最新人教版八年级数学上册《最短路径问题》教学设计(精品教案)
部编版人教初中数学八年级上册《13.4 课题学习 最短路径问题 教学设计》最新精品优秀教案
前言:该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的教学设计(教案)是高效课堂的前提和保障。
(最新精品教学设计)13.4课题学习—最短路径问题教学内容解析:本节课的主要内容是利用轴对称研究某些最短路径问题,最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“三角形两边之和大于第三边”为知识基础,有时还要借助轴对称、平移变换进行研究。
本节课以数学史中的一个经典故事----“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间、线段最短”的问题。
教学目标设置:1、能利用轴对称解决简单的最短路径问题2、在谈最短路径的过程中,体会“轴对称”的桥梁作用,感悟转化的数学思想。
教学重点难点:重点:利用轴对称将最短路径问题转化为“两点之间、线段最短”问题。
难点:如何利用轴对称将最短路径问题转化为线段和最小问题。
学生学情分析:1、八年级学生的观察、操作、猜想能力较强,但演绎推理、归纳和运用数学意识的思想比较薄弱,自主探究和合作学习能力也需要在课堂教学中进一步引导。
此年龄段的学生具有一定的探究精神和合作意识,能在一定的亲身经历和体验中获取一定的数学新知识,但在数学的说理上还不规范,集合演绎推理能力有待加强。
2、学生已经学习过“两点之间,线段最短。
”以及“垂线段最短”。
以及刚刚学习的轴对称和垂直平分线的性质作为本节知识的基础。
教学策略分析:最短路径问题从本质上说是最值问题,作为八年级学生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手。
解答“当点A、B在直线l的同侧时,如何在l上找到点C,使AC与BC的和最小”,需要将其转化为“直线l异侧的两点,与直线l上的点的线段的和最小”的问题,为什么需要这样转化,怎样通过轴对称实现转化,一些学生会存在理解上和操作上的困难。
八年级数学上册---《最短路径问题》课堂设计
八年级数学上册---《最短路径问题》课堂设计最短路径问题(第一课时) 在我们的学习生活中,接触过很多“最值问题”:最多最少,最长最短。
思考以下两个问题:复习1:如图,连接A 、B 两点的所有连线中,哪条最短?为什么?答:路线2最短,因为两点的所有连线中,线段最短,简称:两点之间,线段最短 复习2:点P 是直线l 外一点,点P 与该直线l 上各点连接的所有线段中,哪条最短?为什么?答:PC 最短,因为连接直线外一点与直线上各点的所有线段中,垂线段最短。
设计意图:复习“两点之间,线段最短”和“垂线段最短”,为最短路径问题做好铺垫。
通过识别,也让学生有动态的思想,在比较中,找到最短路径。
lC PA B D教师:刚刚的两个问题都是识别最短路径,接下来,我们尝试通过画图,找到最短路径。
引例1:如图,在直线l上求作一点C,使得CA+CB最短。
教师:(1)点C是直线l上的一个动点。
我们不妨先画一个一般的点C,连接CA,CB,我们的目标:找到一个点C,使得CA+CB最小。
(2)观察几何画板的演示:当C在运动的过程中,线段CA,CB也在移动,观察:什么时候线段和最短?(3)同学们可以观察到:当C是线段AB和l的交点,即ACB共线时,CA+CB 最短。
依据是:两点之间,线段最短。
作图方法:连接AB,交直线l于点C,点C即为所求。
总结:从一般的点C出发,从运动变化的角度观察图形,并用到“两点之间,线段最短”解决问题。
教师:接下来,我们用这样的方法,研究数学史上经典的“牧马人饮马问题”。
例1:如图,牧马人从A地出发,到一条笔直的河边l 饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?BAl练习:有两棵树位置如图,树的底部分别为A,B,地上有一只昆虫沿着A—B 的路径在地面上爬行。
小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处。
问小鸟飞至AB之间何处时,飞行距离最短,在图中画出该点的位置。
八年级数学人教版上册13.4最短路径问题教学设计
一、教学目标
(一)知识与技能
1.了解最短路径问题的背景和应用,知道其在现实生活中的重要性。
2.掌握图形中两点间线段最短的性质,能够运用这一性质解决实际问题。
3.学会使用三角形两边之和大于第三边的原理,解决最短路径问题。
4.掌握运用数学符号和表达式来描述最短路径问题,并能运用相关公式进行计算。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的学习情况,提供适当的引导和帮助。同时,注重启发式教学,激发学生的兴趣和思考,引导学生主动探究,培养他们解决问题的能力。通过师生互动、生生互动,促进学生之间的交流与合作,使他们在探索最短路径问题的过程中,不断提高自己的数学素养和思维能力。
