人教版初三数学下册函数
人教版初中数学九年级下册期中复习课件:专题 函数 初中九年级数学教学课件PPT 人教版
B. -1
C. 2
D. -2
易错提示:学生往往由S△AOB=1想到相应的矩形面积为2, 却忽视图象在第二、四象限而得到k=2,从而错误地选C. 正解:∵S△AOB=1, ∴|k|=2.∵反比例函数的图象在第二、四象限, ∴k=-2. 答案:D
学以致用
5. 如图M26-2,点A在双曲线
的图象上,AB⊥x轴
期中复习课件 函数
本章知识梳理
考纲要求
1. 结合具体情境体会反比例函数的意义,能根据已知条 件确定反比例函数的表达式. 2. 能画出反比例函数的图象,根据图象和表达式 (k≠0)探索并理解k>0或k<0时,图象的变化情况. 3. 能用反比例函数解决某些实际问题.
知识梳理
反比例函 数的概念
定义:形如
正解:由分母中x的指数为1,得2-|m|=1.∴m=±1. 由分子k=m+1≠0,得m≠-1. ∴m=1. 答案:1
学以致用
1. 若函数 2. 已知函数
是反比例函数,则k=___-_2__. 是 反比例函数,求m的值.
解:由已知,得|m|-2=-1且m-1≠0, 解得m=±1且m≠1. ∴m=-1.
易错点
二、在解有关反比例函数与正(反)比例函数的综合题
时,忽略了两个比例系数不一定相等的情况而导致错误.
【例2】已知y与x-1成反比例,且当x=3时,y=2,求y关
ቤተ መጻሕፍቲ ባይዱ
于x的函数关系式.
易错提示:用待定系数法,错误地设反比例函数解析式
为
,而未将x-1看成一个整体.
正解:设y与x-1的函数关系式为
.
当x=3时,y=2,∴2= .解得k=4.
学以致用
7. 已知反比例函数
九年级下册人教版数学知识点归纳
第二十二单元 二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式二次函数的基本形式()2y a x h k =-+的性质:a 的绝对值越大,抛物线的开口越小。
三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.a 的符号开口方向 顶点坐标 对称轴性质0a >向上()h k ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .0a <向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”3. 常数项c c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离2214b acAB x x a-=-=. ② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.第一单元 二次根式1、二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
人教版九年级数学下册三角函数全章课件
B.
C.
D.
【解析】选B.根据正切的函数定义,角A的正切应是它的 对边与邻边的比,所以B是正确,A是∠B的正切;C和D都 错.
2.(黄冈中考)在△ABC中,∠C=90°,sinA= 则tanB=( B )
3.(丹东中考)如图,小颖利用有一
C
个锐角是30°的三角板测量一棵树的高度, 30
已知她与树之间的水平距离BE为5m,AB为 °A
【规律方法】 1.记住30°,45 °,60 °的特殊值,及推导方式,可以 提高计算速度. 2.会构造直角三角形,充分利用勾股定理的有关知识结 合三角函数灵活运用.
B
直角三角形三边的关系.
直角三角形两锐角的关系. A
直角三角形边与角之间的关系.
c
a
┌
b
C
特殊角30°,45°,60°角的三角函数值. 30° 互余两角之间的三角函数关系.
2)如图,sinA=
(×)
2.在Rt△ABC中,锐角A的对边和斜边同时扩大100倍,sinA
的值( C )
A.扩大100倍 C.不变
B.缩小 1
100
D.不能确定
3.如图 A
B
1
3
,则 sinA=___2___ .
