164+++++=,6个正方体露出的面积和是444447 418 24816328++++++=,……故随着小正方体木块的增加,其外露的面积之和都不会超过9.例5(江城国际数学竞赛题)要把一个正方体分割成49个小正方体(小正方体大小可以不等),画图表示.分析与解本例是一道图形分割问题,解答本例需要较强的空间想象能力和推理论证能力,需要把图形性质与计算恰当结合.为方便起见,设正方体的棱长为6个单位,首先不能切出棱长为5的立方体,否则不可能分割成49个小正方体.设切出棱长为1的正方体有a个,棱长为2的正方体有b个,如果能切出1个棱长为4的正方体,则有864216491a ba b++=⎧⎨+=-⎩,解之得6147b=,不合题意,所以切不出棱长为4的正方体.设切出棱长为1的正方体有a个,棱长为2的正方体有b个,棱长为3的正方体有c个,则82721649a b ca b c++=⎧⎨++=⎩,解得3694a b c===,,,故可分割棱长分别为1、2、3的正方体各有36个、9个、4个,分法如图所示.欧拉公式例6 建立模型18世纪瑞士数学家欧拉证明了简单多面体中顶点数()V、面数()F、棱数()E之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题.正十二面体正八面体长方体四面体(1)根据上面多面体模型,完成表格中的空格:(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_______.(3)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱.设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x y+的值.解 (1)6;6;2V F E +-= (2)20(3)这个多面体的面数为x y +,棱数为243362⨯=(条). 根据2V F E +-=,可得24()36214x y x y ++-=∴+=,. 模型应用(宁波市中考题改编)如图,有一种足球是由数块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长都相等,求正五边形、正六边形个数.解 设足球表面的正五边形有x 个,正六边形有y 个,总面数F 为x y+个.因为一条棱连着两个面,所以球表面的棱数E 为1(56)2x y +,又因为一个顶点上有三条棱,一条棱上有两个顶点,所以顶点数121(56)(56)233V x y x y =+⋅=+⋅由欧拉公式2V F E +-=得11()(56)(56)232x y x y x y +++-+=,解得12x =.所以正五边形只要12个.又根据每个正五边形周围连着5个正六边形,每个正六边形又连着3个正五边形,所以六边形个数5203x=,即需20个正六边形. 数学冲浪知识技能广场 1.(山东省菏泽市中考题)如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是_______.456123(第1题)(第2题)俯视图左视图主视图【答案】6 2.(武汉市中考题)由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是_______. 【答案】5 3.(山东省烟台市中考题)一个长方体的左视图,俯视图及相关数据如图所示,则其主视图的面积为_______.俯视图左视图(第3题)【答案】84.(山东省青岛市中考题)如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n个几何体中只有两个面...涂色的小立方体共有_______个.(第4题)图①图②图③【答案】4(21)n5.(山东省烟台市中考题)一个画家有14个边长为1m的正方体,他在地面上把它们摆成如图的形式,然后他把露出的表面都涂上颜色,那么被涂颜色的总面积为().A.19m2B.41m2C.33m2D.34m2【答案】C6.(河南省中考题)一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为().A.3 B.4 C.5 D.6(第7题)(第6题)主视图俯视图【答案】B7.(河北省中考题)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是().A.20 B.22 C.24 D.26(第5题)8.(2012年温州市中考题)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( ).少图少图少图主视方向乙甲(第8题)C.A.D.B.【答案】B 9.(广州市中考题)5个棱长为1的正方体组成如图的几何体. (1)该几何体的体积是_______(立方单位),表面积是_______(平方单位);(2)画出该几何体的主视图和左视图. 【答案】(1)5;22;(2)略 10.(“创新杯”邀请赛试题)用同样大小的正方体木块搭建的几何体,从正面看到的平面图形如图①所示,从上面看到的平面图形如图②所示.(第10题)图①图②(1)如果搭建的几何体由9个小正方体木块构成,试画出从左面看这个几何体所得到的所有可能的平面图形.(2)这样的几何体最多可由几块小正方体构成?并在所用木块最多的情况下,画出从左面看到的所有可能的平面图形.【答案】(1)(2)11;(第9题)11.(《时代学习报》数学文化节试题)如图,是一个正方体表面展开图,请在图中空格内填上适当的数,使这个正方体相对两个面上标的数值相等.【答案】上空格填12,下空格填2(第11题)(第12题)主视图俯视图12.(江苏省江阴市中考题)如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的所有可能的值之和为_______.【答案】3813.(“华罗庚金杯赛”试题)如图是一个立方体的主视图、左视图和俯视图,图中单位为厘米,则立体图形的体积为_______立方厘米.【答案】2π(第13题)(第14题)左视图俯视图主视图14.(江苏省常州市中考题)若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是().A.2 B.3 C.4 D.5【答案】B15.(“创新杯”邀请赛试题)由若干个单位立方体组成一个较大的立方体,然后把这个大立方体的某些面涂上油漆,油漆干后,把大立方体拆开成单位立方体,发现有45个单位立方体上任何一面都没有漆,那么大立方体被涂过油漆的面数是().A.1 B.2 C.3 D.4【答案】D 设大立方体的棱长为3n n>,,若6n=,即使6个面都油漆过,未油漆的单位立方体也有3464=个>45,故45n=或.除掉已漆的单位立方体后,剩下未漆的构成一个长方形,设其长、宽、高分别为a b c、、,45abc=,只能是33545⨯⨯=,故5n=.16.(浙江省竞赛题)小明把棱长为4的正方体分割成了29个棱长为整数的小正方体,则其中棱长为1的小正方体的个数是().A.22 B.23 C.24 D.25【答案】C 提示:若分割出棱长为3的正方体,则棱长为3的正方体只能有1个,余下的均是棱长为1的正方体,共37个不满足要求.设棱长为2的正方体有x 个,棱长为1的正方体有y 个,则29864x y x y +=⎧⎨+=⎩,得524.x y =⎧⎨=⎩17.(江苏省竞赛题)墙角处有若干个大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走多少个小正方体?【答案】有不同的拿法.为保证“影子不变”,可依如下原则操作:在每一行和每一列中,除保留一摞最高的不动以外,该行(列)的其余各摞都搬成只剩最下面的一个小正方体.如图所示,20个方格中的数字,表示5行6列共20摞中在搬完以后最终留下的正方体个数.照这样,各行可搬个数累计为9+9+5+4+0=27,即最多可搬走27个小正方体.4-3-12-455-56-2-163-231351324-3244-45-26(第17题)18.(江苏省竞赛题)一个长方体纸盒的长、宽、高分别是()a b c a b c >>、、厘米.如图,将它展开成平面图,那么这个平面图的周长最小是多少厘米?最大是多少厘米?【答案】要使平面展开图的周长最小,剪开的七条棱长就要尽量小,因此要选剪开四条高(因为c 最小),再剪开一条长a 厘米的棱(否则,不能展开成平面图),最后再剪开两条宽b 厘米的棱(如图中所示表示的①~⑦这七条棱).由此可得图甲,这时最小周长是842248c b a a b c ⨯+⨯+⨯=++(厘米).c b ac b a cb ac b a cb ac bacb a cb ac b a c b ac b a cac b a 图乙图甲(第18题)(第17题)b c a⑦⑥⑤④③②①(第18题)要使平面展开图的周长最大,剪开的七条棱长就要尽量大,因此要先剪开四条最长的棱(长a),再剪开两条次条的棱(宽b),最后剪开一条最短的棱(高c),即得图乙,这时最大周长是842842a b c a b c⨯+⨯+⨯=++(厘米).