精选八年级数学解答题专项练习

合集下载

人教版八年级上册数学解答题专题训练50题含答案

人教版八年级上册数学解答题专题训练50题含答案

人教版八年级上册数学解答题专题训练50题含答案(2)51.如图,在每个小正方形边长为1的方格纸中,△ADC的顶点都在方格纸格点上,将△ABC向左平移1格.再向上平移1格,(1)在图中画出平移后的△A′B′C′;(2)画出AB边上的高CE;(3)过点A画BC的平行线;(4)在图中,若△BCQ的面积等于△BCA的面积.则图中满足条件且异于点A的个点Q 共有_____个.(注:格点指网格线的交点)【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析;(4)4.【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A′、B′、C′即可;(2)利用网格特点找出A′C′的中点D′,然后连接B′D′即可;(3)根据平行线的性质求解;(4)过点A作BC的平行线,然后找出此平行线上的格点即可.【详解】解:(1)如图,△A′B′C′为所作;(2)如图,高线CE为所作;(3)AQ△BC;(4)图中满足条件且异于点A的个点Q共有4个.故答案为4.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.52.已知21(1)(2)12y A B y y y y +=+-+-+,求A 、B 的值.53.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,BE AC ∥,AE BD ∥.(1)求证:四边形AOBE 是菱形;(2)若60AOB ∠=︒,8AC =,求菱形AOBE 的面积.,根据菱形的性质易得出AOB 为等边三角形,再根据等的值,最后根据菱形的面积等于对角线证明:BE AC ∥AE BD四边形AOBE 为平行四边形四边形ABCD 为矩形BD =,12OA AC ,OB OB =∠∴AOB 为等边三角形8AC =OA AB ==12AM AB =OM OA =54.设x ,y ,z 为互不相等的非零实数,且x y z y z x +=+=+.求证:2221x y z =.55.如图,将几个小正方形与小长方形拼成一个边长为a b c ++()的正方形.(1)若用不同的方法计算这个边长为a b c ++()的正方形面积,就可以得到一个等式,这个等式可以为 .(2)请利用(1)中的等式解答下列问题:△若三个实数,,a b c 满足l1a b c ++=,+38ab bc ac +=,求222a b c ++的值.△若三个实数,,x y z 满足12484x y z ⨯÷=,2224944x y z ++=,求236xy xz yz --的值. 【答案】(1)2222()222a b c a b c ab bc ac ++=+++++;(2)△45;△-20【分析】(1)根据大正方形的面积等于所有小正方形与矩形的面积和即可得解; (2)△利用(1)中等式可将(a+b+c )直接平方,然后代入式子的值求解即可;(3)△利用幂的乘方与同底数幂的乘除整理得到232x y z +-=-,然后将23x y z +-平△(a b c ++11,c +=22(b c a +=238⨯△24x y ⨯÷222x y ∴⨯÷232x y z +-∴=23x y ∴+-(23x y +-2(2)∴-=23xy xz ∴-【点睛】本题主要考查整式混合运算,幂的混合运算,解此题的关键在于根据题图得到新等式,再利用新等式进行整理计算即可56.如图,点B 、F 、C 、E 在同一直线上,AB △BE ,垂足为B ,DE △BE ,垂足为E ,AC 、DF 相交于点G ,且AC=DF ,BF CE =.求证:FG CG =.【答案】见详解【分析】首先证明借助HL 证明Rt ABC Rt DEF ≌,由全等三角形的性质可知ACB DFE ∠=∠,然后由“等角对等边”即可证明FG CG =.【详解】证明:△AB △BE ,DE △BE ,△90B E ∠=∠=︒,△BF CE =,△BF FC CE FC +=+,△=BC EF ,又△AC=DF ,△()Rt ABC Rt DEF HL ≌,△ACB DFE ∠=∠,△FG CG =.【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握相关性质和判定是解题关键.57.计算:(1)2(4)(31)x x -+(2)23331111x x x x x ----+-58.利用因式分解简便计算(要求写出完整计算过程)(1)22201199- (2)21.99 1.990.01+⨯【答案】(1)800;(2)3.98.【详解】试题分析:(1)利用平方差公式得到原式=(201+199)×(201-199),然后进行有理数运算;(2)利用提公因式得到原式=1.99×(1.99+0.01),然后进行有理数运算.试题解析:(1)原式=(201+199)×(201-199)=400×2=800;(2)原式=1.99×(1.99+0.01)=1.99×2=3.98.59.(1)计算:232-÷x x x(912)9(2)分解因式:22-+363x xy y60.如图1,网格中的每一个正方形的边长为1,△ABC为格点三角形(点A、B、C在小正方形的顶点上),直线m为格点直线(直线m经过小正方形的格点).