高中数学重要公式笔记大全,超级好用

合集下载

高中数学必备必考公式大全

高中数学必备必考公式大全

高考数学必备必考公式大全一、集合1.并集的运算A∪B={x|x∈A,或x∈B}2. 并集的运算性质(1) A∪A=A(2)A∪∅=A(3)A∪B=B∪A(4) A∪B=A⇔B⊆A3. 交集的运算A∩B={x|x∈A,且x∈B}4. 交集的运算性质(1)A∩A=A(2)A∩∅=∅(3)A∩B=B∩A(4)A∩B=A⇔A⊆B5. 补集的运算∁U A={x|x∈U,且x∉A}6. 补集的运算性质(1) ∁U (∁U A)=A(2) ∁U U=∅,∁U∅=U(3)A∪(∁U A)=U,A∩(∁U A)=∅(4) ∁U (A∩B)=( ∁U A)∪(∁U B), ∁U (A∪B)=( ∁U A)∩(∁U B)二、函数与导数公式1. 有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q)(2)=a r-s(a>0,r,s∈Q)(3)(a r)s=a rs(a>0,r,s∈Q)(4)(ab)r=a r b r(a>0,b>0,r∈Q)2.对数运算公式(1)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:log a(M·N)=log a M+log a N;log a=log a M-log a N;log a M n=n log a M(n∈R)(2)对数恒等式a log aN =N(a>0,且a≠1,N>0)(3)对数运算的换底公式log a b=(a>0,且a≠1;c>0,且c≠1;b>0)(4)换底公式的变形log a b·log b a=1,即log a b=lo b n=log a blog N M==(5)换底公式的推广log a b·log b c·log c d=log a d3.求导公式及运算法则(1)基本初等函数的导数公式a.若f(x)=c(c为常数),则f'(x)=0.b.若f(x)=x n(n∈Q*),则f'(x)=nx n-1.c.若f(x)=sin x,则f'(x)=cos x.d.若f(x)=cos x,则f'(x)=-sin x.e.若f(x)=a x,则f'(x)=a x ln a.f.若f(x)=e x,则f'(x)=e x.g.若f(x)=log a x,则f'(x)=.h.若f(x)=ln x,则f'(x)=.(2)导数运算法则a.[f(x)±g(x)]'=f'(x)±g'(x)b.[f(x)·g(x)]'=f'(x)g(x)+f(x)g'(x)c.[]'=(g(x)≠0)(3)复合函数的导数(理)设y=f(u),u=φ(x),则y'x=y'u u'x或记作f '[φ(x)]=f '(u)φ'(x).特别地,[f (ax +b )] '=a f' (ax+b).4.定积分的运算性质(理)(1)b a ⎰kf (x )d x=k b a ⎰f (x )d x (k 为常数)(2) b a ⎰[f (x )±g (x )]d x=b a ⎰f (x )d x±b a ⎰g (x )d x (3)b a ⎰f (x )d x=-a b ⎰f (x )d x(4)c a ⎰f (x )d x=b a ⎰f (x )d x+cb ⎰f (x )d x (a<b<c )三、三角函数1. 同角关系:(1)平方关系:sin 2α+cos 2α=1.(2)商的关系:=tan α(α≠+k π,k ∈Z ). 2. 诱导公式:奇变偶不变,符号看象限。

高中数学所有公式大总结,附数学重点知识89条!

高中数学所有公式大总结,附数学重点知识89条!