应用探究乐园19.(世界数学团体锦标赛试题)王老师将底面半径为20厘米、高为35厘米的圆柱形容器中的果汁全部倒入如图所示的杯子中,若杯口直径为20厘米,杯底直径为10厘米,杯高为12厘米,杯身长13厘米,问果汗可以倒满多少杯?G(第19题)(第20题)【答案】如图,由题意知1051213AB CD AC BD====,,,,过点D作DE垂直于E,则12DE=,于是Rt BDE△中5BE=.延长AC BD,交于F,则由51012CD AB==∶∶∶知1224CF AF==,.于是一个杯子的容积等于两个圆锥的体积之差,即22311π1024π512700π(cm)33V=⋅⨯-⋅⨯=.而大容器内果汁的体积是23π203514000π(cm)⨯==,所以果汁可以倒满14000π700π20÷=()杯.20.(深圳市“启智杯”数学思维能力竞赛题)一个边长为5厘米的正方体,它是由125个边长为1厘米的小正方体组成的.P为上底面ABCD的中心,如果挖去(如图)的阴影部分为四棱锥,剩下的部分还包括多少个完整的棱长是1厘米的小正方体?【答案】剩下的部分:从上往下,第一层有25-1=24个;第二层有25-9=16个;第三层有25-9=16个;第四层、第五层有0个,故共有56个完整的棱长是1厘米的小正方体.FB(第19题)(第20题)。
《丰富的图形世界》试题及答案
北师大七年级上数学丰富的图形世界能力提高题班级_______姓名________学号________分数__________一、填空题(本大题共8小题,每小题3分,共24分)1、下图所示的三个几何体的截面分别是:(1)_________;(2)__________;(3)___________.2、图中按左侧三个图形阴影部分的特点,将右侧的图形补充完整。
3、面与面相交成___,线与线相交得到___,点动成____,线动成_____,面动成____4、下面是两种立体图形的展开图.请分别写出这两个立体图形的名称:________,___________5、已知三棱柱有5个面、6个顶点、9条棱,四棱柱有6个面、8个顶点、12条棱,五棱柱有7个面、10个顶点、15条棱,……,由此可以推测n棱柱有_____个面,____个顶点,_____条棱。
6、当下面这个图案被折起来组成一个正方体,数字_______会在与数字2所在的平面相对的平面上7、从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成10个三角形,则这个多边形的边数为_____。
8、已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是____和_____。
二、选择题(本大题共8小题,每小题3分,共24分)9、下面几何体的截面图不可能是圆的是()A、圆柱B、圆锥C、球D、棱柱10、将左边的正方体展开能得到的图形是()11、将半圆绕它的直径旋转一周形成的几何体是()A、圆柱B、圆锥C、球D、正方体12、用一个平面去截一个正方体,截面可能是()A、七边形B、圆C、长方形D、圆锥13、一个直立在水平面上的圆柱体的主视图、俯视图、左视图分别是 ( )A长方形、圆、长方形 B、长方形、长方形、圆C、圆、长方形、长方形D、长方形、长主形、圆14、下面图形经过折叠不能围成棱柱的是 ( )15、说法中,不正确的是( )A 、棱柱的侧面可以是三角形;B 棱柱的侧面展开图是一个长方形;C 、若一个棱柱的底面为5边形、则可知该棱柱侧面是由5个长方形组成的;D 、棱柱的上底面与下底面的形状与大小是完全一样的。
2020-2021七年级数学上专题《丰富的图形世界》(北师大版)+详细解析
专题01《丰富的图形世界》1.生活中常见的立体图形有等.2.棱柱的侧棱都相等,棱柱的上、下底面的形状,侧面的形状都是.在生活中常见的立体图图形中,其中和是四棱柱.它们有个顶点,条棱、个面.正方体是特殊的长方体,正方体的所有棱长都.3.棱柱可分为和.直棱柱的侧面是.4.图形的基本因素是、、点动成线动成,面动成.5.将一个正方体的表面沿某些棱剪开,展成平面图形,它的平面展开图有种,圆柱的侧面展开图是、圆锥的侧面展开图是.6.用平面截一个几何体,截出的面叫做,截面是一个平面图形,该图形除了与几何体的形状有关,还与平面所截的方向和角度有关.用一个平面去截圆柱,截面可能是,用一个平面去截圆锥,截面可能是.7.从三个方向看物体的形状,我们通常是指从、、,特别地,正方体从三个不同方向看都是.考点一、认识立体图形例1(2020年重庆)围成下列立体图形的各个面中,每个面都是平的是()A.B.C.D.分析:根据平面与曲面的概念判断即可.解:A、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选:A.点评:此题主要考查了认识立体图形,关键是掌握棱柱、圆柱、和圆棱锥的形状.考点二:展开与折叠例2(2020年长春)下列图形是四棱柱的侧面展开图的是()A.B.C.D.分析:根据四棱柱的侧面展开图是矩形而且有4条棱进行解答即可.解:由四棱柱的特点可知:四棱柱的侧面展开图是矩形而且有4条棱,故选:A.点评:此题主要考查了几何体展开图,熟练掌握几何体的侧面展开图是解题的关键,解题时牢记几何体展开图的各种情形.考点三:正方体盒子的展开图例3(2020江西)如图所示,正方体的展开图为()A.B.C.D.分析:根据正方体的表面展开图进行分析解答即可.解:根据“相间、z端是对面”可得选项B不符合题意;再根据“上面”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.点评:本题主要考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.考点四:展开图折叠成几何体例4(2020泰州)把如图所示的纸片沿着虚线折叠,可以得到的几何体是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥分析:由平面图形的折叠及立体图形的表面展开图的特征解题.解:观察展开图可知,几何体是三棱柱,故选:A.点评:本题考查了展开图形折叠成几何体,解题关键是掌握各立体图形的开图形的特点,注意做题时可亲自动手操作一下,增强空间想象能力.考点四:正方体相对两个面上的文字例4(2020年达州)下列正方体的展开图上每个面上都有一个汉字,其中,手的对面是口的是()A.B.C.D.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:A、手的对面是勤,不符合题意;B、手的对面是口,符合题意;C、手的对面是罩,不符合题意;D、手的对面是罩,不符合题意;故选:B.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.考点五:求几何体表面积例5(2020年荆州模拟)如图,在一次数学活动课上,张明用17个边长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体表面积为______.分析:首先确定张明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小正方体的数量,求差即可。
七年级数学 第01讲 丰富的图形世界(解析版)
第01讲丰富的图形世界1、认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类;2、经历展开与折叠、切截以及从不同方向看等数学活动,积累数学活动经验;3、在平面图形与几何体相互转换等的活动过程中,发展空间观念;4、通过丰富的实例,进一步认识点、线、面,了解有关点、线及某些平面图形的一些简单性质;5、初步体会从不同方向看同一物体时可能看到不同的图形,能识别简单物体的三视图(主视图、俯视图、和左视图),会画立方体极其简单组合体的三种视图;6、了解棱柱、圆柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型;7、进一步丰富数学学习的成功体验,激发对空间与图形学习的好奇心,初步形成积极参与数学活动数学活动、主动与它让人合作交流的意识。