三、教学重难点和教学设想
5.能够运用所学的最短路径知识,解决一些简单的实际问题。
(二)过程与方法
在本章节的学习过程中,学生将通过以下方法培养解决问题的能力:
1.通过观察和分析实际生活中的最短路径问题,激发学生的学习兴趣,培养学生从生活中发现数学问题的意识。
2.通过自主探究、合作交流的方式,引导学生从简单问题入手,逐步深入,掌握解决最短路径问题的方法。
c.教师介绍三角形两边之和大于第三边的原理,并解释其在解决最短路径问题中的应用。
(三)学生小组讨论
1.教学内容:让学生分组讨论,共同探究解决最短路径问题的方法。
2.教学过程:
a.教师给出几个具有挑战性的最短路径问题,要求学生分组讨论。
b.学生在小组内分享思路,共同寻找解决问题的方法。
c.教师巡回指导,给予提示和建议,帮助学生解决问题。
五、作业布置
为了巩固学生对最短路径问题的理解,提高学生运用数学知识解决实际问题的能力,特布置以下作业:
八年级数学上册《最短路径问题》教案、教学设计
4.方法指导:教师引导学生运用坐标系、网格纸等工具,将实际问题转化为数学模型。
5.课堂小结:总结解决最短路径问题的方法,提炼数学思想。
第二课时:巩固提高,解决实际问题
1.创设情境:提供一些实际生活中的问题,让学生运用所学知识解决。
2.自主探究:学生独立思考,尝试解决实际问题。
2.培养学生面对困难时,勇于挑战、积极思考的良好品质。
3.培养学生合作交流、共同解决问题的团队意识,提高沟通能力。
4.培养学生将所学知识运用到实际生活中的意识,增强学生的实践能力。
5.使学生认识到数学与现实生活的紧密联系,体会数学在解决实际问题中的价值,提高学生对数学学科的认识。
二、学情分析
八年级的学生已经具备了一定的数学基础,对于坐标系、距离计算等概念有初步的了解。在此基础上,他们对最短路径问题充满好奇心,但可能尚未形成系统性的解题思路和方法。因此,在本章节的教学中,应关注以下几个方面:
b.请学生尝试研究:在给定的条件下,如何判断两点之间是否存在最短路径?若存在,如何求解?
作业要求:
1.学生需独立完成作业,确保解题过程清晰、规范。
2.鼓励学生在解决最短路径问题时,尝试不同的方法和思路,培养创新意识。
3.做完作业后,学生应认真检查,确保答案正确,并对解题过程进行总结和反思。
4.作业完成后,及时上交,教师将进行批改和反馈。
五、作业布置
为了巩固本节课所学知识,提高学生解决最短路径问题的能力,特布置以下作业:
1.必做题:
a.请学生绘制一幅包含五个点的坐标系图,任意指定两个点作为起点和终点,找出所有可能的最短路径,并计算出它们的长度。
b.从教材或课外资料中选择两道最短路径问题的题目,运用课堂所学方法进行解答。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
4.鼓励学生在课后进行深入研究,不断提高自己的数学素养。
五、案例亮点
1.生活实例引入:通过引入实际生活中的最短路径问题,如旅行路线规划、物流配送等,使学生能够直观地理解最短路径问题的意义和应用,提高学生的学习兴趣。
3.教师引导学生运用坐标系、函数、图论等知识,分析问题、解决问题。
(三)小组合作
1.学生分组进行讨论,培养学生的团队合作意识。
2.教师组织小组间的交流与分享,促进学生间的互帮互助。
3.教师巡回指导,针对不同小组的特点进行针对性指导。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结最短路径问题的解决方法。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
一、案例背景
本节内容为“人教版八年级数学上册13.4课题学习最短路径问题”,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等基础知识的基础上进行学习的。通过对最短路径问题的探究,旨在培养学生的逻辑思维能力、空间想象能力和解决问题的能力。
3.组织学生探讨、交流最短路径问题的解决方法,培养学生合作学习的能力。
4.引导学生运用图论中的最短路径算法解决实际问题,提高学生运用所学知识解决实际问题的能力。
5.对学生进行评价,了解学生对最短路径问题的理解和运用程度,及时进行教学调整。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
2.设计具有挑战性和吸引力的数学问题,激发学生的求知欲。
3.创设轻松、愉快的学习氛围,使学生在课堂上敢于发表自己的观点,培养学生的创新精神。
(二)问题导向
1.引导学生提出问题,如“如何找到两点之间的最短路径?”、“最短路径问题在实际生活中有哪些应用?”等。