30°
C
7
1.(温州中考)如图,在△ABC中,∠C=90°, AB=13,
BC=5,则sinA的值是(
)
A. 5 13
B. 12
13
C. 5
12
D. 13
5
【解析】选A.由正弦的定义可得
sin A BC 5 . AB 13
2.在平面直角平面坐标系中,已知点A(3,0)和B(0,-4),则
数学人教版九年级下册函数解析式
函数解析式(Analytic function)函数解析式与函数式相类似都是求出函数x与y的函数关系。
在一次函数中就是求K 值也就是它俩的关系。
常用函数的解析式:一次函数y=kx+b正比例函数(也是特殊的一次函数)y=kx反比例函数y=k/x二次函数y=a*x^2+b*x+c注意:通俗地讲,函数反映的是两个变量直接的(变化)关系,严格地说,函数是两个数集之间的一种对应关系(映射)。
而“规律”首先是一个(真)“命题”,而“命题”,在逻辑学指表达判断的语言形式,由系词把主词和宾词联系而成。
例如:‘北京是中国的首都’,这个句子就是一个命题。
在现代哲学、逻辑学、语言学中,命题是指一个判断(陈述)的语义(实际表达的概念),这个概念是可以被定义并观察的现象。
命题不是指判断(陈述)本身。
更进一步,“规律”是事物、现象和过程内在的、本质的必然的联系。
定律(Laws) 研究宇宙间不变的事实规律所归纳出的结论,不同于理论、假设、定义、定理,是对客观事实的一种表达形式,通过大量具体的客观事实经验累积归纳而成的结论。
与“函数”概念相去甚远,不应混淆。
另外,函数的“表达式”最好不要笼统的称为为“解析式”。
因为很多函数并不解析(解析的概念在大学“复变函数”等课程中学习),为避免误用,最好成为“表达式”,这样更为妥当。
2构成编辑主要有两部分构成:1、表达式;2、自变量的表达范围。
例如:(1)y=2x-5(x>0) (2)y=2x-5(-3我们默认在实数范围内讨论,下同);(4)的自变量范围是:x>=2.5;(5)·的自变量范围是:x≠2.5。
3概念思路编辑解释函数概念;函数就是根据运算规则,“算式中最少有两个互相影响的数值”,这两个数值称为(变量)。
其中一个是“自变量”(X),为什么叫“自变量”呢?因为这个数值可控,我们通过改变它来改变另一个变量(Y),另一个变量(Y)由于是受这个自变量(X)改变而得到的,所以另一个变量(Y)称为这个自变量(X)的函数(在初中旧版教材中称Y为因变量)!为什么叫“函数”?看这个词的构成,“函”的意思是什么?“函是不相隶属机关之间相互商洽工作、询问和答复问题”这个解释正好又能解释到“映射”,“不相隶属机关”就是指这两个变量,它们两个之间相互工作,相互影响。
人教版初三数学下册 中考复习 二次函数
中考复习之二次函数二次函数的一般式为y=ax2+bx+c(a≠0)a控制开口方向a>0,开口向上;a<0,开口向下。
|a|越大,开口越小;|a|越小,开口越大b控制顶点坐标顶点坐标公式24 (,) 24b ac ba a--顶点坐标的横坐标决定对称轴,顶点坐标的纵坐标决定最值对称轴在y轴左边,a、b同号;对称轴在y轴右边,a、b异号,对称轴刚好是y轴,b=0。
口诀:左同右异c控制二次函数与y轴的交点二次函数与y轴一定有一个交点,这个交点坐标为(0,c)当c>0,二次函数与y轴交于正半轴当c<0,二次函数与y轴交于负半轴当c=0,二次函数经过原点(0,0)二次函数x轴的交点由Δ控制Δ>0,二次函数与x轴有2个交点Δ=0,二次函数与x轴有1个交点Δ_____,二次函数与x轴有交点Δ<0,二次函数与x轴无交点求函数与x 轴的交点=>令y=0求函数与y 轴的交点=>令x=01、抛物线y =x 2﹣4x+4的顶点坐标为( )A .(﹣4,4)B .(﹣2,0)C .(2,0)D .(﹣4,0)2、抛物线y =x 2+x ﹣1的对称轴是( )A .直线x =﹣1B .直线x =1C .直线x =﹣D .直线x =3、抛物线y =x 2+1的对称轴是( )A .直线x =﹣1B .直线x =1C .直线x =0D .直线y =14、抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)5、把抛物线y =﹣x 2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A .y =﹣(x ﹣1)2+3B .y =﹣(x+1)2+3C .y =﹣(x+1)2﹣3D .y =﹣(x ﹣1)2﹣36、函数y =kx 2﹣4x+2的图象与x 轴有公共点,则k 的取值范围是( )A .k <2B .k <2 且 k ≠0C .k ≤2D .k ≤2 且 k ≠07、二次函数y =kx 2﹣2x ﹣3的图象和x 轴有交点,则k 的取值范围是( )A .k >31- B .k >31-且k ≠0 C .k ≥31- D .k ≥31-且k ≠0例1、二次函数y=ax2+bx+c的图象如图所示,对称轴为x=1,给出下列结论:①abc<0 ②b2>4ac ③4a+2b+c<0 ④2a+b=0其中正确的结论有()A.4个B.3个C.2个D.1个例2、如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0②b﹣a>c ③4a+2b+c>0 ④3a>﹣c ⑤a+b>m(am+b)(实数m≠1)。
人教版九年级数学下册反比例函数知识点归纳及练习(含答案)
人教版九年级数学下册反比例函数知识点归纳及练习(含答案)-CAL-FENGHAI.-(YICAI)-Company One1反比例函数26.1知识点1 反比例函数的定义一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式:①x ky =(0k ≠),②1kx y -=(0k ≠),③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
26.2知识点2用待定系数法求反比例函数的解析式 由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
26.3知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
初中数学_人教版数学九年级下册反比例函数教学设计学情分析教材分析课后反思
《反比例函数》教学设计学习目标1、理解并掌握反比例函数的概念。