知识点1:立体图形1.定义:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体、圆柱、圆锥、球等.棱柱、棱锥也是常见的立体图形.拓展:常见的立体图形有两种分类方法:2.3.棱柱的相关概念:在棱柱中,相邻两个面的交线叫做棱,相邻两个侧面的交线叫做侧棱.通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……(如下图)拓展:(1)棱柱所有侧棱长都相等.棱柱的上、下底面的形状相同,侧面的形状都是平行四边形.(2)长方体、正方体都是四棱柱.(3)棱柱可分为直棱柱和斜棱柱.直棱柱的侧面是长方形,斜棱柱的侧面是平行四边形.3.点、线、面、体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系.此外,从运动的观点看:点动成线,线动成面,面动成体.知识点2:展开与折叠有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.知识点3:截一个几何体用一个平面去截一个几何体,截出的面叫做截面.截面的形状可能是三角形、四边形、五边形、六边形或圆等等.知识点4:从三个方向看物体的形状一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.(如下图)考点1:认识立体图形例1.(2023•西城区一模)下面几何体中,是圆柱的是()A.B.C.D.【答案】B【解答】解:A、是正方体,故A不符合题意;B、是圆柱,故B符合题意;C、是圆锥,故C不符合题意;D、是球体,故D不符合题意;故选:B.【变式1-1】(2023春•渝中区校级月考)如图所示四个几何体中,棱锥是()A.B.C.D.【答案】A【解答】解:A选项是四棱锥;B选项是圆锥;C选项是圆柱;D选项是三棱柱.故选:A.【变式1-2】(2022秋•道里区期末)如图选项中的立体图形,表面没有曲面的是()A.B.C.D.【答案】D【解答】解:A.表面是曲面,故不符合题意;B.侧面是曲面,故不符合题意;C.侧面是曲面,故不符合题意;D.6个面都是平面,没有曲面,符合题意.故选:D.【变式1-3】(2022秋•二七区期末)如图中柱体的个数是()A.3B.4C.5D.6【答案】C【解答】解:柱体分为圆柱和棱柱,所以图中的柱体有①③④⑤⑥,共5个.故选:C.考点二:点、线、面、体例2.(2022秋•沅江市期末)下图所示的4个几何体中,由5个面围成的是()A.B.C.D.【答案】D【解答】解:A是由3个面围成的;B有2个面围成的;C是6个面围成的;D有5个面围成的.故选:D.【变式2-1】(2022秋•荔湾区期末)如图平面图形绕轴旋转一周,得到的立体图形是()A.B.C.D.【答案】A【解答】解:由“面动成体”可知,将直角三角形绕着一条直角边旋转一周,所得到的几何体是圆锥.故选:A.【变式2-2】(2022秋•文登区期末)几何图形都是由点、线、面、体组成,点动成线,线动成面,面动成体.下列生活现象中,可以反映“面动成体”的是()A.打开折扇B.流星划过夜空C.旋转门旋转D.汽车雨刷转动【答案】C【解答】解:A、打开折扇,属于线动成面,本选项不符合题意;B、流星划过夜空,属于点动成线,本选项不符合题意;C、旋转门的旋转,属于面动成体,本选项符合题意;D、汽车雨刷的转动,属于线动成面,本选项不符合题意.故选:C.【变式2-3】(2022秋•湖北期末)将最左边的图形绕直线l旋转一周后得到的图形是()A.B.C.D.【答案】D【解答】解:直角梯型绕直角腰所在的直线旋转一周得到的几何体是圆台,故选:D.考点三:几何体的展开图例3.(2023•衡水三模)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.【答案】B【解答】解:选项A、C、D均可能是该直棱柱展开图,不符合题意,而选项B中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:B.【变式3-1】(2023•房山区一模)如图是某几何体的展开图,该几何体是()A.长方体B.四棱锥C.三棱柱D.正方体【答案】A【解答】解:由题意知,图中展开图为长方体的展开图.故选:A.【变式3-2】(2022秋•广阳区期末)如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆柱,圆锥,四棱柱,正方体B.四棱锥,圆锥,正方体,圆柱C.圆柱,圆锥,正方体,三棱锥D.圆柱,圆锥,三棱柱,正方体【答案】D【解答】解:根据图形得:圆柱,圆锥三棱柱,正方体,故选:D.【变式3-3】(2022秋•姑苏区校级期末)如图是一个几何体的侧面展开图,则该几何体是()A.三棱柱B.三棱锥C.五棱柱D.五棱锥【答案】D【解答】解:由题意可知,该几何体为五棱锥,所以它的底面是五边形.故选:D.考点四:正方体相对两个面的文字例4.(2022秋•沈丘县期末)如图,是一个正方体的表面展开图,则“2”所对的面是()A.0B.9C.快D.乐【答案】B【解答】解:“222”这种展开图的对应面的特征是:14,25,36,也就是2与9,0与快,1与乐相对.故选:B.【变式4-1】(2023•确山县三模)“从明天起,做一个幸福的人,喂马,劈柴,周游世界”.如图所示,已知一个正方体展开图六个面依次书写“明”“天”“喂”“马”“劈”“柴”,则折叠后与“明”相对的是()A.天B.马C.劈D.柴【答案】D【解答】解:根据正方体的展开图可知:折叠后与“明”相对的是“柴”.故选:D.【变式4-2】(2023•武邑县二模)如图所示的正方体,它的展开图可能是下列四个选项中的()A.B.C.D.【答案】C【解答】解:由题意知,图形折叠后是,故选:C.考点五:判断展开图标记物的位置例5.(2023•市北区二模)如图的正方体纸盒,只有三个面上印有图案,下面四个平面图形中,经过折叠能围成此正方体纸盒的是()A .B .C .D .【答案】B 【解答】解:由题意知,图形经过折叠能围成题中正方体纸盒,故选:B .【变式5-1】(2022秋•东西湖区期末)下面四个图形中,经过折叠能围成如图所示的几何图形的是()A .B .C .D .【答案】C【解答】解:由立体图可知,圆、小正方形、三角形所在的正方形有公共顶点,题目中的4个答案图,只有C 图中折三个小图形有公共顶点,故选:C .【变式5-2】(2022秋•黄岛区校级月考)将如图围成一个正方体,这个正方体应是()A.B.C.D.【答案】D【解答】解:观察图形可知,两个带圆圈图案的面相对,所以A,B错误;C中,黑色三角形的位置错误.所以正确的正方体是D.故选:D.【变式5-3】(2021春•民权县期末)如图图形是立方体的表面展开图,把它折叠成立方体.它会变成()A.B.C.D.【答案】C【解答】解:根据展开图中各种符号的特征和位置,可得能变成的是C.故选:C.考点六:截一个几何体例6.(2022秋•新兴县期末)如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是()A.B.C.D.【答案】D【解答】解:由水平面与圆柱的底面垂直,可知水面的形状是长方形.故选:D.【变式6-1】(2022秋•高新区期末)用一个平面去截一个三棱柱,截面的形状不可能是()A.B.C.D.【答案】C【解答】解:A、当截面与底面平行时,得到的截面的形状可能是该图形,故不符合题意;B、当截面与侧面平行时,截面就是长方形,故不符合题意;C、无论如何去截截面,截面的形状不可能是圆形.故符合题意;D、当截面与轴截面斜交时,得到的截面的形状可能是梯形,故不符合题意.故选:C.【变式6-2】(2022秋•锦江区期末)一个正方体的截面不可能是()A.三角形B.四边形C.五边形D.七边形【答案】见试题解答内容【解答】解:用平面去截正方体,得出截面可能为三角形、四边形、五边形、六边形,不可能为七边形,故选:D.【变式6-3】(2022秋•青白江区期末)用一个平面去截下列几何体,截面一定是圆的是()A.B.C.D.【答案】D【解答】解:球体无论怎样去截,其截面一定是圆形的.故选:D.考点七:判断正方体的个数例7.(2023•抚远市二模)在桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的最少个数为()A.5个B.8个C.10个D.13个【答案】A【解答】解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故选:A.【变式7-1】(2022秋•兴化市校级期末)如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.5个B.6个C.7个D.8个【答案】A【解答】解:由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是5.故选:A.【变式7-2】(2023•乐东县一模)用3个大小相同的小正方体搭成的几何体,从三个方向看到的形状图如图所示,则这个几何体可能是()A.B.C.D.【答案】B【解答】解:在俯视图标出相应位置摆放小立方体的个数,如图所示:则这个几何体可能是.故选:B.考点八:由三视图判断几何体例8.(2023•邢台一模)某个几何体的三视图如图所示,该几何体是()A.B.C.D.【答案】B【解答】解:根据俯视图知第一层有3个,前面一排有2个,故排除掉A、C选项,根据主视图和左视图知第二层第一列有1个,排除掉D,故选:B.