《介孔碳材料》PPT课件
碳材料PPT课件
![碳材料PPT课件](https://img.taocdn.com/s3/m/4301a9b8ce2f0066f5332266.png)
C 的存在
碳的起源---“big bang”理论
宇宙巨大的能量块 150亿年前发生大爆炸
宇宙空间充满高能的光
膨胀 温度降低
光转化为物质,各种 粒子开始形成
温度降低 温度升高
粒子凝聚成氢
温度升高
Ne Na Mg O S Si P…
C 的演变
碳在宇宙进化中起着重要的作用,是宇宙中前期生物分子进 化的关键元素。
宇宙中:原子碳、分子碳、固态碳和碳化物 太阳系:H, He,O, C, Ne…… 地球中:第14位 (90% 的碳是以CaCO3的形式存在,为化石 燃料的1万倍) 碳是地球上一切生物有机体的骨架元素,没有碳就没有生命. 碳元素占人体 总重量的18 %左右 人类进化以来,很早就开始利用各种炭物质和炭材料。各种 炭材料在航天、航空等工业、医疗、能源和日用品中得以应用。 当今世界以碳为主要原子构成的有机化学为橡胶、塑料、合 成纤维三大 材料奠定了基础。
Richard E. Smalley 1/3 of the prize USA Rice University Houston, TX, USA b. 1943 d. 2005
The Nobel Prize in Chemistry 2000 “for the discovery and development of conductive polymers”
1/3 of the prize USA Rice University Houston, TX, USA b.1933
Sir Harold W. Kroto 1/3 of the prize United Kingdom University of Sussex Brighton, United Kingdom b. 1939
[课件]介孔材料简介PPT
![[课件]介孔材料简介PPT](https://img.taocdn.com/s3/m/12f52c6ff7ec4afe04a1df50.png)
介孔材料的特点
具有规则的孔道结构 孔径分布窄,且在2~50 nm之间可以调节 经过优化合成条件或后处理,可具有很好的 热稳定性和一定的水热稳定性 颗粒具有规则外形,且可在微米尺度内保持 高度的孔道有序性
介孔材料的合成方法
溶胶-凝胶法 水热合成法 微波辐射合成法 相转变法 沉淀法
在医疗方面,介孔材料吸附药剂分子后在药物缓释与靶向释放方面
也有重要应用。
介孔材料的应用
选择性催化
介孔壁对反应物分子有强的相互作用,不同基质和介孔孔径以及介孔阵列对 不同的反应物特别是分子结构差异较大的物质有不同的相互作用和选择性催 化作用。利用不同化学组成的物质制备介孔材料将在选择性定位催化,特别 是高效转化方面具有广泛用途。
微波辐射合成法
晶化阶段用微波辐射合成了介孔材料MCM-41 全微波辐射法,即晶化和脱模均在微波作用下合成出 MCM-41 微波辐射加热不同于传统的加热方式,它是在电磁场 作用下,通过偶极子极化使体系中的极性分子急剧扭 转、摩擦产生热量来实现,具有内外加热、升温速度 快、高效节能、环保卫生等优点。利用全微波辐射法 合成MCM-41介孔分子筛,整个过程用时不到5 h。和 水热法相比,合成时间大大缩短,同时利用微波技术, 高效节能,操作便利,环境污染少。
介孔材料的表征手段
介孔材料表征手段自成一整套体系:
固 态 结 构
小角X射线衍射
x射线晶体衍射
大角X射线衍射
小角X射线衍射:确定是否有wormlike孔结构
大角X射线衍射:确定试样是晶态物质还是不定型物质
介孔材料的表征手段
红外光谱:确定物质的各种基团,确定是否有 骨架结构 示差扫描量热法(DSC)和热重(TG)曲线来研究 在加热过程中所发生化学反应,晶型转变及煅 烧温度等 SEM、TEM是来研究物质的形貌和粒径大小 吸附法来研究介孔材料的比表面和孔径分布
多孔炭材料ppt课件
![多孔炭材料ppt课件](https://img.taocdn.com/s3/m/241626683169a4517723a389.png)
实验安排 第一阶段,原料分析 第二阶段,预氧化,温度400–450℃ 、时间1–4h、
升温速率0.5–10℃/min 第三阶段,炭化,活化
水平 1 2 3
炭化温度(A) 炭化时间(B) 活化温度(C) 活化时间(D)
℃
min
℃
min
350
30
800
80
400
45
850
100
450
m ple
图 煤沥青与不同升温速率下前驱体中挥发分及TI含量
(a)
(b)
(c)
(d)
(e)
图 煤沥青与各前驱体SEM图 (a) CP (b) PC-r0.5 (c) PC-r2 (d) PC-r5 (e) PC-r10
1400
2
S p e c i f i c s u r f a c e a r e/ag / m
考察因素 原料分析(元素组成、灰分、挥发分、软化点) 预氧化条件(预氧化温度、时间、氧化介质及流量、
升温速率) 前驱体粒度、碱炭浸渍比、分散剂的选择等 炭化条件(炭化温度、时间、升温速率) 活化条件(活化温度、时间、升温速率) 产品性能(灰分、比表面积、孔径分布)
实验设计
吸附等温线是在恒定温度下平衡吸附量与被吸附气体压力 的关系曲线 。
BET吸附理论
吸附等温线类型
不同恒温时间下前驱体制备的活性炭比表面积
2
S p e c i f i c s u r f a c e a r e/ ag / m
1400 1200 1000 800 600 400 200
0 A C -h1
国内外活性炭的生产现状
二战前后,美国的AC产量一直居世界第一位。80年代后, 第三世界国家的AC工业开始发展,产量逐渐增加,到目 前,世界五大洲40多个国家生产AC,年产量达70多万吨。
多孔与介孔材料(课堂PPT)
![多孔与介孔材料(课堂PPT)](https://img.taocdn.com/s3/m/cf310a85b7360b4c2f3f645a.png)
Kelvin方程 BJH法确定中孔孔径分布 Kelvin方程对4型和5型等温线的解释 吸附滞后现象(自学)
3
吸附基础
❖ 吸附概念
当气体或者液体与某些固体接触时,气体或者液体分子会积聚在固体表面 上,这种现象称为吸附。
吸附是指当流体与多孔固体接触时, 流体中某一组分或多个组分在固体表 面处产生积蓄的现象。
B)极化力(Debye interaction):具有诱导偶极作用(induced dipole)分子与具有永久 偶极矩(permanent dipole moment)接近时,分子之间的正负电荷的相互作用力;
C)氢键(hydrogen bond, Keesom force):氢原子与其他分子中有多余未成键电子的原
6
吸附基础
根据吸附剂表面与吸附质分子间作用力的性质不同,吸附可分为 物理吸附和化学吸附两大类。
❖ 物理吸附
定义:被吸附分子与固体表面分子间的作用力为分子间作用力,即范德华力,又称 范德华吸附.