人教版数学八年级上册13.4最短路径问题优秀教学案例
2.组织学生进行课堂展示,让他们分享自己的学习心得和解决问题的方法,培养他们的表达能力和沟通能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
(五)作业小结
1.布置具有实践性和拓展性的作业,让学生运用所学知识解决实际问题,提高他们的应用能力。
2.要求学生在作业中总结最短路径问题的解决方法,培养他们的归纳总结能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际,激发他们的学习兴趣。
2.设计具有挑战性和趣味性的实例,让学生在解决问题的过程中,自然引入最短路径问题的概念和方法。
3.创设合作交流的氛围,让学生在小组内共同探讨问题,激发他们的思考和创造力。
(二)讲授新知
1.引导学生关注最短路径问题的本质,即寻找两点间的最优路径,让学生在解决问题的过程中,自然而然地掌握相关知识。
2.通过提问、设疑等方式,引导学生思考最短路径问题的解决方法,激发他们的求知欲和好奇心。
3.讲解最短路径问题的解决方法,如坐标系法、动态规划法、图论等,让学生了解多种解决思路。
3.教师及时批改作业,给予学生反馈,帮助他们发现不足,提高学习效果。
本节课的教学内容与过程注重知识的传授、方法的训练和情感的培养,充分体现了教育的人文关怀和学生的全面发展。通过本节课的学习,学生将更好地掌握最短路径问题的解决方法,提高他们的数学素养和实际应用能力,为未来的学习和生活打下坚实基础。
最新人教版初中八年级上册数学《课题学习最短路径问题》精品教案
13.4 课题学习最短路径问题【知识与技能】1.了解最短路径问题.2.掌握解决最短路径问题的方法.【过程与方法】通过解决最短路径问题的过程培养学生分析问题的能力.【情感态度】通过对最短路径问题的学习,增强应用数学知识解决实际问题的信心.【教学重点】解决最短路径问题.【教学难点】最短路径的选择.一、情景导入,初步认识问题1 如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?问题2 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)【教学说明】(1)C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l的什么位置时,AC与CB的和最小.作出点B关于l的对称点B′,连接AB′,线段AB′与直线l的交点C的位置即为所求.(2)N为直线b上的一个动点,MN垂直于直线b,交直线a于点M,这样,上面的问题可以转化为下面的问题:当点N在直线b的什么位置时,AM+MN+NB最小?将AM沿与河岸垂直方向平移,移动距离为河宽,则A点移到A′点,连接A′B,线段A′B与直线b的交点N的位置即为所求,即在点N处造桥MN.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知例要在燃气管道l上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管道最短?【分析】本问题就是要在l上找一点C,使AC与CB的和最小.设B′是B关于直线l的对称点,本问题也就是要使AC与CB′的和最小.在连接AB′的线中,线段AB′最短.因此,线段AB′与直线l的交点C的位置即为所求.【教学说明】解决最短路径问题通常运用的知识有“过直线作已知点的对称点”,“两点的所有连线中,线段最短”等.三、师生互动,课堂小结这节课主要学习了最短路径问题,让学生相互交流体会与收获,并总结本课所学知识.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.非常感谢!您浏览到此文档。
最新人教版初中八年级上册数学第十三章《最短路径问题》精品教案
新知探究 知识点1
1、直线异侧的两点到直线上一点距离和最短的问题.
如图,点A,B分别是直线l异侧的两个点,在直线l上找一点C使得AC+BC的值最 小,此时点C就是线段AB与直线l的交点.
A∙
C l
∙B
新知探究
知识点2
2、直线同侧的两点到直线上一点距离和最短的问题.
如图,点A,B分别是直线l同侧的两个点,在直线l上找一点C使得AC+BC的值 最小,这时先作点B关于直线l的对称点的B′,连接AB′交直线l于点C(也可以作 点A关于直线l的对称点A′,连接A′B交直线l于点C),此时点C就是所求作的点.
)
A.900
B.1200
C.1500
D.1800
C
D
A
B
拓展提升 1
分析:“牧童从A处把牛牵到河边饮水再回家,
C
D
最短距离”可以转化为“点A,B均在河边CD
的同侧,请在河边CD上找一点E,使得AE+BE
的值最小”.
A
B
根据本节课所学的知识,点E比较容易找出, 那AE+BE的值应该是多少呢?