(1)如图1,作出△ABC关于直线m的轴对称图形△A′B′C′;(2)如图2,在直线m上找到一点P,使P A+PB的值最小;(3)如图3,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影.(4)如图4,仅用直尺作出三角形ABC的边AB上的高,简单说明你的理由.【答案】(1)见解析(2)见解析(3)见解析(4)见解析【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)作点B关于直线m的对称点B',连接AB',交直线m于点P,则点P即为所求作的点;(3)如图,取格点O,计算可知S△AOC=S△BOC=S△AOB=2(平方单位).(4)如图,选择格点D、E,证明△ACD△△BCE.于是,AC=BC.选择格点Q,证明△ACQ△△BCQ,于是,AQ=BQ.推出CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.(1)如图所示,△A′B′C′即为所求作,(2)如图,点P即为所求作,(3)如图,即为所作,(4)如图,选择格点D、E,证明△ACD△△BCE.于是,AC=BC.选择格点Q,证明△ACQ△△BCQ,于是,AQ=BQ.△CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.【点睛】本题考查作图,轴对称变换,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题.61.如图,已知点A、C分别在△GBE的边BG、BE上,且AB=AC,AD△BE,△GBE 的平分线与AD交于点D,连接CD.(1)求证:CD平分△ECA.(2)猜想△BDC与△BAC之间有何数量关系?并对你的猜想加以证明.62.甲、乙两市之间有两条铁路线,普通快车线长600千米;高速铁路线长450千米.已知高速列车的速度是普通快车速度的3倍,普通快车先出发3小时,而比高速列车晚到2小时,求普通快车与高速列车的速度分别是多少?63.下面是小明同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:如图1,直线l 和直线l 外一点P .求作:直线PQ ,使直线PQ l ∥.作法:如图2,△在直线l 上取一点A ,连接PA ;△作PA 的垂直平分线MN ,分别交直线l ,线段PA 于点B ,O ;△以O 为圆心,OB 长为半径作弧,交直线MN 于另一点Q ; △作直线PQ ,所以直线PQ 为所求作的直线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形(保留作图痕迹);(2)完成下面的证明:证明:△直线MN 是PA 的垂直平分线,△PO =___________,90POQ AOB ∠=∠=︒.△OQ =___________,△POQ AOB △≌△.△___________=___________.△PQ l ∥(___________)(填推理的依据)【答案】(1)见解析(2)AO ;OB ;QPO ∠;BAO ∠;内错角相等,两直线平行.【分析】(1)根据题中描述即可作图;(2)根据垂直平分线的性质证明POQ AOB △≌△,得到QPO BAO ∠=∠,即可根据平行线的判定定理证明.【详解】(1)用直尺和圆规,补全图形如下;(2)证明:△直线MN 是PA 的垂直平分线,△PO AO =,90POQ AOB ∠=∠=︒.△OQ OB =,△POQ AOB △≌△.△QPO BAO ∠=∠.△PQ l ∥(内错角相等,两直线平行).故答案为:AO ;OB ;QPO ∠;BAO ∠;内错角相等,两直线平行.【点睛】本题考查了作图—复杂作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质,三角形全等的判定和性质,平行线的判定定理.64.如图, ABC C ∠∠=,点E 在线段AC 上,D 在AB 的延长线上,且有BD CE =,连接DE 交BC 于F ,过E 作EG BC ⊥于G .试说明线段BF 、FG 、CG 之间的数量关系.【答案】BF CG FG +=,证明见解析.【分析】如图(见解析),先根据三角形全等的判定定理得出DHB EGC ≅,再根据三角形全等的性质可得BH CG =,DH EG =,然后根据三角形全等的判定定理得出DHF EGF ≅,最后根据三角形全等的性质可得FH FG =,据此根据线段的和差、等量代换即可得证.【详解】BF CG FG +=,理由如下:如图,过点D 作DH CB ⊥,交CB 延长线于点H△ABC C ∠=∠,HBD ABC ∠=∠(对顶角相等)△HBD C ∠=∠在DHB △和EGC 中,90HBD C DHB EGC BD CE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩△()DHB EGC AAS ≅△BH CG =,DH EG =在DHF △和EGF △中,90DFH EFG DHF EGF DH EG ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩△()DHF EGF AAS ≅△FH FG =△BF BH FH FG +==△BF CG FG +=.【点睛】本题考查了三角形全等的判定定理与性质、对顶角相等、线段的和差等知识点,通过作辅助线,构造全等三角形是解题关键.65.为响应政府“绿色出行”的号召,张老师上班由自驾车改为骑公共自行车.