初高中数学衔接教材已整理精品

合集下载

初高中数学衔接教材(已整理)-

初高中数学衔接教材(已整理)-

2017初高中数学衔接教材之勘阻及广创作现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及未几,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式经常使用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平.而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最年夜最小值、研究闭区间上的函数最值等等是高中数学所必需掌握的基本题型和经常使用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的惯例运算,和难度不年夜的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并没有专题内容在教材中呈现,是高考必需考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,年夜都没有去学习;10、圆中四点共圆的性质和判定初中没有学习.高中则在使用.另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中年夜年夜淡化,甚至老师根本没有去延伸发掘,晦气于高中数学的学习.新的课程改革,难免会招致很多知识的脱节和漏洞.本书固然也没有详尽列举出来.我们会不竭的研究新课程及其体系.将竭尽全力地找到新的初高中数学教材体系中存在的缺乏,加以弥补和完善.目录第一章数与式绝对值乘法公式二次根式分式第二章二次方程与二次不等式根的判别式根与系数的关系二次函数y=ax2+bx+c的图像和性质二次函数的三种表达方式二次函数的应用二元二次方程组的解法第三章相似形、三角形、圆平行线分线段成比例定理相似三角形形的性质与判定三角形的五心解三角形:钝角三角函数、正弦定理和余弦定理及其应用直线与圆、圆与圆的位置关系:圆幂定理点的轨迹四点共圆的性质与判定直线和圆的方程(选学)1.1 数与式的运算.绝对值绝对值的代数意义:正数的绝对值是它的自己,负数的绝对值是它的相反数,零的绝对值仍是零.即绝对值的几何意义:一个数的绝对值,是数轴上暗示它的点到原点的距离.两个数的差的绝对值的几何意义:b a -暗示在数轴上,数a 和数b 之间的距离.例1解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可酿成(1)(3)4x x ---->,即24x -+>4,解得x <0, 又x <1, ∴x<0;②若12x ≤<,不等式可酿成(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可酿成(1)(3)4x x -+->,即24x ->4, 解得x >4. 又x≥3, ∴x>4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 暗示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA|,即|PA|=|x -1|;|x -3|暗示x 轴上点P 到坐标为2的点B 之间的距离|PB|,即|PB|=|x -3|. 所以,不等式13x x -+->4的几何意义即为|PA|+|PB|>4.由|AB|=2,可知点P 在点C(坐标为0)的左侧、或点P 在点D(坐标为4)的右侧.x <0,或x >4. 练 习 1.填空:(1)若5=x ,则x=_________;若4-=x ,则x=_________. (2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:A B C P |x -1||x -3| 图1.1-1下列叙述正确的是( )(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).. 乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明获得下列一些乘法公式: (1)立方和公式2233()()a b a ab b a b +-+=+; (2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦ =242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解:2222()2()8a b c a b c ab bc ac ++=++-++=. 练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m +22)164(m m =++);(3 ) 2222(2)4(a b c a b c +-=+++). 2.选择题:(1)若212x mx k ++是一个完全平方式,则k即是( )(A )2m (B )214m (C )213m(D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数.二次根式 一般地,0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如32a b ,等是无理式,而21x +,22x y +1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,与等等. 一般地,与b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,0,0)a b =≥≥;而对二次根式的除法,通常先写成份式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2例1将下列式子化为最简二次根式:(1); (2)0)a ≥; (3)0)x <.解: (1=(20)a ==≥;(3220)x x x ==-<. 例2(3.(3=1)6解法二:(3====.例3试比力下列各组数的年夜小:(1(2解:(1)1===,1===>(2)∵=== 又 4>22,∴6+4>6+22,例4 化简:20042005⋅. 解:20042005⋅ =20042004+⋅⋅=2004⎡⎤⋅-⋅⎣⎦=20041⋅例 5 化简:(1); (2)1)x <<. 解:(1)原式===2=2=.(2)原式1x x =-,∵01x <<,∴11x x >>,所以,原式=1x x-.例6 已知x y ==求22353x xy y -+的值 .解:∵2210x y +==+=,1xy ==, ∴22223533()1131011289x xy y x y xy -+=+-=⨯-=. 练 习 1.填空:(1__ ___;(2)若(x =-,则x 的取值范围是_ _ ___;(3)=__ ___;(4)若x =,则=________.2.选择题:等式=成立的条件是( )(A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若b =,求a b +的值.4.比力年夜小:2-35-4(填“>”,或“<”)..分式1.分式的意义形如A B的式子,若B 中含有字母,且0B ≠,则称A B为分式.当M≠0时,分式A B具有下列性质:A A MB B M⨯=⨯; A A M B B M÷=÷.上述性质被称为分式的基赋性质. 2.繁分式像a b c d+,2m n p m n p+++这样,分子或分母中又含有分式的分式叫做繁分式.例1若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩解得 2,3A B ==.例2 (1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯; (3)证明:对任意年夜于1的正整数n, 有11112334(1)2n n +++<⨯⨯+.(1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯11111(1)()()223910=-+-++-1110=- =910. (3)证明:∵1112334(1)n n +++⨯⨯+=111111()()()23341n n -+-++-+=1121n -+,又n≥2,且n 是正整数,∴1n +1 一定为正数,∴1112334(1)n n +++⨯⨯+<12 . 例3设c e a=,且e >1,2c2-5ac +2a2=0,求e 的值. 解:在2c2-5ac +2a2=0两边同除以a2,得2e2-5e +2=0,∴(2e-1)(e -2)=0,∴e=12<1,舍去;或e =2.∴e=2. 练 习1.填空题:对任意的正整数n,1(2)n n =+(112n n -+);2.选择题:若223x y x y -=+,则x y=( )(A )1 (B )54(C )45(D )653.正数,x y 满足222x y xy -=,求x yx y-+的值. 4.计算1111 (12233499100)++++⨯⨯⨯⨯. 习题1.1A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2=________;(22=,则a 的取值范围是________; (3=________.B 组1.填空:(1)12a =,13b =,则2223352a aba ab b-=+-____ ____; (2)若2220x xy y +-=,则22223x xy y x y ++=+____;2.已知:11,23x y ==,的值.C 组1.选择题:(1)若,则( )(A )a b < (B )a b > (C )0a b << (D )0b a <<(2)计算即是( )(A )(B ) (C )(D )2.解方程22112()3()10x x x x +-+-=. 3.计算:1111132435911++++⨯⨯⨯⨯. 4.试证:对任意的正整数n,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14.因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x2-3x +2; (2)x2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x2-3x +2中的一次项,所以,有x2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来暗示(如图1.1-2所示). (2)由图1.1-3,得 x2+4x -12=(x -2)(x +6).(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y)-1 =(x -1) (y+1) (如图1.1-5所示). 课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________.(2)=+-652x x __________________________________________________.(3)=++652x x __________________________________________________.(4)=--652x x __________________________________________________.(5)()=++-a x a x 12__________________________________________________.(6)=+-18112x x __________________________________________________.(7)=++2762x x __________________________________________________.(8)=+-91242m m __________________________________________________. -1 -2 x x 图1.1-1 -1 -21 1 图1.1-2-2 6 11 图1.1-3 -ay -by x x 图1.1-4 -11x y 图1.1-5(9)=-+2675x x __________________________________________________.(10)=-+22612y xy x __________________________________________________.2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b .二、选择题:(每小题四个谜底中只有一个是正确的)1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x(5)44152++x x 中,有相同因式的是( )A 、只有(1)(2)B 、只有(3)(4)C 、只有(3)(5)D 、(1)和(2);(3)和(4);(3)和(5)2、分解因式22338b ab a -+得( )A 、()()3 11-+a aB 、()()b a b a 3 11-+C 、()()b a b a 3 11--D 、()()b a b a 3 11+-3、()()2082-+++b a b a 分解因式得( )A 、()()2 10-+++b a b aB 、()()4 5-+++b a b aC 、()()10 2-+++b a b aD 、()()5 4-+++b a b a4、若多项式a x x +-32可分解为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( )A 、3或9B 、3±C 、9±D 、3±或9±三、把下列各式分解因式1、()()3211262+---p q q p2、22365ab b a a +-3、6422--y y4、8224--b b2.提取公因式法例2 分解因式:(1)()()b a b a -+-552 (2)32933x x x +++解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++课堂练习:一、填空题:1、多项式xyz xy y x 42622+-中各项的公因式是_______________.2、()()()•-=-+-y x x y n y x m __________________.3、()()()•-=-+-222y x x y n y x m ____________________.4、()()()•--=-++--z y x x z y n z y x m _____________________.5、()()•--=++---z y x z y x z y x m ______________________.6、523623913x b a x ab --分解因式得_____________________.7.计算99992+=二、判断题:(正确的打上“√”,毛病的打上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( )4、()111+=+--x x x x n n n ……………………………………………………………… ( )3:公式法例3分解因式: (1)164+-a (2)()()2223y x y x --+解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2)()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++课堂练习一、222b ab a +-,22b a -,33b a -的公因式是______________________________.二、判断题:(正确的打上“√”,毛病的打上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x …………………………( ) 2、()()()()b a b a b a b a 43 4343892222-+=-=-…………………………………( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ( )4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五、把下列各式分解1、()()229n m n m ++--2、3132-x 3、()22244+--x x 4、1224+-x x 4.分组分解法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.课堂练习:用分组分解法分解多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.关于x 的二次三项式ax2+bx+c(a≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦ =(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.选择题:多项式22215x xy y --的一个因式为 ( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -2.分解因式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+.3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状.4.分解因式:x2+x -(a2-a).5. (检验考试题)已知abc=1,a+b+c=2,a²+b²+c²=,求1-c ab 1++1-a bc 1++1-b ca 1+的值. 2.1 一元二次方程根的判别式{情境设置:可先让学生通过具体实例探索二次方程的根的求法,如求方程的根(1)0322=-+x x (2) 0122=++x x (3)0322=++x x }我们知道,对一元二次方程ax2+bx +c =0(a≠0),用配方法可以将其变形为2224()24b b ac x a a-+=. ① 因为a≠0,所以,4a2>0.于是(1)当b2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x1,2 (2)当b2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根x1=x2=-2b a ; (3)当b2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定年夜于或即是零,因此,原方程没有实数根. 由此可知,一元二次方程ax2+bx +c =0(a≠0)的根的情况可以由b2-4ac 来判定,我们把b2-4ac 叫做一元二次方程ax2+bx +c =0(a≠0)的根的判别式,通经常使用符号“Δ”来暗示.综上所述,对一元二次方程ax2+bx +c =0(a≠0),有(1) 当Δ>0时,方程有两个不相等的实数根x1,2=(2)当Δ=0时,方程有两个相等的实数根x1=x2=-2b a; (3)当Δ<0时,方程没有实数根.例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根.(1)x2-3x +3=0; (2)x2-ax -1=0;(3) x2-ax +(a -1)=0; (4)x2-2x +a =0.解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根.(2)该方程的根的判别式Δ=a2-4×1×(-1)=a2+4>0,所以方程一定有两个不等的实数根12a x +=, 22a x =. (3)由于该方程的根的判别式为Δ=a2-4×1×(a-1)=a2-4a +4=(a -2)2,所以,①当a =2时,Δ=0,所以方程有两个相等的实数根x1=x2=1;②当a≠2时,Δ>0, 所以方程有两个不相等的实数根x1=1,x2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a=4-4a =4(1-a),所以①当Δ>0,即4(1-a) >0,即a <1时,方程有两个不相等的实数根11x =21x =②当Δ=0,即a =1时,方程有两个相等的实数根x1=x2=1;③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变动而变动,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.根与系数的关系(韦达定理) 若一元二次方程ax2+bx +c =0(a≠0)有两个实数根1x =,2x =, 则有1222b b x x a a-+===-;221222(4)444b b ac ac c x x a a a--====. 所以,一元二次方程的根与系数之间存在下列关系:如果ax2+bx +c =0(a ≠0)的两根分别是x1,x2,那么x1+x2=b a -,x1·x2=c a .这一关系也被称为韦达定理.特别地,对二次项系数为1的一元二次方程x2+px +q =0,若x1,x2是其两根,由韦达定理可知x1+x2=-p,x1·x2=q,即 p =-(x1+x2),q =x1·x2,所以,方程x2+px +q =0可化为 x2-(x1+x2)x +x1·x2=0,由于x1,x2是一元二次方程x2+px +q =0的两根,所以,x1,x2也是一元二次方程x2-(x1+x2)x +x1·x2=0.因此有以两个数x1,x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1·x2=0.例2已知方程2560x kx+-=的一个根是2,求它的另一个根及k的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k的值.解法一:∵2是方程的一个根,∴5×22+k×2-6=0,∴k=-7.所以,方程就为5x2-7x-6=0,解得x1=2,x2=-35.所以,方程的另一个根为-35,k的值为-7.解法二:设方程的另一个根为x1,则 2x1=-65,∴x1=-35.由(-35)+2=-5k,得 k=-7.所以,方程的另一个根为-35,k的值为-7.例3已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,而且这两个实数根的平方和比两个根的积年夜21,求m的值.分析:本题可以利用韦达定理,由实数根的平方和比两个根的积年夜21获得关于m的方程,从而解得m的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应年夜于零.解:设x1,x2是方程的两根,由韦达定理,得x1+x2=-2(m-2),x1·x2=m2+4.∵x12+x22-x1·x2=21,∴(x1+x2)2-3 x1·x2=21,即 [-2(m-2)]2-3(m2+4)=21,化简,得 m2-16m-17=0,解得 m=-1,或m=17.当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意;当m=17时,方程为x2+30x+293=0,Δ=302-4×1×293<0,分歧题意,舍去.综上,m =17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积年夜21”求出m 的值,取满足条件的m 的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否年夜于或年夜于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4 已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x,y,则 x +y =4, ①xy =-12. ②由①,得 y =4-x,代入②,得x(4-x)=-12,即 x2-4x -12=0,∴x1=-2,x2=6.∴112,6,x y =-⎧⎨=⎩ 或226,2.x y =⎧⎨=-⎩ 因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程x2-4x -12=0的两个根.解这个方程,得x1=-2,x2=6.所以,这两个数是-2和6.说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷.例5 若x1和x2分别是一元二次方程2x2+5x -3=0的两根.(1)求| x1-x2|的值; (2)求221211x x +的值;(3)x13+x23.解:∵x1和x2分别是一元二次方程2x2+5x -3=0的两根, ∴1252x x +=-,1232x x =-.(1)∵| x1-x2|2=x12+ x22-2 x1x2=(x1+x2)2-4x1x2=253()4()22--⨯-=254+6=494,∴| x1-x2|=72.(2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-. (3)x13+x23=(x1+x2)( x12-x1x2+x22)=(x1+x2)[ ( x1+x2) 2-3x1x2]=(-52)×[(-52)2-3×(32-)]=-2158. 说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x1和x2分别是一元二次方程ax2+bx +c =0(a≠0),则1x =,2x=, ∴| x1-x2|=||a ==.于是有下面的结论:若x1和x2分别是一元二次方程ax2+bx +c =0(a≠0),则| x1-x2|(其中Δ=b2-4ac ).今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6 若关于x 的一元二次方程x2-x +a -4=0的一根年夜于零、另一根小于零,求实数a 的取值范围.解:设x1,x2是方程的两根,则x1x2=a -4<0, ①且Δ=(-1)2-4(a -4)>0. ②由①得 a <4,由②得 a <174.∴a 的取值范围是a <4. 练 习1.选择题:(1)方程2230x k -+=的根的情况是(A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( )(A )m <14 (B )m >-14 (C )m <14,且m≠0 (D )m >-14,且m≠0 2.填空:(1)若方程x2-3x -1=0的两根分别是x1和x2,则1211x x +=.(2)方程mx2+x -2m =0(m≠0)的根的情况是. (3)以-3和1为根的一元二次方程是.3|1|0b -=,当k 取何值时,方程kx2+ax +b =0有两个不相等的实数根?4.已知方程x2-3x -1=0的两根为x1和x2,求(x1-3)( x2-3)的值.A 组1.选择题:(1)已知关于x 的方程x2+kx -2=0的一个根是1,则它的另一个根是( )(A )-3 (B )3 (C )-2 (D )2(2)下列四个说法:①方程x2+2x -7=0的两根之和为-2,两根之积为-7;②方程x2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x2-7=0的两根之和为0,两根之积为73-;④方程3 x2+2x =0的两根之和为-2,两根之积为0. 其中正确说法的个数是( )(A )1个 (B )2个 (C )3个(3)关于x的一元二次方程ax2-5x+a2+a=0的一个根是,则a的值是()(A)0 (B)1 (C)-1 (D)0,或-12.填空:(1)方程kx2+4x-1=0的两根之和为-2,则k=.(2)方程2x2-x-4=0的两根为α,β,则α2+β2=.(3)已知关于x的方程x2-ax-3a=0的一个根是-2,则它的另一个根是.(4)方程2x2+2x-1=0的两根为x1和x2,则| x1-x2|=.3.试判定当m取何值时,关于x的一元二次方程m2x2-(2m+1) x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x2-7x-1=0各根的相反数.B 组1.选择题:若关于x的方程x2+(k2-1) x+k+1=0的两根互为相反数,则k的值为 ( )(A)1,或-1 (B)1 (C)-1 (D)02.填空:(1)若m,n是方程x2+2005x-1=0的两个实数根,则m2n+mn2-mn的值即是.(2)如果a,b 是方程x2+x -1=0的两个实数根,那么代数式a3+a2b +ab2+b3的值是.3.已知关于x 的方程x2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x1和x2,如果2(x1+x2)>x1x2,求实数k 的取值范围.4.一元二次方程ax2+bx +c =0(a≠0)的两根为x1和x2.求:(1)| x1-x2|和122x x +;(2)x13+x23.5.关于x 的方程x2+4x +m =0的两根为x1,x2满足| x1-x2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x2-8x+7=0的两根,则这个直角三角形的斜边长即是 ( )(A) (B )3 (C )6 (D )9(2)若x1,x2是方程2x2-4x +1=0的两个根,则1221x x x x +的值为 ( )(A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x2-2(1-m)x +m2=0有两实数根α,β,则α+β的取值范为()(A)α+β≥12(B)α+β≤12(C)α+β≥1 (D)α+β≤1(4)已知a,b,c是ΔABC的三边长,那么方程cx2+(a+b)x+=的根的情况是()(A )没有实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )有两个异号实数根2.填空:若方程x2-8x +m =0的两根为x1,x2,且3x1+2x2=18,则m =.3. 已知x1,x2是关于x 的一元二次方程4kx2-4kx +k +1=0的两个实数根.(1)是否存在实数k,使(2x1-x2)( x1-2 x2)=-32成立?若存在,求出k 的值;若不存在,说明理由;(2)求使1221x x x x +-2的值为整数的实数k 的整数值;(3)若k =-2,12x x λ=,试求λ的值.4.已知关于x的方程22(2)04m x m x ---=.(1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m 的值及相应的x1,x2.5.若关于x 的方程x2+x +a =0的一个年夜于1、零一根小于1,求实数a 的取值范围.2.2 二次函数二次函数y =ax2+bx +c 的图象和性质情境设置:可先让学生通过具体实例探索二次函数的图象,如作图(1)2x y = (2) 2x y -= (3)322-+=x x y问题1 函数y =ax2与y =x2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x2,y =12x2,y =-2x2的图象,通过这些函数图象与函数y =x2的图象之间的关系,推导出函数y =ax2与y =x2的图象之间所存在的关系.先画出函数y =x2,y =2x2的图象.从表中不难看出,要获得2x2的值,只要把相应的x2的值扩年夜两倍就可以了.再描点、连线,就分别获得了函数y =x2,y =2x2的图象(如图2-1所示),从图2-1我们可以获得这两个函数图象之间的关系:函数y =2x2的图象可以由函数y =x2的图象各点的纵坐标酿成原来的两倍获得.同学们也可以用类似于上面的方法画出函数y =12x2,y =-2x2的图象,并研究这两个函数图象与函数y =x2的图象之间的关系.通过上面的研究,我们可以获得以下结论:二次函数y =ax2(a≠0)的图象可以由y =x2的图象各点的纵坐标酿成原来的a 倍获得.在二次函数y =ax2(a≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的年夜小.问题2 函数y =a(x +h)2+k 与y =ax2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x2的图象向左平移一个单元,再向上平移一个单元,就可以获得函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置分歧”的特点.类似地,还可以通过画函数y =-3x2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以获得以下结论: 二次函数y =a(x +h)2+k(a≠0)中,a 决定了二次函数图象的开口年夜小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以获得研究二次函数y =ax2+bx +c(a≠0)的图象的方法:由于y =ax2+bx +c =a(x2+b x a )+c =a(x2+b x a +224b a)+c -24b a224()24b b aca x a a-=++,所以,y =ax2+bx +c(a≠0)的图象可以看作是将函数y =ax2的图象作左右平移、上下平移获得的,于是,二次函数y =ax2+bx +c(a≠0)具有下列性质:(1)当a >0时,函数y =ax2+bx +c 图象开口向上;极点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增年夜而减小;当x >2ba-时,y 随着x 的增年夜而增年夜;当x=2b a -时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax2+bx +c 图象开口向下;极点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2ba-时,y 随着x 的增年夜而增年夜;当x >2ba-时,y 随着x 的增年夜而减小;当x =2ba-时,函数取最年夜值y =244ac b a-.上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地暗示出来.因此,在今后解决二次函数问题时,可以借助于1=-对称轴是直线x =-1; 极点坐标为(-1,4);当x =-1时,函数y 当x <-1时,y 随着x >-1时,y 随着x 采纳描点法画图,选极点2图2.2-5点B 和C (,与y 轴的交点为D(0,1),过这五点画出图象(如图2-5所示).说明:从这个例题可以看出,根据配方后获得的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.函数y =ax2+bx +c 图象作图要领:(1) 确定开口方向:由二次项系数a 决定(2) 确定对称轴:对称轴方程为ab x 2-= (3)确定图象与x 轴的交点情况,①若△>0则与x 轴有两个交点,可由方程x2+bx +c=0求出②①若△=0则与x 轴有一个交点,可由方程x2+bx +c=0求出③①若△<0则与x 轴有无交点.(4) 确定图象与y 轴的交点情况,令x=0得出y=c,所以交点坐标为(0,c )(5) 由以上各要素出草图. 练习:作出以下二次函数的草图 (1)62--=x x y (2)122++=x x y (3)12+-=x y例2 某种产物的本钱是120元/件,试销阶段每件产物的售价年夜的利润,每件产物的销售价应定为几多元?此时每天的销售利润是几多?分析:由于每天的利润=日销售量y×(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最年夜值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最年夜值.解:由于y 是x 的一次函数,于是,设y =kx +(B ) 将x =130,y =70;x =150,y =50代入方程,有 解得 k =-1,b =200.∴y=-x +200. 设每天的利润为z (元),则z =(-x+200)(x -120)=-x2+320x -24000=-(x -160)2+1600,∴当x =160时,z 取最年夜值1600.答:当售价为160元/件时,每天的利润最年夜,为1600元. 例3 把二次函数y =x2+bx +c 的图像向上平移2个单元,再向左平移4个单元,获得函数y =x2的图像,求b,c 的值.解法一:y =x2+bx +c =(x+2b)224b c +-,把它的图像向上平移2个单元,再向左平移4个单元,获得22(4)224b b y xc =+++-+的图像,也就是函数y =x2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩解得b =-8,c =14.解法二:把二次函数y =x2+bx +c 的图像向上平移2个单元,再向左平移4个单元,获得函数y =x2的图像,等价于把二次函数y =x2的图像向下平移2个单元,再向右平移4个单元,获得函数y =x2+bx +c 的图像. 由于把二次函数y =x2的图像向下平移2个单元,再向右平移4个单元,获得函数y =(x -4)2+2的图像,即为y =x2-8x +14的图像,∴函数y =x2-8x +14与函数y =x2+bx +c 暗示同一个函数,∴b=-8,c =14.说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反映了两种分歧的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较年夜;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.例4 已知函数y =x2,-2≤x≤a,其中a≥-2,求该函数的最年夜值与最小值,并求出函数取最年夜值和最小值时所对应的自变量x 的值.分析:本例中函数自变量的范围是一个变动的范围,需要对a 的取值进行讨论.解:(1)当a =-2时,函数y =x2的图象仅仅对应着一个点(-2,4),所以,函数的最年夜值和最小值都是4,此时x =-2;(2)当-2<a <0时,由图2.2-6①可知,当x =-2时,函数取最年夜值y =4;当x =a 时,函数取最小值y =a2;(3)当0≤a<2时,由图2.2-6②可知,当x =-2时,函数取最年夜值y =4;当x =0时,函数取最小值y =0;(4)当a≥2时,由图2.2-6③可知,当x =a 时,函数取最年夜值y =a2;当x =0时,函数取最小值y =0.说明:在本例中,利用了分类讨论的方法,对a 的所有可能情形进行讨论.另外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部份实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题.练习1.选择题:(1)下列函数图象中,极点不在坐标轴上的是 ( )(A )y =2x2 (B )y =2x2-4x +2(C )y =2x2-1(D )y =2x2-4x(2)函数y =2(x -1)2+2是将函数y =2x2( )(A )向左平移1个单元、再向上平移2个单元获得的(B )向右平移2个单元、再向上平移1个单元获得的(C )向下平移2个单元、再向右平移1个单元获得的(D )向上平移2个单元、再向右平移1个单元获得的2.填空题(1)二次函数y =2x2-mx +n 图象的极点坐标为(1,-2),则m=,n =.(2)已知二次函数y =x2+(m -2)x -2m,当m =时,函数图象的极点在y 轴上;当m =时,函数图象的极点在x 轴上;当m=时,函数图象经过原点.(3)函数y =-3(x +2)2+5的图象的开口向,对称轴为,极点坐标为;当x =时,函数取最值y =;当x 时,y 随着x 的增年夜而减小.3.求下列抛物线的开口方向、对称轴、极点坐标、最年夜①图2.2-6②。