高中数学所有公式大总结,附数学重点知识89条!一、高中数学公式大总结1.集合与函数- 集合的表示法- 集合的运算- 函数的定义与性质- 基本初等函数- 函数的图像与解析式2.三角函数- 三角函数的定义与性质- 三角函数的恒等变换- 三角函数的求值与化简- 解三角形3.解析几何- 平面直角坐标系- 直线与圆的方程- 空间几何体的表面积和体积- 参数方程与极坐标4.高等数学基础- 数列的极限- 数列的求和公式- 无穷小量与无穷大量- 无穷级数5.概率与统计- 随机事件与概率- 条件概率与独立性- 离散型随机变量- 统计量与参数估计6.数学归纳法- 数学归纳法的基本原理- 数学归纳法的应用7.极限与连续- 极限的性质与计算- 连续函数的性质与判定8.导数与微分- 导数的定义与计算- 微分的定义与计算- 导数的应用9.积分与微积分- 积分的定义与性质- 定积分与不定积分- 微积分基本定理10.线性代数- 矩阵的运算- 线性方程组- 线性空间与线性变换二、高中数学重点知识梳理1.函数与导数- 函数的性质与应用- 导数的计算与性质- 导数在实际问题中的应用2.三角函数与解三角形- 三角函数的性质与恒等变换- 解三角形的方法与应用3.立体几何- 空间几何体的性质与判定- 空间几何体的表面积和体积- 空间直线与平面的位置关系4.数列- 等差数列与等比数列- 数列的求和与求通项- 数列的性质与应用5.不等式- 解不等式的方法- 不等式的应用6.解析几何- 直线与圆的方程- 空间几何体的解析几何表示- 参数方程与极坐标7.概率与统计- 随机变量与概率分布- 统计量与假设检验8.复数- 复数的性质与运算- 复数的应用9.向量与平面几何- 向量的性质与运算- 向量的应用10.极限与连续- 极限的性质与计算- 连续函数的性质与判定三、高中数学解题技巧与策略1.选择题与填空题。

高考数学必备公式、结论、方法汇总

高考数学必备公式、结论、方法汇总

(3)巧用“1”的变换:1=sin2θ+cos2θ=cos2θ(1+tan2θ)=sin2θ 1+tan12θ =tanπ; 4
2.值域:
④ 转换范围法 :针对由已知区间求未知区间的表达
①二次函数求值域用:配方法;
②分式函数求值域,若分子与分母同次用:分离常数法,若分子与分母不同次用:上下同除法.
③二次根式函数求值域用:换元法.当然还有单调性法和导数法。
3.大小比较
(1)指数幂比较大小
①同底幂比较,构造指数函数,用单调性比较;
②换底推广:logab=log1ba, logab·logbc·logcd=logad.
3.二次函数公式
①一般式顶点式:y=ax2+bx+c=a
x+ b 2a
2+4ac-b2.
4a
②顶点是
- b ,4ac-b2 2a 4a
,对称轴是:x=-
b
.
2a
③方程 ax2+bx+c=0(a≠0)求根公式:x=-b± b2-4ac 2a 二、必备结论
(3)伸缩变换
①y=f(x)=y=f(ax)
②y=f(x) 0<a>― a<1,1―,纵―纵坐坐―标标―伸缩长―短为―为原原―来来―的的―aa倍―倍,―,横横―坐坐―标标不→不变变y=af(x)
三、必备方法
1.解析式:
① 待定系数法 :针对已知函数类型;
② 换元法或配凑法 :针对复合函数;
③ 方程组法 :针对 f(x)与 f(1)或 f(-x)形成的表达式 x
(3)周期公式:①y=Asin(ωx+φ)(或 y=Acos(ωx+φ))的最小正周期 T=2π ②y=|Asin(ωx+φ)|的周期 T= π .
|ω|

高一数学学霸笔记整理

高一数学学霸笔记整理

高一数学学霸笔记整理

一、直线、圆、抛物线
(1)过点斜率为m的直线方程:y-y1=m(x-x1)
(2)过定点共线直线方程:Ax+By+C=0;A=y2-y1,B=x1-x2,C=x2y1-x1y2
(3)过定点切点直线方程:y-y1=m(x-x1)
(4)双点汇聚直线方程:y-y1/y2-y1=x-x1/x2-x1
(5)圆心坐标:(a,b)半径r的圆的标准方程:(x-a)^2+(y-b)^2=r^2
(6)抛物线General Equation:y=ax^2+bx+c
二、不等式
(1)不等式的几何意义:
不等式表达式可以用几何形象表示,由于不等式右边或左边的算式可能带有一个系数,使得整个不等式可能反映出点,直线或曲线等几何形状,因此,不等式也有其几何意义。