2、能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。
3、能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。
学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式学习难点:理解反比例函数的概念。
学习准备:1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2、体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?学习过程:一、探索研讨【活动1】问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;_________________(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;_________________(3)已知北京市的总面积为1.68×104平方千米,人均占有的土地面积S(平方千米/人)随全市总人口数n(单位:人)的变化而变化。
_________________上面的函数关系式,都具有_____________的形式,其中_________是常数。
【活动2】下列问题中,变量间的对应关系可用这样的函数式表示吗?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;_________________(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;_________________(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。
_________________概念:如果两个变量x,y 之间的关系可以表示成___________的形式,那么y 是x 的反比例函数,反比例函数的自变量x____为零。
九年级下册数学知识点汇总(人教版)
九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。
数学人教版九年级下册正弦、余弦、正切函数的简单计算.1.2余弦定理课件新人教版必修5
定 理 证 明
定 理 应 用
三角形中的边角关系
a2 b2 c2 2bc cos A b a c 2ac cos B
2 2 2
余弦定理
(1)已知三边,求三个角
c2 a2 b2 2ab cos C
(3)判断三角形形状
(2)已知 两边和 它们的 夹角, 求第 三边和 其它两 个角。
定 理 内 容
2 2 2
c a b 2 ab cos C
2 2 2
回顾正弦定理的证明你还有没有其它的证明 余弦定理的方法? (1)坐标法
证 明 方 法
(2)直角三角形的边角关系
(3)正弦定理(三角变换)
坐标法证明余弦定理
教材中用向量法给出余弦定理的证明,下面我们给出 坐标法证明.
证明:如图所示,以△ABC的顶点A为原点 ,射线AC为x轴的正半轴,建立直角坐标系 ,这时顶点B可作角A终边上的一个点,它到 原点的距离r=c,设点B的坐标为(x,y),由 三角函数的定义可得:x=ccos A,y=csin A ,即点B为(ccos A,csin A),又点C的坐标是
A 56 2 0 2 2 2 2 2 2 a c b 134 . 6 161 . 7 87 . 8 cos B 0.8398 , 2 ac 2 134 . 6 161 . 7
B 32 5 3
C 180 A B 180 56 2 0 32 5 3 90 4 7
1.1 正弦定理和余弦定理
1.1.2 余弦定理
本节课主要学习余弦定理及推导过程、用余弦定理解三角形、判断 三角形形状。以苏格拉底几何原本由来的故事和高铁隧道招标的事例 作为本节的开始引入新课。本节教学以学生探究为主,利用向量法证 明余弦定理定理,引导学生探究坐标法、直角三角形边角关系法、正 弦定理法等多种方法证明余弦定理,使学生能够灵活应用所学知识, 加深对定理的理解。针对定理所解决的三类问题给出3个例题和变式, 通过解决问题引出三角形的解的不同情况,强调正确应用定理的重要 性。 教学过程中通过例1巩固掌握已知两边及其夹角解三角形的问题,通 过例2 巩固掌握已知三边解三角形的问题,通过例3巩固掌握判断三角 形形状的问题,每种类型都有变式进行巩固。用直角三角形的边角关 系证明余弦定理导,既节省时间又能吸引学生注意力。通过余弦定理 的推导和用余弦定理解决问题两个探究指明本节课的方向。由探究二 余弦定理可以解决的问题引出余弦定理的变形及用余弦定理判断三角 形的形状等知识。
人教版九年级下册数学课本知识点总结
人教版九年级下册数学课本知识点总结第二十六章反比例函数一、反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图像与x轴、y轴无交点.二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x≠,函数值0y≠,所以它的图像与x 轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数及其图像的性质1.函数解析式:()2.自变量的取值范围:3.图像:(1)图像的形状:双曲线,越大,图像的弯曲度越小,曲线越平直。
越小,图像的弯曲度越大。
(2)图像的位置和性质:当时,图像的两支分别位于一、三象限;在每个象限内,y随x 的增大而减小;当时,图像的两支分别位于二、四象限;在每个象限内,y随x 的增大而增大。
(3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支。
图像关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上。
.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|。
人教版九年级数学下 第12讲 二次函数的图象与性质 中考知识点梳理
一、知识清单梳理
知识点一:二次函数的概念及解析式
关键点拨与对应举例
1.一次函数的定义
形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.