(2020年整理)初升高数学衔接教材(完整).doc

(2020年整理)初升高数学衔接教材(完整).doc

第一讲 数与式1、 绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1. 求不等式354x -<的解集 例2.求不等式215x +>的解集 例3.求不等式32x x ->+的解集 例4.求不等式|x +2|+|x -1|>3的解集. 例5.解不等式|x -1|+|2-x |>3-x .例6.已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式: (1)13x x -+->4+x (2)|x +1|<|x -2|(3)|x -1|+|2x +1|<4 (4)327x -< (5)578x +> 3、因式分解 乘法公式(1)平方差公式 22()()a b a b a b +-=- (2)完全平方公式 222()2a b a ab b ±=±+ (3)立方和公式 2233()()a b a ab b a b +-+=+ (4)立方差公式 2233()()a b a ab b a b -++=-(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223()33a b a a b ab b +=+++ (7)两数差立方公式 33223()33a b a a b ab b -=-+-因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)2672x x ++(3)22()x a b xy aby -++; (4)1xy x y -+-.2.提取公因式法例2.分解因式:(1)()()b a b a -+-552(2)32933x x x +++3.公式法例3.分解因式: (1)164+-a (2)()()2223y x y x --+4.分组分解法例4.(1)x y xy x 332-+- (2)222456x xy y x y +--+-5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5.把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.练习(1)256x x -- (2)()21x a x a -++ (3)21118x x -+(4)24129m m -+ (5)2576x x +- (6)22126x xy y +-(7)()()3211262+---p q q p (8)22365ab b a a +- (9)()22244+--x x (10)1224+-x x (11)by ax b a y x 222222++-+-(12)91264422++-+-b a b ab a (13)x 2-2x -1(14) 31a +; (15)424139x x -+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +-++-第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根. (2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,。

初高中数学衔接教材(已整理)(可编辑修改版)

初高中数学衔接教材(已整理)(可编辑修改版)
9 4 23
(2) (4m
)2 16m2 4m (
学习参考
); );
.
..
..
.
(3 ) (a 2b c)2 a2 4b2 c2 (
).
2.选择题:
(1)若 x2 1 mx k 是一个完全平方式,则 k 等于

2

(A) m2
(B) 1 m2
4
(C) 1 m2
3
(2)不论 a , b 为何实数, a2 b2 2a 4b 8 的值
学习参考
|x-3|
PCA x 01
BD
34
x
|x-1| 图 1.1-1
.
..
|PA|+|PB|>4.
..
.
由|AB|=2,可知
点 P 在点 C(坐标为 0)的左侧、或点 P 在点 D(坐标为 4)的右侧.
x<0,或 x>4.
练习
1.填空:
(1)若 x 5,则 x=_________;若 x 4 ,则 x=_________.
分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的 根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分 子中的根号的过程
在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行, 运算中要运用公式 a b ab(a 0,b 0) ;而对于二次根式的除法,通常先写成 分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加 减法类似,应在化简的基础上去括号与合并同类二次根式.
..
.
例 2 计算: 3 (3 3) .
解法一: 3 (3 3) = 3
3 3
= 3 (3 3)
(3 3)(3 3)