(2)不等式的一般解法:
1、将不等式完全分解,分别求解各单一未知数的正解及负解;
2、将正解及负解按给定的不等式选择条件合并成一个区间或分类集合;
3、将收集的区间或集合合并成一个完整的未知数的全部正确的解答。

三、函数
(1)函数的定义:
一个变量扮演自变量,另一个变量扮演应变量,若将第一个变量对各可能取值进行及时多次实验,并分别测得每次实验第二个变量的取值得到的资料,把这种变量(变量组)既定关系叫做函数。

(2)常见函数
1、线性函数,标准方程为 y=kx+b;
2、二次函数,标准方程为y=ax^2+bx+c;
3、三次函数,标准方程为y=ax^3+bx^2+cx+d;
4、反比例函数,标准方程为y=k1/x与y=k2x的组合;
5、指数函数,标准方程为y=ab^x;
6、对数函数,标准方程为y=logax与y=log_abx的组合。

高中数学公式知识归纳总结

高中数学公式知识归纳总结

高中数学公式知识归纳总结在高中数学学习过程中,我们不可避免地会接触到各种各样的数学公式。

这些公式在解决数学问题时起着重要的作用,掌握它们对我们的学习和考试至关重要。

本文将对高中数学常见的公式进行归纳总结,以便日后复习和应用。

一、代数公式1. 平方差公式对于任意实数a、b,有:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²这个公式在解决平方和、平方差问题时经常用到。

利用平方差公式,我们可以方便地计算方程的展开式。

2. 二次根式公式(√a ±√b)² = a ± 2√ab + b(a ± b)(a ∓ b) = a² - b²这个公式在二次根式的加减、乘除中非常常见。

掌握这些公式可以简化计算过程,提高解题效率。

3. 比例公式设a/b = c/d,且b ≠ 0,则称a、b、c、d满足比例公式。

利用比例公式,我们可以求解未知量或者构建等式,解决实际问题。

4. 勾股定理对于直角三角形,设两直角边长分别为a、b,斜边长为c,则有:a² + b² = c²这是直角三角形中最基本的定理,广泛应用于解决与直角三角形相关的问题。

5. 三角函数公式正弦定理:a/sinA = b/sinB = c/sinC余弦定理:a² = b² + c² - 2bc*cosA正切定理:tanA = sinA/cosA这些公式是解决三角函数和三角关系问题的重要工具,对于理解三角学的概念和计算角度、边长等具有重要意义。

二、几何公式1. 等腰三角形的高设等腰三角形边长为a,底边长为b,则高h满足:h = √(a² - (b/2)²)2. 圆的周长和面积设圆的半径为r,则圆的周长C和面积S分别为:C = 2πrS = πr²这些公式是求解圆的周长和面积时经常用到的基本公式。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全1、常用数学公式表(1)乘法与因式分解a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。

(2)三角不等式|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。

(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。

(4)根与系数的关系:X1+X2=-b/aX1*X2=c/a,注:韦达定理。

(5)判别式1)b2-4a=0,注:方程有相等的两实根。

2)b2-4ac\u003e0,注:方程有一个实根。

3)b2-4ac\u003c0,注:方程有共轭复数根。

2、三角函数公式(1)两角和公式sin(A+B)=sinAcosB+cosAsinB;sin(A-B)=sinAcosB-sinBcosA;cos(A+B)=cosAcosB-sinAsinB;cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB);ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA);ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)。

(2)倍角公式tan2A=2tanA/(1-tan2A);ctg2A=(ctg2A-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

(3)半角公式sin(A/2)=√((1-cosA)/2);sin(A/2)=-√((1-cosA)/2);cos(A/2)=√((1+cosA)/2);cos(A/2)=-√((1+cosA)/2);tan(A/2)=√((1-cosA)/((1+cosA));tan(A/2)=-√((1-cosA)/((1+cosA));ctg(A/2)=√((1+cosA)/((1-cosA));ctg(A/2)=-√((1+cosA)/((1-cosA))。