拓展提升 1
本题源自《教材帮》
随堂练习 2
解:如图,作点C关于AB的对称点C′,连接DC′ 交AB于点E,则点E即为所求. 也可作点D关于AB的对称点D′,连接CD′同样交 AB于点E的位置,则点E即为所求.
本题源自《教材帮》
随堂练习 3
如图,在等腰Rt△ABC中,D是BC边的中点,E是AB边上的一动点,要使
2.师生共同总结反思学习情况。
1.从课后习题中选取; 2.完成练习册本课时的习题.
再见!
己书中 的方国 未式人 来,自 。创己
人教版八年级数学上册13.4最短路径问题优秀教学案例
4.多媒体教学手段:利用多媒体教学手段,如图片、视频等,展示实际问题情境,让学生更直观地感受到问题的背景和意义,提高学习效果。
在现实生活中,最短路径问题具有广泛的应用,如道路规划、网络路由等。因此,本节课的教学案例将以实际问题为背景,引导学生运用数学知识解决实际问题,培养学生的数学应用意识。
为了提高教学效果,本节课将采用小组合作、讨论交流的教学方法,让学生在探讨最短路径问题的过程中,提高自主学习能力和合作意识。同时,教师将以引导者、组织者的角色参与教学,为学生提供必要的帮助和指导,确保教学活动的顺利进行。
(三)小组合作
1.教师将学生分成小组,鼓励学生进行合作交流,共同探讨最短路径问题的解决方法。
2.教师引导学生进行小组讨论,鼓励学生分享自己的思路和观点,培养学生的合作意识和团队精神。
3.教师巡回指导,参与小组讨论,为学生提供必要的帮助和指导,确保每个学生都能参与到教学活动中来。
(四)反思与评价
1.教师引导学生进行自我反思,总结自己在解决最短路径问题过程中的思路和方法,找出自己的不足之处。
3.教师介绍迪杰斯特拉算法和贝尔曼-福特算法,讲解这两种算法的原理和步骤,并通过示例进行演示。
4.教师引入动态规划思想,讲解如何运用动态规划解决最短路径问题,并给出动态规划解决最短路径问题的步骤。
(三)学生小组讨论
1.教师将学生分成小组,并提出讨论问题,如“比较迪杰斯特拉算法和贝尔曼-福特算法的优缺点”、“如何运用动态规划解决最短路径问题?”等。
2.利用多媒体教学手段,展示实际问题情境,让学生直观地感受到最短路径问题的重要性和实用性。
人教版数学八年级上册13.4课题学习最短路径问题说课稿
三、教学方法与手段
(一)教学策略
在本节课中,我将主要采用问题驱动的教学法和案例教学法。问题驱动的教学法能够激发学生的思考和探究欲望,通过解决实际问题,使学生理解和掌握知识。案例教学法则能够提供具体的实例,使学生能够将理论知识与实际问题相结合,提高解决问题的能力。这两种方法的选择基于现代教育理念,即以学生为中心,注重培养学生的思维能力和实践能力。
(二)新知讲授
在新知讲授阶段,我会逐步呈现最短路径问题的知识点,引导学生深入理解。首先,我会介绍最短路径问题的定义和基本概念,让学生理解什么是路径、什么是距离等。然后,我会引入图解法和解析法两种解决方法,通过图示和实例讲解图解法的原理和步骤,通过公式和推导讲解解析法的原理和步骤。在讲解过程中,我会引导学生积极参与,提问和解答疑问,帮助学生深入理解知识点。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计一些巩固练习和实践活动。例如,我可以设计一些实际问题的练习题,让学生运用图解法或解析法解决这些问题。同时,我可以组织小组合作实践活动,让学生共同解决一个实际问题,例如设计一个城市的公交路线,找出最短路径。通过这些练习和实践活动,学生能够巩固所学知识,并提升解决问题的能力。
(三)教学重难点
1.教学重点:最短路径问题的定义、图解法、解析法及其应用。
2.教学难点:图解法在实际问题中的应用,解析法的推导过程。
针对学生的认知水平,本节课的教学重点是让学生掌握最短路径问题的解决方法,教学难点在于让学生理解和掌握图解法在实际问题中的应用以及解析法的推导过程。在教学过程中,教师需要通过举例、讲解、引导学生动手操作等方式,帮助学生克服这些难点。
八年级数学上册 13.4 课题学习 最短路径问题教学设计 (新版)新人教版
八年级数学上册 13.4 课题学习最短路径问题教学设计(新版)新人教版一. 教材分析“课题学习最短路径问题”是人教版八年级数学上册第13.4节的内容。
这部分内容主要让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
教材通过引入一个实际问题,引导学生探讨并找出解决问题的方法,从而培养学生解决问题的能力和兴趣。
二. 学情分析八年级的学生已经掌握了图论的基本知识,如图的定义、图的表示方法等。
但是,对于图的最短路径问题,学生可能还没有直观的理解和认识。