初升高数学衔接教材(完整)(2020年8月整理).pdf

初升高数学衔接教材(完整)(2020年8月整理).pdf

第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪−<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a −表示在数轴上,数a 和数b 之间的距离. 2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a −<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><−或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1段进行讨论. ③将分段求得解集,再求它们的并集. 例1.求不等式354x −<的解集例2.求不等式215x +>的解集例3.求不等式32x x −>+的解集例4.求不等式|x +2|+|x -1|>3的解集.例5.解不等式|x -1|+|2-x |>3-x .例6.已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式: (1)13x x −+−>4+x (2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x −< (5)578x +>3、因式分解 乘法公式(1)平方差公式22()()a b a b a b +−=− (2)完全平方公式222()2a b a ab b ±=±+ (3)立方和公式2233()()a b a ab b a b +−+=+ (4)立方差公式2233()()a b a ab b a b −++=−(5)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式33223()33a b a a b ab b +=+++(7)两数差立方公式33223()33a b a a b ab b −=−+−因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1分解因式:(1)x 2-3x +2;(2)2672x x ++(3)22()x a b xy aby −++;(4)1xy x y −+−.2.提取公因式法例2.分解因式: (1)()()b a b a −+−552(2)32933x x x +++3.公式法例3.分解因式: (1)164+−a (2)()()2223y x y x −−+4.分组分解法例4.(1)x y xy x 332−+−(2)222456x xy y x y +−−+− 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x −−.例5.把下列关于x 的二次多项式分解因式: (1)221x x +−;(2)2244x xy y +−.练习(1)256x x −−(2)()21x a x a −++(3)21118x x −+(4)24129m m −+(5)2576x x +−(6)22126x xy y +−(7)()()3211262+−−−p q q p (8)22365ab b a a +−(9)()22244+−−x x (10)1224+−x x (11)by ax b a y x 222222++−+−(12)91264422++−+−b a b ab a (13)x 2-2x -1(14)31a +;(15)424139x x −+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +−++−第二讲一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根. (2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a −,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =−,顶点坐标为2424b ac b a a ⎛⎫−− ⎪⎝⎭,。

(完整版)初高中数学衔接教材(已整理)

(完整版)初高中数学衔接教材(已整理)

目录第一章数与式1.1数与式的运算1.1.1 1.1.2 1.1.3 1.1.4绝对值乘法公式二次根式分式1.2分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2 二次函数2.2.1二次函数y二ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幕定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3二x>4.综上所述,原不等式的解为x V0, 或x>4.解法二:如图1. 1- 1, x 1表示x轴上坐标为x的点P到坐标为1的点A之间的距离|RA|,即|RA| = |x- 1|; |x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|= |x- 3|.所以,不等式x 1 x 3 >4的几何意义即为|RA| + |PB|> 4.由|AB|= 2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x V0,或x>4.P 丄CL A 丄BLDL---- x0134x V|x-3||x- 1|图1. 1-12.2练 1. 2.3. 习 填空: (1) 若 x (2) 如果|a b 选择题: 下 )(A )(C )化简: 5,贝y x= 5,且a _若x 则b =4,贝y x= _____ ;若 1 c 2,则 C =若a 若a|x — 5|—|2X — 13| (x >5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式: (1) 平方差公式 (a b)(a b) a 2 b 2 ; (2) 完全平方公式 (a b)2 a 2 2ab b 2.我们还可以通过证明得到下列一些乘法公式:b , b ,则 a b (B) (D) 若a b ,贝S a 若a b ,则a解法 :原式= (x 2 1) (x 21)2 x 2 = (x 2 1)(x4 2x1)= 6x 1 .解法 *■.原式=(x 1)(x 2 x 2 1)(x 1)(x x 1)=(x 3 1)(x 3 1)= 6 x 1 .例2 已知a b c 4 , ab bc ac 4,求 a 2 b 2 c 2 的值解: 2 a .2 2b c (a b c)2 2(ab bc ac) 8 . 练 习1. 填空: (1) 1 2 a 1.2 b ( 4 b ;a)( );9 4 2 3(2) (4 m)2 16m 24m ( );(3 ) (a 2b c)2 a 2 4b 2 c 2 ( ). 1). 选择题:有兴趣的同学可以自己去证明. 例 1 计算:(x 1)(x 1)( x 2x 1)(x 2 x (1 )x 2 Imx k平方式,(1) 立方和公式 (a b)(a 2 ab b 2) 3 a .3 b ; (2) 立方差公式 (a b)(a 2 ab b 2) 3 a 3b ;(3) 三数和平方公式 (a b c)2 a 2 b 2 2 c 2(ab bc(4) 两数和立方公式 (a b)3 a 3 3a 2b 3ab 2 b 3;(5) 两数差立方公式 (a b)3 a 3 3a 2b3ab 2 b 3 .ac);对上面列出的五个公式,(A) m2(B) - m2(C) - m2(D)丄m24 3 16((2 ) 不论a , b为何实数,a2 b2 2a 4b 8 的值((A )总是正数(B )总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如,a(a 0)的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如3a「a?—b 2b , . a^b2等是无理式,而.2x2彳x 1 , x2、2x y , ■■ a2等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为—有理化因式,例如J2与.2 , 3'、a 与,-. 3 .6 与方.6 , 2-. 3 3',2 与 2.3 3-2,等等. 一般地,ax与x , a、、x b. y与a、、x b y , a、、x b与a、、x b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式. ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-a2的意义a, a 0, aa, a 0.例1将下歹J式子化为最简一次根式:(1) 両; (2) VOb(a0);(3) J4x6y(x 0).解:(1) ^A2b2顶;(2) Ja2b a 7b aVb(a 0);(3) 』4x6y 2 x^/y 2X3TT(X0).例2计算:暑(3 73).解法- -.73 (33 V3初中升高中数学教材变化分析解法二:解:=-3 (3 . 3)(3 . 3)(3、、3)=3^3 39 3=3(、、3 1)6=.3 12.3 (3、、3)=—3 V3试比较下列各组数的大小: (1) ..12 '.诃禾口、、仃110 ;(1) V J2.1112 11111 1011 -101= 丽3^3 1)_ 1 = _______________ = .3 1(.3 1)C 3 1)J 2)_ 6^ _ 、石)(.12 ;11)和 2.2— 6 . .12 ,11(、石 *10)(、11 ”10) 、石;10又. .12、一 11 5^ ,10 ,••• .,12 ,11 v .11.(2).. 2运—庇 2屁苗212-46)(242+46)又 4>2 2, _• ° •号 6 + 4 > . 6 + 2 习 2,• 一2 v 2、、2—•、6..6 4化简:C.3 , 2)2004 ( -.. 3 . 2) 2005解:(、、3 , 2)2004 ( .3、、2严=,2)2004 ( -.3 ,2)2004 (-. 3= C3、、2 C3 =12004(4 2、2+ 6 ,3 11 .12 11 ' __ 1 ___ 11 '一 10 '2,2+「6’.2 ) 2004 (「3.2)5化简:2) = .3、、2 .(1) .9 4*5 ;(2)x 2解: (1)原式(2)原式={(x *).(5)2 2 2 -5 221 x••• 06 已知xx 1 ,-丄3 2 、3 2 ,y1 22(0 x 1).x7(2 V5)2 2 71 x ,所以,原式=-x密茫,求3x 2 5xy 3y 2的值.、3 <2解:「X y :3 : ;〕2 (―2)2do , 32 3 2Xy.3, 2 , 3 . 2 1,2 2 2 2…3X 5xy 3y 3(X y) 11xy 3 1011 289 .练 习1.1.4 .分式1.分式的意义 形如A 的式子,若B 中含有字母,且B 0,则称A 为分式.当MHO 时,分BB式A 具有下列性质:BA A MA A MB B M 'B B M *上述性质被称为分式的基本性质. 2.繁分式a像_^ , m n p 这样,分子或分母中又含有分式的分式叫做 繁分式. c d _2m_n P例1若空匕 A —,求常数A,B 的值.X (X 2) X X 21. 填空:1 (1)(2) (3) (4) 13若.、(5 x)(x 3)2 (X 3)、、亍,则X 的取值范围是4.24 6,54 3 .96 2. 150 若X 巨,则、厂 ''厂22. 选择题:.立3. 4.(B )1U ,求 a a 1比较大小:2— 3 _______ ; 5— 4 (填b 的值. (C )N”.(D )0X 2解:~A B• ____ _x x 2.A B 5,2A 4,(1)试证: A(x 2) Bx (A B)x 2A 5x 4 x(x 2) 解得 x(x 2) x(x 2) 2,B 1.2. 3.4.(1) (2) (2)(3) 证明:1 n 12 3证明:对任意大于 计算: 1 n(n 1) 1 1 2(其中n 是正整数);1 9 10 '的正整数n ,有二 —2 3 3 41n(n 1)解:由 1 2(3)证明:..1 1• -------n n 1. 1n(n 1)(1)可知丄L2 31 12 3 3 41 n(n 1), (其中n 是正整数)成立.n n(n 1) 1 n 1 (n 1)19 10 1 1 1 -)( )1 2 2 31 1 1 1— _ (― 一)(— n(n 1) 2 3 31又n 》2且n 是正整数,二.11, 1 1 • • LV2 3 3 4 n(n 1)2且 e >1, 2c 2 — 5ac + 2a 2_0, 解:在2c 2— 5ac + 2a 2_0两边同除以a 2,得2呂—5e + 2_ 0,• (2e — 1)(e — 2)_ 0,1• e _ 2 V 1,舍去; •- e _ 2.或 e = 2. 一定为正数,求e 的值.丄 10910_丄_ 2习填空题: 选择题: 若) (A)对任意的正整数 2x yx正数x,y 满足 x 2 n ,1n(n 2)(丄n(B)2xy ,求 54x yx的值.y(C ) 4(D)计算丄- 99 100习题1. 1 A 组1.解不等式:(1) (3) 2 .已知x y 1 , x 1 3;(2) x 3x 27 ;x 1 x 1 6 .3xy 的值. 求 x 3 y 3 3. 填空:(1) (2) (3)(2 .3)18(2若,(T 1 .2a)21,(1 a)22 , 1__ ?则a 的取值范围是1 4「51.填空:(1) a2.1.(2)若 x 2xy 2y 2已知:x 1 2,y3a 2 2 3a 5ab 2b2小0,则—xy yx y _x . y ab 2 _________________22 _ __ ---------y」y _的值.x yC 组选择题: ((A ) a b(B ) a b(C ) a b 0 (D ) b a 0( 2)计算a :等于( )(A) < ~(B ) ■- a (C )-(D ) 、、a2.解方程2(x 2丄)13(x -)1 0 .x x3.计算:-——-1 L 1.132 43 59 114.试证:对任意的正整数 n ,有1L -1 1 —<-.b 2 一 ab 、、b a若 则)a () n(n 1)(n2) 2 3 41 2 3 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法. 1.十字相乘法例1分解因式: (1) x 2-3x + 2;(2) x 2 + 4x —(3) x 2 (a b )xy aby 2 ; (4) xy 1 x y .解:(1)如图1. 1- 1,将二次项x 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2-3x + 2中的一次项,所以,有x 2- 3x + 2 = (x - 1)(x - 2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1- 1中的两个x 用1来表示(如图1. 1-2所示).(2) 由图1. 1-3,得x 2 + 4x - 12 = (x - 2)(x + 6).(3) 由图1. 1-4,得2 2x (a b)xy aby = (x ay)(x by) x―1(4) xy 1 x y = xy + (x - y) — 1y ”1=(x - 1) (y+1)(如图 1. 1-5 所示).图 1. 1-5课堂练习一、填空题:1、把下列各式分解因式: (1) 2 x 5x 6 。

初高中数学衔接教材(已整理)之欧阳育创编

初高中数学衔接教材(已整理)之欧阳育创编

初高中数学衔接教材编者的话现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。

高中则在使用。

另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。

新的课程改革,难免会导致很多知识的脱节和漏洞。

本书当然也没有详尽列举出来。

我们会不断的研究新课程及其体系。

将不遗余力地找到新的初高中数学教材体系中存在的不足,加以补充和完善。

初升高数学衔接教材(完整)

初升高数学衔接教材(完整)

第一讲 数与式1、 绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1。

求不等式354x -<的解集例2.求不等式215x +>的解集例3.求不等式32x x ->+的解集例4。

求不等式|x +2|+|x -1|>3的解集.例5。

解不等式|x -1|+|2-x |>3-x .例6。

已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式:(1)13x x -+->4+x(2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x -<(5)578x +>3、因式分解 乘法公式(1)平方差公式 22()()a b a b a b +-=- (2)完全平方公式 222()2a b a ab b ±=±+ (3)立方和公式 2233()()a b a ab b a b +-+=+ (4)立方差公式 2233()()a b a ab b a b -++=-(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223()33a b a a b ab b +=+++ (7)两数差立方公式 33223()33a b a a b ab b -=-+-因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)2672x x ++(3)22()x a b xy aby -++; (4)1xy x y -+-.2.提取公因式法例2.分解因式:(1)()()b a b a -+-552(2)32933x x x +++3.公式法例3.分解因式: (1)164+-a (2)()()2223y x y x --+4.分组分解法例4.(1)x y xy x 332-+- (2)222456x xy y x y +--+- 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5.把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.练习(1)256x x -- (2)()21x a x a -++ (3)21118x x -+(4)24129m m -+ (5)2576x x +- (6)22126x xy y +-(7)()()3211262+---p q q p (8)22365ab b a a +- (9)()22244+--x x(10)1224+-x x (11)by ax b a y x 222222++-+-(12)91264422++-+-b a b ab a (13)x 2-2x -1(14) 31a +; (15)424139x x -+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +-++-第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.(2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1。

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

. ... .初高中数学衔接教材1.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.初中升高中数学教材变化分析解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。

初升高数学衔接教材(完整)

初升高数学衔接教材(完整)

第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a|0, a 0,a, a 0.(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.(3)两个数的差的绝对值的几何意义: a b 表示在数轴上,数a和数b之间的距离.2、绝对值不等式的解法(1)含有绝对值的不等式① f (x) a(a 0), 去掉绝对值后,保留其等价性的不等式是 a f ( x) a 。