高三常用数学公式知识点

高三常用数学公式知识点

高三常用数学公式知识点在高中数学中,掌握常用的数学公式是非常重要的,这些公式包含了各个数学学科的基础知识点。

在高三这个关键的学习阶段,更是需要熟练掌握这些公式,以便能够灵活运用解题。

以下是高三常用数学公式的知识点:一、代数公式1. 一次方程的解法:- ax + b =0,求解:x = -b/a- ax - c = 0,求解:x = c/a2. 二次方程的解法:- ax² + bx + c = 0,求解:x = (-b ± √(b² - 4ac)) / (2a)3. 三次方程的解法:- ax³ + bx² + cx + d = 0,求解:利用数学软件或图解法求解4. 平方差公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²5. 二次完全平方公式:- a² ± 2ab + b² = (a ± b)²6. 因式分解公式:- a² - b² = (a + b)(a - b)- a³ + b³ = (a + b)(a² - ab + b²) - a³ - b³ = (a - b)(a² + ab + b²)7. 二次根式公式:- √(a ± b) = √a ± √b8. 比例公式:- a : b = c : d ,则 a/b = c/d 9. 百分数转化为小数:- 百分数除以100即可得到小数形式10. 分数基本变形:- 分子分母乘、除相同数值,分数值不变; - 分子分母约去,分数值不变。

二、几何公式1. 长方形的面积公式:- 长方形面积 = 长 ×宽2. 正方形的面积公式:- 正方形面积 = 边长 ×边长3. 三角形的面积公式:- 三角形面积 = 底 ×高 / 2- 海伦公式:已知三边求三角形面积- 正弦定理:a/sinA = b/sinB = c/sinC = 2R4. 圆的面积公式:- 圆的面积= πr²5. 球的表面积和体积公式:- 球的表面积= 4πr²- 球的体积= (4/3)πr³6. 直角三角形的勾股定理:- 直角三角形斜边的平方 = 两直角边的平方和7. 正多边形内角和公式:- 正多边形内角和 = (n - 2) × 180°8. 相似三角形的性质:- 两个三角形的对应角相等,对应边成比例三、概率公式1. 事件发生的概率:- 事件发生的概率 = 该事件发生的次数 / 总的可能次数2. 互斥事件的概率:- 互斥事件的概率 = 事件A的概率 + 事件B的概率3. 独立事件的概率:- 独立事件的概率 = 事件A的概率 ×事件B的概率四、数列与数列极限公式1. 等差数列的通项公式:- aₙ = a₁ + (n - 1)d2. 等比数列的通项公式:- aₙ = a₁ × q^(n - 1)3. 等差数列前n项和公式:- Sₙ = (a₁ + aₙ) × n / 24. 等比数列前n项和公式:- Sₙ = a₁ × (1 - qⁿ) / (1 - q)5. 等差数列极限公式:- 当n趋向于无穷大时,数列的极限为公差d6. 等比数列极限公式:- 当|q| < 1时,数列的极限存在,极限为0通过掌握以上的数学公式,可以有效地解决各类数学题目,提高数学解题的速度和准确性。

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<−上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>−上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =−,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f −=−,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y −'=−.*二次函数: (1)顶点坐标为24(,)24b ac b a a −−;(2)焦点的坐标为241(,)24b ac b a a−+− 4、几种常见函数的导数 ①'C 0=;②1')(−=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '−=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v −=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa−==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨−<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

高中数学所有公式大总结,附数学重点知识89条!

高中数学所有公式大总结,附数学重点知识89条!