例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.
2.解析式
(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k);③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.
失分点警示:
抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.
例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.
知识点四:二次函数与一元二次方程以及不等式
5.二次函数与一元二次方程
二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.
(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.
若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.
知识点二:二次函数的图象与性质
3.二次函数的图象和性质
图象
(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.
人教版九年级数学下册第28章 锐角三角函数:余弦函数和正切函数
5. sin70°,cos70°,tan70°的大小关系是 A. tan70°<cos70°<sin70° B. cos70°<tan70°<sin70° C. sin70°<cos70°<tan70° D. cos70°<sin70°<tan70°
∴ cos A AC = 4,tan B AC = 4 .
AB 5
BC 3
随堂即练
如图,在 Rt△ABC 中,∠C = 90°,AC = 8,
tanA= 3 , 求sinA,cosB 的值.
4
B
解:∵ tan A BC 3,
AC 4
∴ BC 3 AC 3 8 6, C
8
A
4
4
∴ AB AC 2BC2 82 62 10,
RJ九(下) 教学课件
第二十八章 锐角三角函数
28.1 锐角三角函数
第2课时 余弦函数和正切函数
学习目标
1. 认识并理解余弦、正切的概念进而得到锐角三角函 数的概念. (重点)
2. 能灵活运用锐角三角函数进行相关运算.(重点、难 点)
新课引入
如图,在 Rt△ABC 中,∠C=90°,当锐角 A 确定 时,∠A的对边与斜边的比就随之确定.
随堂即练
( )D
解析:根据锐角三角函数的概念,知 sin70°< 1,cos70°<1,tan70°>1. 又∵cos70°=sin20°, 正弦值随着角的增大而增大,∴sin70°>cos70°= sin20°.
随堂即练
6. 如图,在 Rt△ABC 中,∠C = 90°,cosA = , 15 17
A
C
cos A AC = 8 = 4,tan A BC = 6 = 3 .