② f (x) a(a 0) , 去掉绝对值后,保留其等价性的不等式是 f (x) a或f (x) a 。

③ 2 2f (x) g(x) f (x)g (x)。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n+1 段进行讨论.③将分段求得解集,再求它们的并集.例1. 求不等式3x 5 4的解集例2. 求不等式2x 1 5的解集例3. 求不等式x 3 x 2 的解集例4. 求不等式| x+2| +| x-1| >3 的解集.1例5. 解不等式| x-1| +|2 -x| >3-x.例6. 已知关于x 的不等式| x-5| +| x-3| <a 有解,求 a 的取值范围.练习解下列含有绝对值的不等式:(1)x 1 x 3 >4+x(2)| x+1|<| x-2|(3)| x-1|+|2 x+1|<4(4)3x 2 7(5) 5x 7 83、因式分解乘法公式(1)平方差公式 2 2(a b)( a b) a b(2)完全平方公式 2 2 2(a b) a 2ab b(3)立方和公式 2 2 3 3(a b)(a ab b ) a b(4)立方差公式 2 2 3 3(a b)(a ab b ) a b(5)三数和平方公式 2 2 2 2(a b c) a b c 2(ab bc ac)(6)两数和立方公式 3 3 2 2 3(a b) a 3a b 3ab b2(7)两数差立方公式 3 3 2 2 3(a b) a 3a b 3ab b因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:2(1)x -3x+2;(2)26x 7x 2(3) 2 ( ) 2x a b xy aby ;(4)xy 1 x y .2.提取公因式法例2. 分解因式:2 (2)x3 9 3x2 3x (1)ab 5 a 5 b3.公式法例3. 分解因式:(1)a4 16 (2) 23x 2y x y2 4.分组分解法2例4. (1)x xy 3y 3x (2)2 22x xy y 4x 5y 65.关于x 的二次三项式ax2+bx+c( a≠0) 的因式分解.若关于x 的方程 2 0( 0)ax bx c a 的两个实数根是x1 、x2 ,则二次三项式2 ( 0)ax bx c a 就可分解为a(x x )(x x ).1 2例5. 把下列关于x 的二次多项式分解因式:(1) 2 2 1x x ;(2)2 4 4 2 x xy y .3练习 (1) 25 6xx (2) 21 x ax a(3) 2 11 18xx (4)24m 12m 9(5)25 7x 6x(6) 2212xxy 6y2q p ( 7) 6 2p q 1123( 8 )35a 2b 6ab2a( 9 )24 2 4 xx2(10) x 42x 2 1 (11) x 2 y 2 a 2 b 2 2ax 2by(12) a 24ab 4b 2 6a 12b 9(13) x 2-2x -1(14) 31a;(15)4 24x 13x 9 ;(16)2 22 2 2b cab ac bc ;(17)2 23x 5xy 2y x 9y 4第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1) 根的判别式2对于一元二次方程 ax +bx +c =0(a ≠0),有:(1) 当Δ>0 时,方程有两个不相等的实数根x 1,2=,2=24 bbac 2a;(2)当 Δ=0 时,方程有两个相等的实数根 x 1=x 2=- b 2a;(3)当 Δ<0 时,方程没有实数根. (2) 根与系数的关系(韦达定理)2如果 ax +bx +c =0(a ≠0)的两根分别是 x 1,x 2,那么 x 1+x 2=b a ,x 1· x 2=c a.这一关系也被称为韦达 定理.2、二次函数2y ax bx c 的性质1. 当 a 0 时,抛物线开口向上,对称轴为xb 2a,顶点坐标为 2b4ac b , 。

初高中数学衔接教材(已整理)

初高中数学衔接教材(已整理)

初高中数学衔接教材编者的话现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;1.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4.A B C P |x -3|由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4.练 习1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________.2.选择题:下列叙述正确的是 ( )(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).1.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a a b b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a a b b a b+-+=+; (2)立方差公式 2233()()a b a a b b a b-++=-; (3)三数和平方公式 2222()2()a b c a b c a b b c ac ++=+++++; (4)两数和立方公式 33223()33a b a a b a b b+=+++; (5)两数差立方公式 3322()33a b a a b a b b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.填空:(1)221111()9423a b b a -=+( );(2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数1.1.3.二次根式1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如等等. 一般地,b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2.二次根式a ==,0,,0.a a a a ≥⎧⎨-<⎩例1 将下列式子化为最简二次根式:(1 (20)a ≥; (30)x <..例2 (3.解:(3)=393-=1)6=12..例3 试比较下列各组数的大小:(1 (2解: (1)∵1===,110,又>∴(2)∵===又 4>22,∴6+4>6+22例4 化简:20042005⋅.解:20042005⋅=20042004⋅⋅=2004⎡⎤+⋅⋅-⎣⎦=20041⋅-例 5 化简:(1; (21)x <<.例 6 已知x y ==22353x xy y -+的值 .初中升高中数学教材变化分析练 习 1.填空:(1=__ ___;(2)3)5x -则x 的取值范围是_ _ ___;(3)=__ ___;(4)若x ==______ __.2=成立的条件是 ( ) (A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若b =,求a b +的值.4.比较大小:2-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质: A A M B B M ⨯=⨯; A A M B B M÷=÷. 上述性质被称为分式的基本性质.例1 若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩ 解得 2,3A B ==.例2 (1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯; (3)证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+.例3 设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值.提示:在2c 2-5ac +2a 2=0两边同除以a 2,得练 习1.填空题:对任意的正整数n ,1(2)n n =+ (112n n -+);2.选择题:若223x y x y -=+,则xy= ( )初中升高中数学教材变化分析(A )1 (B )54 (C )45 (D )653.正数,x y 满足222x y xy -=,求x yx y-+的值.4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ;(3) 116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2=________;(22=,则a 的取值范围是________;(3=________.B 组1.填空:(1)12a =,13b =,则2223352a aba ab b-=+-____ ____; (2)若2220x xy y +-=,则22223x xy y x y ++=+__ __;2.已知:11,23x y ==的值.(2)计算 ( )(A (B (C ) (D )2.解方程22112()3()10x x x x +-+-=.3.计算:1111132435911++++⨯⨯⨯⨯. 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.初中升高中数学教材变化分析解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

初高中数学连接教材 【1 】我们在初中已经进修过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完整平方公式222()2a b a ab b ±=±+. 我们还可以经由过程证实得到下列一些乘法公式: (1)立方和公式2233()()a b a ab b a b +-+=+; (2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴致的同窗可以本身去证实. 例1 盘算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解:2222()2()8a b c a b c ab bc ac ++=++-++=. 练 习 1.填空: (1)221111()9423a b b a -=+( ); (2)(4m +22)164(m m =++); (3 ) 2222(2)4(a b c a b c +-=+++). 2.选择题:(1)若212x mx k ++是一个完整平方法,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m (2)不管a ,b 为何实数,22248a b a b +--+的值 ( ) (A )老是正数 (B )老是负数(C )可所以零 (D )可所以正数也可所以负数2.因式分化因式分化的重要办法有:十字相乘法.提取公因式法.公式法.分组分化法,别的还应懂得求根法及待定系数法.1.十字相乘法 例1 分化因式:(1)x2-3x +2; (2)x2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x2分化成图中的两个x 的积,再将常数项2分化成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x2-3x +2中的一次项,所以,有x2-3x +2=(x -1)(x -2).解释:往后在分化与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来暗示(如图1.1-2所示).(2)由图1.1-3,得x2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by --(4)1xy x y -+-=xy +(x -y)-1=(x -1) (y+1) (如图1.1-5所示).教室演习 一.填空题:1.把下列各式分化因式:(1)=-+652x x __________________________________________________. (2)=+-652x x __________________________________________________.-1 -2 x x 图1.1-1-1 -21 1图1.1-2 -2 61 1图1.1-3-ay -byx x图1.1-4-1 1x y图1.1-5(3)=++652x x __________________________________________________. (4)=--652x x __________________________________________________. (5)()=++-a x a x 12__________________________________________________.(6)=+-18112x x __________________________________________________. (7)=++2762x x __________________________________________________. (8)=+-91242m m __________________________________________________. (9)=-+2675x x __________________________________________________. (10)=-+22612y xy x __________________________________________________. 2.()() 3 42++=+-x x x x3.若()()422-+=++x x b ax x 则 =a , =b .二.选择题:(每小题四个答案中只有一个是准确的)1.在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x (5)44152++x x 中,有雷同因式的是( ) A.只有(1)(2) B.只有(3)(4)C.只有(3)(5)D.(1)和(2);(3)和(4);(3)和(5)2.分化因式22338b ab a -+得( )A.()()3 11-+a a B.()()b a b a 3 11-+ C.()()b a b a 3 11-- D.()()b a b a 3 11+- 3.()()2082-+++b a b a 分化因式得( )A.()()2 10-+++b a b a B.()()4 5-+++b a b a C.()()10 2-+++b a b a D.()()5 4-+++b a b a 4.若多项式a x x +-32可分化为()()b x x --5,则a .b 的值是( )A.10=a ,2=bB.10=a ,2-=bC.10-=a ,2-=bD.10-=a ,2=b5.若()()b x a x mx x ++=-+ 102个中a .b 为整数,则m 的值为( ) A.3或9 B.3± C.9± D.3±或9± 三.把下列各式分化因式1.()()3211262+---p q q p 2.22365ab b a a +-3.6422--y y 4.8224--b b2.提取公因式法例2 分化因式:(1)()()b a b a -+-552(2)32933x x x +++解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++. 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++ 教室演习: 一.填空题:1.多项式xyz xy y x 42622+-中各项的公因式是_______________. 2.()()()•-=-+-y x x y n y x m __________________. 3.()()()•-=-+-222y x x y n y x m ____________________.4.()()()•--=-++--z y x x z y n z y x m _____________________.5.()()•--=++---z y x z y x z y x m ______________________.6.523623913x b a x ab --分化因式得_____________________. 7.盘算99992+=二.断定题:(准确的打上“√”,错误的打上“×” )1.()b a ab ab b a -=-24222…………………………………………………………( ) 2.()b a m m bm am +=++…………………………………………………………… ( ) 3.()5231563223-+-=-+-x x x x x x …………………………………………… ( )4.()111+=+--x x xx n n n……………………………………………………………… ( )3:公式法例3分化因式: (1)164+-a (2)()()2223y x y x --+解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2)()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++教室演习一.222b ab a +-,22b a -,33b a -的公因式是______________________________. 二.断定题:(准确的打上“√”,错误的打上“×” )1.()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x ………………………… ( ) 2.()()()()b a b a b a b a 43 4343892222-+=-=-………………………………… ( ) 3.()()b a b a b a 45 4516252-+=-………………………………………………… ( ) 4.()()()y x y x yx y x -+-=--=-- 2222…………………………………………( ) 5.()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五.把下列各式分化1.()()229n m n m ++-- 2.3132-x 3.()22244+--x x 4.1224+-x x 4.分组分化法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+- =22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.教室演习:用分组分化法分化多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.关于x 的二次三项式ax2+bx+c(a≠0)的因式分化.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x .2x ,则二次三项式2(0)ax bx c a ++≠就可分化为12()()a x x x x --.例5 把下列关于x 的二次多项式分化因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦=(11x x +-++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y +++.练 习 1.选择题:多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y - 2.分化因式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分化因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数规模内因式分化:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 知足222a b c ab bc ca ++=++,试剖断ABC ∆的外形. 4.分化因式:x2+x -(a2-a).5. (测验测验题)已知abc=1,a+b+c=2,a²+b²+c²=,求1-c ab 1++1-a bc 1++1-b ca 1+的值.1.一元二次方程.一元二次不等式与二次函数的关系2.一元二次不等式的解法步调一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设响应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各类情形如下表:二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅ ∅例1 (1)x2+2x -3≤0; (2)x -x2+6<0; (3)4x2+4x +1≥0; (4)x2-6x +9≤0; (5)-4+x -x2<0.例2 解关于x 的不等式0)1(2>---a a x x 解:原不等式可以化为:0))(1(>--+a x a x 若)1(-->a a 即21>a 则a x >或a x -<1 若)1(--=a a 即21=a 则0)21(2>-x R x x ∈≠,21若)1(--<a a 即21<a 则a x <或a x ->1 例3已知不等式20(0)ax bx c a ++<≠的解是2,3x x <>或求不等式20bx ax c ++>的解.解:由不等式20(0)ax bx c a ++<≠的解为2,3x x <>或,可知0a <,且方程20ax bx c ++=的两根分离为2和3,∴5,6bca a -==, 即5,6bcaa=-=. 因为0a <,所以不等式20bx ax c ++>可变成20b cx x a a++< , 即 -2560,x x ++<整顿,得2560,x x -->所以,不等式20bx ax c +->的解是 x <-1,或x >65.解释:本例应用了方程与不等式之间的互相关系来解决问题.练 习1.解下列不等式:(1)3x2-x -4>0; (2)x2-x -12≤0; (3)x2+3x -4>0; (4)16-8x +x2≤0.2.解关于x 的不等式x2+2x +1-a2≤0(a 为常数). 功课:1.若0<a<1,则不等式(x -a)(x -a1)<0的解是 ( )A.a<x<a1B.a1<x<aC.x>a1或x<a D.x<a1或x>a2.假如方程ax2+bx +b =0中,a <0,它的两根x1,x2知足x1<x2,那么不等式ax2+bx +b <0的解是______.3.解下列不等式:(1)3x2-2x +1<0; (2)3x2-4<0; (3)2x -x2≥-1; (4)4-x2≤0. (5)4+3x -2x2≥0;(6)9x2-12x>-4;4.解关于x 的不等式x2-(1+a)x +a <0(a 为常数). 5.关于x 的不等式02<++c bx ax 的解为122x x <->-或 求关于x 的不等式02>+-c bx ax 的解.4.三角形的“四心”1.“四心”的概念及性质心坎: 性质: 外心: 性质: 重心: 性质: 垂心:例1 求证:三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1. 已知D.E.F 分离为△ABC 三边BC.CA.AB 的中点, 求证AD.BE.CF 交于一点,且都被该点分成2:1. 证实 贯穿连接DE,设AD.BE 交于点G,D.E 分离为BC.AE 的中点,则DE//AB,且12DEAB , GDE ∽GAB ,且类似比为1:2,2,2AGGD BGGE .设AD.CF 交于点'G ,同理可得,'2','2'.AG G D CG G F则G 与'G 重合,AD.BE.CF 交于一点,且都被该点分成2:1.例2 已知ABC 的三边长分离为,,BC a AC b AB c ,I 为ABC 的心坎,且I 在ABC 的边BC AC AB 、、上的射影分离为D E F 、、,求证:2bc aAE AF. 证实 作ABC 的内切圆,则D E F 、、分离为内切圆在三边上的切点,,AE AF 为圆的从统一点作的两条切线,AE AF ,同理,BD=BF,CD=CE.22b c a AF BF AE CE BD CDAFAEAF AE即2b c aAE AF.例3 若三角形的心坎与重心为统一点,求证:这个三角形为正三角形. 已知O 为三角形ABC 的重心和心坎. 求证 三角形ABC 为等边三角形. 证实 如图,连AO 并延伸交BC 于D.O 为三角形的心坎,故AD 等分BAC ,AB BDAC DC(角等分线性质定理) O 为三角形的重心,D 为BC 的中点,即BD=DC.1AB AC,即AB AC .同理可得,AB=BC.ABC 为等边三角形.例4 求证:三角形的三条高交于一点. 已知ABC 中,,AD BC D BE AC E 于于,AD 与BE 交于H 点.求证CHAB .证实 以CH 为直径作圆,,,90,o AD BC BE AC HDCHECD E 、在以CH 为直径的圆上,FCB DEH .同理,E.D 在以AB 为直径的圆上,可得BED BAD .BCHBAD ,又ABD 与CBF 有公共角B ,90o CFBADB。