特征: ❖ 可逆过程,快速 ❖ 吸附作用比较弱(静电作用) ❖ 选择性差(不发生化学反应,稍加热就可能脱附)
间的相互作用。低压下,仅吸附在表面少数活性点上,高压下,气
体分子优先以团族结构吸附在已被吸附分子周围,局部形成多分子
层吸附,没有2型吸附曲线的“平台”
实际例:水分子在疏水活性炭上的吸附。
13
吸附基础
4型吸附:中孔材料的典型吸附等温曲线,具有吸附回线。
微观图像:1、低压下,与2型吸附曲线相同。2、一定压力以 上时,吸附质在中孔内发生了毛细凝聚,吸附量急速增加。3、压 力继续升高,所有中孔均完成毛细凝聚,吸附主要在外表面发生, 吸附曲线出现平台。4、毛细凝聚现象:产生吸附滞后回线,影响 因素:孔径分布、孔结构形状、吸附质特性、实验温度等。
介孔碳材料
![介孔碳材料](https://img.taocdn.com/s3/m/4102d627ccbff121dd3683a2.png)
介孔碳材料:合成及修饰关键词:嵌段共聚物,介孔碳材料,自组装,模板合成许多应用领域对多孔材料的兴趣是由于他们的高比表面积和理化性质。
传统的合成只能随机产生多孔材料,对超过孔径分布几乎是无法控制的,更不用说细观结构了。
最新的突破是其它多孔材料的制备工艺,这将导致具有极高比表面积和有序介孔结构的介孔材料制备方法的发展。
随着催化剂的发展,分离介质和先进的电子材料被用在许多科学学科。
目前合成方法可归类为硬模板法和软模板法。
这两种方法都是用来审查碳材料表面功能化取得的进展。
1.简介多孔碳材料是无处不在和不可或缺的,应用于许多的现在科学领域。
多孔碳材料被广泛用作制备电池电极、燃料电池、超级电容。
作为分离过程和储气的吸附剂,应用于许多重要的催化过程。
介孔碳材料的用途在不同的应用中有着直接的联系,不仅仅关系到其优良的物理和化学性能,如导电、热导率、化学稳定性和低密度,而且关系到其广泛的可用性。
近年来碳技术已经取得了很大进展,同时也通过开发和引进新的合成技术改变现有的制备方法。
多孔碳材料根据其孔径可分为微孔(孔径<2nm);中孔(2nm<孔径<50nm);大孔(孔径>50nm)。
传统的多孔碳材料,例如活性炭和碳分子筛,被热解和物理或是被有机体化学活化合成的。
有机体包括在高温下的煤、风、果壳、聚合物[1-3]。
这些碳材料通常在中孔和微孔范围内有广泛的孔径分布。
活性碳和碳分子筛已大批量生产并被广泛用于吸附、分离和催化方面。
微孔碳材料综述的主要进展包括(a)合成碳材料(表面积高达3000m2g-1)[4,5]使用的氢氧化钾,(b)带有卤素气体的碳选择性反应可控制碳材料产生的微孔大小[6]。
后一种方法使用碳化物为碳源,并且卤素气体选择性的除去金属离子。
这种化学蚀刻法产生一个具有很窄的粒度分布的微孔。
这些碳材料产生的微孔能提供高比表面积、大孔容、吸附气体和液体。
尽管微孔材料被广泛应用在吸附分离和催化上,生产使用的方法遭到限制。
介孔碳 处理
![介孔碳 处理](https://img.taocdn.com/s3/m/08fcc6772f3f5727a5e9856a561252d381eb2057.png)
介孔碳处理介孔碳是一种具有高度有序孔道结构的碳材料,具有大孔、中孔和小孔三种孔径结构。
由于介孔碳具有高比表面积、大的孔容量和良好的化学稳定性,它可以应用于吸附、分离、催化和电化学等多个领域。
首先,介孔碳在吸附领域有着广泛的应用。
由于介孔碳拥有大孔和中孔结构,因此具有较大的孔容量和高比表面积,使其具有较高的吸附性能。
介孔碳被广泛应用于环境领域,如水处理和空气净化等。
介孔碳吸附材料可以有效去除水中的有机物、重金属离子和废水中的有毒物质。
在空气净化方面,介孔碳可以吸附空气中的有机污染物和恶臭物质,提高空气质量。
其次,介孔碳在分离领域也有着重要的应用。
由于介孔碳具有不同孔径的孔道结构,可以利用其孔径选择性分离不同分子的能力。
例如,介孔碳膜可以实现分子筛分离,具有分离气体混合物和分离原油中的油水混合物等应用。
此外,介孔碳材料还可以用于制备高效的离子交换体或膜,用于离子的选择性吸附和分离。
此外,介孔碳具有优异的催化性能,因此在催化领域也有着广泛的应用。
介孔碳可以作为载体或催化剂的支撑材料,在化学反应中起到增强催化活性和稳定性的作用。
例如,将金属纳米颗粒负载在介孔碳上,可以制备高效的催化剂用于气相和液相反应。
此外,介孔碳还可以制备成光催化剂,用于可见光催化水分解和有机物降解等。
最后,在电化学领域,介孔碳也具有重要的应用潜力。
由于介孔碳具有大孔和中孔结构,具有较高的导电性和良好的电化学稳定性,可以用作电极材料。
例如,将介孔碳用作锂离子电池的负极材料,可以提高电池的放电性能和循环寿命;同时,介孔碳还可以用于制备超级电容器电极材料,具有高能量密度和高功率密度的特点。
综上所述,介孔碳在吸附、分离、催化和电化学等多个领域具有重要的应用潜力。
介孔碳的有序孔道结构和优异性能为其在各个应用领域的研究和开发提供了广阔的空间。
随着科学技术的不断发展,相信介孔碳材料将在更多领域展现出重要的应用价值。
介孔材料PPT课件
![介孔材料PPT课件](https://img.taocdn.com/s3/m/3d4b2ead7cd184254b3535fa.png)
孔径大于50nm
气凝胶、多孔玻璃、 活性炭
3
定义:以表面活性剂分子聚集体为模板,利用溶胶-凝胶(sol-gel)、 乳化(emulsion)、微乳化(microemulsion)等化学过程,通过有 机物和无机物之间的界面作用组装生成的一类孔径在2.O-50nm之 间、孔径分布窄且具有规则孔道结构的无机多孔固体材料。
5
介孔材料的制备
方法:水热合成法,室温法、微波合成法、湿胶焙 烧法、相转变法及在非水体系中的合成法等。 合成原材:无机物种(形成介孔材料骨架元素的物质 源)、表面活性剂(形成介孔材料的结构导向剂)、溶剂 (通常为水)
合成路线:
6
有序介孔硅材料的合成过程示意图
7
三种主要组分是: (1)用来构造孔壁结构的无机物种(前 驱体)。选择无机物种的主要依据是溶胶-凝胶化学,即 原料的水解和缩聚速度必须适当,且经过水热等处理后 缩聚程度提高。根据介孔材料骨架元素的组成,无机物 种可以是直接加入的无机盐或预先形成一定聚合度的无 机低聚体,也可以是水解后产生无机低聚体的有机金属 氧化物;(2)自组装(介观结构形成的过程)时起决定导向 作用的模板剂(表面活性剂)。介孔材料合成体系中所采 用的表面活性剂有阴离子、阳离子、非离子、两性表面 活性剂等类型;(3)作为反应介质的溶剂相。
EISA 的合成技术采用的是典型的sol-gel 化学。首先,在有机 溶剂中,硅源(TEOS)在微量酸的催化下发生预水解,生成硅 的低聚体,并与表面活性剂发生相互作用。在溶剂的挥发过程 中,硅物种进一步发生交联、聚合,表面活性剂浓度增大。在 这个过程中,表面活性剂经过了分子、胶束、液晶的不同形态, 最后,它与无机硅形成的二元液晶相被固定下来。
• 相对于传统的由上而下(top-down)的微制造技术,软 模板法在制造纳米材料方面采取了自下而上 (bottom-up)的策略。
碳材料科学ppt课件
![碳材料科学ppt课件](https://img.taocdn.com/s3/m/6320c959ce2f0066f53322a6.png)
15
炭纤维 纳米管/树脂复合材料
炭微球 C/C复合材料
16
金属填充富勒烯
17
金刚石
金刚石薄膜
18
1990年和1991年金刚石和C60分获Science明星分 子;
1996年 美国Rice大学 R F Curl R. E. Smalley
英国Sussex 大学 H. W. Kroto
—金属颗粒和金属线
2、碳纳米洋葱(实心和空心)
3、纳米碳管、石墨烯及其树脂基复 合材料
新型能源炭材料
4、介孔碳材料(有序,气凝胶)
1、Li+电池负极材料炭材料的设计
—炭基材料(天然石墨、树脂炭、碳管、石墨烯等)
2、大功率充放动力型锂电池电极材料 —纳米碳/金属复合材料
3、超级电容器电极材料
3
炭 微 球
6
Ordered Mesoporous Carbons from the Carbonization of as-synthesized Silica/Sucrose/Triblock copolymer Nanocomposites
碳的六方有序孔道
7
锂离子二次电池电极材料
电流
正极
隔膜
电子 负极
要求: 1、有事请假; 2、课上认真听讲; 3、课上认真作笔记,课下找相关参考书复习; 3、不明白的地方一定设法弄明白。
报告题目:We and Carbon 11
第一部分 绪言
一、炭材料的多样性
1、碳的多样性
碳元素的产生; 太阳系产生热核反应中“碳、氮循环”; 地球上碳产生生物学、硅产生地学,碳是
20nm
HREM images of carbon encapsulated iron nanorods from YD heated at 480 ℃ in the presence of ferrocene content of 40.0 wt. %
Tio2 介孔碳
![Tio2 介孔碳](https://img.taocdn.com/s3/m/ba33e2788e9951e79b89274a.png)
NEW CARBON MATERIALSVolume 28, Issue 1, Feb 2013Online English edition of the Chinese language journalReceived date: 20 September 2012; Revised date: 05 January 2013 *Corresponding author. E-mail: qiaowm@Copyright©2013, Institute of Coal Chemistry, Chinese Academy of Sciences. Published by Elsevier Limited. All rights reserved. DOI: 10.1016/S1872-5805(13)60064-5Preparation of TiO 2/mesoporous carbon composites and their photocatalytic performance for methyl orange degradationYIN Bo 1, WANG Ji-tong 1, XU Wei 1, LONG Dong-hui 1, QIAO Wen-ming 1,2,*,LING Li-cheng 11State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;2Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, East China University ofScience and Technology, Shanghai 200237, ChinaAbstract: Mesoporous carbon (MC) prepared using colloidal silica templates was used as a support to synthesize TiO 2/MC composites using a sol-gel method. The TiO 2 content and the crystalline structure of TiO 2/MC photocatalysts can be tuned by the precursor composition and calcination temperature, respectively. MC and TiO 2/MC composites were characterized by nitrogen adsorption, XRD, TG, SEM, TEM and electron energy dispersive spectroscopy. Results showed that the anatase TiO 2 nanoparticles were highly dispersed on the surface of the carbon framework. As-prepared composites exhibited high photocatalytic activities for methyl orange (MO) degradation under UV irradiation, and a synergistic effect of adsorption and photocatalytic