因此,在教学过程中,教师需要结合学生的已有知识,通过实例讲解、动手操作等方式,帮助学生理解和掌握最短路径问题。
三. 教学目标1.知识与技能目标:让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
2.过程与方法目标:通过探讨实际问题,培养学生解决问题的能力和兴趣。
3.情感态度与价值观目标:培养学生对数学的热爱,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:最短路径问题的实际应用,图论中的最短路径算法。
2.教学难点:如何引导学生从实际问题中抽象出最短路径问题,并运用图论知识解决。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.实例讲解法:通过具体的实例,讲解最短路径问题的解决方法,帮助学生理解和掌握。
3.动手操作法:让学生亲自动手操作,加深对最短路径问题的理解。
六. 教学准备1.教学素材:准备一些实际问题的案例,以及相关的图论知识介绍。
2.教学工具:多媒体教学设备,如PPT等。
3.学生活动:让学生提前预习相关内容,了解图论的基本知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入最短路径问题,激发学生的学习兴趣。
例如,讲解从一个城市到另一个城市,如何找到最短的路线。
2.呈现(15分钟)讲解最短路径问题的定义,以及图论中最短路径算法的基本原理。
通过PPT等教学工具,展示相关的知识点,让学生直观地了解最短路径问题。
人教版数学八年级上册教学设计《13-4 课题学习 最短路径问题》
人教版数学八年级上册教学设计《13-4 课题学习最短路径问题》一. 教材分析《13-4 课题学习最短路径问题》是人教版数学八年级上册的教学内容。
这一课题主要让学生了解最短路径问题的背景和意义,掌握解决最短路径问题的方法,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习这一课题前,已经掌握了图的基本概念和相关性质,具备了一定的数学思维能力。
但对于解决实际问题的能力还有待提高,因此,在教学过程中,需要注重引导学生将数学知识应用到实际问题中。
三. 教学目标1.了解最短路径问题的背景和意义。
2.掌握解决最短路径问题的方法。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:最短路径问题的背景和意义,解决最短路径问题的方法。
2.教学难点:如何将实际问题转化为最短路径问题,如何运用图论知识解决最短路径问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.案例教学法:分析具体的最短路径问题,让学生在分析中掌握解决方法。
3.小组合作学习法:培养学生团队合作精神,提高解决问题的能力。
六. 教学准备1.课件:制作课件,展示最短路径问题的实际应用场景。
2.案例:收集一些具体的最短路径问题,用于教学实践。
3.教学工具:尺子、圆规、直尺等。
七. 教学过程1.导入(5分钟)利用课件展示最短路径问题的实际应用场景,如地图导航、物流配送等,引导学生关注最短路径问题。
2.呈现(10分钟)介绍最短路径问题的背景和意义,提出解决问题的方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
3.操练(10分钟)让学生分组讨论,分析具体的最短路径问题,选取小组代表进行分享,讲解解决问题的思路和方法。
4.巩固(10分钟)针对学生分享的最短路径问题,进行总结和点评,引导学生明确解决最短路径问题的关键步骤。
5.拓展(10分钟)让学生思考如何将最短路径问题应用到实际生活中,提出自己的见解和想法。
八年级数学人教版上册13.4课题学习最短路径问题(第一课时)优秀教学案例
(五)作业小结
1.作业布置:布置一些有关最短路径问题的课后作业,让学生进一步巩固所学知识,提高解决问题的能力。
2.作业反馈:对学生的作业进行及时批改和反馈,指出其中的错误和不足,给予肯定和建议。
3.课后拓展:鼓励学生参加数学竞赛、研究性学习等活动,拓宽视野,培养创新精神。同时,关注学生在学习过程中的情感态度和价值观的培养,引导他们关爱他人、乐于助人,形成良好的品德素养。
2.利用多媒体展示典型实例,让学生更好地理解和掌握最短路径问题的解决方法。
3.鼓励学生积极参与课堂讨论,培养他们的合作精神和团队意识。