初高中数学衔接教材(已整理)-之欧阳语创编

初高中数学衔接教材(已整理)-之欧阳语创编

2017初高中数学衔接教材现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。

高中则在使用。

另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。

新的课程改革,难免会导致很多知识的脱节和漏洞。

本书当然也没有详尽列举出来。

我们会不断的研究新课程及其体系。

将不遗余力地找到新的初高中数学教材体系中存在的不足,加以补充和完善。

初高中数学衔接教材(已整理)-之欧阳地创编

初高中数学衔接教材(已整理)-之欧阳地创编

2017初高中数学衔接教材现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。

高中则在使用。

另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。

新的课程改革,难免会导致很多知识的脱节和漏洞。

本书当然也没有详尽列举出来。

我们会不断的研究新课程及其体系。

将不遗余力地找到新的初高中数学教材体系中存在的不足,加以补充和完善。

初高中数学衔接教材(已整理)-

初高中数学衔接教材(已整理)-

2017初高中数学衔接教材之吉白夕凡创作现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分化中,初中主要是限于二次项系数为1的二次三项式的分化,对系数不为1的涉及未几,并且对三次或高次多项式的分化几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对份子、分母有理化初中不作要求,而份子、分母有理化是高中数学中函数、不等式经常使用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平.而高中则是贯串整个数学教材的始终的重要内容;配方、作简图、求值域(取值规模)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和经常使用办法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并没有专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习.高中则在使用.另外,象配办法、换元法、待定系数法、双十字相乘法分化因式等等等等初中大大淡化,甚至老师底子没有去延伸开掘,晦气于高中数学的学习.新的课程变革,难免会导致很多知识的脱节和漏洞.本书当然也没有详尽列举出来.我们会不竭的研究新课程及其体系.将竭尽全力地找到新的初高中数学教材体系中存在的缺乏,加以弥补和完善.目录第一章数与式绝对值乘法公式二次根式分式第二章二次方程与二次不等式根的判别式根与系数的关系二次函数y=ax2+bx+c的图像和性质二次函数的三种表达方法二次函数的应用二元二次方程组的解法第三章相似形、三角形、圆平行线分线段成比例定理相似三角形形的性质与判定三角形的五心解三角形:钝角三角函数、正弦定理和余弦定理及其应用直线与圆、圆与圆的位置关系:圆幂定理点的轨迹四点共圆的性质与判定直线和圆的方程(选学)1.1 数与式的运算.绝对值绝对值的代数意义:正数的绝对值是它的自己,正数的绝对值是它的相反数,零的绝对值仍是零.即绝对值的几何意义:一个数的绝对值,是数轴上暗示它的点到原点的距离.两个数的差的绝对值的几何意义:b a -暗示在数轴上,数a 和数b 之间的距离.例1解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变成(1)(3)4x x ---->,即24x -+>4,解得x <0, 又x <1, ∴x<0;②若12x ≤<,不等式可变成(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变成(1)(3)4x x -+->,即24x ->4, 解得x >4. 又x≥3, ∴x>4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 暗示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA|,即|PA|=|x -1|;|x -3|暗示x 轴上点P 到坐标为2的点B 之间的距离|PB|,即|PB|=|x -3|. 所以,不等式13x x -+->4的几何意义即为|PA|+|PB|>4.由|AB|=2,可知点P 在点C(坐标为0)的左侧、或点P 在点D(坐标为4)的右侧.x <0,或x >4. 练 习 1.填空:(1)若5=x ,则x=_________;若4-=x ,则x=_________. (2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:A B C P |x -1||x -3| 图1.1-1下列叙述正确的是( )(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).. 乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式: (1)立方和公式2233()()a b a ab b a b +-+=+; (2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦ =242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解:2222()2()8a b c a b c ab bc ac ++=++-++=. 练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m +22)164(m m =++);(3 ) 2222(2)4(a b c a b c +-=+++). 2.选择题:(1)若212x mx k ++是一个完全平方法,则k 等于 ( )(A )2m (B )214m (C )213m(D )2116m (2)不管a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是正数(C )可以是零 (D )可以是正数也可以是正数.二次根式 一般地,0)a ≥的代数式叫做二次根式.根号下含有字母、且不克不及够开得尽方的式子称为无理式. 例如32a b ,等是无理式,而212x ++,22x y +1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,与等等. 一般地,,与,b 与b 互为有理化因式.分母有理化的办法是分母和份子都乘以分母的有理化因式,化去分母中的根号的过程;而份子有理化则是分母和份子都乘以分母的有理化因式,化去份子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2例1将下列式子化为最简二次根式:(1); (2)0)a ≥; (3)0)x <.解: (1=(20)a ==≥;(3220)x x x ==-<. 例2(3-.(3-解法二:(3-====12.例3试比较下列各组数的大小:(1(2和. 解:(1)1===,1===,>,(2)∵=== 又 4>22,∴6+4>6+22,. 例4 化简:20042005+⋅. 解:20042005⋅-=20042004+⋅-⋅=2004⎡⎤+⋅⋅⎣⎦=20041⋅.例 5 化简:(1); (2)1)x <<. 解:(1)原式===2=2=.(2)原式1x x =-,∵01x <<,∴11x x >>,所以,原式=1x x-.例6 已知x y ==求22353x xy y -+的值 .解:∵2210x y +==+=,1xy ==, ∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.练 习 1.填空:(1__ ___;(2)若(x =-,则x 的取值规模是_ _ ___;(3)=__ ___;(4)若2x =,则+=________.2.选择题:等式=成立的条件是( )(A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若1b a =+,求a b +的值.4.比较大小:2-35-4(填“>”,或“<”)..分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B为分式.当M≠0时,分式AB 具有下列性质:A A MB B M⨯=⨯; A A M B B M÷=÷.上述性质被称为分式的基赋性质. 2.繁分式像a b c d+,2m n p m n p+++这样,份子或分母中又含有分式的分式叫做繁分式.例1若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩解得 2,3A B ==.例2 (1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯; (3)证明:对任意大于1的正整数n, 有11112334(1)2n n +++<⨯⨯+.(1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯11111(1)()()223910=-+-++-1110=- =910. (3)证明:∵1112334(1)n n +++⨯⨯+=111111()()()23341n n -+-++-+=1121n -+,又n≥2,且n 是正整数,∴1n +1 一定为正数,∴1112334(1)n n +++⨯⨯+<12 . 例3设ce a=,且e >1,2c2-5ac +2a2=0,求e 的值. 解:在2c2-5ac +2a2=0两边同除以a2,得2e2-5e +2=0,∴(2e-1)(e -2)=0,∴e=12<1,舍去;或e =2.∴e=2. 练 习1.填空题:对任意的正整数n,1(2)n n =+(112n n -+);2.选择题:若223x y x y -=+,则x y=( )(A )1 (B )54(C )45(D )653.正数,x y 满足222x y xy -=,求x yx y-+的值. 4.计算1111 (12233499100)++++⨯⨯⨯⨯. 习题1.1A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2+=________;(22=,则a 的取值规模是________; (3=________.B 组1.填空:(1)12a =,13b =,则2223352a ab a ab b -=+-____ ____; (2)若2220x xy y +-=,则22223x xy y x y ++=+____;2.已知:11,23x y ==,的值.C 组1.选择题:(1)若=,则 ( )(A )a b < (B )a b > (C )0a b << (D )0b a <<(2)计算等于( )(A )(B ) (C )(D )2.解方程22112()3()10x x x x +-+-=. 3.计算:1111132435911++++⨯⨯⨯⨯. 4.试证:对任意的正整数n,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14.因式分化的主要办法有:十字相乘法、提取公因式法、公式法、分组分化法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分化因式:(1)x2-3x +2; (2)x2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x2分化成图中的两个x 的积,再将常数项2分化成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x2-3x +2中的一次项,所以,有x2-3x +2=(x -1)(x -2).说明:今后在分化与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来暗示(如图1.1-2所示). (2)由图1.1-3,得 x2+4x -12=(x -2)(x +6).(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y)-1 =(x -1) (y+1) (如图1.1-5所示). 课堂练习一、填空题:1、把下列各式分化因式:(1)=-+652x x __________________________________________________.(2)=+-652x x __________________________________________________.(3)=++652x x __________________________________________________.(4)=--652x x __________________________________________________.(5)()=++-a x a x 12__________________________________________________.(6)=+-18112x x __________________________________________________.(7)=++2762x x __________________________________________________.(8)=+-91242m m __________________________________________________. -1 -2 x x 图1.1-1 -1 -21 1 图1.1-2-2 6 11 图1.1-3 -ay -by x x 图1.1-4 -11x y 图1.1-5(9)=-+2675x x __________________________________________________.(10)=-+22612y xy x __________________________________________________.2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b .二、选择题:(每小题四个答案中只有一个是正确的)1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x(5)44152++x x 中,有相同因式的是( )A 、只有(1)(2)B 、只有(3)(4)C 、只有(3)(5)D 、(1)和(2);(3)和(4);(3)和(5)2、分化因式22338b ab a -+得( )A 、()()3 11-+a a B 、()()b a b a 3 11-+ C 、()()b a b a 3 11-- D 、()()b a b a 3 11+-3、()()2082-+++b a b a 分化因式得( )A 、()()2 10-+++b a b a B 、()()4 5-+++b a b a C 、()()10 2-+++b a b a D 、()()5 4-+++b a b a 4、若多项式a x x +-32可分化为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( ) A 、3或9 B 、3± C 、9± D 、3±或9±三、把下列各式分化因式1、()()3211262+---p q q p2、22365ab b a a +-3、6422--y y4、8224--b b2.提取公因式法例2 分化因式:(1)()()b a b a -+-552 (2)32933x x x +++解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++课堂练习:一、填空题:1、多项式xyz xy y x 42622+-中各项的公因式是_______________.2、()()()•-=-+-y x x y n y x m __________________.3、()()()•-=-+-222y x x y n y x m ____________________.4、()()()•--=-++--z y x x z y n z y x m _____________________.5、()()•--=++---z y x z y x z y x m ______________________.6、523623913x b a x ab --分化因式得_____________________.7.计算99992+=二、判断题:(正确的打上“√”,错误的打上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( )4、()111+=+--x x x x n n n ……………………………………………………………… ( )3:公式法例3分化因式: (1)164+-a (2)()()2223y x y x --+ 解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2)()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++课堂练习一、222b ab a +-,22b a -,33b a -的公因式是______________________________.二、判断题:(正确的打上“√”,错误的打上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x …………………………( ) 2、()()()()b a b a b a b a 43 4343892222-+=-=-…………………………………( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ( )4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五、把下列各式分化1、()()229n m n m ++--2、3132-x 3、()22244+--x x 4、1224+-x x 4.分组分化法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.课堂练习:用分组分化法分化多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.关于x 的二次三项式ax2+bx+c(a≠0)的因式分化.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分化为12()()a x x x x --.例5 把下列关于x 的二次多项式分化因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦ =(11x x +-++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.选择题:多项式22215x xy y --的一个因式为( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -2.分化因式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分化因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数规模内因式分化:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+.3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状.4.分化因式:x2+x -(a2-a).5. (测验考试题)已知abc=1,a+b+c=2,a²+b²+c²=,求1-c ab 1++1-a bc 1++1-b ca 1+的值. 2.1 一元二次方程根的判别式{情境设置:可先让学生通过具体实例探索二次方程的根的求法, 如求方程的根(1)0322=-+x x (2) 0122=++x x (3)0322=++x x }我们知道,对于一元二次方程ax2+bx +c =0(a≠0),用配办法可以将其变形为2224()24b b ac x a a-+=. ① 因为a≠0,所以,4a2>0.于是(1)当b2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x1,2(2)当b2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根x1=x2=-2b a ; (3)当b2-4ac <0时,方程①的右端是一个正数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根. 由此可知,一元二次方程ax2+bx +c =0(a≠0)的根的情况可以由b2-4ac 来判定,我们把b2-4ac 叫做一元二次方程ax2+bx +c =0(a≠0)的根的判别式,通经常使用符号“Δ”来暗示.