高中数学所有公式大总结,附数学重点知识
89条!
很抱歉,高中数学的所有公式是非常多的,无法一一列举。

然而,我可以为您提供一些高中数学的重点知识,并辅以一些常见的公式以
供参考:
1.二次方程的求根公式:给定二次方程ax^2+bx+c=0,其中a≠0,则它的根可以通过求解公式x=(-b±√(b^2-4ac))/2a得到。

2.平面几何中的距离公式:已知坐标点A(x1, y1)和点B(x2, y2),则两点间的距离d可以由公式d=√((x2-x1)^2+(y2-y1)^2)计算得到。

3.相似三角形的比例关系:如果两个三角形有相同的角度,则它
们的对应边的比例相等。

4.三角函数的基本关系:sine函数记为sin(x),cosine函数记为cos(x),tangent函数记为tan(x)。

它们之间存在一些基本关系,如
sin^2(x)+cos^2(x)=1,tan(x)=sin(x)/cos(x)等。

5.多项式的因式分解公式:当给定多项式时,通过使用因式分解公式将其分解为较小的多项式,以便进行进一步的计算。

6.求解三角函数的值:通过使用三角函数的定义,可以计算各种角度的正弦、余弦和正切值。

7.平方差公式:(a+b)^2=a^2+2ab+b^2,(a-b)^2=a^2-2ab+b^2。

这些只是高中数学中的一小部分重点知识和公式。

还有许多其他的重要知识领域,如数列、几何、概率等。

如果您有特定的数学领域或公式需要了解,请告诉我,我会尽力为您提供更详细的信息。

高中数学必考公式全总结!

高中数学必考公式全总结!

高中数学必考公式全总结!高中数学是高中阶段最为重要的一门学科之一,掌握好数学的基本知识和公式是非常重要的。

下面是高中数学必考的一些常用公式的全面总结:1.同底数幂相乘:a^m*a^n=a^(m+n)2.同底数幂相除:a^m/a^n=a^(m-n)3. 幂的乘法公式:(a^m)^n = a^(mn)4.幂的除法公式:(a/b)^m=a^m/b^m5. 乘法公式:(a + b)(c + d) = ac + ad + bc + bd6. 二次根式乘积:√a * √b = √(ab)7.二次根式商:√a/√b=√(a/b)8. 二次根式的积:√(ab) = √a * √b9.二次根式的商:√(a/b)=√a/√b10.平方差公式:(a+b)(a-b)=a^2-b^211. 三角函数的平方和公式:sin^2θ + cos^2θ = 112. 三角函数的平方差公式:sin^2θ - cos^2θ = sin2θ13. 三角函数的和差公式:sin(α ± β) = sinαcosβ ±cosαsinβ14. 三角函数的积化和差公式:cosαcosβ = 1/2[cos(α +β) + cos(α - β)]15. 三角函数的积化和差公式:sinαsinβ = 1/2[cos(α - β) - cos(α + β)]此外,还有一些高中数学中需要掌握的重要公式:16. 三角函数的倒数关系:sinθ = 1/cscθ,cosθ = 1/secθ,tanθ = 1/cotθ17. 三角函数的商化积公式:tanθ = sinθ/cosθ,cotθ =cosθ/sinθ18.弧度与角度转换公式:弧度=(π/180)×角度,角度=(180/π)×弧度19. 二次方程求根公式:对于ax² + bx + c = 0,其中a≠0,则有x = (-b ± √(b² - 4ac)) / (2a)20.弧长公式:s=rθ21.扇形面积公式:A=(θ/360°)×πr²22.圆柱体体积公式:V=πr²h23.球体积公式:V=(4/3)πr³24.圆锥体体积公式:V=(1/3)πr²h25.向量的模长公式:∥a∥=√(a₁²+a₂²+a₃²)。

高中数学超纲却好用的公式

高中数学超纲却好用的公式

高中数学常用超纲公式有哪些?
高中数学常用超纲公式有:
1、圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标。

2、圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0。

3、三角函数:两角和公式:
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
高中学数学注意事项:
首先,在课堂教学中培养好的听课习惯是很重要的。

当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。

听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。

科学的记笔记可以提高4 5 分钟课堂效益。

其次,要提高数学能力,当然是通过课堂来提高,要充分利用好课堂这块阵地,学习数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。