4.注重个体差异,给予学生个性化的指导,帮助他们在原有基础上得到提高。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,让他们感受到数学在生活中的实际应用,提高学生学习数学的积极性。
4.反思与评价:引导学生进行自我反思和同伴评价,培养学生的批判性思维和自我改进的能力。同时,教师对学生的学习过程和结果进行评价,注重鼓励性评价,激发学生的学习兴趣和自信心。
5.课后拓展与情感态度培养:布置相关的课后作业,让学生进一步巩固所学知识,提高解决问题的能力。同时,关注学生在学习过程中的情感态度和价值观的培养,引导他们关爱他人、乐于助人,形成良好的品德素养。
五、案例亮点
1.生活情境导入:通过生活情境导入新课,使学生能够直观地感受到最短路径问题的实际意义,激发学生的学习兴趣和积极性。
2.多媒体辅助教学:利用多媒体展示典型的最短路径问题实例,使抽象的问题具体化、形象化,有助于学生更好地理解和掌握知识。
3.问题导向与小组合作:提出具有挑战性的问题,引导学生进行小组讨论和合作交流,培养学生的团队协作能力和解决问题的能力。
八年级数学人教版上册13.4最短路径问题(第一课时)优秀教学案例
(一)知识与技能
1.理解最短路径问题的实际应用背景,认识到最短路径问题在生活中的重要性。
2.掌握利用图的性质寻找最短路径的方法,能够运用所学知识解决实际问题。
3.了解最短路径问题的基本概念,如路径、权重、最短路径等。
4.学会使用图论中的算法求解最短路径问题,如迪杰斯特拉算法。
(二)过程与方法
四、教学内容与过程
(一)导入新课
1.生活情境引入:通过展示城市交通网络图,引导学生关注实际生活中的最短路径问题,激发学生的学习兴趣。
2.创设问题情境:提出问题:“如何在城市交通网络中找到从一个地点到另一个地点的最短路径?”引导学生思考和提出解决问题的方法。
(二)讲授新知
1.图的基本概念:介绍图的定义、图的节点和边等基本概念,为学生理解最短路径问题打下基础。
5.知识拓展与延伸:在教学过程中,不仅关注学生对知识的掌握程度,还注重引导学生思考最短路径问题在其他领域的应用,激发学生的学习兴趣和拓展思维。通过知识拓展与延伸,学生能够更好地将所学知识应用于实际生活中,提高他们的数学应用能力。
在教学过程中,我以城市交通网络为背景,设计了一系列具有挑战性的问题,引导学生从实际情境中发现问题、提出问题,激发学生的探究兴趣。同时,我充分发挥学生的主体作用,组织学生进行合作探究,引导他们通过画图、讨论等方式,寻找解决问题的策略。
在教学评价方面,我注重过程性评价与终结性评价相结合,不仅关注学生对知识的掌握程度,更注重培养学生的数学思维能力和解决问题的能力。通过本节课的教学,使学生能够运用所学的知识解决实际生活中的最短路径问题,提高他们的数学应用意识。
3.评价原则:评价应具有客观性、发展性、指导性,能够激发学生的学习动力和自我提升意识。
人教版初中数学八年级上册13.4最短路径问题(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与最短路径相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示最短路径的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“最短路径在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《最短路径问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过如何找到两点间最短距离的情况?”(如从家到学校的最短路线)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索最短路径的奥秘。
(3)在复杂图形中寻找最短路径时,可以引导学生从简单图形出发,逐步增加难度,让学生掌握解题方法;
(4)结合实际应用,可以设计一些案例,如旅行商问题、工程选址问题等,指导学生如何将所学知识运用到实际中。
在教学过程中,教师应针对这些难点和重点,运用生动形象的语言、具体实例和操作演示,帮助学生理解、掌握和运用相关知识。同时,注意关注学生的反馈,适时调整教学方法和进度,确保学生透彻理解本节课的核心内容。
(3)在实际图形中寻找最短路径,如三角形、四边形等;
(4)将现实生活中的问题转化为数学模型,利用数学知识求解。
举例:讲解最短路径概念时,可以通过实际生活中的例子(如地图上两点间的最短距离)进行说明,使学生理解并掌握这个核心概念。
2.教学难点
(1)如何将实际问题抽象为数学模型,找到最短路径;
人教版八年级数学上册13.4《最短路径问题》优秀教学案例
