(同济大学)第5讲_全部--逆解法与半逆解法

合集下载

弹性力学8-逆解法、半逆解法、梁的纯弯曲

弹性力学8-逆解法、半逆解法、梁的纯弯曲
结论4: 应力分量为x、y 的二次函数分布。
第三章 平面问题直角坐标解答 3.1 逆解法与半逆解法 多项式解答
总结: (多项式应力函数 ( x, y) 的性质) 4 多项式次数 n < 4 时,则系数可以任意选取,总可满足 0 。 ( 1) 多项式次数 n ≥ 4 时,则系数须满足一定条件,才能满足 4 0 。 多项式次数 n 越高,则系数间需满足的条件越多。

h y , f y ( y ) h 12ax 2 , f x ( xy ) h 0 y y 2 2 2
FN f x dy ah3 , FS f y dy 0, M f x ydy 0
第三章 平面问题直角坐标解答 本节内容 3.2 矩形梁纯弯曲
3、由边界形状和应力分量反推 出边界上的面力: 在主要边界上:
2 l 2 x , f x ( x ) x l 12ay , f y ( xy ) l 0 x 2 2 2 2 2
h 2 h 2 h 2 h 2 h 2 h 2
在次要边界上: l x , f x ( x ) x l 12ay 2 , f y ( xy ) l 0 x 2 2 2 h h h FN 2h f x dy ah3 , FS 2h f y dy 0, M 2h f x ydy 0
(2)应力函数: (3)应力函数:
b 2c
cy
2
y
xy b
2c
应力分量 x 2c, y 0, xy yx 0
x
y
结论2:二次多项式对应于均匀分布的应力。
第三章 平面问题直角坐标解答 3.1 逆解法与半逆解法 多项式解答

弹性力学的半逆解法

弹性力学的半逆解法

弹性力学的半逆解法研究指导老师:刘平姓名:曹天阁班级:研13学号:M13746弹性力学的半逆解法研究姓名:曹天阁学号:M13746摘要:利用应力平衡方程和相容方程的特点,根据问题的应力边界条件以应力分量的函数表达式作为试函数求解弹性力学问题。

这种方法简化了计算过程。

本文推荐用剪应力函数求解问题较为容易。

关键词:弹性力学;解析法;应力函数THE SEMI- REVERSE METHOD TO SOLVE PROBLEMS OF THE ELASTICITY Abstract:Stress component functions are used to solve the problems of elasticity based on the equilibrium equations and stress compatible equation according to boundary conditions。

Shear stress function is recom2mended to solve the elasticity problems。

Key words:elasticity;analysis method;stress function半逆解法是圣维南于1856 年提出来的,它是求解弹性力学问题十分重要的方法,在弹性力学中占有极重要的地位。

半逆解法通常根据问题的应力边界条件以及结构的受力特点凑合出某应力分量的待定函数式,再根据假设的该应力分量函数式通过积分求出应力函数<从而求得各应力分量[1]。

这种方法较为有效,但通过解平衡方程求应力函数<时要做消元运算,升高了微分方程的阶数,以至于运算过于复杂,很有改进的必要。

实际上,按应力求解时只要各应力分量满足平衡方程、应力相容方程和边界条件,则是问题的解。

可以看出,在不考虑体积力的情况下各应力分量均取为常量是可以满足所有方程的。

5 第三章 弹性力学平面问题的解析解法

5 第三章 弹性力学平面问题的解析解法
将式 (d) 代入 (c) 中第三式,得:
M 2 f 2 ( x) x x v0 EI
将上式代入式(d),得
f1 ( y) y u0
M x f1( y ) f 2( x) 0 EI
平衡方程:
E 2u 1 2u 1 2 v 2 X 0 2 2 2 y 2 xy 1 x 2 2 2 E v 1 v 1 u 2 Y 0 2 2 2 x 2 xy 1 y
上下边界: X Y 0
Y xy 0 Y xy 0
2b x
对应于矩形板左右端面均匀拉伸(b>0) 或均匀压缩(b<0)。(包括轴向拉压)
y
(2)
cx
2
2
应力分量: y 2c 2
x
x xy 0
2c
x
对应于矩形板上下端面均匀拉伸(b>0) 或均匀压缩(b<0)。(包括轴向拉压)
4
多项式次数 n 越高,则系数间需满足的条件越多。 (2) 一次多项式,对应于无体力和无应力状态;任意应力函数φ(x,y)上加 上或减去一个一次多项式,对应力无影响。 (3) 二次多项式,对应均匀应力状态,即全部应力为常量;三次多项式, 对应于线性分布应力。 (4) 用多项式构造应力函数φ(x,y) 的方法 —— 逆解法(只能解决简单直 线应力边界问题)。
第六节 位移分量的求出
第四节 逆解法与半逆解法—多项式解答
(1) 逆解法
(1)根据问题的条件(几何形状、受力特点、边界条件等),
假设各种满足应力函数表示相容方程的φ(x,y) 的形式;
(2)然后利用应力分量计算式求出

线性代数课件(完整版)同济大学

线性代数课件(完整版)同济大学

a11 a12 a13
a21 a22 a23
引进记号
a31 a32 a33
原则:横行竖列
主对角线 a11 a12 a13
a21 a22 a23 a11a22a33 a12a23a31 a13a21a32
副对角线 a31 a32 a33
a13a22a31 a12a21a33 a11a23a32
p1 p2 L pn
4. 当 p1 p2 L是p偶n 排列时,对应的项取正号; 当 p1 p2 L是奇pn排列时,对应的项取负号.
思考题: 1 1成立吗? 答:符号 1可以有两种理解: ✓若理解成绝对值,则 1 ;1 ✓若理解成一阶行列式,则 1 . 1
注意:当n = 1时,一阶行列式|a| = a,注意不要与 绝对值的记号相混淆. 例如:一阶行列式 1 1 .
线性代数(第五版)
在以往的学习中,我们接触过二 元、三元等简单的线性方程组.
但是,从许多实践或理论问题里 导出的线性方程组常常含有相当 多的未知量,并且未知量的个数 与方程的个数也不一定相等.
我们先讨论未知量的个数与方程 的个数相等的特殊情形. 在讨论这一类线性方程组时,我 们引入行列式这个计算工具.
例:写出四阶行列式中含有因子a11a的23 项.
解:a11a23a32a44 和 a11a23a34a42 .
例:计算行列式
a11 0 0 0
0 D1 0
a22 0 0 a33
0 0
0 0 0 a44
0 0 0 a14
0 D2 0
0 a23 a32 0
0 0
a41 0 0 0
a11 a12 a13 a14
(a a a a )x a b b a

线性代数同济大学第五版课件5-3

线性代数同济大学第五版课件5-3
正整数, f(x) = a0xm + a1xkB 相似, Am 与 Bm 相似, AT 与 BT 相似,
f(A) 与 f(B) 相似.
上页 下页
三、矩阵的对角化
对于 n 阶方阵 A , 若存在可逆矩阵 P , 使 P-1AP = ( 为对角矩阵),则称 A 能对角化.
以这些向量为列构造矩阵 P = ( p1 , p2 , · , pn ), · · 则 P 可逆, 且 AP = P , 其中 =diag (1 , 2 , · , n ) , · · 即 推论 P-1AP = .
证毕
如果n阶矩阵A的n个特征值互不相等,
则A与对角阵相似.
上页 下页
0 0 1 1 1 x , 问 x 为 何 值 时 , 例11 设 A 1 0 0 矩 阵A能 对 角 化 ?
第 三 节
主要内容
相似矩阵
相似矩阵的概念 相似矩阵的性质 矩阵对角化的充要条件
上页
下页
一、相似矩阵的概念
定义 7 设 A , B 为 n 阶方阵, 若有可逆矩阵P,
使 P-1AP = B , 则称矩阵 A 相似于矩阵 B. 对 A 进行运算
P-1AP 称为对 A 进行相似变换,可逆矩阵 P 称 为把 A 变成 B 的相似变换矩阵.
上页 下页
可. 推论 A与 阶方阵 A 与对角矩阵 由于 若 n B 相似, 所以, 必有可逆矩阵 P
由相似的定义和定理3,有下列 结论:
1. 若矩阵 A 与 矩阵 B 相似, 若矩阵 A
可逆, 则矩阵 B 也可逆, 且 A-1 与 B-1 相似.
2.若矩阵 A 与 B 相似, k 是常数, m 是
1 , 2 , · , n 的特征向量. · ·