degradation was observed. The MO removal rate reached 89% after UV irradiation for 75 min. The kinetics of MO degradation can be well fitted with a first-order reaction model and the largest rate constant observed was 0.015 min -1.Key Words: Mesopous carbon; TiO 2; composites; photocatalytic degradation; kinetics1 IntroductionDuring the recent years, photocatalysis has attracted a continuous interest owing to its potential applications in fields such as water and air purification [1,2], and also for the preparation of organic compounds that are difficult to obtain by alternative procedures [3,4]. Upon illumination of a semiconductor with photons having energy higher than or equal to the band gap energy of the semiconductor, electron–hole pairs are generated and migrate to the external surface of the bulk particle. Like many catalytic processes, the overall photocatalysis consists of a series of independent steps: (a) adsorption of reactants from the fluid bulk phase onto the solid surface, (b) reaction in the adsorbed phase, and (c) desorption of reaction products from the surface into the fluid bulk phase. Material modification to increase substrate adsorption in the photocatalytic sites can lead to a photocatalyst with an enhanced efficiency.The most widely used semiconductor is TiO 2, which offers a non-expensive, non-toxic, biocompatible, and high reactivity for removal of inorganic and organic pollutants in wastewater, particularly for organic compounds which can be completely degraded under photocatalytic oxidation [5-10]. However, TiO 2 powders have some disadvantages, such as difficulty in separation of catalyst from the treated solution,low ratio of light utilization and so on, which hinder their practical applications [11]. A new generation of photocatalysts in near future is expected to be easy for separation and to have an enhanced adsorption for polluting molecules. Therefore, composite photocatalysts were designed by immobilization of TiO 2 on certain support substrates with large surface areas to enrich dilute pollutants, which have an enhanced photocatalytic efficiency and can be separated easily from the aqueous solution [12-14].Mesoporous carbons (MCs) were widely used as catalyst supports in liquid adsorption and energy storage because of their high surface areas and large pore volumes, inert nature in certain rigorous circumstances, and easy regeneration properties [15-18]. When they are used as catalyst supports associated with photo- or electro-catalysis, the good electron conducting character of carbon supports may have some positive effect to improve catalytic activities. However, there are only limited publications concerning this effect.In this study, mesoporous carbon (MC) with a high surface area was fabricated through using nanoscaled silica in silica sol as the template [19-21], and then the obtained MC was used as a support to prepare TiO 2/MC nanocomposites through a sol-gel method. The effect of the MC matrix on the TiO 2 phase transformation, crystalline growth, morphology and surface area of the composites were investigated, and theiractivities towards the degradation of a model organic (methyl orange, MO) in aqueous solutions were also evaluated.2Experimental2.1 Preparation of mesoporous carbonMesoporous carbon (MC) was prepared through a template method[22]. 13 g Resorcinol (R) and 19 g formaldehyde (F, 37 mass%) were directly dissolved in deionized water with a molar ratio of 1:2. The silica sol with 7 nm silica (30 mass%, Aldrich) was added with a mass ratio of silica to RF polymer of 1:1. The mixture was sealed in 100 mL bottle, and then aged at 85 o C for 5 d in a water-bath to obtain hydrogel. After aged, the hydrogel was dried in air at 80 o C for24 h, and then carbonized under N2 flow at 800 o C for 3 h witha heating rate of 5 o C/min. The resulting mesoporous carbon was obtained through etching of silica in the carbonized composites with NaOH for 24 h.2.2 Preparation of TiO2 and TiO2/MC nanocompositesPure TiO2 catalyst was prepared through sol-gel method with using tetrabutyl titanate as a titaniaum precursor[23]. 4.25 mL tetrabutyl titanate and 6.4 ml absolute ethyl alcohol were mixed to form solution A, which was added drop-wise to the solution B containing 6.4 mL absolute ethyl alcohol, 1.2 mL alacial acetic acid and 9.6 mL deionized water under stirring. The resulting transparent yellowish TiO2-sol was stirred for 6 h, and aged for 24 h until the formation of wet gel. Then, the wet gel was dried in vacuum at 80 o C for 24 h, and finally calcined under N2 atmosphere at 450 o C for 3 h to obtain nanoscaled TiO2 powders. The TiO2/MC nanocomposites were prepared by adding a required amount of mesoporous carbon to the TiO2-sol at a certain viscosity during stirring, followed by calcination. The obtained sample was denoted as nTiO2/MC-T, in which n is mass fraction of TiO2 to MC, and T is calcination temperature[24, 25].2.3 Structural characterizationPorous properties of the samples were characterized via the nitrogen adsorption at 77 K (Quadrasorb SI-MP, Quanta, USA). Before analysis, the samples were dried at 200 °C, and evacuated overnight under vacuum. The surface areas of the samples were calculated using the Brunauer-Emmett-Teller (BET) method, and the total pore volumes were determined by the amount of nitrogen adsorbed at P/P0=0.985. The average pore sizes were obtained from desorption