1.教师将学生分成若干小组,每组选择一个最短路径问题进行研究和探究;
2.引导学生相互讨论、交流,共同解决问题,培养学生的团队协作能力和沟通能力;
3.教师巡回指导,针对不同小组的问题,提供适当的帮助和指导,促进学生的思考和发展。
(四)总结归纳
1.教师引导学生对自己的学习过程进行反思,总结自己在解决问题过程中的优点和不足;
人教版八年级数学上册13.4《最短路径问题》优秀教学案例
一、案例背景
本节课为人教版八年级数学上册13.4《最短路径问题》,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等知识的基础上进行学习的。八年级的学生思维活跃,好奇心强,具备一定的探究能力,但同时在学习过程中容易忽视数学与实际生活的联系,对最短路径问题的理解停留在理论层面。因此,本节课的教学案例旨在通过生活实例,引导学生感受最短路径问题在实际生活中的应用,培养学生解决实际问题的能力,提高学生的数学素养。
2.组织学生进行评价,让学生互相评价,提高学生的自我认知和评价能力;
3.教师对学生的学习过程和结果进行评价,关注学生的全面发展,给予极的反馈和鼓励。
(五)作业小结
1.教师布置与本节课相关的基础性作业和拓展性作业,巩固学生对最短路径问题的理解和掌握;
2.鼓励学生运用所学知识解决实际生活中的最短路径问题,提高学生的数学应用意识;
三、教学策略
(一)情景创设
1.利用多媒体展示实际生活中的最短路径问题,如快递员送快递、旅行家规划旅行路线等,让学生感受到最短路径问题在现实生活中的重要性;
2.设计具有挑战性的问题,如学校到图书馆的最短路径是什么?引导学生思考并尝试解决;
3.创设情境,让学生扮演不同角色,如导演、导游等,规划最短路径,提高学生的参与度和积极性。
人教版初二数学上册《最短路线问题》教案
人教版初二数学上册《最短路线问题》教案一、教学目标1. 了解最短路线问题的概念和应用背景。
2. 掌握求解最短路径的方法,包括迪杰斯特拉算法和弗洛伊德算法。
3. 能够灵活运用最短路径算法解决实际问题。
二、教学准备1. 教材:人教版初二数学上册。
2. 教具:投影仪、黑板、白板、教案、课件等。
三、教学内容及流程1. 导入(5分钟)- 利用地图等实际例子引入最短路线问题,并与学生进行讨论,激发学生的研究兴趣。
2. 知识讲解(15分钟)- 讲解最短路径的定义和应用背景,引导学生了解最短路径问题在现实生活中的重要性。
3. 方法讲解(20分钟)- 介绍迪杰斯特拉算法的基本原理和步骤,通过实例演示其具体应用方法。
- 介绍弗洛伊德算法的基本思想和具体过程,通过实例说明其求解最短路径的能力。
4. 练与应用(25分钟)- 设计一些简单的最短路径问题,让学生运用迪杰斯特拉算法和弗洛伊德算法进行求解。
- 提供一些实际案例,让学生运用所学知识解决实际问题。
5. 总结与反思(10分钟)- 总结所学知识要点,强调最短路径问题的重要性和实际应用价值。
- 与学生一起反思本节课的收获和不足之处,为下一步研究做好准备。
四、教学评价1. 观察学生的课堂参与情况,包括回答问题、互动讨论等。
2. 以小组或个人作业形式,设计相关的问题让学生回答。
3. 布置课后作业,要求学生运用所学知识解决一个实际的最短路径问题,并提交书面报告。
五、教学延伸为了帮助学生更好地理解最短路线问题和相关算法,教师可以组织学生进行实地考察,例如到校园周围进行最短路径的测量和求解,让学生亲自体验和实践所学知识的应用。
以上是人教版初二数学上册《最短路线问题》教案的主要内容,希望对您有所帮助。
最短路径问题八年级数学上(人教版)学习教案
B
P′ P Q′ Q
连接A′′B,与直线l交于一点 即为所求点Q.
l
A′′
问题:在直线l上求作两点P,Q , 使得四边形APQB的周长最小.
练习 已知线段a,点A、B在直线l的同侧,在直线l上求作 两点P,Q (点P在点Q的左侧)且PQ=a,使得四 边形APQB的周长最小. 作法:
a A A′
B
将点A沿直线l的方向平移A′, 使得AA′=a. 作A′关于直线l的对称点A′′
当点N在直线b的什么位置时,AM+MN+NB最小?
当点N在直线b的什么位置时,AM+MN+NB最小?
A
Ma Nb
B
思考: 问题能否简化?
问题转化为:当点N在直线b的什么位置时,AM+NB最小?
A
Ma Nb
B
问题转化为:当点N在直线b的什么位置时,AM+NB最小?
A
A
Ma Nb
B
B
思考: 能否通过图形的变化(轴对称,平移等),
A
实际问题用数学语言表达.
Ma Nb
B
总结 当点N在直线b的什么位置时,AM+MN+NB最小? 转化1:当点N在直线b的什么位置时,AM+NB最小?