高中数学公式总结大全最全面、最易懂

高中数学公式总结大全最全面、最易懂

高中数学公式总结大全最全面、最易懂高中数学公式总结大全最全面、最易懂高中数学是一门非常重要的学科,它是后续学科的基础。

数学是一门理性的学科,但也需要掌握一些必要的公式来解决问题。

在准备数学考试时,熟练掌握公式是非常重要的。

本文将为大家总结最重要的高中数学公式,以帮助大家更好地备考。

1. 代数公式1.1 二次方程的解对于一元二次方程ax^2+bx+c=0,其解为x = {-b±√(b^2-4ac)} / 2a1.2 因式分解公式(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^2(a+b)(a-b) = a^2 - b^21.3 平均数公式平均数=$\frac{\sum_{i=1}^{n}x_i}{n}$1.4 概率公式事件A发生的概率为P(A)=$\frac{A出现的次数}{总次数}$事件A和事件B同时发生的概率为P(A∩B)=P(A)×P(B|A)事件A和事件B至少发生一个的概率为P(A∪B)=P(A)+P(B)-P(A∩B)1.5 对数公式以a为底数的对数,log(a^n)=nlog(a)以e为底数的对数,ln(a)=log(e^a)1.6 复合函数的求导公式设f(x)和g(x)都可以求导,则(f(g(x)))' = f'(g(x))g'(x)1.7 三角函数公式sin(a+b)=sinacosb+cosasinbcos(a+b)=cosacosb-sinasinbtan(a+b)= $\frac{tana + tanb}{1-tanatanb}$sin2a=2sinacosbcos2a=cos^2a-sin^2atan2a= $\frac{2tana}{1-tan^2a}$2. 几何公式2.1 三角形的面积公式设三角形的三条边分别为a,b和c,p为半周长,则S= $\sqrt{p(p-a)(p-b)(p-c)}$2.2 勾股定理勾股定理:a^2+b^2=c^2其中,a和b为直角三角形斜边两侧的直角边,c为斜边。

高中数学必备公式汇总

高中数学必备公式汇总

高中数学必备公式汇总在高中数学的学习中,公式是解题的基础和关键。

熟练掌握各种公式,能够让我们在解题时更加得心应手,提高解题的效率和准确性。

下面为大家汇总了高中数学中一些必备的公式。

一、函数相关公式1、一次函数:y = kx + b(k 为斜率,b 为截距)2、二次函数:y = ax²+ bx + c(a ≠ 0),其顶点坐标为(b/2a, (4ac b²)/4a) ,对称轴为 x = b/2a3、反比例函数:y = k/x(k 为常数)二、三角函数公式1、同角三角函数基本关系:sin²α +cos²α = 1,tanα =sinα/cosα2、诱导公式:sin(π +α) =sinα,cos(π +α) =cosα,sin(α) =sinα,cos(α) =cosα 等3、和差角公式:sin(α ± β) =sinαcosβ ± cosαsinβ,cos(α ± β) =cosαcosβ ∓ sinαsinβ4、二倍角公式:sin2α =2sinαcosα,cos2α =cos²α sin²α =2cos²α1 =1 2sin²α,tan2α =2tanα/(1 tan²α)三、数列相关公式1、等差数列通项公式:an = a1 +(n 1)d,前 n 项和公式:Sn =n(a1 + an)/2 = na1 + n(n 1)d/22、等比数列通项公式:an = a1q^(n 1),前 n 项和公式:当q ≠ 1 时,Sn = a1(1 q^n)/(1 q);当 q = 1 时,Sn = na1四、导数相关公式1、(C)'= 0(C 为常数)2、(x^n)'= nx^(n 1)3、(sin x)'= cos x4、(cos x)'= sin x5、(ln x)'= 1/x6、(e^x)'= e^x五、向量相关公式1、向量的数量积:a·b =|a||b|cosθ2、向量的模:|a| =√(x²+ y²)(a =(x, y))3、向量的加法:a + b =(x1 + x2, y1 + y2)4、向量的减法:a b =(x1 x2, y1 y2)六、立体几何相关公式1、长方体的体积:V = lwh(l 为长,w 为宽,h 为高)2、正方体的体积:V = a³(a 为棱长)3、圆柱的体积:V =πr²h(r 为底面半径,h 为高)4、圆锥的体积:V =1/3πr²h5、球的体积:V =4/3πr³6、球的表面积:S =4πr²七、概率相关公式1、古典概型概率:P(A) = A 包含的基本事件数/基本事件总数2、互斥事件概率:P(A + B) = P(A) + P(B)3、独立事件概率:P(AB) = P(A)P(B)八、统计相关公式1、平均数:x=(x1 + x2 ++ xn)/n2、方差:s²=(x1 x)²+(x2 x)²++(xn x)²/n3、标准差:s =√s²以上只是高中数学中的一部分必备公式,同学们在学习过程中要理解公式的推导过程,多做练习,熟练运用这些公式来解决各种数学问题。