弹性力学逆解法和半逆解法多项式解法PPT文档108页

弹性力学逆解法和半逆解法多项式解法PPT文档108页

谢谢!
弹性力学逆解法和半逆解法多项式解法
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。Байду номын сангаас
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿

逆解法与半逆解法

逆解法与半逆解法

逆解法与半逆解法
2010-10-10 10:42
对于一般的工程构件,即弹性体,由于偏微分方程边值问题在数学上求解的困难,因此直接根据给定的边界条件求解弹性力学的基本方程是十分困难的。

为了避开偏微分方程边值问题直接求解的困难,在弹性力学问题的求解中,经常采用的方法是逆解法和半逆解法。

逆解法就是根据研究问题的性质和研究对象特点,确定基本未知量,写出相应的基本方程并且假设一组满足全部基本方程的应力函数或位移函数。

然后在确定的坐标系下,考察具有确定的几何尺寸和形状的物体,根据边界条件确定表面作用面力或者已知位移。

由此确定假设函数可以求解的弹性力学问题。

半逆解法就是对于给定的弹性力学问题,根据弹性体的几何形状,受力特征和变形的特点或者已知的一些简单结论,如材料力学得到的初等结论,假设部分应力分量或者部分位移分量的函数形式为已知,由基本方程确定其他的未知量,然后根据边界条件确定未知函数中的待定系数。

逆解法和半逆解法的求解过程带有"试算"的性质,显然弹性力学解的唯一性定理是逆解法和半逆解法的理论依据。

弹性力学8-逆解法、半逆解法、梁的纯弯曲

弹性力学8-逆解法、半逆解法、梁的纯弯曲
3.2 矩形梁的纯弯曲
3.3 位移分量的求出
3.4 简支梁受均布荷载
3.5 楔形体受重力和液体压力
本章重点: 用逆解法、半逆解法求解平面弹性力学问题。
第三章 平面问题直角坐标解答 本节内容 3.1 逆解法与半逆解法 多项式解答
内容要点: 1. 逆解法与半逆解法解题方法的介绍
2.
逆解法举例—应力函数的多项式解答
结论3:三次多项式对应于线性应力分布。
第三章 平面例——多项式解答
3)应力函数 ϕ为三次多项式
可解决的问题 ay 3 , ( fx fy 0) 由式(2-24)可得: 讨论:
x 6ay y 0 xy yx 0
1)应力函数 ϕ为一次多项式
( 1) 其中: a、b、c 为待定系数。 4 4 4 4 检验φ(x,y) 是否满足双调和 4 2 2 2 4 0 ( 2) x x y y 方程: 显然φ(x,y) 满足双调和方程,可作为应力函数。 (3) 对应的应力分量: 2 2 2 xy 0 x 2 fx x fx x y 2 f y y f y y x xy y 假定体力:fx = fy =0,则有: x y xz 0 (1)一次多项式对应于无体力和无应力状态; 结论1: (2)在该函数φ(x,y)上加上或减去一个一次多项式, 对应力无影响。
( x, y ) 0 xy
0
2
y2
第三章 平面问题直角坐标解答 3.1 逆解法与半逆解法 多项式解答
2.逆解法举例——多项式解答
3)应力函数 ϕ为三次多项式
公式推导
( 1)
ax3 bx 2 y cxy2 dy 3

简述平面问题半逆解法的求解过程

简述平面问题半逆解法的求解过程

简述平面问题半逆解法的求解过程
平面问题半逆解法是一种以解析函数和数学模型的方式来求解
平面问题的技术,它能够有效地结合约束条件,以最优方式寻求出最佳解决方案。

因此,平面问题半逆解法在工程设计、物流规划、布局优化和运输等多个领域都发挥着重要作用。

一般而言,平面问题半逆解法的求解过程可以分为三个主要步骤:第一步,建立求解模型,即精确地描述问题,包括目标函数和对应的约束条件;
第二步,进行求解,一般采用数学解析的方法,解得满足约束条件的最优解;
第三步,对求解结果进行验证,以确认求解方案是否符合预期。

在第一步建立求解模型时,首先要明确问题的实际目的,即目标函数及其约束条件,根据问题对象的因素确定相应的数学模型,并将该模型表示为数学公式,以此来实现对问题的精确描述。

而完成求解模型建立时,除了理解问题本身,还需要认真研究题目中所提供的信息,根据实际情况确定相应的模型结构,以便搭建出符合要求的模型。

在进行求解时,通常采用数学解析的方法,将模型的数学公式进行加工处理,得出满足约束条件的最优解,并判断解的有效性。

不同的问题,所需要的解析方法也会有所不同,通常使用多元一次方程解析法、多元二次方程解析法、研究法求解最优解等。

最后,对求解结果进行验证,以确认求解方案是否符合预期。

需要根据实际的条件和要求,将求解的结果与实际的情况进行比较,可
以采用实际实验的方式验证求解的结果是否符合预期,以此来确认求解的正确性。

总之,平面问题半逆解法的求解过程是一个复杂而又有趣的过程,需要综合运用数学模型、解析函数、约束条件等多种方法,以最优方式寻求出最佳解决方案。

它不仅能够解决实际问题,而且为后续研究奠定基础,提供了全新的思路和指导方向。

5第三章弹性力学平面问题的解析解法讲解

5第三章弹性力学平面问题的解析解法讲解

2 X Y 2 x y y 2 x 2 ( x y ) (1 )
(平面应力情形)
(3)边界条件:
l ( x ) s m( xy ) s X m( y ) s l ( xy ) s Y
x 2 y
2


y 2 x
2
xy
2 xy
(2-28)
(无体力情形)
(3) 再让 x , y , xy满足应力边界条件和位移单值条件 (多连体问题)。
第三章 弹性力学平面问题的 解析解法
第四节 第五节 逆解法与半逆解法—多项式解答 矩形梁的纯弯曲
(2)边界条件: 位移边界条件: 应力边界条件:
(1 )
u s u , vs v
(2)
E u v 1 u v l m X 2 y s 2 y x s 1 x (3 ) v u 1 v u E m l Y 2 1 y x s 2 x y s
4.
按应力求解平面问题的基本方程 说明:
(1)对位移边界问题,不易按应力 求解。
(1)平衡方程
x xy X 0 x y yx y Y 0 x y
(2)相容方程(形变协调方程)
(2)对应力边界问题,且为单连通 问题,满足上述方程的解是唯 一正确解。
(3)对多连通问题,满足上述方程 外,还需满足位移单值条件, 才是唯一正确解。
按应力求解平面问题(X = 常量、Y = 常量)的归结为: (1) 先由方程(2-27)求出应力函数: ( x ,7) 0 4 2 2 4 x x y y x , y , xy (2) 然后将 ( x , y ) 代入式(2-26)求出应力分量:

弹性力学 复习资料(全) 同济大学

弹性力学 复习资料(全) 同济大学

第五章
线性弹性本构关系
不考虑热效应,克定律。 1、应变能密度和本构关系: ★格林公式 ij
W ,其中 W 是应变能,指外力在准静态过程中所做的功全部转化为由 ij
于变形而储存在弹性体内的能量。 2、广义胡克定律: ij Eijkl kl ,其中 Eijkl 为一个四阶张量,称为弹性系数或弹性模量张量。 4、各向同性弹性体:材料沿所有方向的弹性性质都是相同的,在数学上,即应力应变关系 的分量形式与坐标系无关。 令 C12 , C11 C12 / 2 ,称为 Lame(拉梅)系数
第八章 平面问题的极坐标解答
ui ui , 在S(位移边界)上 u
3、叠加原理:基本方程和边界条件都是线性的,叠加原理成立。对于大变形问题、材料非 线性问题和边界条件非线性的小变形问题,叠加原理不成立。 4、解的存在性和唯一性:逆解法和半逆解法。 5、★位移解法:以位移作为基本未知函数,在基本方程中消去应变张量和应力张量,可导 出仅用位移表示的方程组。 ,i 2ui fi 0 Lame Navier方程:
u v 1 u v , y , xy x y 2 y x
1 x x 1 y E1 1 物理方程: y y 1 x E1 1 1 xy xy E1
4
同济大学 弹性力学复习资料
1150899 陈力畅
第七章 平面问题的直角坐标解答
1、平面应变问题: u u x, y ,v v x, y ,w 0 等截面柱形物体;柱体所受的体积力和侧面所受的面力都平行于 Oxy 平面,且它们的分 布沿 z 方向不变。 几何方程: x
第六章

线性代数知识点归纳(同济_第五版)

线性代数知识点归纳(同济_第五版)