data through Barrett-Joyner-Halenda (BJH) method. Elementary analysis of 50%TiO2/MC-450 composite was carried out by Energy disperse spectroscopy (EDS, Falion60s, EDAX, USA). Thermogravimetric analyses (TGA) of the samples were performed by a Thermogravimetric analyzer (SDT-Q600, TA, USA) with a heating rate of 10 °C/min under air with a flow rate of 100 mL/min. The crystal structures of the samples were characterized through X-ray diffraction (XRD, D/max 2 550V, Rigaku, Japan) with Cu Kα radiation (α=1.54 060 Å) from 10° to 80° with a scanning speed of 0.02 °/s. X-ray tube voltage and current were set at 40 kV and 20 mA, respectively. The morphologies of the samples were observed under Scanning electron microscopy (SEM, S-4800, Hitachi, Japan) and Transmission electron microscopy (TEM, JEM2100, JEOL, Japan).2.4 Photocatalytic activity measurementsMethyl orange (MO) was used as a model compound to investigate the photocatalytic activity of samples with an initial concentration of 100 mg/L in aqueous solution. The reactions were carried out in a quartz glass vessel and the reactor was irradiated by UV light (220-400 nm) from xenon lamp (PLS-SXE300UV, Cermax, USA) located directly above the vessel at a distance of 5 cm from the liquid surface. Before the irradiation, adsorptive property of samples was investigated in a complete dark. The concentrations of the aqueous MO solution during degradation and adsorption treatment were determined with a UV-vis spectrometer (T6, Persee, China) by measuring the absorbance at 465 nm.3Results and discussion3.1 Porous properties of MC and TiO2/MC samplesFig. 1 showed N2 adsorption isotherms and pore size distributions of MC and TiO2/MCs. All samples exhibited a typical IV type isotherm with a H1 hysteresis loop as shown in Fig. 1a, indicating the samples are mainly mesoporous [26].Fig. 1 (a) N2 adsorption/desorption isotherms and (b)pore size distributions of MC and TiO2/MC composites.Table 1 Porous parameters for MC, TiO2 powder and TiO2/MCS BET v t D pSamples /m2·g-1 /cm3·g-1 /nmMC 811 1.68.1 10%TiO2/MC-450 667 1.2 7.330%TiO2/MC-450 531 1.0 7.850%TiO2/MC-450 442 0.8 7.670%TiO2/MC-450 266 0.5 8.0 TiO2 363 0.3 3.1 Note:S BET: BET surface area; v t: total pore volume;D p: average pore diameter.The presence of TiO2 nanoparticles almost does not affect the type of isotherms and the connectivity of MC network should remain unchanged. The similar results could be reached from the pore size distributions as shown in Fig. 1b. The porous parameters of these samples were summarized in Table 1. With the increase of TiO2 content from 0.1 to 0.7 in the composite, the surface areas and total pore volumes of composite catalysts decrease from 667 m2/g and 1.23 cm3/g to 266 m2/g and 0.53 cm3/g, respectively.3.2 Thermogravimetric analyses of MC and TiO2/MC samplesFig. 2 showed the weight loss of MC, TiO2-450 and TiO2/MC nanocomposites up to 900 o C under air. The TGA curve of 50%TiO2/MC-450 exhibits a remarkable weigh loss from 400 to 580 °C, which corresponded to the oxidation of MC support. The combustion point of MC in the composite is found to be 520 °C, which is determined at the temperature with the highest rate of weight loss. Conversely, the pure MC does not combust until about 600 °C. This shift might be ascribed to the presence of metal oxides grafted on the surfaceof MC, which may provide oxygen required by the reaction and/or restrained the heat transfer creating partial hot spots, facilitating the combustion of carbon. The curves shown in Fig. 2 also suggest that the TiO2/MC ratios estimated before the synthesis of the composite catalysts are in close agreement with the results obtained from TGA analyses.3.3 X-ray diffraction of the samplesFig. 3 showed XRD patterns of MC support, pure TiO2 powder and 50%TiO2/MC composites heat-treated at different temperatures. Two broad peaks at 24° (2θ) and 43° (2θ) are characteristic of graphitic crystalline of MC. The pure TiO2 calcined at 450 °C exhibits a mixed crystal structure of anatase and rutile. It is well known that the calcination improves the crystallinity of pure TiO2 with increasing temperature. As a result, the amorphous TiO2 changes to the anatase phase and further to rutile phase. However, in this study, the TiO2 deposited on MC calcined still retained the structure of anatase at the temperatures even up to 750 o C without rutile peak. It is therefore suggested that TiO2/MC nanocomposites have a good thermal stability, which could be ascribed to the high surface area of MC where TiO2 nanoparticles were well dispersed. The interfacial interaction between TiO2 and MC could restrain the transformation of TiO2 from anatase to rutile phase.In addition, the peaks at 25.4° (2θ) become gradually sharp, with increasing calcination temperature from 350 to 750°C, implying that TiO2 nanoparticles grow large and crystals trend to perfect anatase. Generally, the full width at half maximum of XRD peak is related to the particle size of crystal materials. The larger the width, the smaller the crystalline size is. The mean sizes of a single crystallite can be estimated from the full-width at half-maxima of XRD peaks by using Scherrer’s formula[27]. The average sizes of pure TiO2 powder and the nanocomposites calcinated at different temperatures are listed in Table 2. It is evident that the crystal size of pure TiO2 is larger than that in the nanocomposites calcined at the same temperature. The crystal size of TiO2 in the nanocomposites increases with increasing calcination temperatures, suggesting that high temperature leads to TiO2 crystal growth without transformation of crystal phase. The result indicates that as-deposited anatase TiO2 nanoparticles are stable.Fig. 2 TGA curves of samplesFig. 