A
Ma Nb
B
总结 当点N在直线b的什么位置时,AM+MN+NB最小? 转化1:当点N在直线b的什么位置时,AM+NB最小?
利用平移,实现线段的转移. 转化2:当点N在直线b的什么位置时, A′N+NB最小?
N
AM′+N′B=A′N′+N′B.
B 由两点之间,线段最短可知:
人教版八年级上册数学13.4课题学习最短路径问题优秀教学案例
(三)情感态度与价值观
1.让学生在解决实际问题的过程中,体验数学的乐趣,提高学生学习数学的兴趣。
2.培养学生面对困难时积极思考、勇于挑战的精神,增强学生的自信心。
3.使学生认识到数学在生活中的重要性,培养学生的数学应用意识和社会责任感。
三、教学重难点
2.跨学科教学:结合其他学科的知识,如地理、信息技术等,拓宽学生的知识视野,培养学生的综合能力。
六、教学资源
1.教材:人教版八年级上册数学教材。
2.辅助材料:相关的最短路径问题的案例、练习题和拓展问题。
3.现代教育技术:多媒体课件、网络资源等。
七、教学评价
1.学生评价:通过学生的课堂表现、作业完成情况和练习成绩等方面进行评价。
(二)讲授新知
在导入新课后,我会开始讲解最短路径问题的相关知识。首先,我会向学生们介绍最短路径问题的定义,让学生们明白什么是最短路径。接着,我会讲解解决最短路径问题的基本方法,如坐标系法、函数法等。在讲解的过程中,我会结合具体的例子,让学生们更直观地理解这些方法。
(三)学生小组讨论
在讲授完新知识后,我会让学生们进行小组讨论。我会给每个小组提供一个实际问题,让他们运用所学知识,合作解决这个最短路径问题。这样的讨论,可以培养学生的团队合作精神,也可以让学生们在实践中加深对知识的理解和应用。
3.互动评价:小组之间进行互动评价,相互学习和提高。
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,发现自身的优点和不足,制定改进措施。
2.同伴评价:学生之间相互评价,给予意见和建议,促进共同进步。
3.教师评价:教师对学生的学习情况进行评价,关注学生的个体差异,给予鼓励和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.4 课题学习最短路径问题
学习目标
1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.(重点)
2.利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.(难点)
教学过程
一、情境导入
相传,古希腊亚历山大里亚城里有一位久
负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:
从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?
二、合作探究
探究点:最短路径问题
【类型一】求直线异侧的两点与直线上一点所连线段的和最小的问题
例1:如图所示,在河a两岸有A、B两个村庄,现在要在河上修建一座大桥,为方便交通,要使桥到这两村庄的距离之和最短,应在河上哪一点修
建才能满足要求?(画出图形,做出说明。
)
解析:利用两点之间线段最短进而得出答案.
解:如图所示:连接AB交直线a于点P,此时桥到这两村庄的距离之和最短.理由:两点之间线段最短.
【方法总结】求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.
变式训练:见《学练优》本课时练习“课堂达标练习” 第2题
【类型二】运用轴对称解决距离最短问题
例2:在图中直线l上找到一点M,使它到A,B两点的距离和最小.
解析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.
解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.
【方法总结】利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.
【类型三】最短路径选址问题
如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.
(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(要求:尺规作图,保留作图痕迹.写出必要的文字说明)
(2)若要使厂部到A,B两村的水管最短,应建在什么地方?
解析:(1)欲求到A、B两地的距离相等,即作出AB的中垂线与EF的交点M即可,交点即为厂址所在位置.
(2)利用轴对称求最短路线的方法得出A点关于直线EF的对称点A′,再连接A′B交EF于点N,即可得出答案。
解:(1)作出AB的中垂线与EF的交点M,交点M即为厂址所在位置;
(2)如图所示:作A点关于直线EF的对称点A′,再连接A′B交EF 于点N,点N即为所求.
【方法总结】选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.
变式训练:见《学练优》本课时练习“课堂达标练习” 第2题
【类型四】运用轴对称解决距离之差最大问题
例4:如图所示,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.
解析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.
解:如图所示,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA-CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB. 【方法总结】根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.
三、板书设计
课题学习最短路径问题
1.求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.
2.求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.
教学反思
通过本节从具体情境发现并提出数学问题的学习活动,进一步体会数学与自然及人类社会的密切联系,了解数学的价值。
在互动交流活动中,学习从不同角度理解问题,寻求解决问题的方法,并有效地解决问题。
体会在解决问题中与他人合作的重要性。
体会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识.。