线性代数复习要点第一部分 行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算1. 行列式的计算:① (定义法)1212121112121222()1212()n n nn n j j j n j jnj j j j n n nna a a a a a D a a a a a a τ==-∑1②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.1122,,0,.i j i j in jn A i j a A a A a A i j ⎧=⎪++=⎨≠⎪⎩③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.11221122***0**0*0nnnnb b A b b b b ==④ 若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1例 计算2-100-130000110-25解2-100-130000110-25=2-1115735-13-25⋅=⨯=⑤ 关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-1⑥ 范德蒙德行列式:()1222212111112n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111例 计算行列式⑦ a b -型公式:1[(1)]()n a b bbb a bba nb a b b b ab b b ba-=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1nD -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法.(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算.⑩(数学归纳法)2. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;3. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值.4. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-第二部分 矩阵1. 矩阵的运算性质2. 矩阵求逆3. 矩阵的秩的性质4. 矩阵方程的求解1. 矩阵的定义 由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭称为m n ⨯矩阵. 记作:()ijm nA a ⨯=或m n A ⨯① 同型矩阵:两个矩阵的行数相等、列数也相等. ② 矩阵相等: 两个矩阵同型,且对应元素相等. ③ 矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数λ与矩阵A 的乘积记作A λ 或A λ,规定为()ij A a λλ=.c. 矩阵与矩阵相乘:设()ij m s A a ⨯=, ()ij s n B b ⨯=,则()ij m n C AB c ⨯==, 其中12121122(,,,)j jij i i is i j i j is sj sj b b c a a a a b a b a b b ⎛⎫ ⎪ ⎪==+++ ⎪ ⎪ ⎪⎝⎭注:矩阵乘法不满足:交换律、消去律, 即公式00AB BAAB A ==⇒=或B=0不成立.a. 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭b. 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量;11112111111211221222221222221212000000n n n n m m m mn m m m m m mn a b b b a b a b a b ab b b a b a b a b B a b b b a b a b a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Λ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦c. 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量.11121111121212122221212222121122000000n m n n m n m m mn m m m m mn b b b a a b a b a b b b b a a b a b a b B b b b a a b a b a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Λ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦d. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. ④ 方阵的幂的性质:mnm nA A A+=, ()()m n mnA A =⑤ 矩阵的转置:把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作TA . a. 对称矩阵和反对称矩阵: A 是对称矩阵TA A =.A 是反对称矩阵T A A =-.b. 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑥ 伴随矩阵: ()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A-=, 11AA --=.分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B BB A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭2. 逆矩阵的求法 方阵A 可逆0A ≠.①伴随矩阵法 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号② 初等变换法 1()()A E E A -−−−−→初等行变换例 求122212221⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦的逆矩阵. 解32322121232313213219221210203312210012210021212010036210012033221001033011009221122100999212010999221001999r r r r r r r r r r r r r r ------+⎡⎤--⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-→---→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦-⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦1122999122212,212999221221999-⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎢⎥⎣⎦所以③ 分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B B A---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭ 1111A O A O CB B CA B ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭④1231111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 3211111213a a a a a a -⎛⎫⎛⎫⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤ 配方法或者待定系数法 (逆矩阵的定义1AB BA E A B -==⇒=)例 设方阵A 满足矩阵方程220E --=A A , 证明A 及2E +A 都可逆, 并求1-A 及()12E -+A . 解 由220E --=A A 得()12E E -=A A , 故A 可逆, 且()112E -=-A A . 由220E --=A A 也可得(2)(3)4E E E +-=-A A 或1(2)(3)4E E E ⎡⎤+--=⎢⎥⎣⎦A A , 故2E +A 可逆, 且()12E -+A 1(3)4E =--A .3.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖 线后面的第一个元素非零. 当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时, 4. 初等变换与初等矩阵 对换变换、倍乘变换、倍加(或消法)变换☻矩阵的初等变换和初等矩阵的关系:① 对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; ② 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .注意: 初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.5.关于A矩阵秩的描述:①、()=r A r,A中有r阶子式不为0,1+r阶子式 (存在的话) 全部为0;②、()<r A r,A的r阶子式全部为0;③、()≥r A r,A中存在r阶子式不为0;☻矩阵的秩的性质:①()A O r A≠⇔≥1; ()0A O r A=⇔=;0≤()m nr A⨯≤min(,)m n②()()()T Tr A r A r A A==③()()r kA r A k=≠其中0④()(),,()m n n sr A r B nA B r ABB Ax⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB≤{}min(),()r A r B⑥若P、Q可逆,则()()()()r A r PA r AQ r PAQ===;即:可逆矩阵不影响矩阵的秩.⑦若()()()m nAxr AB r Br A nAB O B OAAB AC B Cο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩只有零解在矩阵乘法中有左消去律;若()()()n sr AB r Br B nB⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()r rE O E Or A r A AO O O O⎛⎫⎛⎫=⇒ ⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型.⑨()r A B±≤()()r A r B+, {}max(),()r A r B≤(,)r A B≤()()r A r B+⑩()()A O O Ar r A r BO B B O⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭, ()()A Cr r A r BO B⎛⎫≠+⎪⎝⎭☻求矩阵的秩:定义法和行阶梯形阵方法6 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)A B E X −−−−→初等行变换(I)的解法:构造()() A E B X ⎛⎫⎛⎫ ⎪ ⎪−−−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等列变换(II)的解法:构造T T T TA XB X X(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得第三部分 线性方程组1. 向量组的线性表示2. 向量组的线性相关性3. 向量组的秩4. 向量空间5.线性方程组的解的判定6. 线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系) (2)非齐次线性方程组的解的结构(通解) 1.线性表示:对于给定向量组12,,,,n βααα,若存在一组数12,,,n k k k 使得1122n n k k k βααα=+++,则称β是12,,,n ααα的线性组合,或称称β可由12,,,n ααα的线性表示.线性表示的判别定理:β可由12,,,n ααα的线性表示由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩有解②、1112111212222212⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭nn m m mn m m a a a x b a a a x b Ax a a a x b β③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)2. 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b bb c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i i A c β= ,(,,)i s =1,2⇔i β为i Ax c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅=⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,A 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔11112212121122222211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩3. 线性相关性判别方法: 法1法2法3推论♣线性相关性判别法(归纳)♣线性相关性的性质① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一.4. 最大无关组相关知识向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B .12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅ ① 矩阵的行向量组的秩=列向量组的秩=矩阵的秩.行阶梯形矩阵的秩等于它的非零行的个数.② 矩阵的初等变换不改变矩阵的秩,且不改变行(列)向量间的线性关系③ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .④ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑤ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑥ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑦ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑧ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关; 5. 线性方程组理论Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭1(1)解得判别定理(2)线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪+++=⇔+++=⎪⎪+++=⇔+++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解(3) 判断12,,,s ηηη是Ax ο=的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数.(4) 求非齐次线性方程组Ax = b 的通解的步骤12112(1()(2)()()(3)(4)10,,...,(5)A b r A b r A r n n r Ax b Ax Ax b x k k ααααααα==<-====++0n-r 0) 将增广矩阵通过初等行变换化为;当时,把不是首非零元所在列对 应的个变量作为自由元;令所有自由元为零,求得的一个;不计最后一列,分别令一个自由元为,其余自由元 为零,得到的{};写出非齐次线性方程组的阶梯形矩阵特解基础 解系 通解 212...,,...,n r n rn r k k k k α---++其中为任意常数.例 求下述方程组的解123451234523457,3232,22623x x x x x x x x x x x x x x ++++=⎧⎪+++-=-⎨⎪+++=⎩解 19100222111117123(,)3121320113220212623001000A A b ⎛⎫-- ⎪⎛⎫ ⎪⎪ ⎪==--−−→ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭, 由于()()25r A r A ==<,知线性方程组有无穷多解.原方程组等价于方程组1354234519222123322x x x x x x x x ⎧=----⎪⎪⎨⎪=---+⎪⎩,令3451000,1,0.001x x x ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭求得等价方程组对应的奇次方程组的基础解系 12312021213,,.100010001ξξξ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭求特解: 令3450x x x ===,得12923,.22x x =-= 故特解为92232.000η*-⎛⎫⎪- ⎪ ⎪= ⎪⎪ ⎪⎝⎭所以方程组的通解为 1231202921213232100000000010x k k k --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(123,,k k k 为任意常数).(5)其他性质一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,s ξξξ是Ax ο=的一个解⇒1,,,,s ξξξη*线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同)⇔()()A r r A r B B ⎛⎫==⎪⎝⎭, 且有结果: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P ); 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ).第四部分 方阵的特征值及特征向量1. 施密特正交化过程2. 特征值、特征向量的性质及计算3. 矩阵的相似对角化,尤其是对称阵的相似对角化1.①n 个n 维线性无关的向量,两两正交,每个向量长度为1. ②1(,)ni i i a b αβ===∑③(,)0αβ=. 记为:αβ⊥④21ni i a α====∑⑤(,1ααα==. 即长度为1的向量.2. 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 线性性:1212(,)(,)(,)ααβαβαβ+=+ (,)(,)k k αβαβ=3. ① 设A 是一个n 阶方阵, 若存在数λ和n 维非零列向量x , 使得 Ax x λ=,则称λ是方阵A 的一个特征值,x为方阵A 的对应于特征值λ的一个特征向量. ②0E A λ-=(或0A E λ-=).③()E A λϕλ-=(或()A E λϕλ-=).④ ()ϕλ是矩阵A 的特征多项式⇒()A O ϕ= ⑤ 12n A λλλ= 1ni A λ=∑tr ,A tr 称为矩阵A ⑥ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.⑦ 若0A =,则λ=0为A 的特征值,且Ax ο=的基础解系即为属于λ=0的线性无关的特征向量.⑧ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭、21122()n n A a b a b a b A =+++,从而A 的特征值为:11122n n A a b a b a b λ==+++tr , 23n λλλ====0.○注()12,,,Tn a a a 为A 各行的公比,()12,,,n b b b 为A 各列的公比.⑨ 若A 的全部特征值12,,,n λλλ,()f A 是多项式,则:① 若A 满足()f A O =⇒A 的任何一个特征值必满足()i f λ=0 ②()f A 的全部特征值为12(),(),,()n f f f λλλ;12()()()()n f A f f f λλλ=.⑩ A 与TA 有相同的特征值,但特征向量不一定相同. 4. 特征值与特征向量的求法(1) 写出矩阵A 的特征方程0A E λ-=,求出特征值i λ. (2) 根据()0i A E x λ-=得到 A 对应于特征值i λ的特征向量. 设()0i A E x λ-=的基础解系为 12,,,in r ξξξ- 其中()i i r r A E λ=-.则A 对应于特征值i λ的全部特征向量为1122,i i n r n r k k k ξξξ--+++其中12,,,i n r k k k -为任意不全为零的数.例 求211020413A -⎛⎫⎪= ⎪ ⎪-⎝⎭的特征值和全部特征向量.解 第一步:写出矩阵A 的特征方程,求出特征值.221121020(2)(2)(1)043413A E λλλλλλλλλ-----=-=-=--+=---- 解得特征值为1231, 2.λλλ=-==第二步:对每个特征值λ代数齐次线性方程组()0A E x λ-=,求其非零解,即对应于特征值λ的全部特征向量.当1λ=- 时,齐次线性方程组为()0A E x +=,系数矩阵111101030010414000A E --⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭得基础解系:1101P ⎛⎫⎪= ⎪ ⎪⎝⎭,故对应于特征值1λ=-的全部特征向量为11(0)k P k ≠. 当2λ= 时,齐次线性方程组为(2)0A E x -=,系数矩阵4114112000000411000A E ---⎛⎫⎛⎫ ⎪ ⎪-=→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭得基础解系:2011P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,3104P ⎛⎫⎪= ⎪ ⎪⎝⎭.故对应于特征值2λ=的全部特征向量为 2233k P k P +, 其中23,k k 不全为零. 5. ①1P AP B -= (P 为可逆矩阵)②1P AP B -= (P 为正交矩阵)③A 与对角阵Λ相似.(称Λ是A 6. 相似矩阵的性质: ①E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.○注α是A 关于0λ的特征向量,1P α-是B 关于0λ的特征向量. ②A B =tr tr③A B = 从而,A B 同时可逆或不可逆 ④ ()()r A r B =⑤若A 与B 相似, 则A 的多项式()f A 与B 的多项式()f A 相似. 7. 矩阵对角化的判定方法① n 阶矩阵A 可对角化 (即相似于对角阵) 的充分必要条件是A 有n 个线性无关的特征向量.这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. 设i α为对应于i λ的线性无关的特征向量,则有:121n P AP λλλ-⎛⎫⎪⎪= ⎪ ⎪⎝⎭.② A 可相似对角化⇔()i i n r E A k λ--=,其中i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量.○注:当iλ=0为A 的重的特征值时,A 可相似对角化⇔i λ的重数()n r A =-=Ax ο=基础解系的个数.③ 若n 阶矩阵A 有n 个互异的特征值⇒A 可相似对角化. 8. 实对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 不同特征值对应的特征向量必定正交;○注:对于普通方阵,不同特征值对应的特征向量线性无关; ③ 一定有n 个线性无关的特征向量. 若A 有重的特征值,该特征值i λ的重数=()i n r E A λ--; ④ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形; ⑤ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; ⑥ 两个实对称矩阵相似⇔有相同的特征值. 9. 正交矩阵 TAA E =正交矩阵的性质:① 1T A A -=;② T TAA A A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.10.例 实对称阵120222023A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,求正交阵Q ,使得AQ Q 1-为对角阵.解 120222(1)(2)(5)0023A E λλλλλλλ---=---=-+--=-- 所以A 的特征值为11λ=-,22λ=,35λ=,当11λ=-时,解()0A E x +=,得基础解系为1(2,2,1)Tx = 当22λ=时,解(2)0A E x -=,得基础解系为2(2,1,2)Tx =-- 当35λ=时,解(5)0A E x -=,得基础解系为3(1,2,2)Tx =-令111221(,,)333T x y x ==222212(,,)333T x y x ==--333122(,,)333T x y x ==-令123221333212(,,)333122333Q y y y ⎛⎫ ⎪ ⎪⎪==-- ⎪ ⎪ ⎪- ⎪⎝⎭,则⎪⎪⎪⎭⎫ ⎝⎛==-1000500021AQ Q AQ Q T11.123,,ααα线性无关,112122111313233121122(,)(,)(,)(,)(,)(,)βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ=222βηβ= 333βηβ= 技巧:取正交的基础解系,跳过施密特正交化。