3 X-ray diffraction patterns of (a) MC, (b) pure TiO2 calcined at 450 ℃, (c) 50%TiO2/MC-350, (d) 50%TiO2/MC-450,(e)50%TiO2/MC-550, (f) 50%TiO2/MC-650 and(g) 50%TiO2/MC-750.Table 2 Average sizes of TiO 2 particles and TiO 2/MC nanocomposites3.4 Morphology of MC, TiO 2, and TiO 2/MC samples Figs.4a, 4b and 4c illustrated SEM images of MC, 50%TiO 2/MC-450 and pure TiO 2 powder respectively. It is remarkable that MC is a highly porous material, and pure TiO 2 is an aggregate of irregular nanoparticles with size of ca. 15 nm. After coated on surface of MC, the TiO 2 particles are found to be well-dispersed. Additionally, it appears that the MC could act as a barrier that inhibits the growth of the TiO 2 particles to a certain extent. The composition of the nanocomposite is analyzed by EDS as shown in Fig. 4d, which reveals the presence of Ti and O on the surface of MC.Fig. 5 showed that SEM images of MC, 50%TiO 2/MC-450 and pure TiO 2 powder. Being similar to the results from SEM observation, TEM observation providessome visible information about the TiO 2 nanoparticles deposited in the pores of MC. As shown in Fig. 5a, MC exhibits randomly distributed and interconnected spherical pores, which are uniform with a size of ca. 8 nm, being consistent with the diameter of SiO 2 particles. This indicates that mesopores of MC are exclusively generated by the closely packed SiO 2 particles. Pure TiO 2 aggregates (Fig. 5b) are made up of nanoparticles with the size of ca. 15 nm. As shown in Figs. 5c and 5d, 50%TiO 2/MC-450 nanocomposite shows that TiO 2 nanoparticles are embedded within the pores of MC, and a lattice spacing of 0.333 nm corresponding to (110) plane of anatase can be observed. The distribution of the nanoparticles was relatively homogenous, and the interconnected structure of the mesopores is still preserved. 3.5 Adsorption and photocatalytic activity of MC, TiO 2 and TiO 2/MC samplesThe activities of the TiO 2/MC nanocomposites were evaluated by the photodegradation of MO aqueous solutionunder UV irradiation. As a comparison, pure TiO 2 was prepared and its activity was also measured under the sameconditions. Fig. 6 showed the photocatalytic degradation rates of MO by the TiO 2/MC nanocomposites and pure TiO 2 at 465 nm. Compared with the removal rates of pure MC adsorption and TiO 2 photocatalytic degradation, the removal rates of MO over the TiO 2/MC nanocomposites are much high, owing to the synergetic effect of adsorption and photocatalyticFig. 4 SEM images of (a) MC, (b) 50%TiO 2/MC-450, (c) TiO 2 and the EDS curve (d) of 50%TiO 2/MC-450.Fig. 5 TEM images of (a) MC, (b) TiO 2, (c, d) 50%TiO 2/MC-450.Samples 50%TiO 2/MC-35050%TiO 2/MC-45050%TiO 2/MC-55050%TiO 2/MC-65050%TiO 2/MC-750 TiO 2-450D TiO2/nm 11.8 12.413.314.915.4 13.0Fig. 6 Degradation rates of MO by MC and the nanocomposites with irradiation started at 0 min and material to solution ratio of pure TiO2at 1 g/L, 10%TiO2/MC-450 at 0.56 g/L, 30%TiO2/MC-450 at 0.6 g/L, 50%TiO2/MC-450 at 1 g/L, and 70%TiO2/MC-450 at 1.66 g/L, corresponding to a constant weight of MC in solutions.degradation. It can be found that the activity of MO degradation is in the order of 50%TiO2/MC-450 > 70%TiO2/MC-450 > 30%TiO2/MC-450 > 10%TiO2/MC-450 > TiO2. Such results indicate that MO conversion increases with increasing TiO2 content of the nanocomposites except for 70%TiO2/MC-450, and the conversion of MO by 50%TiO2/MC-450 could reach 89% after UV irradiation for 75 min. The activity reduction of 70%TiO2/MC-450 compared with that of 50%TiO2/MC-450 might be ascribed to the decrease of surface area. 10%TiO2/MC-450 showed a low photocatalytic activity, and this might be caused by the limited TiO2 loaded on the surface of MC. In this case, the photocatalytic reaction could hardly be driven by UV light and the removal of MO is mainly caused by adsorption.Besides TiO2 contents, the photocatalytic activity of the TiO2/MC nanocomposites calcinated at different temperatures was also evaluated. Fig. 7 illustrated degradation rates of MO by the nanocomposites with different calcination temperatures from 350 to 750 o C. It can be found that the activity of MO degradation is in the order of 50%TiO2/MC-450 > 50%TiO2/MC-550 > 50%TiO2/MC-750 > 50%TiO2/MC-650 > 50%TiO2/MC-350. It is suggests that the photocatalytic activity be related to both pore structure and crystal structure of the nanocomposites. Generally, the smaller the particle size, the higher the activity TiO2 is. In this study, the sample calcinated at 450 o C exhibits the highest activity, implying that the calcination temperature of 450 °C is crucial. But the activity of 50%TiO2/MC-750 is higher than that of 50%TiO2/MC-650, which has a smaller particle size, suggesting that the crystal structure might be more important than crystal particle size.The activity of the photocatalyst is mainly dependent on the surface area, crystalline size, crystallinity and the support structure. Firstly, the three-dimensionally interconnected pore structures facilitate the diffusion of reactants and products from the active sites