人教版九年级下册数学反比例函数知识点总结及典型题
人教版九年级下册数学知识点总结第二十六章反比例函数一、反比例函数的定义(k为常数,k≠0,x≠0)函数,叫做反比例函数,x是自变量,y是x的函数,x的取值范一般的,形如y=kx围是不等于0的一切实数,且y也不能等于0。
其中k叫做反比例系数。
反比例函数的表达式也可以写成下面是一些常见的形式1.y=kx−1(k≠0)2.xy=k(k≠0)因为在反比例函数的解析式y=k(k≠0)中,只有一个待定系数k,确定了k的值,也就确定了反比例函数x的解析式。
因而只要给出一组x或者y的值或图像上任意一点的坐标,然后代入y=k中即可求出k的值,进而确x定反比例函数的解析式。
练习1.若函数y=(m−1)x m2−2是反比例函数,则m的值是 .的自变量x的取值范围是 .练习2.函数y=3x−2二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内,两个分支无限接近x和y轴,但永远不会与x轴和y轴相交.反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
注意:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,一般根据自变量大小从左至右用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,图像与坐标轴无限接近但不能与坐标轴相交。
练习4.画反比例函数y=的图象.(1)列表(请填空);x﹣4﹣3﹣2﹣11234y(2)描点、连线(请在图中的平面直角坐标系中完成);(3)点(12,)在y=的图象上吗?为什么?练习5.问题呈现:我们知道反比例函数的图象是双曲线,那么函数(k、m、n为常数且k≠0)的图象还是双曲线吗?它与反比例函数的图象有怎样的关系呢?让我们一起开启探索之旅……探索思考:我们可以借鉴以前研究函数的方法,首先探索函数的图象.(1)画出函数图象.①列表:x…﹣6﹣5﹣4﹣3﹣201234…y…﹣1﹣2﹣4421…②描点并连线.(2)观察图象,写出该函数图象的两条不同类型的特征:①,②;(3)理解运用:函数的图象是由函数的图象向平移个单位,其对称中心的坐标为.(4)灵活应用:根据上述画函数图象的经验,想一想函数的图象大致位置,并根据图象指出,当x满足时,y≥3.练习6.将函数y=的图象先向左平移1个单位长度,再沿y轴翻折,所得到的图象对应的函数表达式是.三、反比例函数的性质1.图像的形状:|k|越大,反比例函数的图象离坐标轴的距离越远,图像的弯曲度越小;|k|越小,反比例函数的图象离坐标轴的距离越近,图像的弯曲度越大。
人教版九年级数学下册知识点总结:第二十六章反比例函数
人教版九年级数学下册知识点总结第二十六章、反比例函数知识点一:反比例函数的概念及其图象、性质1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下2种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.。
新人教版九年级下册第二十六章“反比例函数”教材分析简介
新人教版九年级下册第二十六章“反比例函数”教材分析简介预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数预览二、编写时考虑的几个问题1. 强调反比例函数是描述具有反比例关系问题的数学模型反比例函数是义务教育阶段学习的最后一类函数,函数是描述变化规律的数学模型.现实世界和数学中具有反比例关系的问题,我们可以用反比例函数描述.章引言中从路程一定的前提下,平均速度与时间的关系,引出反比例函数的内容.“26.1 反比例函数”通过“思考”中的三个具体问题,让学生发现每个问题中的两个变量,询问这两个变量具有什么关系,得出变量之间的表达式,指出它们的表达式具有相同形式,具有这类相同表达式的函数,我们称为反比例函数.“26. 2 实际问题与反比例函数”是现实世界中四个典型的实例,我们先把它们抽象为数学模型——反比例函数,它刻画了问题中的反比例关系,然后运用反比例函数的性质解决它们.在反比例函数概念的学习中,我们再次经历了概念学习的几个过程:(1)概念的引入——通过三个具体实例,反比例关系和函数的概念,引出反比例函数;(2)概念属性的归纳——对教科书中的三个实例进行分析、比较、综合,归纳三个实例的共同特征的形式;(3)概念的明确与表示——指出形如(k为常数,k≠0)的函数叫做反比例函数,并给出文字语言和数学符号语言的准确表示;(4)概念的辨析——在练习中,以实例为载体分析概念,并恰当使用反例,如“26.1.1 反比例函数”中的练习2和练习3;(5)概念的巩固应用——用概念解决简单问题,形成用概念作判断的具体步骤,如“26.1.1 反比例函数”的例1;(6)概念的“精致”——通过概念的综合应用,如“26.1.2反比例函数的图象和性质”,“26.2实际问题与反比例函数”,进一步认识反比例函数的概念,加深对反比例函数概念的理解.2. 类比正比例函数、一次函数和二次函数的研究方法,研究反比例函数。
九年级下册函数主要知识点
九年级下册函数主要知识点函数,作为数学中的一个重要概念,是许多学生在中学阶段需要掌握的知识点之一。