高中数学必考公式定律与知识梳理

高中数学必考公式定律与知识梳理

高中数学必考公式定律与知识梳理
以下是高中数学必考公式、定律和知识点的梳理:
1. 三角函数:
正弦定理:a/sin A = b/sin B = c/sin C
余弦定理:a² = b² + c² - 2bc cos A
正切定义:tan A = sin A / cos A
余切定义:cot A = cos A / sin A
常见三角函数值(0°、30°、45°、60°、90°)
2. 数列:
通项公式:an = a1 + (n-1)d
等差数列求和公式:Sn = n(a1+an)/2
通项公式:an = a1 * r^(n-1)
等比数列求和公式:Sn = a1(1-r^n)/(1-r)
3. 圆:
圆的面积公式:S = πr²
圆的周长公式:C = 2πr
圆锥/圆柱侧面积公式:S = πrl
4. 平面几何:
平行四边形面积公式:S = bh
矩形面积公式:S = lw
梯形面积公式:S = (a+b)h/2
直角三角形勾股定理:a² + b² = c²
5. 解析几何:
两点之间的距离公式:AB = √[(x2-x1)² + (y2-y1)²]
直线的一般式:Ax+By+C=0
直线的斜截式:y=kx+b
直线的点斜式:y-y1=k(x-x1)
圆的一般式:(x-a)² + (y-b)² = r²
以上是高中数学必考公式、定律和知识点的梳理,希望对您有所帮助。

高中数学公式大全必背

高中数学公式大全必背

高中数学公式大全必背一、集合1. 集合的基本运算- 交集:A∩ B = {x|x∈ A且x∈ B}- 并集:A∪ B={x|x∈ A或x∈ B}- 补集:∁_U A={x|x∈ U且x∉ A}(U为全集)2. 集合元素个数关系(容斥原理)- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数1. 函数的定义域- 分式函数y = (f(x))/(g(x)),g(x)≠0。

- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),f(x)≥slant0。

2. 函数的单调性- 设x_1,x_2∈[a,b],x_1≠ x_2- 对于函数y = f(x),若f(x_1)-f(x_2)<0(当x_1 < x_2时),则y = f(x)在[a,b]上单调递增。

- 若f(x_1)-f(x_2)>0(当x_1 < x_2时),则y = f(x)在[a,b]上单调递减。

3. 函数的奇偶性- 对于函数y = f(x)定义域内任意x- 若f(-x)=f(x),则y = f(x)是偶函数。

- 若f(-x)= - f(x),则y = f(x)是奇函数。

4. 一次函数- 表达式y = kx + b(k≠0),斜率k=(y_2 - y_1)/(x_2 - x_1)。

5. 二次函数- 表达式y=ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})6. 指数函数- 表达式y = a^x(a>0,a≠1)- 当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。

7. 对数函数- 表达式y=log_{a}x(a > 0,a≠1,x>0)- 当a > 1时,函数在(0,+∞)上单调递增;当0 < a < 1时,函数在(0,+∞)上单调递减。