(完整版)同济大学弹性力学往年试题

(完整版)同济大学弹性力学往年试题

同济大学本科课程期终考试(考查)统一命题纸 A 卷2006—2007学年第 一 学期课程名称:弹性力学 课号: 任课教师:专业年级: 学号: 姓名: 考试(√)考查( ) 考试(查)日期: 2007 年1月 22 日 出考卷教师签名:朱合华、许强、王君杰、李遇春、陈尧舜、邹祖军、赖永瑾、蔡永昌教学管理室主任签名:1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。

)(每小题2分)(1)薄板小挠度弯曲时,体力可以由薄板单位面积内的横向荷载q 来等代。

( )(2)对于常体力平面问题,若应力函数满足双调和方程,那么由),(y x ϕ022=∇∇ϕ确定的应力分量必然满足平衡微分方程。

),(y x ϕ( )(3)在求解弹性力学问题时,要谨慎选择逆解法和半逆解法,因为解的方式不同,解的结果会有所差别。

( )(4)如果弹性体几何形状是轴对称时,就可以按轴对称问题进行求解。

()(5)无论是对于单连通杆还是多连通杆,其截面扭矩均满足如下等式:,其中为扭转应力函数。

( ⎰⎰=dxdyy x F M ),(2),(y x F )(6)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。