综上所述,对于一元二次方程ax2+bx +c =0(a≠0),有(1) 当Δ>0时,方程有两个不相等的实数根x1,2=2b a -±(2)当Δ=0时,方程有两个相等的实数根x1=x2=-2b a ; (3)当Δ<0时,方程没有实数根.例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根.(1)x2-3x +3=0; (2)x2-ax -1=0;(3) x2-ax +(a -1)=0; (4)x2-2x +a =0.解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根.(2)该方程的根的判别式Δ=a2-4×1×(-1)=a2+4>0,所以方程一定有两个不等的实数根1x =, 2x = (3)由于该方程的根的判别式为Δ=a2-4×1×(a-1)=a2-4a +4=(a -2)2,所以,①当a =2时,Δ=0,所以方程有两个相等的实数根x1=x2=1;②当a≠2时,Δ>0, 所以方程有两个不相等的实数根x1=1,x2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a=4-4a =4(1-a),所以①当Δ>0,即4(1-a) >0,即a <1时,方程有两个不相等的实数根11x =21x =②当Δ=0,即a =1时,方程有两个相等的实数根x1=x2=1;③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变更而变更,于是,在解题过程中,需要对a 的取值情况进行讨论,这一办法叫做分类讨论.分类讨论这一思想办法是高中数学中一个很是重要的办法,在今后的解题中会经常地运用这一办法来解决问题.根与系数的关系(韦达定理) 若一元二次方程ax2+bx +c =0(a≠0)有两个实数根12b x a -=,22b x a-=, 则有1222b b x x a a-+=+==-;221222(4)42244b b b b ac ac c x x a a a a a -+---=⋅===. 所以,一元二次方程的根与系数之间存在下列关系:如果ax2+bx +c =0(a≠0)的两根辨别是x1,x2,那么x1+x2=b a -,x1·x2=c a.这一关系也被称为韦达定理. 特别地,对于二次项系数为1的一元二次方程x2+px +q =0,若x1,x2是其两根,由韦达定理可知x1+x2=-p,x1·x2=q,即 p =-(x1+x2),q =x1·x2,所以,方程x2+px +q =0可化为 x2-(x1+x2)x +x1·x2=0,由于x1,x2是一元二次方程x2+px +q =0的两根,所以,x1,x2也是一元二次方程x2-(x1+x2)x +x1·x2=0.因此有以两个数x1,x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x +x1·x2=0.例2已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.阐发:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.解法一:∵2是方程的一个根,∴5×22+k×2-6=0,∴k=-7.所以,方程就为5x2-7x -6=0,解得x1=2,x2=-35.所以,方程的另一个根为-35,k 的值为-7.解法二:设方程的另一个根为x1,则 2x1=-65,∴x1=-35. 由 (-35)+2=-5k ,得 k =-7.所以,方程的另一个根为-35,k 的值为-7.例3已知关于x 的方程x2+2(m -2)x +m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.阐发:本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x1,x2是方程的两根,由韦达定理,得x1+x2=-2(m -2),x1·x2=m2+4.∵x12+x22-x1·x2=21,∴(x1+x2)2-3 x1·x2=21,即 [-2(m -2)]2-3(m2+4)=21,化简,得 m2-16m -17=0,解得 m =-1,或m =17.当m =-1时,方程为x2+6x +5=0,Δ>0,满足题意;当m =17时,方程为x2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去.综上,m =17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的规模,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4 已知两个数的和为4,积为-12,求这两个数.阐发:我们可以设出这两个数辨别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数辨别是x,y,则 x +y =4, ①xy =-12. ②由①,得 y =4-x,代入②,得x(4-x)=-12,即 x2-4x -12=0,∴x1=-2,x2=6.∴112,6,x y =-⎧⎨=⎩ 或226,2.x y =⎧⎨=-⎩ 因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程x2-4x -12=0的两个根.解这个方程,得x1=-2,x2=6.所以,这两个数是-2和6.说明:从上面的两种解法我们不难发明,解法二(直接利用韦达定理来解题)要比解法一简捷.例5 若x1和x2辨别是一元二次方程2x2+5x -3=0的两根.(1)求| x1-x2|的值; (2)求221211x x +的值;(3)x13+x23.解:∵x1和x2辨别是一元二次方程2x2+5x -3=0的两根, ∴1252x x +=-,1232x x =-.(1)∵| x1-x2|2=x12+ x22-2 x1x2=(x1+x2)2-4x1x2=253()4()22--⨯-=254+6=494, ∴| x1-x2|=72.(2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-. (3)x13+x23=(x1+x2)( x12-x1x2+x22)=(x1+x2)[ ( x1+x2) 2-3x1x2]=(-52)×[(-52)2-3×(32-)]=-2158. 说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x1和x2辨别是一元二次方程ax2+bx +c =0(a≠0),则1x =,2x =, ∴| x1-x2|===.于是有下面的结论:若x1和x2辨别是一元二次方程ax2+bx +c =0(a≠0),则| x1-x2|=||a (其中Δ=b2-4ac ).今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6 若关于x 的一元二次方程x2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值规模.解:设x1,x2是方程的两根,则x1x2=a -4<0, ①且Δ=(-1)2-4(a -4)>0. ②由①得 a <4,由②得 a <174.∴a 的取值规模是a <4. 练 习1.选择题:(1)方程2230x k -+=的根的情况是 ( )(A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值规模是 ( )(A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m≠0 2.填空:(1)若方程x2-3x -1=0的两根辨别是x1和x2,则1211x x +=.(2)方程mx2+x -2m =0(m≠0)的根的情况是. (3)以-3和1为根的一元二次方程是.3|1|0b -=,当k 取何值时,方程kx2+ax +b =0有两个不相等的实数根?4.已知方程x2-3x -1=0的两根为x1和x2,求(x1-3)( x2-3)的值.A 组1.选择题:(1)已知关于x 的方程x2+kx -2=0的一个根是1,则它的另一个根是( )(A )-3 (B )3 (C )-2 (D )2(2)下列四个说法:①方程x2+2x -7=0的两根之和为-2,两根之积为-7;②方程x2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x2-7=0的两根之和为0,两根之积为73-;④方程3 x2+2x =0的两根之和为-2,两根之积为0. 其中正确说法的个数是( )(A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax2-5x +a2+a =0的一个根是,则a的值是()(A)0 (B)1 (C)-1 (D)0,或-12.填空:(1)方程kx2+4x-1=0的两根之和为-2,则k=.(2)方程2x2-x-4=0的两根为α,β,则α2+β2=.(3)已知关于x的方程x2-ax-3a=0的一个根是-2,则它的另一个根是.(4)方程2x2+2x-1=0的两根为x1和x2,则| x1-x2|=.3.试判定当m取何值时,关于x的一元二次方程m2x2-(2m+1) x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根辨别是方程x2-7x-1=0各根的相反数.B 组1.选择题:若关于x的方程x2+(k2-1) x+k+1=0的两根互为相反数,则k的值为 ( )(A)1,或-1 (B)1 (C)-1 (D)02.填空:(1)若m,n是方程x2+2005x-1=0的两个实数根,则m2n+mn2-mn的值等于.(2)如果a,b是方程x2+x-1=0的两个实数根,那么代数式a3+a2b+ab2+b3的值是.3.已知关于x 的方程x2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x1和x2,如果2(x1+x2)>x1x2,求实数k 的取值规模.4.一元二次方程ax2+bx +c =0(a≠0)的两根为x1和x2.求:(1)| x1-x2|和122x x +;(2)x13+x23.5.关于x 的方程x2+4x +m =0的两根为x1,x2满足| x1-x2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x2-8x+7=0的两根,则这个直角三角形的斜边长等于 ( )(A) (B )3 (C )6 (D )9(2)若x1,x2是方程2x2-4x +1=0的两个根,则1221x x x x +的值为 ( )(A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x2-2(1-m)x +m2=0有两实数根α,β,则α+β的取值规模为()(A)α+β≥12(B)α+β≤12(C)α+β≥1 (D)α+β≤1(4)已知a,b,c是ΔABC的三边长,那么方程cx2+(a+b)x+=的根的情况是()(A )没有实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )有两个异号实数根2.填空:若方程x2-8x +m =0的两根为x1,x2,且3x1+2x2=18,则m =.3. 已知x1,x2是关于x 的一元二次方程4kx2-4kx +k +1=0的两个实数根.(1)是否存在实数k,使(2x1-x2)( x1-2 x2)=-32成立?若存在,求出k 的值;若不存在,说明理由;(2)求使1221x x x x +-2的值为整数的实数k 的整数值;(3)若k =-2,12x x λ=,试求λ的值.4.已知关于x的方程22(2)04m x m x ---=.(1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m 的值及相应的x1,x2.5.若关于x 的方程x2+x +a =0的一个大于1、零一根小于1,求实数a 的取值规模.2.2 二次函数二次函数y =ax2+bx +c 的图象和性质情境设置:可先让学生通过具体实例探索二次函数的图象,如作图(1)2x y = (2) 2x y -= (3)322-+=x x y问题1 函数y =ax2与y =x2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x2,y =12x2,y =-2x2的图象,通过这些函数图象与函数y =x2的图象之间的关系,推导出函数y =ax2与y =x2的图象之间所存在的关系.先画出函数y =x2,y =2x2的图象.从表中不难看出,要得到2x2的值,只要把相应的x2的值扩大两倍就可以了.再描点、连线,就辨别得到了函数y =x2,y =2x2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x2的图象可以由函数y =x2的图象各点的纵坐标变成原来的两倍得到.同学们也可以用类似于上面的办法画出函数y =12x2,y =-2x2的图象,并研究这两个函数图象与函数y =x2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax2(a≠0)的图象可以由y =x2的图象各点的纵坐标变成原来的a 倍得到.在二次函数y =ax2(a≠0)中,二次项系数a 决定了图象的开口标的目的和在同一个坐标系中的开口的大小.问题2 函数y =a(x +h)2+k 与y =ax2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x2的图象(如图2-2所示),从函数的同学我们不难发明,只要把函数y=2x2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不合”的特点.类似地,还可以通过画函数y =-3x2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论: 二次函数y =a(x +h)2+k (a≠0)中,a 决定了二次函数图象的开口大小及标的目的;h 决定了二次函数图象的左右平移,并且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,并且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax2+bx +c(a≠0)的图象的办法:由于y =ax2+bx +c =a(x2+b x a )+c =a(x2+bx a+224b a )+c -24b a224()24b b aca x a a-=++,所以,y =ax2+bx +c(a≠0)的图象可以看作是将函数y =ax2的图象作左右平移、上下平移得到的,于是,二次函数y =ax2+bx +c(a≠0)具有下列性质:(1)当a >0时,函数y =ax2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a --,对称轴为直线x =-2b a ;当x <2ba-时,y 随着x的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba -时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a --,对称轴为直线x =-2b a ;当x <2ba-时,y 随着x 的增大而增大;当x >2ba -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a -. 上述二次函数的性质可以辨别通过图2.2-3和图2.2-4直不雅地暗示出来.因此,在今后解决二次函数问题时,可以借助3x21=-对称轴是直线x =-1; 顶点坐标为(-1,4);当x =-1时,函数y 当x <-1时,y 随着x 时,y 随着x 的增大而减小;采取描点法画图,选顶点点B 和C (,与过这五点画出图象(如图2-5所示).说明:从这个例题可以看出,按照配方后得到的性质2图2.2-5画函数的图象,可以直接选出关头点,减少了选点的盲目性,使画图更简便、图象更精确.函数y =ax2+bx +c 图象作图要领:(1) 确定开口标的目的:由二次项系数a 决定(2) 确定对称轴:对称轴方程为ab x 2-= (3)确定图象与x 轴的交点情况,①若△>0则与x 轴有两个交点,可由方程x2+bx +c=0求出②①若△=0则与x 轴有一个交点,可由方程x2+bx +c=0求出③①若△<0则与x 轴有无交点.(4) 确定图象与y 轴的交点情况,令x=0得出y=c,所以交点坐标为(0,c )(5) 由以上各要素出草图. 练习:作出以下二次函数的草图 (1)62--=x x y (2)122++=x x y (3)12+-=x y例2 某种产品的成本是120元/件,试销阶段每件产品的售价若日销售量y 是销售价x 的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?阐发:由于每天的利润=日销售量y×(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.解:由于y 是x 的一次函数,于是,设y =kx +(B ) 将x =130,y =70;x =150,y =50代入方程,有 解得 k =-1,b =200.∴y=-x +200. 设每天的利润为z (元),则z =(-x+200)(x -120)=-x2+320x -24000=-(x -160)2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.例3 把二次函数y =x2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x2的图像,求b,c 的值.解法一:y =x2+bx +c =(x+2b)224b c +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y xc =+++-+的图像,也就是函数y =x2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩解得b =-8,c =14.解法二:把二次函数y =x2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x2的图像,等价于把二次函数y =x2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x2+bx +c 的图像. 由于把二次函数y =x2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图像,即为y =x2-8x +14的图像,∴函数y =x2-8x +14与函数y =x2+bx +c 暗示同一个函数,∴b=-8,c =14.说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反应了两种不合的思维办法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以按照题目的具体情况,选择恰当的办法来解决问题.例4 已知函数y =x2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.阐发:本例中函数自变量的规模是一个变更的规模,需要对a 的取值进行讨论.解:(1)当a =-2时,函数y =x2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x =-2;(2)当-2<a <0时,由图2.2-6①可知,当x =-2时,函数取最大值y =4;当x =a 时,函数取最小值y =a2;(3)当0≤a<2时,由图2.2-6②可知,当x =-2时,函数取最大值y =4;当x =0时,函数取最小值y =0;(4)当a≥2时,由图2.2-6③可知,当x =a 时,函数取最大值y =a2;当x =0时,函数取最小值y =0.说明:在本例中,利用了分类讨论的办法,对a 的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直不雅地解决问题.练习1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是 ( )(A )y =2x2 (B )y =2x2-4x +2(C )y =2x2-1(D )y =2x2-4x(2)函数y =2(x -1)2+2是将函数y =2x2( )(A )向左平移1个单位、再向上平移2个单位得到的(B )向右平移2个单位、再向上平移1个单位得到的(C )向下平移2个单位、再向右平移1个单位得到的(D )向上平移2个单位、再向右平移1个单位得到的2.填空题(1)二次函数y =2x2-mx +n 图象的顶点坐标为(1,-2),则m=,n =.(2)已知二次函数y =x2+(m -2)x -2m,当m =时,函数图象的顶点在y 轴上;当m =时,函数图象的顶点在x 轴上;当m=时,函数图象经过原点.(3)函数y =-3(x +2)2+5的图象的开口向,对称轴为,顶点坐标为;当x =时,函数取最值y =;当x 时,y 随着x 的增大而减小.3.求下列抛物线的开口标的目的、对称轴、顶点坐标、最大(小)值及y 随x 的变更情况,并画出其图象.(1)y =x2-2x -3; (2)y =1+6 x -x2.①图2.2-6② ③。