【变式8-1】(2023•灞桥区模拟)某几何体的三视图如图所示,则该几何体是()A.B.C.D.D【答案】D【解答】解:由三视图可知该几何体是.故选:D.【变式8-2】(2023•钦州一模)如图是一个几何体的主视图和俯视图,则该几何体为()A.B.C.D.【答案】B【解答】解:A.该几何体的主视图是三角形,故本选项不符合题意;B.该几何体的主视图是一行相邻的矩形,俯视图是三角形,故本选项符合题意;C.该几何体的俯视图是矩形,故本选项不符合题意;D.该几何体的主视图是等腰三角形,俯视图是圆(带圆心),故本选项不符合题意.故选:B.考点九:由几何体判断三视图例9.(2023•五华区校级模拟)下列简单几何体中,俯视图是四边形的是()A.B.C.D.【答案】D【解答】解:A.三棱柱的俯视图是三角形,因此选项A不符合题意;B.三棱锥的俯视图是三角形的,因此选项B不符合题意;C.圆锥的俯视图是圆形,因此选项C不符合题意;D.四棱锥的俯视图是矩形,因此选项D符合题意;故选:D.【变式9-1】(2023•光山县校级二模)如图放置的正六棱柱,其俯视图是()A.B.C.D.【答案】C【解答】解:由题图,可知该正六棱柱的主视图为:.故选:C.【变式9-2】(2023•武汉模拟)如图,下列几何体中,主视图、俯视图,左视图都一样的是()A.正方体B.三棱柱C.圆柱D.圆台【答案】A【解答】解:A、正方体的三视图都是正方形,故此选项符合题意;B、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;C、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,故此选项不符合题意;D、圆台的主视图是等腰梯形,左视图是等腰梯形,俯视图是同心圆(内圆是虚线),故此选项不符合题意;故选:A.考点十:画几何体三个方向的图形例10.(2022秋•吉州区期末)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图.【答案】见试题解答内容【解答】解:主视图,左视图如图所示:【变式10-1】(2022秋•抚州期末)如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数,请你画出它从正面和从左面看得到的平面图形.【答案】见试题解答内容【解答】解:【变式10-2】(2022秋•济南期末)如图,是由一些大小相同的小正方体组合成的简单几何体.根据要求完成下列题目.(1)请在下面方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影);(2)图中共有9个小正方体.【答案】见试题解答内容【解答】解:(1)如图所示:;(2)图中共有9个小正方体.故答案为:9.1.(2022•阿坝州)如图所示的几何体由3个小正方体组合而成,它的俯视图是()A.B.C.D.【答案】C【解答】解:从上边看就是横着的2个小正方形.故选:C.2.(2022•德州)如图所示几何体的俯视图为()A.B.C.D.【答案】C【解答】解:由题意知,几何体的俯视图为:故选:C.3.(2022•淄博)经过折叠可以围成正方体,且在正方体侧面上的字恰好环绕组成一个四字成语的图形是()A.B.C.D.【答案】C【解答】解:A、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故A不符合题意;B、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故B不符合题意;C、因为金与题是相对面,榜与名是相对面,所以正方体侧面上的字恰好环绕组成一个四字成语金榜题名,故C符合题意;D、因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故D不符合题意;故选:C.4.(2022•阜新)在如图所示的几何体中,俯视图和左视图相同的是()A.B.C.D.【答案】C【解答】解:A.俯视图是带圆心的圆,左视图是等腰三角形,故本选项不合题意;B.俯视图是圆,左视图是矩形,故本选项不合题意;C.俯视图与左视图都是正方形,故本选项符合题意;D.俯视图是三角形,左视图是矩形,故本选项不合题意.故选:C.5.(2022•襄阳)襄阳牛杂面因襄阳籍航天员聂海胜的一句“最想吃的还是我们襄阳的牛杂面”火爆出圈,引发了全国人民的聚焦和关注.襄阳某品牌牛杂面的包装盒及对应的立体图形如图所示,则该立体图形的主视图为()A.B.C.D.【答案】A【解答】解:从正面看,是一个矩形,故选:A.6.(2022•菏泽)沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是()A.B.C.D.【答案】A【解答】解:这个几何体的主视图如下:故选:A.7.(2022•六盘水)如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是()A.①B.②C.③D.④【答案】A【解答】解:如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是①,故选:A.8.(2022•安顺)某几何体如图所示,它的俯视图是()A.B.C.D.【答案】D【解答】解:从上面看该几何体,是两个同心圆,故选:D.9.(2022•钢城区)如图是某几何体的三视图,该几何体是()A.圆柱B.球C.圆锥D.正四棱柱【答案】A【解答】解:该几何体的主视图、左视图都是长方形,而俯视图是圆形,因此这个几何体是圆柱,故选:A.10.(2022•贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【答案】B【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆,故选:B.11.(2022•黑龙江)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【答案】B【解答】解:从俯视图可看出前后有三层,从左视图可看出最后面有2层高,中间最高是2层,要是最多就都是2层,最前面的最高是1层,所以最多的为:2+2×2+1×2=8.故选:B.12.(2022•包头)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【答案】B【解答】解:由俯视图可以得出几何体的左视图为:则这个几何体的左视图的面积为4,故选:B.13.(2022•泰州)如图为一个几何体的表面展开图,则该几何体是()A.三棱锥B.四棱锥C.四棱柱D.圆锥【答案】B【解答】解:根据展开图可以得出是四棱锥的展开图,故选:B.14.(2021•日照)一张水平放置的桌子上摆放着若干个碟子,其三视图如图所示,则这张桌子上共有碟子的个数为()A.10B.12C.14D.18【答案】B【解答】解:从俯视图可知该桌子共摆放着三列碟子.主视图可知左侧碟子有6个,右侧有2个,而左视图可知左侧有4个,右侧与主视图的左侧碟子相同,共计12个,故选:B.1.(2022秋•姑苏区校级期末)下列几何体中,是棱锥的为()A.B.C.D.【答案】C【解答】解:选项中的几何体分别为:A.圆柱;B.圆锥;C.四棱锥;D.球;故选:C.2.(2022秋•零陵区期末)下面的立体图形按从左到右的顺序依次是()A.长方体、圆柱、圆锥、正方体B.长方体、圆柱、球、正方体C.棱柱、棱柱、球、正方体D.长方体、棱柱、圆锥、棱柱【答案】B【解答】解:下面的立体图形按从左到右的顺序依次是:长方体、圆柱、球、正方体.故选:B.3.(2022秋•灵宝市期末)汽车的雨刷把玻璃上的雨雪刷干净属于以下哪项几何知识的实际应用()A.点动成线B.线动成面C.面动成体D.以上答案都正确【答案】B【解答】解:汽车的雨刷把玻璃上的雨雪刷干净,应是线动成面.故选:B.4.(2022秋•平谷区期末)你见过一种折叠灯笼吗?它看起来是平面的,可是提起来后却变成了美丽的灯笼,这个过程可近似地用哪个数学原理来解释()A.点动成线B.线动成面C.面动成体D.面与面相交的地方是线【答案】C【解答】解:由平面图形变成立体图形的过程是面动成体,故选:C.5.(2023•湖北二模)将长方形绕着它的一边旋转一周得到的立体图形是()A.正方体B.长方体C.棱柱D.圆柱【答案】D【解答】解:以矩形的一边所在直线为旋转轴,形成的旋转体叫做圆柱体.故选:D.6.(2022秋•文登区期末)下列图形中,不是正方体展开图的是()A.B.C.D.【答案】D【解答】解:A、B、C都可以折叠成正方体,故选:D.7.(2022秋•滕州市校级期末)如图,是正方体的展开图的有()A.1个B.2个C.3个D.4个【答案】B【解答】解:由正方体展开图的特征可知,从左数第3、4个图形可以拼成一个正方体,第1个图形有两个面重复,第2个图形是凹字格,故不是正方体的展开图.