during the photocatalytic reaction, and a higher surface area of composites provides a higher adsorption capacity of reactive species[28], which increases the local concentration of reactive species near active sites, and as a result, improves the reaction rates. The degradation of polluting molecules on the surface of photocatalyst is achieved with the participation of photogenerated electrons and holes, which are more likely to recombine at defect sites on the surface of TiO2. Therefore, the photocatalytic efficiency can be improved by suppressing the recombination rate of photogenerated electrons and holes[29]. When TiO2 is coated on MC, the formation of TiO2/MC hetero-junctions and excellent electron conductivity of the carbon support facilitates the transfer of photogenerated electrons from TiO2 to carbon support, and reduces the recombination rate of electrons and holes [30]. Moreover, the improved crystallinity of TiO2 with less defect sites in MC could reduce the probability of the recombination of electrons and holes. All these factors lead to an improved activity of the TiO2/MC nanocomposites as catalysts in the degradation of MO aqueous solution.3.6 Photocatalytic kinetics of TiO2/MC samplesIt is well known that decomposition of MO in water by UV/TiO2 can be adequately described by a first-order kinetic model. Therefore, the apparent rate constant was chosen as the basic kinetic parameter for an activity comparison of the different photocatalysts [31].The apparent first-order kinetic equation ln(C0/C) =kt was used to fit experimental data, where k is apparent rate constant, C is the MO concentration in solution phase, and C0 is the initial concentration at t=30 min as catalysts reached adsorption equilibrium after 30 min [32]. Fig. 8 showed kinetic curves of the nanocomposites with different calcination temperatures for the degradation of MO under UV irradiation.The linear transform in ln(C0/C) as a function of irradiation time confirms the apparent first-order reaction kinetic characteristic. The slope of ln C0/C versus time plot gives the value for the rate constant k as listed in Table 3. SuchFig. 7 Degradation rates of MO by the nanocomposites with different calcination temperatures with a catalyst to solution ratio of 1 g/Lunder dark and UV irradiation.Fig. 8 Kinetic curves of the nanocomposites with different calcinationtemperatures for degradation of MO under UV irradiation.Table 3 Reaction kinetic constant of TiO 2/MC samplesSampleApparent kinetic constant /min -10.5TiO 2/MC-350 0.004 0.5TiO 2/MC-450 0.0120.5TiO 2/MC-550 0.015 0.5TiO 2/MC-650 0.005 0.5TiO 2/MC-750 0.009results show that the sample calcined at 550 °C exhibits thefastest reaction rate.4 ConclusionsMesoporous carbon with a high surface area and a large pore volume was used as a support for TiO 2 nanoparticles to prepare TiO 2/MC photocatalysts through a sol-gel method. After TiO 2 loading, both surface area and pore volume were decreased, and the thermal stability of TiO 2 crystallites increased. The experimental results showed that TiO 2/MC nanocomposites exhibit higher activities than pure TiO 2 for the removal of methyl orange. The optimal weight ratio of TiO 2 to MC in the nanocomposites and calcination temperature required was determined to be 50% and 450 °C, respectively. The dispersion of TiO 2 in the nanocomposites is good, and a synergistic effect of adsorption and degradation for the catalytic activity is emphasized. The MO removal rate of TiO 2/MC reached 89% after a UV irradiation for 75 min. The kinetics of MO degradation can be fitted well with the first-order reaction model and the largest rate constant is 0.015 min -1 for the 50%TiO 2/MC-550 nanocomposite. AcknowledgmentsThis work was partly supported by National Science Foundation of China (No. 20977028; No. 51172071), Technology Talent Foundation of Shanghai (11XD1401800), Fundamental Research Funds for the Central Universities, and the Research Fund for the Doctoral Program of Higher Education (No. 20090074110009).References[1]Alfano O M ,Bahnemann D ,Cassano A E ,et al. Photocatalysis in water environments using artificial and solar light [J]. Catalysis Today ,2000, 58(2-3: 199-230. [2]Kitano M, Matsuoka M, Ueshima M, et al. Recent developments in titanium oxide-based photocatalysts [J]. Applied Catalysis A, General ,2007, 325(1): 1-14. [3]Fagnoni M, Dondi D, Ravelli D, et al. Photocatalysis for the formation of the C-C bond [J]. Chemical Reviews ,2007, 107(6): 2725-2756. [4] Albini A ,Fagnoni M. Some applications of photocatalysis [J]. Chimica Oggi-Chemistry Today ,2004,22(9): 36-38. [5]Linsebigler A L, Lu G , Yates J T. Photocatalysis on TiO 2 surfaces :Principles ,mechanisms ,aselected results [J] . Chemical Reviews ,1995, 95(3): 735-758. [6]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis [J]. Journal of Photochemistry and Photobiology C :Photochemistry Reviews ,2000, 1(1): 1-21. [7]Mills A, Le H S. An overview of semiconductor photocatalysis [J]. Journal of Photochemistry and Photobiology A :Chemistry ,1997, 108(1): 1-35.[8] Herrmann J M. Heterogeneous photocatalysis : Fundamentals and applications to the removal of various types of aqueous pollutants [J]. Catalysis Today ,1999, 53(1): 115-129. [9]Addamo M, Augugliaro V , Di P A, et al. Preparation, characterization ,and photoactivity of polycrystalline nanostructured TiO 2 catalysts [J]. Journal of Physical Chemistry B, 2004, 108(10): 3303-3310.