初高中数学衔接教材(已整理)-之欧阳育创编

初高中数学衔接教材(已整理)-之欧阳育创编

2017初高中数学衔接教材现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。

高中则在使用。

另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。

新的课程改革,难免会导致很多知识的脱节和漏洞。

本书当然也没有详尽列举出来。

我们会不断的研究新课程及其体系。

将不遗余力地找到新的初高中数学教材体系中存在的不足,加以补充和完善。

初高中数学衔接教材(已整理)-

初高中数学衔接教材(已整理)-

2017初高中数学衔接教材之邯郸勺丸创作现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分化中,初中主要是限于二次项系数为1的二次三项式的分化,对系数不为1的涉及未几,并且对三次或高次多项式的分化几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对份子、分母有理化初中不作要求,而份子、分母有理化是高中数学中函数、不等式经常使用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平.而高中则是贯串整个数学教材的始终的重要内容;配方、作简图、求值域(取值规模)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和经常使用办法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并没有专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习.高中则在使用.另外,象配办法、换元法、待定系数法、双十字相乘法分化因式等等等等初中大大淡化,甚至老师底子没有去延伸开掘,晦气于高中数学的学习.新的课程变革,难免会导致很多知识的脱节和漏洞.本书当然也没有详尽列举出来.我们会不竭的研究新课程及其体系.将竭尽全力地找到新的初高中数学教材体系中存在的缺乏,加以弥补和完善.目录第一章数与式绝对值乘法公式二次根式分式第二章二次方程与二次不等式根的判别式根与系数的关系二次函数y=ax2+bx+c的图像和性质二次函数的三种表达方法二次函数的应用二元二次方程组的解法第三章相似形、三角形、圆平行线分线段成比例定理相似三角形形的性质与判定三角形的五心解三角形:钝角三角函数、正弦定理和余弦定理及其应用直线与圆、圆与圆的位置关系:圆幂定理点的轨迹四点共圆的性质与判定直线和圆的方程(选学)1.1 数与式的运算.绝对值绝对值的代数意义:正数的绝对值是它的自己,正数的绝对值是它的相反数,零的绝对值仍是零.即绝对值的几何意义:一个数的绝对值,是数轴上暗示它的点到原点的距离.两个数的差的绝对值的几何意义:b a -暗示在数轴上,数a 和数b 之间的距离.例1解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变成(1)(3)4x x ---->,即24x -+>4,解得x <0, 又x <1, ∴x<0;②若12x ≤<,不等式可变成(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变成(1)(3)4x x -+->,即24x ->4, 解得x >4. 又x≥3, ∴x>4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 暗示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA|,即|PA|=|x -1|;|x -3|暗示x 轴上点P 到坐标为2的点B 之间的距离|PB|,即|PB|=|x -3|. 所以,不等式13x x -+->4的几何意义即为|PA|+|PB|>4.由|AB|=2,可知点P 在点C(坐标为0)的左侧、或点P 在点D(坐标为4)的右侧.x <0,或x >4. 练 习 1.填空:(1)若5=x ,则x=_________;若4-=x ,则x=_________. (2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:A B C P |x -1||x -3| 图1.1-1下列叙述正确的是( )(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).. 乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式: (1)立方和公式2233()()a b a ab b a b +-+=+; (2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦ =242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解:2222()2()8a b c a b c ab bc ac ++=++-++=. 练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m +22)164(m m =++);(3 ) 2222(2)4(a b c a b c +-=+++). 2.选择题:(1)若212x mx k ++是一个完全平方法,则k等于( )(A )2m (B )214m (C )213m(D )2116m (2)不管a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是正数(C )可以是零 (D )可以是正数也可以是正数.二次根式 一般地,0)a ≥的代数式叫做二次根式.根号下含有字母、且不克不及够开得尽方的式子称为无理式. 例如32a b ,等是无理式,而21x +,22x y +1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,与等等. 一般地,与b 与b 互为有理化因式.分母有理化的办法是分母和份子都乘以分母的有理化因式,化去分母中的根号的过程;而份子有理化则是分母和份子都乘以分母的有理化因式,化去份子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2例1将下列式子化为最简二次根式:(1); (2)0)a ≥; (3)0)x <.解: (1=(20)a ==≥;(3220)x x x ==-<. 例2(3.(3=1)6解法二:(3====.例3试比较下列各组数的大小:(1(2解:(1)1===,1===>(2)∵=== 又 4>22,∴6+4>6+22,例4 化简:20042005⋅. 解:20042005⋅ =20042004+⋅⋅=2004⎡⎤⋅-⋅⎣⎦=20041⋅例 5 化简:(1); (2)1)x <<. 解:(1)原式===2=2=.(2)原式1x x =-,∵01x <<,∴11x x >>,所以,原式=1x x-.例6 已知x y ==求22353x xy y -+的值 .解:∵2210x y +==+=,1xy ==, ∴22223533()1131011289x xy y x y xy -+=+-=⨯-=. 练 习 1.填空:(1__ ___;(2)若(x =-,则x 的取值规模是_ _ ___;(3)=__ ___;(4)若x =,则=________.2.选择题:等式=成立的条件是( )(A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若b =,求a b +的值.4.比较大小:2-35-4(填“>”,或“<”)..分式1.分式的意义形如A B的式子,若B 中含有字母,且0B ≠,则称A B为分式.当M≠0时,分式A B具有下列性质:A A MB B M⨯=⨯; A A M B B M÷=÷.上述性质被称为分式的基赋性质. 2.繁分式像a b c d+,2m n p m n p+++这样,份子或分母中又含有分式的分式叫做繁分式.例1若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩解得 2,3A B ==.例2 (1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯; (3)证明:对任意大于1的正整数n, 有11112334(1)2n n +++<⨯⨯+.(1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯11111(1)()()223910=-+-++-1110=- =910. (3)证明:∵1112334(1)n n +++⨯⨯+=111111()()()23341n n -+-++-+=1121n -+,又n≥2,且n 是正整数,∴1n +1 一定为正数,∴1112334(1)n n +++⨯⨯+<12 . 例3设c e a=,且e >1,2c2-5ac +2a2=0,求e 的值. 解:在2c2-5ac +2a2=0两边同除以a2,得2e2-5e +2=0,∴(2e-1)(e -2)=0,∴e=12<1,舍去;或e =2.∴e=2. 练 习1.填空题:对任意的正整数n,1(2)n n =+(112n n -+);2.选择题:若223x y x y -=+,则x y=( )(A )1 (B )54(C )45(D )653.正数,x y 满足222x y xy -=,求x yx y-+的值. 4.计算1111 (12233499100)++++⨯⨯⨯⨯. 习题1.1A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2=________;(22=,则a 的取值规模是________; (3=________.B 组1.填空:(1)12a =,13b =,则2223352a aba ab b-=+-____ ____; (2)若2220x xy y +-=,则22223x xy y x y ++=+____;2.已知:11,23x y ==,的值.C 组1.选择题:(1)若,则( )(A )a b < (B )a b > (C )0a b << (D )0b a <<(2)计算等于( )(A )(B ) (C )(D )2.解方程22112()3()10x x x x +-+-=. 3.计算:1111132435911++++⨯⨯⨯⨯. 4.试证:对任意的正整数n,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14.因式分化的主要办法有:十字相乘法、提取公因式法、公式法、分组分化法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分化因式:(1)x2-3x +2; (2)x2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x2分化成图中的两个x 的积,再将常数项2分化成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x2-3x +2中的一次项,所以,有x2-3x +2=(x -1)(x -2).说明:今后在分化与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来暗示(如图1.1-2所示). (2)由图1.1-3,得 x2+4x -12=(x -2)(x +6).(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y)-1 =(x -1) (y+1) (如图1.1-5所示). 课堂练习一、填空题:1、把下列各式分化因式:(1)=-+652x x __________________________________________________.(2)=+-652x x __________________________________________________.(3)=++652x x __________________________________________________.(4)=--652x x __________________________________________________.(5)()=++-a x a x 12__________________________________________________.(6)=+-18112x x __________________________________________________.(7)=++2762x x __________________________________________________.(8)=+-91242m m __________________________________________________. -1 -2 x x 图1.1-1 -1 -21 1 图1.1-2-2 6 11 图1.1-3 -ay -by x x 图1.1-4 -11x y 图1.1-5(9)=-+2675x x __________________________________________________.(10)=-+22612y xy x __________________________________________________.2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b .二、选择题:(每小题四个答案中只有一个是正确的)1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x(5)44152++x x 中,有相同因式的是( )A 、只有(1)(2)B 、只有(3)(4)C 、只有(3)(5)D 、(1)和(2);(3)和(4);(3)和(5)2、分化因式22338b ab a -+得( )A 、()()3 11-+a aB 、()()b a b a 3 11-+C 、()()b a b a 3 11--D 、()()b a b a 3 11+-3、()()2082-+++b a b a 分化因式得( )A 、()()2 10-+++b a b aB 、()()4 5-+++b a b aC 、()()10 2-+++b a b aD 、()()5 4-+++b a b a4、若多项式a x x +-32可分化为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( )A 、3或9B 、3±C 、9±D 、3±或9±三、把下列各式分化因式1、()()3211262+---p q q p2、22365ab b a a +-3、6422--y y4、8224--b b2.提取公因式法例2 分化因式:(1)()()b a b a -+-552 (2)32933x x x +++解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++课堂练习:一、填空题:1、多项式xyz xy y x 42622+-中各项的公因式是_______________.2、()()()•-=-+-y x x y n y x m __________________.3、()()()•-=-+-222y x x y n y x m ____________________.4、()()()•--=-++--z y x x z y n z y x m _____________________.5、()()•--=++---z y x z y x z y x m ______________________.6、523623913x b a x ab --分化因式得_____________________.7.计算99992+=二、判断题:(正确的打上“√”,错误的打上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( )4、()111+=+--x x x x n n n ……………………………………………………………… ( )3:公式法例3分化因式: (1)164+-a (2)()()2223y x y x --+解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2)()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++课堂练习一、222b ab a +-,22b a -,33b a -的公因式是______________________________.二、判断题:(正确的打上“√”,错误的打上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x …………………………( ) 2、()()()()b a b a b a b a 43 4343892222-+=-=-…………………………………( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ( )4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五、把下列各式分化1、()()229n m n m ++--2、3132-x 3、()22244+--x x 4、1224+-x x 4.分组分化法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.课堂练习:用分组分化法分化多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.关于x 的二次三项式ax2+bx+c(a≠0)的因式分化.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分化为12()()a x x x x --.例5 把下列关于x 的二次多项式分化因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦ =(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.选择题:多项式22215x xy y --的一个因式为 ( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -2.分化因式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分化因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数规模内因式分化:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+.3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状.4.分化因式:x2+x -(a2-a).5. (测验考试题)已知abc=1,a+b+c=2,a²+b²+c²=,求1-c ab 1++1-a bc 1++1-b ca 1+的值. 2.1 一元二次方程根的判别式{情境设置:可先让学生通过具体实例探索二次方程的根的求法,如求方程的根(1)0322=-+x x (2) 0122=++x x (3)0322=++x x }我们知道,对于一元二次方程ax2+bx +c =0(a≠0),用配办法可以将其变形为2224()24b b ac x a a-+=. ① 因为a≠0,所以,4a2>0.于是(1)当b2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x1,2 (2)当b2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根x1=x2=-2b a ; (3)当b2-4ac <0时,方程①的右端是一个正数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根. 由此可知,一元二次方程ax2+bx +c =0(a≠0)的根的情况可以由b2-4ac 来判定,我们把b2-4ac 叫做一元二次方程ax2+bx +c =0(a≠0)的根的判别式,通经常使用符号“Δ”来暗示.综上所述,对于一元二次方程ax2+bx +c =0(a≠0),有(1) 当Δ>0时,方程有两个不相等的实数根x1,2=(2)当Δ=0时,方程有两个相等的实数根x1=x2=-2b a; (3)当Δ<0时,方程没有实数根.例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根.(1)x2-3x +3=0; (2)x2-ax -1=0;(3) x2-ax +(a -1)=0; (4)x2-2x +a =0.解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根.(2)该方程的根的判别式Δ=a2-4×1×(-1)=a2+4>0,所以方程一定有两个不等的实数根12a x +=, 22a x =. (3)由于该方程的根的判别式为Δ=a2-4×1×(a-1)=a2-4a +4=(a -2)2,所以,①当a =2时,Δ=0,所以方程有两个相等的实数根x1=x2=1;②当a≠2时,Δ>0, 所以方程有两个不相等的实数根x1=1,x2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a=4-4a =4(1-a),所以①当Δ>0,即4(1-a) >0,即a <1时,方程有两个不相等的实数根11x =21x =②当Δ=0,即a =1时,方程有两个相等的实数根x1=x2=1;③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变更而变更,于是,在解题过程中,需要对a 的取值情况进行讨论,这一办法叫做分类讨论.分类讨论这一思想办法是高中数学中一个很是重要的办法,在今后的解题中会经常地运用这一办法来解决问题.根与系数的关系(韦达定理) 若一元二次方程ax2+bx +c =0(a≠0)有两个实数根1x =,2x =, 则有1222b b x x a a-+===-;221222(4)444b b ac ac c x x a a a--====. 所以,一元二次方程的根与系数之间存在下列关系:如果ax2+bx +c =0(a≠0)的两根辨别是x1,x2,那么x1+x2=b a -,x1·x2=c a .这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x2+px +q =0,若x1,x2是其两根,由韦达定理可知x1+x2=-p,x1·x2=q,即 p =-(x1+x2),q =x1·x2,所以,方程x2+px +q =0可化为 x2-(x1+x2)x +x1·x2=0,由于x1,x2是一元二次方程x2+px +q =0的两根,所以,x1,x2也是一元二次方程x2-(x1+x2)x +x1·x2=0.因此有以两个数x1,x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1·x2=0.例2已知方程2560x kx+-=的一个根是2,求它的另一个根及k的值.阐发:由于已知了方程的一个根,可以直接将这一根代入,求出k的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k的值.解法一:∵2是方程的一个根,∴5×22+k×2-6=0,∴k=-7.所以,方程就为5x2-7x-6=0,解得x1=2,x2=-35.所以,方程的另一个根为-35,k的值为-7.解法二:设方程的另一个根为x1,则 2x1=-65,∴x1=-35.由(-35)+2=-5k,得 k=-7.所以,方程的另一个根为-35,k的值为-7.例3已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.阐发:本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m的方程,从而解得m的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x1,x2是方程的两根,由韦达定理,得x1+x2=-2(m-2),x1·x2=m2+4.∵x12+x22-x1·x2=21,∴(x1+x2)2-3 x1·x2=21,即 [-2(m-2)]2-3(m2+4)=21,化简,得 m2-16m-17=0,解得 m=-1,或m=17.当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意;当m=17时,方程为x2+30x+293=0,Δ=302-4×1×293<0,不合题意,舍去.综上,m=17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的规模,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4 已知两个数的和为4,积为-12,求这两个数.阐发:我们可以设出这两个数辨别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数辨别是x,y,则 x +y =4, ①xy =-12. ②由①,得 y =4-x,代入②,得x(4-x)=-12,即 x2-4x -12=0,∴x1=-2,x2=6.∴112,6,x y =-⎧⎨=⎩ 或226,2.x y =⎧⎨=-⎩ 因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程x2-4x -12=0的两个根.解这个方程,得x1=-2,x2=6.所以,这两个数是-2和6.说明:从上面的两种解法我们不难发明,解法二(直接利用韦达定理来解题)要比解法一简捷.例5 若x1和x2辨别是一元二次方程2x2+5x -3=0的两根.(1)求| x1-x2|的值; (2)求221211x x +的值;(3)x13+x23.解:∵x1和x2辨别是一元二次方程2x2+5x -3=0的两根, ∴1252x x +=-,1232x x =-.(1)∵| x1-x2|2=x12+ x22-2 x1x2=(x1+x2)2-4x1x2=253()4()22--⨯-=254+6=494, ∴| x1-x2|=72.(2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-. (3)x13+x23=(x1+x2)( x12-x1x2+x22)=(x1+x2)[ ( x1+x2) 2-3x1x2]=(-52)×[(-52)2-3×(32-)]=-2158. 说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x1和x2辨别是一元二次方程ax2+bx +c =0(a≠0),则12b x a -=,2b x -=, ∴| x1-x2|=||||a a ==. 于是有下面的结论:若x1和x2辨别是一元二次方程ax2+bx +c =0(a≠0),则| x1-x2|=||a (其中Δ=b2-4ac ).今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6 若关于x 的一元二次方程x2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值规模.解:设x1,x2是方程的两根,则x1x2=a -4<0, ①且Δ=(-1)2-4(a -4)>0. ②由①得 a <4,由②得 a <174.∴a 的取值规模是a <4. 练 习1.选择题:(1)方程2230x k -+=的根的情况是 ( )(A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值规模是 ( )(A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m≠0 2.填空:(1)若方程x2-3x -1=0的两根辨别是x1和x2,则1211x x +=.(2)方程mx2+x -2m =0(m≠0)的根的情况是. (3)以-3和1为根的一元二次方程是.3|1|0b -=,当k 取何值时,方程kx2+ax +b =0有两个不相等的实数根?4.已知方程x2-3x -1=0的两根为x1和x2,求(x1-3)( x2-3)的值.A 组1.选择题:(1)已知关于x 的方程x2+kx -2=0的一个根是1,则它的另一个根是( )(A )-3 (B )3 (C )-2 (D )2(2)下列四个说法:①方程x2+2x -7=0的两根之和为-2,两根之积为-7;②方程x2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x2-7=0的两根之和为0,两根之积为73-;④方程3 x2+2x =0的两根之和为-2,两根之积为0. 其中正确说法的个数是( )(A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax2-5x +a2+a =0的一个根是,则a的值是()(A)0 (B)1 (C)-1 (D)0,或-12.填空:(1)方程kx2+4x-1=0的两根之和为-2,则k=.(2)方程2x2-x-4=0的两根为α,β,则α2+β2=.(3)已知关于x的方程x2-ax-3a=0的一个根是-2,则它的另一个根是.(4)方程2x2+2x-1=0的两根为x1和x2,则| x1-x2|=.3.试判定当m取何值时,关于x的一元二次方程m2x2-(2m+1) x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根辨别是方程x2-7x-1=0各根的相反数.B 组1.选择题:若关于x的方程x2+(k2-1) x+k+1=0的两根互为相反数,则k的值为 ( )(A)1,或-1 (B)1 (C)-1 (D)02.填空:(1)若m,n是方程x2+2005x-1=0的两个实数根,则m2n+mn2-mn的值等于.(2)如果a,b是方程x2+x-1=0的两个实数根,那么代数式a3+a2b+ab2+b3的值是.3.已知关于x 的方程x2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x1和x2,如果2(x1+x2)>x1x2,求实数k 的取值规模.4.一元二次方程ax2+bx +c =0(a≠0)的两根为x1和x2.求:(1)| x1-x2|和122x x +;(2)x13+x23.5.关于x 的方程x2+4x +m =0的两根为x1,x2满足| x1-x2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x2-8x+7=0的两根,则这个直角三角形的斜边长等于 ( )(A) (B )3 (C )6 (D )9(2)若x1,x2是方程2x2-4x +1=0的两个根,则1221x x x x +的值为 ( )(A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x2-2(1-m)x +m2=0有两实数根α,β,则α+β的取值规模为()(A)α+β≥12(B)α+β≤12(C)α+β≥1 (D)α+β≤1(4)已知a,b,c是ΔABC的三边长,那么方程cx2+(a+b)x+=的根的情况是()(A )没有实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )有两个异号实数根2.填空:若方程x2-8x +m =0的两根为x1,x2,且3x1+2x2=18,则m =.3. 已知x1,x2是关于x 的一元二次方程4kx2-4kx +k +1=0的两个实数根.(1)是否存在实数k,使(2x1-x2)( x1-2 x2)=-32成立?若存在,求出k 的值;若不存在,说明理由;(2)求使1221x x x x +-2的值为整数的实数k 的整数值;(3)若k =-2,12x x λ=,试求λ的值.4.已知关于x的方程22(2)04m x m x ---=.(1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x1,x2满足|x2|=|x1|+2,求m 的值及相应的x1,x2.5.若关于x 的方程x2+x +a =0的一个大于1、零一根小于1,求实数a 的取值规模.2.2 二次函数二次函数y =ax2+bx +c 的图象和性质情境设置:可先让学生通过具体实例探索二次函数的图象,如作图(1)2x y = (2) 2x y -= (3)322-+=x x y问题1 函数y =ax2与y =x2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x2,y =12x2,y =-2x2的图象,通过这些函数图象与函数y =x2的图象之间的关系,推导出函数y =ax2与y =x2的图象之间所存在的关系.先画出函数y =x2,y =2x2的图象.从表中不难看出,要得到2x2的值,只要把相应的x2的值扩大两倍就可以了.再描点、连线,就辨别得到了函数y =x2,y =2x2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x2的图象可以由函数y =x2的图象各点的纵坐标变成原来的两倍得到.同学们也可以用类似于上面的办法画出函数y =12x2,y =-2x2的图象,并研究这两个函数图象与函数y =x2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax2(a≠0)的图象可以由y =x2的图象各点的纵坐标变成原来的a 倍得到.在二次函数y =ax2(a≠0)中,二次项系数a 决定了图象的开口标的目的和在同一个坐标系中的开口的大小.问题2 函数y =a(x +h)2+k 与y =ax2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x2的图象(如图2-2所示),从函数的同学我们不难发明,只要把函数y=2x2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不合”的特点.类似地,还可以通过画函数y =-3x2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论: 二次函数y =a(x +h)2+k (a≠0)中,a 决定了二次函数图象的开口大小及标的目的;h 决定了二次函数图象的左右平移,并且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,并且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax2+bx +c(a≠0)的图象的办法:由于y =ax2+bx +c =a(x2+b x a )+c =a(x2+b x a +224b a)+c -24b a224()24b b aca x a a-=++,所以,y =ax2+bx +c(a≠0)的图象可以看作是将函数y =ax2的图象作左右平移、上下平移得到的,于是,二次函数y =ax2+bx +c(a≠0)具有下列性质:(1)当a >0时,函数y =ax2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba -时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2ba-时,y 随着x 的增大而减小;当x =2b a -时,函数取最大值y =244ac b a-. 上述二次函数的性质可以辨别通过图2.2-3和图2.2-4直不雅地暗示出来.因此,在今后解决二次函数问题时,可以借助3x21=-对称轴是直线x =-1; 顶点坐标为(-1,4);当x =-1时,函数y 当x <-1时,y 随着x 时,y 随着x 的增大而减小;采取描点法画图,选顶点点B 3(,0)3和C 3(,0)3-,与过这五点画出图象(如图2-5所示).说明:从这个例题可以看出,按照配方后得到的性质2图2.2-5画函数的图象,可以直接选出关头点,减少了选点的盲目性,使画图更简便、图象更精确.函数y =ax2+bx +c 图象作图要领:(1) 确定开口标的目的:由二次项系数a 决定(2) 确定对称轴:对称轴方程为ab x 2-= (3)确定图象与x 轴的交点情况,①若△>0则与x 轴有两个交点,可由方程x2+bx +c=0求出②①若△=0则与x 轴有一个交点,可由方程x2+bx +c=0求出③①若△<0则与x 轴有无交点.(4) 确定图象与y 轴的交点情况,令x=0得出y=c,所以交点坐标为(0,c )(5) 由以上各要素出草图. 练习:作出以下二次函数的草图 (1)62--=x x y (2)122++=x x y (3)12+-=x y例2 某种产品的成本是120元/件,试销阶段每件产品的售价若日销售量y 是销售价x 的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?阐发:由于每天的利润=日销售量y×(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.解:由于y 是x 的一次函数,于是,设y =kx +(B ) 将x =130,y =70;x =150,y =50代入方程,有 解得 k =-1,b =200.∴y=-x +200. 设每天的利润为z (元),则z =(-x+200)(x -120)=-x2+320x -24000=-(x -160)2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.例3 把二次函数y =x2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x2的图像,求b,c 的值.解法一:y =x2+bx +c =(x+2b)224b c +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y xc =+++-+的图像,也就是函数y =x2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩解得b =-8,c =14.解法二:把二次函数y =x2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x2的图像,等价于把二次函数y =x2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x2+bx +c 的图像. 由于把二次函数y =x2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图像,即为y =x2-8x +14的图像,∴函数y =x2-8x +14与函数y =x2+bx +c 暗示同一个函数,∴b=-8,c =14.说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反应了两种不合的思维办法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以按照题目的具体情况,选择恰当的办法来解决问题.例4 已知函数y =x2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.阐发:本例中函数自变量的规模是一个变更的规模,需要对a 的取值进行讨论.解:(1)当a =-2时,函数y =x2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x =-2;(2)当-2<a <0时,由图2.2-6①可知,当x =-2时,函数取最大值y =4;当x =a 时,函数取最小值y =a2;(3)当0≤a<2时,由图2.2-6②可知,当x =-2时,函数取最大值y =4;当x =0时,函数取最小值y =0;(4)当a≥2时,由图2.2-6③可知,当x =a 时,函数取最大值y =a2;当x =0时,函数取最小值y =0.说明:在本例中,利用了分类讨论的办法,对a 的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直不雅地解决问题.练习1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是 ( )(A )y =2x2 (B )y =2x2-4x +2(C )y =2x2-1(D )y =2x2-4x(2)函数y =2(x -1)2+2是将函数y =2x2( )(A )向左平移1个单位、再向上平移2个单位得到的(B )向右平移2个单位、再向上平移1个单位得到的(C )向下平移2个单位、再向右平移1个单位得到的(D )向上平移2个单位、再向右平移1个单位得到的2.填空题(1)二次函数y =2x2-mx +n 图象的顶点坐标为(1,-2),则m=,n =.(2)已知二次函数y =x2+(m -2)x -2m,当m =时,函数图象的顶点在y 轴上;当m =时,函数图象的顶点在x 轴上;当m=时,函数图象经过原点.(3)函数y =-3(x +2)2+5的图象的开口向,对称轴为,顶点坐标为;当x =时,函数取最值y =;当x 时,y 随着x 的增大而减小.3.求下列抛物线的开口标的目的、对称轴、顶点坐标、最大(小)值及y 随x 的变更情况,并画出其图象.(1)y =x2-2x -3; (2)y =1+6 x -x2.①图2.2-6② ③。