正方体的展开图的有2个.故选:B.8.(2022秋•上杭县期末)把一个立体图形展开成平面图形,其形状如图所示,则这个立体图形是()A.B.C.D.【答案】B【解答】解:展开图中三个长方形是棱柱的三个侧面;两个三角形是棱柱的两个底面,所以这个立体图形是三棱柱.故选:B.9.(2023•中原区校级三模)下面的平面展开图与图下方的立体图形名称不相符的是()A.三棱锥B.长方体C.正方体D.圆柱体【答案】A【解答】解:选项A中的图形,折叠后形成的几何体是三棱柱,不是三棱锥,因此选项A符合题意;选项B的图形折叠后成为长方体,因此选项B不符合题意;选项C的图形折叠后成为正方体,因此选项C不符合题意;选项D的图形折叠后成为圆柱体,因此选项D不符合题意;故选:A.10.(2023•通州区一模)如图是某个几何体的表面展开图,则这个几何体是()A.长方体B.三棱柱C.三棱锥D.四棱锥【答案】B【解答】解:观察图形可知,展开图是由三个全等的矩形,和两个全等的三角形构成,符合三棱柱的展开图特征,∴这个几何体是三棱柱.故选:B.11.(2022秋•历城区期末)用一个平面去截一个如图的圆柱体,截面不可能是()A.B.C.D.【答案】B【解答】解:本题中用平面截圆柱,横切就是圆,竖切就是长方形,斜切是椭圆,唯独不可能是梯形.故选:B.12.(2023•川汇区二模)如图,是由7个相同的小正方体组成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则这个几何体的左视图是()A.B.C.D.【答案】A【解答】解:从左面看易得第一层有3个正方形,第二层最右边和中间都有1个正方形.故选:A.13.(2023•上杭县模拟)下列几何体中,主视图可能是三角形的是()A.球体B.圆柱C.圆锥D.长方体【答案】C【解答】解:球的主视图是圆,故A选项不合题意;圆柱的主视图是矩形(或圆),故B选项不合题意,圆锥的主视图可能是等腰三角形,故C选项符合题意,长方体的主视图是长方形(或正方形),故D选项不合题意.故选:C.14.(2023•通许县一模)下列几何体中,左视图和俯视图都为矩形的是()A.B.C.D.【答案】D【解答】解:A、左视图与俯视图分别为,不符合题意;B、左视图与俯视图分别为,不符合题意;C、左视图与俯视图分别为,不符合题意;D、左视图与俯视图分别为,符合题意;故选:D.15.(2022秋•开江县期末)正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为27πcm3.(结果保留π)【答案】27π.【解答】解:根据题意可知,将正方形旋转一周,所得几何体是底面半径为3cm,高为3cm的圆柱体,所以体积为:π×32×3=27π(cm3),故答案为:27π.16.(2022秋•仙游县期末)已知正方体的一个平面展开图如图所示,则在原正方体上“庆”的对面是年.【答案】年.【解答】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以在原正方体上“庆”的对面是“年”.故答案为:年.17.(2022秋•莱州市期末)如图,一个正方体截去一个角后,截面的形状是等边三角形.【答案】等边三角形.【解答】解:由题意知,截面的形状是等边三角形,故答案为:等边三角形.18.(2022秋•市中区期末)如图,请分别画出从正面、左面和上面观察该几何体看到的形状图.【答案】见解答.【解答】解:如图所示:。
北师大版七年级上册数学第一章 丰富的图形世界 含答案
北师大版七年级上册数学第一章丰富的图形世界含答案一、单选题(共15题,共计45分)1、如图是由6个大小相同的小立方体搭成的几何体,这个几何体的左视图是()A. B. C. D.2、由7个大小相同的正方体搭成的几何体如图所示,则以下结论:①主视图既是轴对称图形,又是中心对称图形;②俯视图是中心对称图形;③左视图不是中心对称图形;④俯视图和左视图都不是轴对称图形其中正确结论是()A.①③B.①④C.②③D.②④3、如图所示的几何体左视图是()A. B. C. D.4、如图是一个几何体的三视图,则此几何体是()A.圆柱B.棱柱C.圆锥D.棱台5、下图是某物体的直观图,它的俯视图是()A. B. C.D.6、如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A. B. C. D.7、如图是某一个物体的三种视图,该物体的形状是 ( ).A.圆柱B.正方体C.圆锥D.长方体8、如图所示的几何体是由6个大小完全一样的正方体组合而成的,它的俯视图是()A. B. C. D.9、下列几何体中,俯视图为矩形的是()A. B. C. D.10、下列几何体中,主视图和俯视图都为矩形的是()A. B. C. D.11、如图所示的几何体的左视图是()A. B. C. D.12、若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A.球体B.圆锥C.圆柱D.正方体13、从上面看如图所示的几何体,得到的图形是()A. B. C. D.14、如左图是由几个相同的小正方体搭成的一个几何体,它的左视图是()A. B. C. D.15、如图是一个正方体的表面展开图,若折叠成正方体后相对面上的两个数之和都为5,则x+y+z的值为( )A.0B.4C.10D.30二、填空题(共10题,共计30分)16、某产品是长方体,它的长、宽、高分别为10cm、8cm、6cm,将12个这种产品摆放成一个大的长方体,则此大长方体的表面积最少为________ cm2.17、下列图形中,表示平面图形的是________;表示立体图形的是________.(填入序号)18、如图,一个几何体由大小相同、棱长为1的正方体搭成,则其左视图的面积为________19、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是________个.20、举两个左视图是三角形的物体例子:________,________.21、图1是用绳索织成的一片网的一部分,小明探索这片网的结点数(V),网眼数(F),边数(E)之间的关系,他采用由特殊到一般的方法进行探索,列表如下:特殊网图结点数(V) 4 6 9 12网眼数(F) 1 2 4 6边数(E) 4 7 12 ☆表中“☆”处应填的数字为________;根据上述探索过程,可以猜想V,F,E 之间满足的等量关系为________;如图2,若网眼形状为六边形,则V,F,E之间满足的等量关系为________.22、如图,若干个相同的长方体堆成的物体的三视图,若每个长方体体积为5cm3,则该物体的体积为________ cm323、已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为________.24、一块方形蛋糕,一刀切成相等的两块,两刀最多切成4块,试问:五刀最多可切成________块相等体积的蛋糕,十刀最多可切成________块(要求:竖切,不移动蛋糕).25、如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是________.三、解答题(共5题,共计25分)26、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.27、直角三角形绕着它的一条边旋转一周能得到什么立体图形?有几种情况?28、某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图,请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:毫米)29、如图,一个圆柱体的侧面展开图为长方形ABCD,若AB=6.28cm,BC=18.84cm,则该圆柱体的体积是多少?(π取3.14,结果精确到十分位).30、几何体的三视图相互关联.已知直三棱柱的三视图如图,在△PMN中,∠MPN=90°,PN=4,sin∠PMN=.(1)求BC及FG的长;(2)若主视图与左视图两矩形相似,求AB的长;(3)在(2)的情况下,求直三棱柱的表面积.参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、A5、A6、D7、C8、A9、C11、D12、A13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
2022-2023学年七年级上学期数学:丰富的图形世界(附答案解析)
2022-2023学年七年级上学期数学:丰富的图形世界
参考答案与试题解析
一.选择题(共5小题)
1.将如图所示的长方形绕它的对角线所在直线旋转一周,形成的几何体是( )
A.5条B.4条C.3条D.2条
【分析】从图形上找出与棱AB异面的棱即可得到与AB异面的棱的条数.