在九年级下册的数学课程中,函数的学习成为了一个关键的内容。
本文将从函数的定义、基本性质和应用三个方面来介绍九年级下册函数的主要知识点。
一、函数的定义:函数是一种数学映射关系,它将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)。
具体来说,如果对于集合A中的每个元素a都存在集合B中的一个唯一元素b与之对应,那么就可以说这个映射关系是一个函数。
数学上常用符号f(x)来表示函数关系,其中x是自变量,f(x)是对应的因变量。
二、函数的基本性质:1. 定义域和值域:函数的定义域是自变量可能取值的集合,值域是因变量可能取值的集合。
在函数图像中,定义域对应自变量的取值范围,而值域对应因变量的取值范围。
2. 奇偶性:如果函数满足f(-x) = f(x),则称其为偶函数;如果函数满足f(-x) = -f(x),则称其为奇函数。
当函数既不满足奇偶性时,称其为非奇非偶函数。
3. 函数的增减性:如果对于定义域中的任意两个数a和b,当a < b时有f(a) < f(b),则称函数在这个区间上是增函数;当a < b时有f(a) > f(b),则称函数在这个区间上是减函数。
4. 函数的周期性:如果存在一个正数T,使得对于定义域中的任意自变量x,有f(x + T) = f(x),则称函数具有周期性。
三、函数的应用:函数在现实生活中有许多实际应用。
其中,函数的图像可以用于表示各种关系,如线性函数、二次函数、指数函数等。
在物理学中,函数经常用于描述各种规律和变化趋势,如速度-时间函数、位移-时间函数等。
此外,函数还可以用于解决实际问题,如求最大值和最小值问题,利用函数模型进行预测和分析等。
高中数学的深入学习往往离不开对九年级下册函数的理解和掌握。
掌握函数的基本概念和性质,能够解决各种实际问题,有助于培养学生的逻辑思维和问题解决能力。
九年级下人教新课标第二十六章函数及其图象教学资料
初三数学函数及其图象复习一. 本周教学内容:函数及其图象(复习)1. 平面直角坐标系及其有关概念2. 函数及其函数图象的意义3. 一次函数,二次函数,反比例函数的意义,图象及其性质。
二. 重点、难点:平面直角坐标系,及其三类函数的图象及其性质。
本章所涉及的数学思想主要有:数形结合思想,方程思想、分类讨论思想、转化思想。
例1. 已知点P (2a+1,4a -20)在第四象限,化简代数式: ||||2110252112a a a a +--++-。
分析:直角坐标系是刻画点的位置的一种工具,它把几何中的“点”与代数中的“数”联系起来,数与形的结合,从而使我们可以用代数方法来研究几何图形,在平面直角坐标系中要确定点的位置,应该知道两个方面的条件,一是它所在象限(或坐标轴),二是这个点到x 轴、y 轴的距离,此题只知道点P 所在象限,因此可以得到关于a 的不等式组,从而可以得到a 的取值范围,因此就可以化简原式。
解:因为点P (2a+1,4a -20)在第四象限。
∴即2104200125a a a a +>-<⎧⎨⎩>-<⎧⎨⎪⎩⎪ ∴-<<125a ∵||||2110252112a a a a +--++- =+--+-||()||2152112a a a =+--+-||||||215211a a a 又∵-<<125a ∴,-<<+>1210210a a a a -<-<502110,∴原式=+---+--()[()][()]215211a a a=++--+215211a a a =+a 7例2. 如图所示,已知△ABC 的三个顶点的坐标分别为A (2,-1),B (1,3),C (-4,-2),求△ABC 的面积。
分析:在直角坐标系中标出A 、B 、C 各点,过A 、C 向x 轴引垂线与过B 向y 轴引的垂线交于D 、E ,则点D 的坐标为(2,3),点E 的坐标为(-4,3),那么 S S S S ABC ADEC ADB BCE △梯形△△=--解:分别过A 、B 、C 作x 轴、y 轴的垂线,分别交x 轴、y 轴于点D 、E , ∵AD ∥y 轴,CE ∥y 轴,DE ∥x 轴, A (2,-1),B (1,3),C (-4,-2) ∴点D 的坐标为(2,3) 点E 的坐标为(-4,3)∴,AD CE =--==--=|()||()|314325 DE BE =--==--=||||426415, BD =-=||211∴··梯形S AD EC DE ADEC =+12() =+=1245627××()S AD BD ADB △··××===1212412S BE CE BCE △·××===121255252∴△梯形△△S S S S ABC ADEC ADB BCE =-- =--=272252252小结:A B AB x x y y A B x B A B A 、两点间距离为:,当、同在||()()=-+-22轴上,或同在与x 轴平行的一条直线上,则AB=|x B -x A |。
【人教版】精选九年级数学下册:全册中考知识点梳理-第10讲 一次函数
2.一次函数的性质
k,b
符号
K>0,
b>0
K>0,
b<0
K>0,b=0
k<0,
b>0
k<0,
b<0
k<0,
b=0
(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.