初高中数学衔接教材(已整理)之欧阳科创编

初高中数学衔接教材(已整理)之欧阳科创编

初高中数学衔接教材编者的话现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。

高中则在使用。

另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。

新的课程改革,难免会导致很多知识的脱节和漏洞。

本书当然也没有详尽列举出来。

我们会不断的研究新课程及其体系。

将不遗余力地找到新的初高中数学教材体系中存在的不足,加以补充和完善。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初高中数学衔接教材1。

乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值。

解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A)2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A)总是正数 (B)总是负数(C)可以是零 (D )可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法。

1.十字相乘法例1 分解因式:(1)x2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x2-3x +2中的一次项,所以,有x2—3x+2=(x —1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1。

1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1。

1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1。

1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x—1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。

(2)=+-652x x __________________________________________________。

(3)=++652x x __________________________________________________。

(4)=--652x x __________________________________________________。

(5)()=++-a x a x 12__________________________________________________。

(6)=+-18112x x __________________________________________________。

(7)=++2762x x __________________________________________________。

(8)=+-91242m m __________________________________________________。

(9)=-+2675x x __________________________________________________。

(10)=-+22612y xy x __________________________________________________. 2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b 。

二、选择题:(每小题四个答案中只有一个是正确的)1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x (5)44152++x x 中,有相同因式的是( ) A、只有(1)(2) B 、只有(3)(4) C 、只有(3)(5) ﻩﻩD 、(1)和(2);(3)和(4);(3)和(5)2、分解因式22338b ab a -+得( )A 、()()3 11-+a a B 、()()b a b a 3 11-+ C、()()b a b a 3 11-- D 、()()b a b a 3 11+- 3、()()2082-+++b a b a 分解因式得( )A 、()()2 10-+++b a b a B 、()()4 5-+++b a b a C 、()()10 2-+++b a b a D 、()()5 4-+++b a b a 4、若多项式a x x +-32可分解为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( ) A 、3或9 B、3± C 、9± D 、3±或9±三、把下列各式分解因式1、()()3211262+---p q q p 2、22365ab b a a +--1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay -by x x 图1.1-4 -1 1x y 图1.1-53、6422--y y4、8224--b b2.提取公因式法例2 分解因式:(1)()()b a b a -+-552ﻩ ﻩ(2)32933x x x +++ 解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++ =2(3)(3)x x ++. 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++ 课堂练习:一、填空题:1、多项式xyz xy y x 42622+-中各项的公因式是_______________。

2、()()()•-=-+-y x x y n y x m __________________。

3、()()()•-=-+-222y x x y n y x m ____________________。

4、()()()•--=-++--z y x x z y n z y x m _____________________。

5、()()•--=++---z y x z y x z y x m ______________________. 6、523623913x b a x ab --分解因式得_____________________. 7.计算99992+= 二、判断题:(正确的打上“√",错误的打上“×” )1、()b a ab ab b a -=-24222…………………………………………………………ﻩ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( ) 4、()111+=+--x x xx n n n……………………………………………………………… ( )3:公式法例3 分解因式:ﻩ(1)164+-a (2)()()2223y x y x --+ 解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2) ()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++课堂练习一、222b ab a +-,22b a -,33b a -的公因式是______________________________.二、判断题:(正确的打上“√”,错误的打上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x …………………………ﻩ( )2、()()()()b a b a b a b a 43 4343892222-+=-=- …………………………………ﻩ( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ﻩ( ) 4、()()()y x y x yx y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( ) 五、把下列各式分解1、()()229n m n m ++-- 2、3132-x3、()22244+--x x 4、1224+-x x4.分组分解法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+- =22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.课堂练习:用分组分解法分解多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.关于x 的二次三项式ax2+b x+c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-。

相关文档
最新文档