【解答】解:如图,与棱AB异面的棱有:A1D1,B1C1,DD1,CC1,共4条.
故选:B.
【点评】本题主要考查认识立体图形,根据异面直线的概念,能够判断空间两直线是否异面.
3.下列图形都是由六个相同的正方形组成的,经过折叠不能围成正方体的是( )
(1)小明总共剪开了条棱.
(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.
(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.
8.如图,在长方体ABCD﹣EFGH中,既与平面ADHE垂直,又与棱AD异面的棱是.
9.已知一个长方体的长、宽、高的比是3:2:1,它的所有棱长和是24厘米,那么这个长方体的表面积是平方厘米.
10.如图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图不可能是下列图中的.(填序号)
三.解答题(共5小题)
8.如图,在长方体ABCD﹣EFGH中,既与平面ADHE垂直,又与棱AD异面的棱是EF和HG.
北师大版七年级上册第一单元 丰富的图形世界(含答案解析)
七年级上册第一单元丰富的图形世界(北师大版含答案解析)一、选择题(本大题共14小题,共42.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列图形中,是正方体的展开图。
( )A. B.C. D.2.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么如图是以下四个图中的哪一个绕着直线旋转一周得到的( )A.B.C.D.3.如图所示的正方体的展开图是( )A.B.C.D.4.如图所示的图形,是下面哪个正方体的展开图( )A. B. C. D.5.骰子是一种特别的数字立方体见下图,它符合规则:相对两面的点数之和总是,下面四幅图中可以折成符合规则的骰子的是( )A. B. C. D.6.用一个平面去截正方体如图,下列关于截面截出的面的形状的结论:可能是锐角三角形;可能是直角三角形;可能是钝角三角形;可能是平行四边形.其中所有正确结论的序号是( )A. B. C. D.7.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是( )A. B. C. D.8.如图所示,用一个平面去截一个圆柱体,截面不可能是.( )A.B.C.D.9.下列四个平面图形中,不能折叠成无盖的长方体盒子的是( )A. B.C. D.10.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )A. B.C. D.11.一个几何体的展开图如图所示,这个几何体是.( )A. 圆锥B. 圆柱C. 四棱柱D. 四棱锥12.如果有一个正方体,它的展开图可能是下列四个展开图中的( )A.B.C.D.13.如图,是一个正方体纸盒的展开图,若在其中三个正方形,,中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形,,中的三个数依次是( )A. ,,B. ,,C. ,,D. ,,14.如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是.( )A.B.C.D.二、填空题(本大题共6小题,共18.0分)15.图和图中所有的正方形都全等.将图的正方形放在图中的___________从中选填位置,所组成的图形能够围成正方体.16.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说______.17.如图,正三棱柱的底面周长为,截去一个底面周长为的正三棱柱,从上面看所得几何体的形状图的周长是.18.已知某直棱柱共有个顶点,且该棱柱的所有侧棱长之和为,则每条侧棱长为______.19.如图所示的几何体都是由棱长为个单位的正方体摆成的,经计算可得第个几何体的表面积为个平方单位,第个几何体的表面积为个平方单位,第个几何体的表面积是个平方单位,,依此规律,则第个几何体的表面积是______个平方单位.20.如图是一个正方体纸盒的展开图,当折成纸盒时,与数重合的数是.三、解答题(本大题共6小题,共40.0分。
七年级上册第七章丰富的图形世界专题复习(含答案)
七年级上册第七章丰富的图形世界专题复习(含答案)丰富的图形世界丰富的图形世界专题复习【课标要点】1.通过观察现实生活中的物体,认识基本几何体及点、线、面.2.通过展开与折叠活动,认识棱柱的基本性质,能根据展开图想象和制作立体模型.3.通过展开与折叠、切与截、从不同方向看等数学实践活动,积累数学活动经验.4.能识别简单物体的三视图,会画立方体及其简单组合的三视图.5.通过平面图形与空间几何体相互转换的活动过程中,建立空间观念.6.认识常见几何体的基本特性,能对这些几何体进行正确的识别和简单的分类.【知识网络】第1讲几何体的三视图及常见几何体的侧面展开图丰富的图形世界【知识要点】1、了解直棱柱.圆柱.圆锥的侧面展开图,能根据展开图判断和制作立体模型.2、会画基本几何体的三视图,会判断简单物体的三视图,能根据三视图描述几何体或实物原型.3、重点:体会从不同方向看同一物体可能看到不同的结果,根据主视图、左视图、俯视图相象出实物图形.4、难点:能画立方体及其简单组合的三视图.根据主视图、左视图、俯视图相象出实物图形.【典型例题】例1棱长是1cm的小立方体组成如图1-1-1所示的几何体,那么这个几何体的表面积是()图1-1-1A.36cm2B.33cm2C.30cm2D.27cm2分析:考查学生观察想象能力,从6个方向观察都是6个边长为1cm的正方形,所以表面积共计6某6cm2=36cm2解:A例2如图1-1-2是由相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是()图1-1-2图1-1-3A.4个B.5个C.6个D.7个分析:在画三视图时,主俯列相等,从左向右看,画图取大数;左俯行相等,从上向下看,画图取大数.解:B例3如图1-1-3平面图形中,是正方体的平面展开图形的是()分析:主要考查学生的想象能力和动手操作能力丰富的图形世界解:C例4如图1-1-4所示,直三棱柱的底面是等边三角形,在它的上底面上有一个半球形凹坑请你画出这个几何体的主视图.左视图和俯视图.图1-1-4图1-1-5解:如图1-1-5:【知识运用】一、选择题1.下列图形中,不是正方体的展开图的是().2.如图1-1-6是正方体的一个表面展开图,展开前,2号面对面上的数字为()A.3B.4C.5D.63.小明从正面观察图1-1-7所示的两个物体,看到的是()4.图1-1-7图1-1-6A.B.C.D.1-1-8中几何体的主视图是图1-1-9中的()丰富的图形世界二、填空题5.根据下图1-1-10物体的三视图,填出几何体的名称并画出示意图是:.6.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如1-1-11图所示,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面,则“祝”.“你”.“前”分别表示正方体的______________________.三、解答题7.如图1-1-12中图(1)和图(2)分别是两个正方体的展开图,这两个正方体中,对面数字之和为2的数各有几对有哪几对8.如图1-1-13,一钢球置于圆柱的上底面,它们之间的接触点恰好是圆柱上底面的中心,请你画出图中所示几何体的主视图.左视图和俯视图.9.若要使得图1-1-14中平面展开图折叠成正方体后,相对面上的两个数之和为5,求某+y+z的值主视图左视图俯视图第2讲用平面截某几何体及生活中的平面图形丰富的图形世界【知识要点】1.截面:用一个平面去截一个几何体,截出的面叫做截面.2.多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形叫做多边形.3.从n(n>3整数)边形一个顶点出发,能够引(n-3)条对角线,这些对角线把n边形分成了(n-2)个三角形,n边形对角线总条数为n(n3)条.2重点:用一个平面去切、截一个正方体,所得截面的形状的特征以及圆柱.圆锥的截面形状特征,认识生活中各类物体所含有的平面图形并将基本图形抽象出来.难点:用平面切、截几何体,很多情况是靠想象的,归纳.猜想一些规律性的结论.【典型例题】例1(2004.