( )(7)平面应力问题和平面应变问题的应变协调方程相同,但应力协调方程不同。

()(8)对于两种介质组成的弹性体,连续性假定不能满足。

( )(9)位移变分方程等价于以位移表示的平衡微分方程及以位移表示的静力边界条件。

()(10)三个主应力方向一定是两两垂直的。

( )2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。

)(共20分,每小题2分)(1)弹性力学是研究弹性体受外界因素作用而产生的 的一门学科。

(2)平面应力问题的几何特征是: 。

(3)平衡微分方程则表示物体 的平衡,应力边界条件表示物体 的平衡。

(4) 在通过同一点的所有微分面中,最大正应力所在的平面一定是 。

(5)弹性力学求解过程中的逆解法和半逆解法的理论基础是: 。

线性代数(同济第5版)复习要点说明

线性代数(同济第5版)复习要点说明

线性代数(同济第5版)复习要点以矩阵为工具,以线性方程组问题为主线第一章 行列式基本结论1.行列式的性质(1) 互换行列式的两行,行列式变号.(2) 行列式中某一行的所有元素的公因子可以提到行列式符号的外面.(3) 把行列式的某一行的各元素乘以同一数然后加到另一行对应的元素上去,行列式不变. 2.行列式按行(按列)展开定理3 行列式等于它的任一行的各元素与其对应的代数余子式乘积之和,即in in i i i i A a A a A a D +++= 2211 ),,2,1(n i =3.克拉默法则 如果线性方程组的系数行列式不等于零,即0212222111211≠=nnn n n n a a a a a a a a a D那末,线性方程组有唯一的解,,,,2211DD x D Dx D D x n n ===主要计算计算行列式:1.数字行列式化为上三角形; 2.计算有规律的....n 阶行列式. 例1.(例7)计算行列式 3351110243152113------=D2.(例8)计算行列式 3111131111311113=D第二章 矩阵及其运算基本概念注意:1.矩阵可乘条件、乘法规则 2. 矩阵乘法不满足交换律BA AB ≠3.矩阵乘法有零因子出现:O B O A ≠≠,,但却有O AB = 4.消去律不成立:AC AB =,推不出C B = 基本结论1.转置 (i) A A T T =)( (ii) T T T B A B A +=+)( (iii) T T kA kA =)( (iv)T T T A B AB =)(2.方阵的行列式 (i) ||||A A T =(行列式性质1); (ii) ||||A A n λλ=; (iii)||||||B A AB =3.A 的伴随矩阵E A A A AA ||==**4.逆矩阵是初等矩阵可逆i sE E E E A E A nA R A A 21~)(0||=⇔⇔=⇔≠⇔推论 若E AB =(或E BA =),则1-=A B 方阵的逆阵满足下述运算规律:(i )若A 可逆,则1-A 亦可逆,且A A =--11)(. (ii )若A 可逆,数0≠λ,则A λ可逆,且111)(--=A A λλ(iii )若B A ,为同阶方阵且均可逆,则AB 亦可逆,且 111)(---=A B AB (iv )若A 可逆,则T A 亦可逆,且T T A A )()(11--= 基本计算用上面基本结论进行简单计算 主要计算求1-A :公式法*-=A A A ||11 基本证明用上面基本结论进行简单证明 例1. (例11)求矩阵的逆矩阵⎪⎪⎪⎭⎫ ⎝⎛=343122321A第三章 矩阵的初等变换与线性方程组基本结论线性方程组解的判定:1. n 元非齐次线性方程组b AX =b AX =有解⇔)()(B R A R =. 有解时,(记r B R A R ==)()()(1)n r =时,b AX =有唯一解 (2)n r <时,b AX =有无穷多解2.齐次线性方程组0=AX (0=AX 是b AX =的特殊情形)由于0=AX 永远满足)()(B R A R =,故0=AX 总有解(至少有零解)从而 (1)n r =时,0=AX 有唯一零解(2)n r <时,0=AX 有(无穷多)非零解 基本计算1.会求矩阵的秩2.会用矩阵的秩判别线性方程组有没有解,有解时,有多少解 3.会用初等变换求矩阵的逆初等变换)|()|(1-→A E E A 行;(包括求矩阵方程B AX =,用)|()|(1B A E B A -→行; 主要计算1. 设非齐次线性方程组b AX =,试问此线性方程组有解吗?若有解,有多少解? 2. 会用初等变换求矩阵的逆 例1.(例5)设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=41461351021632305023A求矩阵A 的秩,并求A 的一个最高阶非零子式2.用初等变换求矩阵⎪⎪⎪⎭⎫⎝⎛=343122321A 的逆矩阵3.(例13)设有线性方程组⎪⎩⎪⎨⎧=+++=+++=+++,)1(,3)1(,0)1(321321321λλλλx x x x x x x x x 问λ取何值时,此方程组(1)有唯一解;(2)无解;(3)有无限多个解?并在有无限多解时求其通解.第四章 向量组的线性相关性基本概念1.向量组的线性相关性向量的线性组合、线性表示、向量组的线性相关与线性无关 向量组的等价 2.向量组的秩极大线性无关组、向量组的秩 3.向量空间向量空间的基的定义、基的求法、向量空间的维数、维数的求法 向量组m ααα,,,21 所生成的向量空间为},,,|{),,,(21221121R k k k k k k L m m m m ∈+++= αααααα4.线性方程组解的结构齐次线性方程组基础解系、非齐次线性方程组解的结构 基本结论 1.线性表出定理1 向量b 能由向量组A 线性表示的充分必要条件是矩阵),,,(21m A ααα =的秩等于矩阵),,,,(21b B m ααα =的秩.定理2 向量组l B βββ,,,:21 能由向量组m A ααα,,,:21 线性表示的充分必要条件是矩阵),,,(21m A ααα =的秩等于矩阵),,,,,(),(11l m B A ββαα =的秩. 即),()(B A R A R =.推论 向量组l B βββ,,,:21 与向量组m A ααα,,,:21 等价的充分必要条件是),()()(B A R B R A R ==定理3 设向量组l B βββ,,,:21 能由向量组m A ααα,,,:21 线性表示,则),,,(),,,(2121m l R R αααβββ ≤.2. 向量组的线性相关性定理4 向量组m ααα,,,21 线性相关的充分必要条件是它所构成的矩阵),,,(21m A ααα =秩小于向量个数m ;向量组线性无关的充分必要条件是m A R =)(定理5 (1)若向量组m A ααα,,,:21 线性相关,则向量组11,,,:+m m B ααα 也线性相关. (2) m 个n 维向量组成的向量组,当维数n 小于向量个数m 时一定线性相关.(3) 设向量组m A ααα,,,:21 线性无关,而向量组βααα,,,,:21m B 线性相关,则向量β必能由向量组A 线性表示,且表示式是唯一的.3.向量组的秩定理6 矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩.推论 (最大无关组的等价定义)设向量组B 是向量组A 的部分组,若向量组B 线性无关,且向量组A 能由向量组B 线性表示,则向量组B 是向量组A 的一个最大无关组.4.解的结构(1)齐次线性方程组性质1 若21,ξξ为0=Ax 的解, 则21ξξ+也是0=Ax 的解. 性质2 若ξ为0=Ax 的解,k 为实数,则ξk 也是0=Ax 的解.0=Ax 的基础解系:r n -ξξ,,1 ,通解是r n r n k k X --++=ξξ 11定理7 设n m ⨯矩阵A 的秩r A R =)(,则n 元齐次线性方程组O AX =的解集S 的秩r n R S -=. (2)非齐次线性方程组性质3 设1η及2η都是b Ax =的解,则21ηη-为导出组0=Ax 的解.性质4 设η是方程b Ax =的解,ξ是方程0=Ax 的解,则ηξ+仍是方程b Ax =的解.b Ax =的通解是:*+++=--ηξξr n r n k k X 11 5.向量空间向量组m ααα,,,21 所生成的向量空间为},,,|{),,,(21221121R k k k k k k L m m m m ∈+++= αααααα基本计算1. 一般地,要判别一个向量⎪⎪⎪⎪⎪⎭⎫⎝⎛=n b b b 21β是否可由向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ns s s s n n a a a a a a a a a 21222122121111,,,ααα线性表出?设s s k k k αααβ+++= 2211按分量形式写出来就是⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++ns ns n n s s s s b k a k a k a b k a k a k a b k a k a k a 22112222212*********,, (*)定理 β可由向量组s ααα,,,21 线性表出⇔(*)有解 2. 一般地,要判别一个向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ns s s s n n a a a a a a a a a 21222122121111,,,ααα是否线性相关?设02211=+++s s x x x ααα按分量写出来就是⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111s ns n n ss s s k a k a k a k a k a k a k a k a k a (**)定理 向量组s ααα,,,21 线性相关⇔齐次线性方程组(**)有非零解 3. ),,,(21m L ααα 基和维数的求法 4.线性方程组解的结构(1)齐次线性方程组基础解系r n -ξξ,,1(2)非齐次线性方程组解的结构的求法*+++=--ηξξr n r n k k X 11主要计算1.设矩阵A ,求矩阵A 的列向量组的一个最大无关组,并把不属最大无关组的列向量用最大无关组线性表示.2.设非齐次线性方程组b AX =,试问(1)此线性方程组有解吗?若有解,有多少解?(第三章容)(2)若有无穷多解,求其通解(要求通过它的导出组的基础解系给出的通解).(第四章容) 基本证明向量的线性相关与线性无关、向量的组的等价、极大线性无关组、向量组的秩的证明 向量空间的基、维数的证明 基础解系、解的结构的证明 主要证明1.线性无关的证明2.B AB ⇔=0的列是0=AX 的解 例 1.(例11)设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------=97963422644121121112A求矩阵A 的列向量组的一个最大无关组,并把不属最大无关组的列向量用最大无关组线性表示.2.(例16)设非齐次线性方程组⎪⎩⎪⎨⎧-=+--=-+-=+--2143214321432132130x x x x x x x x x x x x ,试问(1)此线性方程组有解吗?若有解,有多少解?(2)若有无穷多解,求其通解(要求通过它的导出组的基础解系给出的通解).3.(例6) 已知向量组321,,ααα线性无关,211ααβ+=, 322ααβ+=, 133ααβ+=,试证向量组321,,βββ线性无关.(第五章 §1 定理1、§2 定理2)4.(例13)设0=AB ,证明:n B R A R ≤+)()(.第五章 相似矩阵及二次型基本概念 一.积积的定义:n n y x y x y x Y X +++= 2211],[向量的长度:22221],[n x x x X X X +++== 、当1=X 时,称X 为单位向量.向量的夹角:YX Y X ],[arccos=θ向量的正交:0],[=Y X 时,称向量X 与Y 正交 正交向量组、正交基、规正交基 正交矩阵A :)(1T T A A E A A ==-即二.矩阵的特征值、特征向量 特征值、特征向量三.相似矩阵,对称阵的对角化四.二次型及其标准形,正定二次型,正定矩阵 基本结论 一.积(i )],[],[X Y Y X =; (ii )],[],[Y X Y X λλ=(iii )],[],[],[Z Y Z X Z Y X +=+1.非负性:对任意X 都有 0≥X ; 当且仅当O X =时, 0=X 2.齐次性: X X ||λλ=;3.三角不等式:Y X Y X +≤+ 定理1 若n 维向量 r ααα,,,21 是一组两两正交的非零向量,则r ααα,,,21 线性无关.二.特征值、特征向量定理2 设m λλλ,,,21 是方阵A 的m 个特征值,m p p p ,,,21 依次是与之对应的特征向量.如果m λλλ,,,21 各不相同,则m p p p ,,,21 线性无关.三.相似矩阵,对称阵的对角化四.二次型及其标准形,正定二次型,正定矩阵 基本计算1.向量的长度:22221],[n x x x X X X +++==2.向量的夹角的求法:YX Y X ],[arccos =θ3.正交化方法: 设r ααα,,,21 线性无关111122221111222231111333111122211],[],[],[],[],[],[],[],[],[],[],[],[--------=--=-==r r r r r r r r r ββββαββββαββββααβββββαββββααβββββααβαβ4.单位化:r rr e e e ββββββ1,,1,1222111===5.特征值的求法、特征向量的求法6.对称阵的对角化方法7.求正交变换化二次型为标准形 例1.(例2) 设⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=014,131,121321ααα,试用施密特正交化过程把这组向量规正交化。

(整理)弹性力学第五章第五章弹性力学的求解方法和一般性原理

(整理)弹性力学第五章第五章弹性力学的求解方法和一般性原理

第五章弹性力学的求解方法和一般性原理知识点弹性力学基本方程边界条件位移表示的平衡微分方程应力解法体力为常量时的变形协调方程物理量的性质逆解法和半逆解法解的迭加原理,弹性力学基本求解方法位移解法位移边界条件变形协调方程混合解法应变能定理解的唯一性原理圣维南原理一、内容介绍通过弹性力学课程学习,我们已经推导和确定了弹性力学的基本方程和常用公式。