高中数学所有公式归纳

高中数学所有公式归纳

高中数学所有公式归纳
高中数学公式归纳
一、数列:
1、等差数列:若一个数列的首项为a,公差为d,则该数列的通项公式为an=a1+(n-1)d
2、等比数列: 若一个数列的首项为a,公比为q,则该数列的通项公式为an=a1q n-1
二、立体几何:
1、直角三角形斜边长:c2=a2+b2
2、平行四边形面积:S=ab
3、球的表面积:S=4πr2
4、球体体积:V=4/3πr3
三、几何转换:
1、极坐标转换为直角坐标:x=rcosθ,y=rsinθ
2、直角坐标转换为极坐标:r=√x2+y2,θ=tan-1(y/x)
四、圆的几何:
1、圆的圆心角:θ=2πr/C
2、极半径:r=√(a2+b2+2abcosC/2)
五、三角函数:
1、正弦定理:a/sinA=b/sinB=c/sinC
2、余弦定理:a2=b2+c2-2bc cosA
3、正切定理:tanA/a=tanB/b=tanC/c
六、向量:
1、两向量的叉积:A×B=|A| |B| Sinα
2、向量的模:|A|=√a12+a22+a32
3、向量的点积:A·B=|A| |B|cosα
七、二次函数:
1、二元一次方程的解: ax2 + bx + c = 0 的解为 x=(-b ± √b2 - 4ac)/2a
2、二元二次函数的最值:若二元二次函数为:y=ax2 +bx+c,则最值为y=ax2 +bx+c + d(a不等于0),其中d为函数最值。

八、概率论:
1、加法原理:P(A与B事件有联系)=P(A)+P(B)-P(A与B同时发生)
2、乘法原理:P(A与B同时发生)=P(A)*P(B|A)。

高中数学必背公式大全高考必考数学公式

高中数学必背公式大全高考必考数学公式

高中数学必背公式大全高考必考数学公式1.二次方程的根与系数之间的关系:设二次方程 ax^2 + bx + c = 0(a ≠ 0)的根为 x1 和 x2,那么有以下关系式:x1+x2=-b/ax1*x2=c/a2.一元二次不等式的求解:设二次不等式 ax^2 + bx + c > 0(a ≠ 0)的解集为 S,那么有以下关系式:a>0时,S={x,x<x1或x>x2}a<0时,S={x,x1<x<x2}3.二次函数的顶点坐标:设二次函数 y = ax^2 + bx + c 的顶点坐标为 (h, k)那么有 h = -b/2a,k = f(h) = (4ac - b^2)/4a4.一次函数的斜率与函数图像的关系:设一次函数 y = mx + c 的斜率为 m,那么有以下关系式:m>0时,函数图像上升;m<0时,函数图像下降;m=0时,函数图像水平。

5.三角函数和三角公式:sin(A + B) = sinA * cosB + cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)sin^2A + cos^2A = 1sin²θ + cos²θ = 16.幂函数的性质:若 a > 0 且a ≠ 1,则函数 y = ax^n (n 是整数)的性质如下:n>0时,函数图像单调递增;n<0时,函数图像单调递减;n为偶数时,函数图像关于y轴对称;n为奇数时,函数图像关于原点对称。

7.对数函数的性质:若 a > 0 且a ≠ 1,则函数 y = log_a(x) 的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(1,0),且以x轴为渐近线;log_a(a^b) = b8.指数函数的性质:若a>0且a≠1,则函数y=a^x的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(0,1),且a^0=1a^m*a^n=a^(m+n)9.排列组合公式:将n个物体排成一列,有以下公式:排列公式:从n个物体中任选m个物体的排列数为A(n,m)=n!/(n-m)!组合公式:从n个物体中任选m个物体的组合数为C(n,m)=n!/(m!*(n-m)!)10.三角函数的和差化积:sin(A + B) = sinA * cosB + cosA * sinBsin(A - B) = sinA * cosB - cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBcos(A - B) = cosA * cosB + sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)tan(A - B) = (tanA - tanB) / (1 + tanA * tanB)这些公式是高中数学中的常用公式,掌握并熟练运用它们对于高考数学考试非常重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档