武汉)如图1―2―1,五棱柱的正确截面是图如图1―2―2中的()解:B例2用一个平面去截一个正方体,截面形状不能为图如图1―2―3中的()分析:截面可以是三角形.四边形.五边形.解:D例3如图1-2-4在正方体ABCDA1B1C1D1中,连结ABl.AC.B1C,则△AB1C的形状是三角形.分析:本题考查学生判断对立体图形的截面图形形状的能力;应先想到三角形的分类,确定从哪个方面解答,再去分析它的边长或角的大小,确定答案.解:三角形按边分,有等边三角形.等腰三角形和不等边三角形等三类.这里,AB1.AC.B1C分别是全等的正方形的对角线,所以本题应填“等边”.例4用一个平面去截几何体,若截面是三角形,这个几何体可能是________.图1-2-1图1-2-2丰富的图形世界点拨:若截面是三角形,则需要几何体至少有三个平面且有共同的顶点,或几何体有一个平面,其他的若是曲面,必须能截出直线.符合上述条件的是棱柱、圆锥、棱锥、棱台.解:正方体、长方体、棱柱、棱锥、棱台、圆锥.【知识运用】一、选择题1.用一个平面去截一个正方体,截面图形不可能是()A.长方形B.梯形C.三角形D.圆2.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()A.圆柱B.圆锥C.正方体D.球3.正方体的截面不可能是()A.四边形B.五边形C.六边形D.七边形4.n边形所有对角线的条数是()n(n1)A2n(n-2)B2n(n-3)C2D.n(n-4)2二、填空题5.从多边形的一个顶点共引了6条对角线,那么这个多边形的边数是_______________6.图1-2-5几何体的截面(图中阴影部分)依次是三、解答7.观察下列1-2-6由棱长为1的小立方体摆成的图形,寻找规律:图1-2-5丰富的图形世界如图①中:共有1个小立体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见的小立方体有个。
北师大版七年级上册数学第一章 丰富的图形世界 含答案
北师大版七年级上册数学第一章丰富的图形世界含答案一、单选题(共15题,共计45分)1、左下图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是()A. B. C. D.2、下面的平面图形可以折成一个正方体的盒子,折好后,与1相对的数是()A.3B.4C.5D.63、如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是()A. B. C. D.4、如图所示的某零件左视图是()A. B. C. D.5、一个几何体的三视图如图,那么这个几何体是()A. B. C. D.6、右图是某个几何体的三视图,该几何体是()A.圆锥B.三棱锥C.圆柱D.三棱柱7、如图几何体的俯视图是()A. B. C. D.8、如图是由若干个正方体组成的几何体的俯视图,数字表示该位置上小正方体的个数,则该几何体左视图可能是( )A. B. C. D.9、如图所示的是由几个相同的小正方体搭成的一个几何体,从左面看到的图为( )A. B. C. D.10、如图把一个圆绕虚线旋转一周,得到的几何体是()A. B. C. D.11、一个立体图形的三视图如图所示,则这个立体图形是()A. B. C. D.12、如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A. B. C. D.13、如图所示几何体的左视图是()A. B. C. D.14、下列结论,其中正确的为()①圆柱由3个面围成,这3个面都是平面②圆锥由2个面围成,这2个面中,1个是平的,1个不是平的③球仅由1个面围成,这1个面是平的④正方体由6个面围成,这6个面都是平的A.①②B.②③C.②④D.③④15、一个正方体锯掉一个角后,顶点的个数是()A.7个B.8个C.9个D.7个或8个或9个或10个二、填空题(共10题,共计30分)16、由一些完全相同的小正方形搭成的几何体的左视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是________ .17、一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中与“价”字相对的字是________.18、如图,已知圆柱底面的周长为24cm,高为5cm,在圆柱的侧面上,过点A 和点C嵌有一圈金属丝,则这圈金属丝的长度至少长________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欧拉()17071783-,是18世纪最杰出的数学家之一,他不但在数学上作出了伟大贡献,而且把数学成功地应用到其他领域,在数论中,欧拉首选引进了欧拉函数()n Φ,用多种方法证明了费用小定理,对著名的哥尼斯堡大桥问题的解答开创了图论的研究,此外,欧拉还在物理、天文、建筑以及音乐、哲学等方面取得了辉煌的成就.20.丰富的图形世界解读课标20世纪初,伟大的法国建筑家列·柯尔伯齐曾说:“我想,到目前为止,我们从没有生活在这样的几何时期,周围的一切都是几何学.”生活中蕴含着丰富的几何图形,圆的月亮,平的湖面,直的树干,造型奇特的建筑,不断移动、反转、放大缩小的电视画面……图形有的是立体的,有的是平面的,立体图形与平面图形之间的联系,从以方面得以体现:1.立体图形的展开与折叠;2.从各个角度观察立体图形;3.用平面去截立体图形.观察归纳、操作实验、展开想象、推理论证是探索图形世界的基本方法.问题解决例1 如图是一个正方体表面展开图,如果正方体相对的面上标注的值相等那么x y +=_____. 试一试展开与折叠是两个步骤相反的过程,从折叠还原成正方体人手.例2如图,是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A .5个B 6个C .7个D .8个试一试根据三视图和几何体的关系。
分别确定该几何体的列数和每一列的层数.例3 由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n ,求n 的值.试一试本例可以在“脑子”中想象完成,也可以用实物摆一摆,从操作实验人手,从俯视图可推断左视图只能有两列,由主视图分析出俯视图每一列小正方形的块数情况是解本例的关键,而有序思考、分类讨论,则可避免重复与遗漏.例4如图是由若干个正方体形状木块堆成的,平放于桌面上,其中,上面正方体的下底面四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1,且这些正方体露在外面的面积和超过8,那么正方体的个数至少是多少?按此规律堆下去,这些正方体露在外面的面积和的最大值是多少? 试一试所有正方体侧面面积和再加上所有正方体上面露出的面积和,就是需求的面积.从简单人手,2x y 10888主视图左视图俯视图主视图俯视图例5要把一个正方体分割成49个小正方体(小正方体大小可以不等),画图表示.分析与解本例是一道图形分割问题,解答本例需要较强的空间想象能力和推理论证能力,需要把图形性质与计算恰当结合.为方便起见,设正方体的棱长为6个单位,首先不能切出棱长为5的立方体,否则不可能分割成49个小正方体.设切出棱长为1的正方体有a 个,棱长为2的正方体有b 个,如果能切出1个棱长为4的正方体,则有864216491a b a b ++=⎧⎨+=-⎩,解之得6147b =,不合题意,所以切不出棱长为4的正方体. 设切出棱长为1的正方体有a 个,棱长为2的正方体有b 个,棱长为3的正方体有c 个,82721649a b c a b c ++=⎧⎨++=⎩,解得36a =,9b =,4c =,故可分割棱长分别为1、2、3的正方体各有36个、9个、4个,分法如图所示.欧拉公式例6建立模型18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V )、面数(F )、棱数(E )之间存在的一个有趣的关系式,被称为欧拉公式,请你观察下列几种简单多面体模型,解答下列问题._____.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_____.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表面三角形的个数为x 个,八边形的个数为y 个,求x y +的值.解(1)6;6;2V F E +-=(2)20四面体长方体正八面体正十二面体(3)这个多面体的面数为x y +,棱数为243362⨯=(条) 根据2V F E +-=,可得()24362x y ++-=,∴14x y +=.模型应用如图,有一种足球是由数块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长都相等,求正五边形、正六边形个数.解设足球表面的正五边形有x 个,正六边形有y 个。