本章的任务是对弹性力学所涉及的基本方程作一总结,并且讨论具体地求解弹性力学问题的方法。

弹性力学问题的未知量有位移、应力和应变分量,共计15个,基本方程有平衡微分方程、几何方程和本构方程,也是15个。

面对这样一个庞大的方程组,直接求解显然是困难的,必须讨论问题的求解方法。

根据这一要求,本章的主要任务有三个:一是综合弹性力学的基本方程,并按边界条件的性质将问题分类;二是根据问题性质,确定基本未知量,建立通过基本未知量描述的基本方程,得到基本解法。

弹性力学问题的基本解法主要是位移解法、应力解法和混合解法等。

应该注意的是对于应力解法,基本方程包括变形协调方程。

三是介绍涉及弹性力学求解方法的一些基本原理。

主要包括解的唯一性原理、叠加原理和圣维南原理等,这些原理将为今后的弹性力学问题解建立基础。

如果你在学习本章内容时有困难,请及时查阅和复习前三章相关内容,以保证今后课程的学习。

二、重点1、弹性力学的基本方程与边界条件分类;2、位移解法与位移表示的平衡微分方程;3、应力解法与应力表示的变形协调方程;4、混合解法;5、逆解法和半逆解法;6、解的唯一性原理、叠加原理和圣维南原理§5.1 弹性力学的基本方程及其边值问题学习思路:通过应力状态、应变状态和本构关系的讨论,已经建立了一系列的弹性力学基本方程和边界条件。

本节的主要任务是将基本方程和边界条件作综合总结,并且对求解方法作初步介绍。

弹性力学问题具有15个基本未知量,基本方程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分方程。

半逆解法 ppt课件

半逆解法 ppt课件

y0
y0
y0
由式(d)得出:
u0
0,v0
0, Ml
2EI
代入式(d),就得到简支梁的位移分量:
u M (x l)y ,vM (l x )xM y 2 EI2 2 EI 2 EI
梁轴的挠度方程:
(v)y0
M(lx)x 2EI
M
o
x
l y
M
u
M EI
x
yy
u0
v
M
2EI
y2
M 2EI
x2
x
v0
(a)
h
o
2
h
2
l yl
解之,得: x22 f(y)x1f(y)f2(y) (b) 图3-4
q
ql x
其中,f1( y) 、f2 ( y)是任意函数,即待定函数。
22 12
现在考察,上述应力函数是否满足相容方程。为此,对
求四阶导数:
4
x4
0,
4
x2y2
d2 f (y) dy2 ,
4
y4
x2d4 f (y) 2dy4
15
§3-2 位移分量的求出
以矩形梁的纯弯曲问题为例,说明如何由应力分量求出
位移分量。 一、平面应力的情况
M
x图 x
M
h
y
2x
h
2
l
1
将应力分量
xM I y,y0,x
y
yyx0代入物理方程
x
1 E
( x
y
)
y
1 E
( y
x
)
xy
2 (1 E
) xy
7
得形变分量: xE MyI,yE My I,xy 0

逆解法与半逆解法

逆解法与半逆解法

按应力函数求解逆解法(应用一)逆解法与半逆解法 逆解法(应用二)半逆解法 ∂ 2 Φ ( x, y ) − fx x σ x = ∂y 2   ∂ 2 Φ ( x, y )  − fy y σ y = ∂x 2   ∂ 2 Φ ( x, y ) τ xy = −  ∂x∂y  区域内应 满足的基 本方程(1)应力函数 Φ 已知,面力未知; (1)应力函数 Φ 含待定参数,面力已 (1)假设应力分量; (2)校核应力函数 Φ 满足相容方 知; (2) 由假设的应力分量反推应力函数 Φ 的一般函数 程; (2)校核应力函数 Φ 满足相容方程; 形式(含待定函数) ;∂ 4Φ ∂ 4Φ ∂ 4Φ +2 2 2 + 4 =0 ∂x 4 ∂x ∂y ∂y(3)求应力分量;∂ 4Φ ∂ 4Φ ∂ 4Φ +2 2 2 + 4 =0 ∂x 4 ∂x ∂y ∂y(3)求应力分量;∂ 4Φ ∂ 4Φ ∂ 4Φ +2 2 2 + 4 =0 ∂x 4 ∂x ∂y ∂y ∂ 2 Φ ( x, y ) σx = − fx x  ∂y 2   ∂ 2 Φ ( x, y )  σy = − fy y  ∂x 2   ∂ 2 Φ ( x, y ) τ xy = −  ∂x∂y   ∂ 2 Φ ( x, y ) σx = − fx x  ∂y 2   ∂ 2 Φ ( x, y )  σy = − fy y  ∂x 2   ∂ 2 Φ ( x, y ) τ xy = −  ∂x∂y   ∂ 2 Φ ( x, y ) ∂ 2 Φ ( x, y ) − fx x − fy y σx = σy =  ∂y 2 ∂x 2   2 τ = − ∂ Φ ( x, y )  xy ∂x∂y  (3)校核 Φ ,使之满足相容方程,求出其具体表达式(含待定参数) ;∂ 4Φ ∂ 4Φ ∂ 4Φ +2 2 2 + 4 =0 ∂x 4 ∂x ∂y ∂y(4)求应力分量的具体表达式(含待定参数) ; ∂ 2 Φ ( x, y ) σx = − fx x  ∂y 2   2 τ = − ∂ Φ ( x, y )  xy ∂x∂y σy =∂ 2 Φ ( x, y ) − fy y ∂x 2主要边界应用精确边界条 件:(4)对于每个边界,均由下式反 推边界上的面力;(4)校核边界条件,据此求待定参数; (5)校核边界条件,据此求待定参数; 主要边界应用精确边界条件: 主要边界应用精确边界条件:边界上应 满足的边 次要边界上应用圣维南原理 界条件 (三个积分边界条件公式) (全部为应力边界条件) 未 知 量 ― 应力函数(常体力下) 应力函数(常体力下) 应 力 、 应 (按应力函数求解) 按应力函数求解)(σ x l + τ xy m) s = f x ( s )   (τ xy l + σ y m) s = f y ( s )  f x ( s ) = (σ x l + τ xy m) s    f y ( s ) = (τ xy l + σ y m) s (5)主要边界上面力不做进一步 处理;而小边界上面力如果为分布 函数,进行静力等效变换,求主失 和主矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