(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.
10.常见题型
(1)求一次函数的解析式.
(2)利用一次函数的性质解决方案问题.
例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).
大致
图象
经过象限
一、二、三
一、三、四
一、三
一、二、四
二、三、四
二、四
图象性质
y随x的增大而增大
y随x的增大而减小
3.一次函数与坐标轴交点坐标
(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是 ,与y轴的交点是(0,b);
(2)一次函数y=-3x+12中,当x>4时,y的值为负数.
7.一次函数与方程组
二元一次方程组的解 两个一次函数y=k1x+b和y=k2x+b图象的交点坐标.
8.一次函数与不等式
(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集
(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、u 2 0 0 2、 y 1000
t
x
3、s 3 0 6 8 2 n
三、形成概念
一般地,形如 y k(k为常数k,0)的函数,
x 叫做反比例函数。其中x是k有自什变么量要,求y?是x的函数 反比例函数中自变量x的取值范围是
不为0的一切实数
一般表达式:
y k(k 0) x
§ 26.1.1 反比例函数
一、复习回顾
什么是函数?
一般地,在一个变化过程中,如果有 两个变量x与y ,并且对于x的每个确定 的值,y都有唯一确定的值与其对应,那
么我们就说x是自变量,y是x的函数。
一、复习回顾
什么是一次函数?
一般地,形如y=kx+b(k,b是常数, k≠0)的 函数,叫做一次函数。
ykx( -1 k0)
xyk(k0)
概念辨析:
下列关系式中的y是x的反比例函数吗?
如果是,k是多少?
y4x, y3,y6x1,yx2 1, x
y
1 x2
,xy12,3y2x1,
y 3 2x
四、例题探究
例1.当m =
1 时,关于x的函数
y=(m+1)xm2-2是反比例函数?
(2)当 x=4 时,求 y 的值. 解:(1)设y与x的函数解析式为: y
k x
∵当x=2时,y=6 ∴ 6 k
解得
k=12
2
因此
y 12 x
( 2 )x 把 4代y 入 1,2 得 y1 23 x4
拓展练习
已知 y 与 x2 成反比例,并且当 x=3 时,y=4. (1)写出 y 关于 x 的函数解析式; (2)当 x=1.5 时,求 y 的值; (3)当 y=6 时,求 x 的值.
什么是正比例函数?
一般地,形如y=kx(k是常数,k≠0)的函 数,叫做正比例函数。
什么是二次函数?
一般地,形如y= ax2bxc(a,b,c是常数,
a≠0)的函数,叫做二次函数。
二、情境引入
1、若牛场中学九(9)班到学校食堂的距离为 200米,星期三中午李老师整队就餐同学到食堂 用餐的平均速度为u,则速度u与所用时间t秒有
{ 分析:
m2-2=-1m+源自≠0{m=±1即m≠-1
拓展练习
已知 y(m2)x3m2 中
(1)当 m = 2 时,y是x的正比例函数 (2)当 m = - 2 时,y是x的反比例函数
四、例题探究
例2 已知 y 是 x 的反比例函数,并且当 x=2 时,
y=6.
(1)写出 y 关于 x 的函数解析式;
五、反思小结
通过本节课的学习,我知道了: 1. ……是反比例函数. 2.反比例函数的三种表达形式…… 3.需要注意的是…… 4.如何根据已知条件确定反比例函数的解析式?
六、布置作业
必做题:习题26.1第1、2、4题 选做题:已知函数y=y1+y2,且y1与x成正比例,y2 与x成反比例,且当x=1时,y=0;当x=2时,y=3
怎样的关系呢? u 2 0 0 t
2、某住宅小区要种植一块面积为 1 000 m2的矩 形草坪,草坪的长 y(单位m)随宽 x(单位m) 的变化而变化.
y 1000 x
3、我校(牛场中学)的校园总面积为30682平方 米,人均占有面积S(单位:平方米/人)与我校
总学生数n 的关系。
s 30682 n
(1)求y与x的函数关系式. (2)当x=-2时,求函数y的值.
检查题:导学与演练(所学内容)