[10] Kansal S K ,Singh M ,Sud D. Studies on photodegradation oftwo commercial dyes in aqueous phase using different photocatalysts [J]. Journal of Hazardous Materials ,2007, 141(3): 581-590.[11] Wang X ,Hu Z ,Chen Y ,et al. A novel approach towardshigh-performance composite photocatalyst of TiO 2 deposited on activated carbon [J]. Applied Surface Science ,2009, 255(7): 3953-3958.[12] Bouzaza A, Laplanche A. Photocatalytic degradation of toluenein the gas phase :Comparative study of some TiO 2 supports [J]. Journal of Photochemistry and Photobiology A :Chemistry ,2002, 150(1-3): 207-212.[13] Mahmoodi N M ,Arami M ,Limaee N Y . Photocatalyticdegradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO 2 photoreactor :Bench scale study [J]. Journal of Hazardous Materials ,2006, 133(1-3): 113-118.[14] Takeda N ,Torimoto T ,Sampath S ,et al. Effect of inert supportsfor titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde [J]. Journal of Physical Chemistry ,1995, 99(24): 9986-9991. [15] Tang Z H ,He X ,Song Y ,et al. Properties of mesoporouscarbons prepared from different carbon precursors using nanosize silica as a template [J]. New Carbon Materials ,2010, 25(6): 465-469.[16] Ryoo R ,Joo S H ,Kruk M ,et al. Ordered mesoporous carbons[J]. Advanced Materials ,2001, 13(9): 677-681.[17] Darmstadt H ,Roy C ,Kaliaguine S ,et al. Surface chemistry ofordered mesoporous carbons [J]. Carbon,2002, 40(14):2673-2683.[18]Kim D J,Lee H I,Yie J E,et al. Ordered mesoporous carbons:Implication of surface chemistry,pore structure and adsorptionof methyl mercaptan [J]. Carbon,2005, 43(9): 1868-1873. [19]Lu A H,Schmidt W,Schuth F. Simplified novel synthesis ofordered mesoporous carbon with a bimodal pore system [J].New Carbon Materials,2003, 18(3): 181-185.[20]Tang Z,Song Y,Tian Y,et al. Pore development ofthermosetting phenol resin derived mesoporous carbon througha commercially nanosized template [J]. Materials Science andEngineering: A,2008, 473(1-2): 153-157.[21]Qiao W M,Song Y,Hong S H,et al. Development ofmesophase pitch derived mesoporous carbons through a commercially nanosized template [J]. Langmuir,2006, 22(8):3791-3797.[22]Wang J T,Chen Q J,Liu X J,et al. Hard-templating synthesisof mesoporous carbon spheres with controlled particle size andmesoporous structure for enzyme immobilization [J]. MaterialsChemistry and Physics,2011,129(3):1035-1041.[23]Chantal G,Bernard B,Cedric D,et al. Physicochemicalproperties and photocatalytic activities of TiO2-films preparedby sol-gel methods [J]. Applied Catalysis B: Environmental,2002,39(4):331-342.[24]Zhang J,Huang Z H,Xu Y,et al. Carbon-coated TiO2composites for the photocatalytic degradation of low concentration benzene [J]. New Carbon Materials,2011,26(1):63-70.[25]Zhu L,Meng Z D,Cho K Y,et al. Synthesis of CdS/CNT-TiO2with a high photocatalytic activity in photodegradation ofmethylene blue [J]. New Carbon Materials 2012, 27(3):166-174.[26]Sing K S W,Everett D H,Haul R A W,et al. Reportingphysisorption data for gas/solid systems with special referenceto the determination of surface rea and porosity [J]. Pure andApplied Chemistry,1982, 54(11):2201-2218.[27]Hamdy M S,Berg O,Jansen J C,et al. TiO2 nanoparticles inmesoporous TUD-1:Synthesis,characterization and photocatalytic performance in propane oxidation [J] .Chemistry-A European Journal,2006, 12(2): 620-628. [28]Ziolkowski L, Vinodgopal K, Kamat P V. Photostabilization oforganic dyes on Poly(styrenesulfonate)-capped TiO2nanoparticles [J] . Langmuir,1997, 13(12): 3124-3128. [29]Karunagaran B,Rajendra K R T,Senthil K V,et al. Structuralcharacterization of DC magnetron-sputtered TiO2 thin filmsusing XRD and Raman scattering studies [J]. Materials Sciencein Semiconductor Processing,2003, 6(5-6): 547-550. [30]Xie Y,Yuan C. Visible-light responsive cerium ion modifiedtitania sol and nanocrystallites for X-3B dye photodegradation[J]. Applied Catalysis B:Environmental 2003, 46(2): 251-259.[31]Ao Y H,Xu J J,Fu D G,et al. Photocatalytic degradation ofX-3B by titania-coated magnetic activated carbon under UVand visible irradiation [J]. Journal of Alloys and Compounds,2009, 471(1-2): 33-38.[32]Matos J,Laine J,Herrmann J M. Synergy effect in thephotocatalytic degradation of phenol on a suspended mixture oftitania and activated carbon [J]. Applied Catalysis B:Environmental,1998, 18(3-4): 281-291.。
第六章 纳米介孔材料
![第六章 纳米介孔材料](https://img.taocdn.com/s3/m/393dbfb6bb0d4a7302768e9951e79b8969026845.png)
①Siliceous Zeolites from Clear Solutions
1:0.1:0.4 :114
(SiO2/TBA/NaOH/H2O), silatrane silica source,
CEM MSP1000 1000W, 150℃ for 5–20 h after 84 h
aging
• 纳米介孔碳用途
gas separation, water purification, catalyst supports and electrodes for batteries and fuel cells
• 纳米结构SiO2材料包括:
silica sol, zeolites, alumina, and mesoporous silicas
(5) 微波合成法
• 优点:
1) The time required for synthesis is reduced (by over an order of magnitude compared to conventional hydrothermal synthesis).
2) The product can be more uniform in dimensions and composition. 3) Products with more variable compositions can be produced.
• The templates are introduced as ligands covalently bonded to silica precursors.
• The type of ligand
Figure. Examples of precursors used in the covalently bonded organic template approach showing matrix precursor (1), and pendant (2), polymerizable (3), and bridging templates (4).
《介孔碳材料》PPT课件
![《介孔碳材料》PPT课件](https://img.taocdn.com/s3/m/86d2a8a1a300a6c30d229f7d.png)