σx
第二项 ~ q 同阶, (弹性力学的修正 项)
l ~ q( ) 同阶, h
τ xy
(与材料力学解同) (材料力学中不计)
σ y ~ q 同阶,
应力与材料力学解比较:
l 2 l 最主要量级 q( ) , 和次要量级 q ,在材料 h h
力学中均已反映,且与弹性力学相同。 最小量级 ~ q , 在材料力学中没有。
( σ x ) x = l dy ⋅ 1 = 0 , ( σ x ) x = l dy ⋅ 1 ⋅ y = 0 , (τ
xy
−h /2
) x = l dy ⋅ 1 = − ql 。
由此解出H,K. 另一次要边界(x= -l )的条件,自然满足。
应力
最后应力解答:
σx
2 6q 2 y y 3 2 = 3 (l − x ) y + q ( 4 2 − ) h h 5 h
2
(d)
平面问题的多项式解答
等项及它们的线性组合均满足相容方程。下面用逆 解法确定一下各种多项式能解决的问题。 1.一次式
∂ 4Φ ∂ 4Φ ∂ 4Φ +2 2 2 + 4 =0 不难验证: 1, x, y , x , y , x y , xy , x , y 4 ∂x ∂x ∂y ∂y
2 2 2 2 3 3
⎛ ∂2 ∂2 ⎜ ⎜ ∂x 2 + ∂y 2 ⎝
⎞ 4 ⎟ ϕ ( x , y ) = ∇ ϕ ( x, y ) = 0 ⎟ ⎠
2
逆解法与半逆解法 多项式解答
∂ Φ ∂ Φ ∂ Φ ⎛∂ ∂ ⎞ 4 ⎜ +2 2 2 + 4 =0 ⎟ ϕ(x, y) = ∇ ϕ(x, y) = 0 ⎜ ∂x2 + ∂y2 ⎟ 4 ∂x ∂y ∂y ∂x ⎠ ⎝
设图中所示的矩形长梁,l >>h,试考
样的受力问题?
o
h/2 h/2
x
( l >>h)
y
l
按逆解法。
4 Φ 1. 将 代入相容方程,可见 ∇ Φ = 0 是
Φ 有可能成为该问题的解。 满足的。
2. 由 Φ 求出应力分量
2 12 Fxy Φ ∂ σ x = 2 =− 3 , h ∂y 2 ∂ =0, σy = Φ 2 ∂x 2 y τ xy = − ∂ Φ = − 3F (1− 4 2 ). ∂x∂y 2h h 2
x = l (正x面),
在x = 0,l 小边界上的面力 f x , f y 如下图 中(a) 所示,而其主矢量和主矩如(b)所示。 由此,可得出结论:上述应力函数可以 解决悬臂梁在 x = 0 处受集中力F作用的问 题。
(a)
F
F
M (b)
半逆解法
3.半逆解法 步骤: ⑴ 假设应力的函数形式 (根据受力情 况,边界条件等); ⑵ 由应力(d)式,推测 Φ 的函数形式;
= M I
y y y + q (4 h h
2 2
− 3 ), 5
τ
σ
xy
2 FS S 6q 2 h = − 3 x( − y )= , 4 bI h
y
2y 2 q y = − (1 − )( 1 − ) . 2 h h
应力的量级 当l >> h 时, x ~l 同阶, y ~ h 同阶.
l 2 第一项 ~ q( ) 同阶,(与材料力学解同); h
4 ∇ ⑶ 代入 Φ = 0 ,解出 Φ ;
逆解法与半逆解法 多项式解答
(二)半逆解法的基本步骤: 否
根据问题的特 点设出部分应 力分量 求出应力函数 Φ 是否满足 相容方程

结束

求出其他应力分量

是否满足 边界条件
简支梁受均布荷载

简支梁 2 l × h × 1 ,受均布荷载 q 及两端支撑反 力ql 。
∇ 4Φ = 0.
⑵ 求应力
σ x =6ay,
σ y =τ xy =0.
(a)
⑶ 检验应力边界条件,原则是: a.先校核主要边界(大边界),必须 精确满足应力边界条件。 b.后校核次要边界(小边界),若不 能精确满足应力边界条件,则应用圣维南 原理,用积分的应力边界条件代替。
主要边界
主要边界y = ± h / 2, (σ y ) y=± h/2 =0, (τ xy ) y=±h / 2 = 0 . 从式(a)可见,边界条件(b)均满足。 次要边界 x=0, l,
Φ = a + bx + cy
当不计体力时,对应的应力状态为:
σ x = σ y = τ xy = 0
相应边界条件为: f x = f y = 0 可见线性函数对应于无面力无应力的状态。 故: 应力函数中加减一次式,不影响应力。
2.二次式
Φ = ax 2 + bxy + cy 2
2 不计体力时, Φ = ax 先来看
因为 因为
τ xy ∝ Fs = − ql + q ( l + x ),
σ y ∝ q = 常数,
所以,可假设 τ xy = xf 1 ( y ) + f 2 ( y ); 所以,可假设 σ y = f ( y )。 现采用此假设。
⑵ 由应力分量推出应力函数的形式。 由 对 x 积分,
∂ 2Φ = σ = f ( y ), y ∂x 2
(d)
式(d)的第一式自然满足,由第二式得出
a = 2 M / h 3。
12 M y = M y, σ = 最终得应力解 x I h3
σ y =τ xy = 0. (e)
当 l >> h 时,即使在 x = 0, l 边界上面力 不同于σ x的分布,其误差仅影响梁的两端 部分上的应力。
矩形梁
F 察应力函数 Φ = 3 xy (3h 2 − 4 y 2 )能解决什么 2h
3. 由边界形状和应力分量反推边界上的 面力。 在主要边界(大边界)y = ± h / 2上,
σ y = 0, τ yx = 0.
因此,在 y = ± h / 2 的边界面上,无任何 面力作用,即 f x = f y = 0.
在x = 0,l的次要边界(小边界)上,
x = 0(负x面), f x = −(σ x ) x =0 = 0, 3F y2 (1 − 4 2 ); f y = −(τ xy ) x =0 = 2h h 12 Fl f x = (σ x ) x = l = − 3 y , h 3F y2 (1 − 4 2 ). f y = (τ xy ) x =l = − 2h h
相容方程对于任何 x, y 均应满足,故 x , x , x
2 1
0
的系数均应等于0,由此得三个常微分方程。
半逆解法
解出:
⎫ f = Ay + By + cy + D , ⎪ ⎪ 3 2 f 1 = Ey + Fy + Gy , ⎬ ⎪ 5 4 3 2 A B f 2 = − y − y + Hy + Ky .⎪ 10 6 ⎭
τ xy = − x ( 3 Ay 2 + 2 By + C ) − ( 3 Ey 2 + 2 Fy + G )
对称性条件─由于结构和荷载对称于 τ xy 为 y轴,故 Φ, σ x , σ y 应为 x 的偶函数,
x的奇函数,故 E = F = G = 0 。
主要边界
⑸ 考察边界条件。 主要边界
如图如果矩形梁侧面尺寸较小,面力可简化为两个力偶, 则对应的是纯弯曲的问题。
矩形梁的纯弯曲
梁l×h×1,无体力,只受M作用(力矩/单 宽,与力的量纲相同)。本题属于纯弯曲问题。
o
M
h/2 h/2
M
x
y
l
( l >>h)
∇ 4Φ = 0
本题是平面应力问题,且为单连体, Φ 应满足相容方程及 s = sσ 若按 Φ 求解, 上的应力边界条件。 求解步骤: ⑴ 由逆解法得出,可取 Φ = ay 3 ,且满足
∂Φ = xf ( y ) + f 1 ( y ), ∂x
x2 Φ= f ( y ) + xf1 ( y ) + f 2 ( y ). (a) 对x再积分, 2
半逆解法
⑶ 将 Φ 代入相容方程,求解 Φ :
4 4 4 2 d ( ) d ( ) f y f y d ( ) d f ( y) f y 2 1 1 2 x + x +( +2 ) =0. 4 4 4 2 2 dy dy dy dy
2 2 2
4
4
4
一、逆解法和半逆解法 (一)逆解法的基本步骤: 取满足相容方程的 Φ 根据边界条件求出面力 求出应力分量 σ x , σ y , τ xy 考察能解决什么问题
逆解法
1. 当体力为常量,按应力函数 Φ 求解平面 应力问题时,Φ 应满足 ⑴ A内相容方程 ∇ 4Φ = 0. ⑵ S = Sσ 上应力边界条件,
第5讲
逆解法与半逆解法
孙远韬 sun1979@
同济大学
调和函数
∂σ x ∂τ yx + + fx = 0 ∂x ∂y ∂σ y ∂y + ∂τ xy ∂x + fy = 0
当体力是常量时,特解可取为
σ x = − f x x,
σ y = − fy y
τ xy = 0
齐次方程
∂σ x ∂τ yx + =0 ∂x ∂y 齐次方程 的通解可取为:
q
ql
o
h/2 h/2
x
ql
l
y
l
按半逆解法求解。
⑴ 假设应力分量。由材料力学 σx ∝ M, τ ∝ Fs , σy ∝ q, 因为
相关文档
最新文档