总面数F 为x y +个,因为一条棱连着两个面,所以球表面的棱数E 为()1562x y +,又因为一个顶点上有三条棱,一条棱上有两个顶点,所以顶点数()()1215656233V x y x y =+⋅=+. 由欧拉公式2V F E +-=得()()()115656232x y x y x y +++-+= 解得12x =所以正五边形只要12个.又根据每个正五边形周围连着5个正六边形,每个正六边形又连着3个正五边形,所以六边形个数5203x =,即需20个正六边形. 数学冲浪知识技能广场1.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是______.2.由几个相同昀小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是______.3.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为_____.4.如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面涂色的小立方体共有_____个.5.一个画家有14个边长为1m 的正方体,他在地面上把它们摆成如图的形式,然后他把露出的表面都涂上颜色,那么被涂颜色的总面积为()654321主视图左视图俯视图左视图俯视图图3图2图1A .219mB .241mC .233mD .234m6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为()A .3B .4C .5D .67.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A .20B .22C .24D .268.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A B C D9.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是_____(立方单位),表面积是____(平方单位);(2)画出该几何体的主视图和左视图主视图俯视图甲主视方向正面10.用同样大小的正方体木块搭建的几何体,从正面看到的平面图形如图1所示,从上面看到的平面图形如图2所示.(1)如果搭建的几何体由9个小正方体木块构成,试画出从左面看这个几何体所得到的所有可能的平面图形.(2)这样的几何体最多可由几块小正方体构成?并在所用木块最多的情况下,画出从左面看到的所有可能的平面图形.思维方法天地11.如图,是一个正方体表面展开图,请在图中空格内填上适当的数,使这个正方体相对两个面上标注的数值相等.12.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n .则n 的所有可能的值之和为______.13.如图是一个立方体的主视图、左视图和俯视图,图中单位为厘米,则立体图形的体积为______立方厘米.14.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是()A .2B .3C .4D .515.由若干个单位立方体组成一个较大的立方体,然后把这个大立方体的某些面涂上油漆,油漆干后,把大立方体拆开成单位立方体,发现有45个单位立方体上任何一面都没有漆,那么大立方体被涂过油漆的面数是()A .1B .2C .3D 4图1图2主视图俯视图俯视图16.小明把棱长为4的正方体分割成了29个棱长为整数的小正方体,则其中棱长为1的小正方体的个数是()A .22B .23C .24D .2517.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走多少个小正方体?18.一个长方体纸盒的长、宽、高分别a 、b 、c ()a b c >>厘米.如图,将它展开成平面图,那么这个平面图的周长最小是多少厘术?最大是多少厘米?应用探究乐园19.王老师将底面半径为20厘米、高为35厘米的圆柱形容器中的果汁全部倒人如图所示的杯子中,若杯口直径为20厘米,杯底直径为10厘米,杯高为12厘米,杯身长13厘米,问果汁可以倒满多少杯?20.一个边长为5厘米的正方体,它是由125个边长为1厘米的小正方体组成的.P 为上底面ABCD 的中心,如果挖去(如图)的阴影部分为四棱锥,剩下的部分还包括多少个完整的棱长是1厘米的小正方体?右面b c a ①②③④⑤⑥⑦20丰富的图形世界问题解决例128x =,10y =,14x y +=例2D例3(1)左视图有以下5种情形:(2)8n =,9,10,11例44;9提示:最下面正方体1个面的面积是1,侧面露出的面积和是4,每相邻两个正方体中上面的1个正方体每个面的面积都正好是其下面正方体1个面面积的12,所有正方体侧面面积之和加上所有正方体的上面露出的面积和(正好是最下面正方体上底面的面积1)即是这些正方体露在外面的面积和.如:2个正方体露出的面积和是44172++= 3个正方体露出的面积和是4441824+++= 4个正方体露出的面积和是44414182482++++= 5个正方体露出的面积和是44443418248164+++++= 6个正方体露出的面积和是44444741824816328++++++= …故随着小正方体木块的增加,其外露的面积之和都不会超过9.数学冲浪1.6 2.5 3.84.()421n - 5.C6.B 7.C 8.B9.(1)5;22;(2)略10.(1)(2)11;11.上空格填12,下空格填2 12.38 13.2π 14.B15.D 设大立方体的棱长为n ,3n >,若6n =,即使6个面都油漆过,未油漆的单位立方体也有3464=个45>,故4n =或5.除是已漆的单位立方体后,剩下未漆的构成一个长方体,设其长、宽、高分别为a 、b 、c ,45abc =,只能是33545⨯⨯=,故5n =.16.C 提示:若分割出棱长为3的正方体,则棱长为3的正方体只能有1个,余下的均是棱长为1的正方体,共37个不满足要求,设棱长为2的正方体有x 个,棱长为1的正方体有y 个,则29864x y x y +=⎧⎨+=⎩,得524x y =⎧⎨=⎩ 17.有不同的拿法.为保证“影子不变”,可依如下原则操作:在每一行和每一列中,除保留一摞最高的不动以外,该行(列)的其余各摞都搬成只剩最下面的一个小正方体,如图所示,20个方格中的数字,表示5行6列共20摞中在搬完以后最终留下的正方体个数.照这样,各行可搬个数累计为9954027++++=,即最多可搬走27个小正方体.18.要使平面展开图的周长最小,剪开的七条棱长就要尽量小,因此要先剪开四条高(因为c 最小),再剪开一条长a 厘米的棱(否则,不能展开成平面图),最后再剪开两条宽b 厘米的棱(如图中所表示的①~⑦这七条棱).由此可得图甲,这时最小周长是842248c b a a b c ⨯+⨯+⨯=++(厘米).要使平面展开图的周长最大,剪开的七条棱长就要尽量大,因此要先剪开四条最长的棱(长a ),再剪开两条次长的棱(宽b ),最后剪开一条最短的棱(高c ),即得图乙,这时最大周长是842842n b c a b c ⨯+⨯+⨯=++(厘米).19.如图,由题意知10AB =,5CD =,12AC =,13BD =,过点D 作DE 垂直于AB 于点E ,则12D E =,于是Rt BDE △中5BE =.延长AC ,BD 交于F ,则由:5:101:2CD AB ==知12CF =,24AF =. 于是一个杯子的容积等于两个圆锥的体积之差,即()22311π1024π512700πcm 33V =⋅⨯-⋅⨯=.而大容器内果汁的体积是()23π203514000πcm ⨯⨯=,所以果汁可以倒满14000π700π20÷=(杯). 20.剩下的部分:从上往下,第一层有25124-=个;第二层有25916-=个;第三层有25916-=个;第四层、第五层有0个,故共有56个完整的棱长是1厘米的小正方体. 44446513-26523-2-165-423-3-2-1-3312-45-5图甲c b c b c a b c a b ca c ab cc b a 图乙ba a c a a cb a b ac c c a a b。