系
姚月 110924
Contents
1 background 2 Meso-porous carbon materials 3 microreactor 4 实验部分
LOGO
多孔材料
• Porous carbon materials have been applied to gas separa tion, water purification, catalyst supports, and electrodes for electrochemical double layer capacitors and fuel cells .
Catal Lett (2009) 129:20–25
Meso-porous
固定床数据
交换4次后 浸渍法添加助剂Ce,Sn,Gr, Al ,Z n
Y Axis Title
1000 800 600 400 200 0 0
20110827
10
20
30
40
50
X Axis Title
vol1311220094543ppt课件纳米微反应器chemicalengineeringscience66201153665373ppt课件借助微通道反应器的特点进行的化学反应的改进appliedcatalysisenvironmental1022011232242ppt课件10ppt课件11anational Union of Pure and Applied Chemistry (IUPAC) recommendation, porous carbon mat erials can be classified into three types based on their po re sizes: microporous< 2 nm, 2 nm<meso-porous< 50 nm , and macroporous> 50 nm.
多孔与介孔材料(课堂PPT)
![多孔与介孔材料(课堂PPT)](https://img.taocdn.com/s3/m/cf310a85b7360b4c2f3f645a.png)
25
毛细凝聚理论与Kelvin方程
Kelvin方程 BJH法确定中孔孔径分布 Kelvin方程对4型和5型等温线的解释 吸附滞后现象(自学)
3
吸附基础
❖ 吸附概念
当气体或者液体与某些固体接触时,气体或者液体分子会积聚在固体表面 上,这种现象称为吸附。
吸附是指当流体与多孔固体接触时, 流体中某一组分或多个组分在固体表 面处产生积蓄的现象。
11
吸附基础
❖ 气凝胶材料测试结果
气凝胶结构特征:纳米尺度颗粒 (5-30nm)在三维空间无序堆积而 成的具有三维纳米通孔结构特征的 多孔材料。
Pore Volume (cm3/g•nm)
Quantity Adsorbed (cm3/g)
200016001来自00800400
0
0.0
0.2
0.4
0.6
实际应用的不足 ❖ 能够较好解释2型,3型吸附,但不能解释4型、5型吸附 ❖ 定量解释不够准确,半定量或者定性地解释
19
毛细凝聚理论与Kelvin方程
❖ 毛细凝聚理论
毛细凝聚现象定义:在一个毛细孔中,因吸附作用形成一个凹液面,与该液面成平 衡的蒸汽压P必须小于同温度下平整液面的饱和蒸汽压P0。毛细孔直径越小,凹液面 的曲率半径越小,蒸汽压越低。
子所吸引,如水以及其他含氢化合物中,如乙醇,DNA等
8
吸附基础
范德华键:
键能小,弱键(Secondary force)
化学键:
金属键、共价键与离子键 键能大,强健。
键合类型 Bond type 离子键 共价键 金属键
范德华键
键能(Kcal/mol) Binding energy
150-370 125-300 25-200
介孔材料PPT课件
![介孔材料PPT课件](https://img.taocdn.com/s3/m/3d4b2ead7cd184254b3535fa.png)
AMS 系列: AMS 是Che 等人采用阴离子表面活性剂作为结构导向剂,以 含氨基的硅源3-氨丙基三甲氧基硅烷(APS)和含季铵盐的硅源N-三甲氧 基硅丙基-N,N,N-三甲基氯化铵(TMAPS)作为助结构导向剂合成得到的。 该类材料具有均匀分布的有机官能团,可控的介孔结构及孔径大小。其 中,AMS-1 是三维六方结构,AMS-2 是具有调变结构的笼状结构,AMS-3 是二维六方结构,AMS-6 是双连续立方相Ia3d ,AMS-8 是立方相Fd3m 结 构,AMS-9 是四方相P42/mnm结构,AMS-10 是双连续立方相Pn3m结构。 另外,作为AMS 系列中很特殊的一类,Che等人利用手性的氨基酸表面 活性剂和助结构导向剂以及硅源合成了一类新型的介孔硅材料,即手性 介孔硅材料,其外形为螺旋六方棒状,内部具有螺旋孔道结构。这个发 现不仅进一步拓展了介孔材料的合成体系,而且为催化分离、药物的选 择性吸附等开创了广阔的应用前景。
26
MSU 系列:该系列由Pinnavaia 等人制备而成。这是一类用 聚氧乙烯醚类非离子表面活性剂为模板合成的孔道为蠕虫状 的介孔材料。这种结构有利于客体分子在孔道内的扩散,消 除扩散限制。
KIT 系列:该系列由Ryoo 等人合成。其中,KIT-1 是一种结 构无序的介孔氧化硅材料。KIT-6 是在Pluronic P123 (EO20PO70EO20)导向下,通过添加正丁醇而得到的具有立 方Ia3d 结构的介孔氧化硅材料。
16
2004年,Liang等通过EISA过程使PS-P4VP型嵌段共聚物与间苯二酚组装得到 周期性复合结构,然后用甲醛蒸气处理,使间苯二酚聚合得到嵌段共聚物-酚醛 树脂复合材料,通过一个直接碳化的过程,可以除掉模板剂,得到高度有序的介 孔碳膜,其孔径为35 nm。
介孔碳材料的发展综述
![介孔碳材料的发展综述](https://img.taocdn.com/s3/m/66ce52c118e8b8f67c1cfad6195f312b3169eb22.png)
介孔碳材料的发展综述介孔碳材料是近年来新兴的一类非常重要的二维材料,它们具有独特的结构、极高的分子选择性吸附能力、优异的电学性能以及高折射率等特点,优越的物理化学性能为它们在多个应用领域发挥重要作用,从而得到了大量的研究关注与热情追捧。
在结构上,介孔碳材料由多层石墨烯堆积而成,其中介孔空隙的直径在几十到几百之间,可以容纳一定量的分子,并且表面有较多的碳环和碳双键可供乙酰胺分子牢牢结合,使得它们可以有效地吸附病原体。
此外,由于介孔碳材料的体积灵活性,空间紧凑性以及质量轻的特点,因此在传感技术、电池材料、载流子发生器和能源存储、环境保护和能源利用以及军事战术装置等方面也有着广泛的应用。
而且,介孔碳材料表面疏水性强,具有抗菌剂的抗菌作用,可以阻止细菌的增殖,减少病原体在其表面的滋生,更好地保护人们的健康。
同时,介孔碳材料具有优异的电学性能,可以有效地用于电子器件、传感器和其他电子设备的组装,从而提高电子器件的性能和可靠性。
此外,介孔碳材料可以用于构建宽带穿透红外光谱传感器。
它可以检测宽带光谱信号,可以被用来检测湿度、温度和化学物质的吸收,因此在环境监测和安全控制等领域有广泛的应用前景。
此外,介孔碳材料也可以用于气体分离和捕集,尤其是对于稀有气体的检测和捕集,介孔碳材料能够提供更高的效率。
自介孔碳材料被发现以来,它已经发展成为一种非常重要的材料,被广泛应用于传感器、电池材料、军事应用、环境监测、生物传感等领域,彻底改变了传统的材料研究以及制造工艺。
通过研究介孔碳材料的构筑方法,以及表面修饰技术,可以改善介孔碳材料的电学性能、分子选择性吸附能力以及抗菌性能,使之更适合多种应用领域,从而更加有效地提升介孔碳材料的综合性能。
此外,根据介孔碳材料的类型、构造结构以及它能够改变物质配置形式,研究者可以开发出新型介孔碳材料,从而提高它们在多种应用领域的综合性能。
综上所述,介孔碳材料已经发展成为一类重要的新型材料,具有独特的结构、优异的电学性能、优越的物理化学性能以及高折射率等特点,并且还有着广泛的应用前景,在多种应用领域发挥着重要作用。
介孔碳,脱溶剂化,负极材料
![介孔碳,脱溶剂化,负极材料](https://img.taocdn.com/s3/m/545eea022a160b4e767f5acfa1c7aa00b52a9d00.png)
介孔碳,脱溶剂化,负极材料下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!Introduction近年来,介孔碳被广泛应用于脱溶剂化的负极材料领域,其在电池、超级电容器等领域展现出了良好的应用前景。
介孔材料PPT课件
![介孔材料PPT课件](https://img.taocdn.com/s3/m/ee636b0c51e79b89680226ae.png)
FDU系列(Fudan University)
JLU系列 (Jilin University)
.
10
MCM-41
.
11
MCM-48
.
12
SBA-8
.
13
SBA-15
.
14
.
15
TEM images of calcined JLU-30 taken in the (100) and (110) directions and the corresponding Fourier diffractogram (inset).
• S+表示阳离子表面活性剂 – 长链烷基季铵盐、长链烷基吡啶型或阳离 子双子型
• S-表示阴离子表面活性剂 – 羧酸盐、硫酸盐等
• S0表示非离子表面活性剂 – 长链烷基伯胺和二胺等
• X-表示Cl-,Br-等 • M+表示Na+,H+等
.
29
主要的无机物与表面活性剂的相互作用方式示意
图(短虚线代表氢键,只.有SoIo中画出了溶剂▲
SI共价键(配位键) Nb,Ta .(六方) 氧化物
31
表面活性剂 S+
S+ S+ SSSo So No
无机物种 I-
相互作用方式 S+I- 静电力
I+
S+X-I+ 静电力
Io
S+F-Io 静电力
I+
S-I+ 静电力
I-
S-M+I- 静电力
Io
SoIo 氢键
I+
(SoH+)X-I+静电力
Io
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合成方法
Adv. Mater. 2006, 18, 2073–2094
介孔碳材料
• Meso-porous carbon materials are very important for appl ications involving large molecules, such as adsorbents for dyes, catalyst supports for biomolecules, and electrodes f or biosensors.
Catal Lett (2009) 129:20–25
Meso-porous
固定床数据
交换4次后 浸渍法添加助剂Ce,Sn,Gr, Al ,Z n
Y Axis Title
1000 800 600 400 200 0 0
20110827
10
20
30
40
50
X Axis Title
Urea s
Adv. Synth. Catal. 2005, 347, 225– 230
液相实验数据
b c
a:氢气还原 b:催化剂的酸中心2倍 c:反应时间为2h
• Cnts 有可能阻碍了酸中心使得反应转化率明显降低;
• 引入TEOs凝胶,反应转化率较低,选择性40%左右,是在最近设计得到的固体催化剂中 最高的。可能的原因是像文献里所说凝胶起到了微通道的效果。
J. AM. CHEM. SOC. 9 VOL. 131, NO. 12, 2009 4543
纳米微反应器
Chemical Engineering Science 66 (2011) 5366–5373
借助微通道反应器的特点进行的化学 反应的改进
Applied Catalysis B: Environmental 102 (2011) 232–242
碳材料(部分)的微反应体
系
姚月 110924
ቤተ መጻሕፍቲ ባይዱ
Contents
1 background 2 Meso-porous carbon materials 3 microreactor 4 实验部分
LOGO
多孔材料
• Porous carbon materials have been applied to gas separa tion, water purification, catalyst supports, and electrodes for electrochemical double layer capacitors and fuel cells .