已知张老师家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.张老师用骑公共自行车方式上班比用自驾车的方式上班多用多少小时?66.小明在学习分式的运算时,计算221x +的解答过程如下:请你指出小明解答过程中第△步的理论依据是 ;过程中错误出现在第 步(写出对应的序号即可),错误的原因是 , 请你给出这道题的正确解的答过程:67.在数轴上,点A 表示数a ,点B 表示数b ,在学习绝对值时,我们知道了绝对值的几何含义:数轴上A 、B 之间的距离记作AB ,定义:AB a b =-,如:点A 表示数1,点B 表示数3,则132AB =-=;1a -表示数a 和1在数轴上对应的两点之间的距离;6a +表示数a 和6-在数轴上对应的两点之间的距离.(1)在数轴上,若点A 表示数2-,点B 表示数6,△AB = ;△动点P 表示数x ,请求出满足2610x x ++-=的x 的值.(2)小林同学对(1)中正整数x 进行如下图操作:若x 为奇数,则先把x 乘以3,再把所得数在数轴上对应的点向右平移1个单位得到另一个数若x 为偶数,则把x 乘以12,如此循环重复操作图中△处应填写___________(用含x 的代数式表示)经过操作,小林发现有循环出现的数,请画出数轴并在数轴上标出这些循环出现的数.【答案】(1)△8;△x 的值为-3或7;(2)3x +1;循环出现的数为4、2、1,数轴见解析68.计算:()()232223122a ab a b ⎛⎫-- ⎪⎝⎭ )()36461142a b a b ⎛⎫-= ⎪⎝⎭【点睛】本题主要考查幂的乘方与积的乘方,熟练掌握运算法则是关键69.先化简,再求值[x 2+y 2﹣(x+y)2+2x(x ﹣y)]÷4x ,其中x =﹣2,y =2【分析】根据整式的运算法则把所给的整式化为最简后,再代入求值即可.70.如图,点A ,M ,B 在同一直线上,以AB 为边,分别在直线两侧作等边三角形ABC 和等边三角形ABD ,连接CM ,DM ,过点M 作MN =DM ,交BC 边于点G ,交DB 的延长线于点N .(1)求证:△BCM =△BDM ;(2)求△CMN 的度数;(3)求证:AM =BN . 【答案】(1)见解析;(2)60CMN ∠=︒;(3)见解析【分析】(1)根据ABC 和ABD △为等边三角形,且AB 为公共边,可以得出条件BC BD =,CBM DBM ∠=∠,即可证明()CBM DBM SAS ≌,由性质即可得出结论;(2)根据,MN DM BCM BDM =∠=∠,得出BDM BNM ∠=∠,BCM BNM ∠=∠,又根据CGM ∠和NGB ∠为对顶角,可得CMN NBC ∠=∠,再根据ABC 和ABD △为全等三角形,DBN ∠为平角,利用等量代换即可求出60CMN ∠=︒;(3)连接CN 由(1)可知:CBM DBM ≌,即可得CM DM =,证出CMN 为等边三角形,进而证明出()AMC BNC SAS ≌,由性质即可得出结论.【详解】解:(1)证明:ABC 和ABD △为等边三角形,且AB 为公共边, ,60BC BD CBM DBM ∴=∠=∠=︒,又在CBM 和DBM △中,CB DB CBM DBM BM BM =⎧⎪∠=∠⎨⎪=⎩,()CBM DBM SAS ∴≌,BCM BDM ∴∠=∠;(2),MN DM BCM BDM =∠=∠,BDM BNM ∴∠=∠,BCM BNM ∴∠=∠,又CGM ∠和NGB ∠为对顶角,CMN NBC ∴∠=∠,又ABC 和ABD △为全等三角形,DBN ∠为平角,60CBM DBM ∴∠=∠=︒,180DBN ∠=︒,180606060CMN NBC DBN DBM CBM ∴∠=∠=∠-∠-∠=︒-︒-︒=︒,(3)证明:连接CN ,如图所示:由(1)可知:CBM DBM ≌,CM DM ∴=,又,60MN DN CMN =∠=︒,CM MN ∴=,CMN ∴为等边三角形,,60CM CN MCN ∴=∠=︒,又ABC 为等边三角形,MCB ∠是ACB ∠和MCN ∠重叠的部分,,AC BC ACM BCN ∴=∠=∠,又在AMC 和BNC 中,AC BC ACM BCN CM CN =⎧⎪∠=⎨⎪=⎩,()AMC BNC SAS ∴≌,AM BN =.【点睛】本题考查了等边三角形的判定和性质、全等三角形的判定及性质、解题的关键是掌握全等三角形的判定定理及性质,再利用等量代换的思想进行解答.712+2n+1=0.(1)求﹣2m 2+6m ﹣4n 的值;(2)求m 2+21m﹣n 2013的值.72.某商店欲购进A 、B 两种化妆品,用160元购进的A 种化妆品与用240元购进的B 种化妆品的数量相同,每件B 种化妆品的进价比A 种化妆品的进价贵10元. (1)求A 、B 两种化妆品每件的进价分别为多少元?(2)若该商店A 种化妆品每件售价32元,B 种化妆品每件件价45元,准备购进A 、B 两种化妆品共100件,且这两种化妆品全部售出后总获利高于1300元,则最多购进A 种化妆品多少件?【答案】(1)A 、B 两种化妆品分别为20元、30元;(2)66件.20x , 20x 是原方程的解,且符合题意,则两种化妆品每件的进价分别为20元、)设购进A 种化妆品件,则购进B 种化妆品由题意得:(3220)30)(100)1300m m -->2663, 73.已知m 2=169,n 3=-27,求代数式m -n 的值.【点睛】本题考查了平方根的定义,立方根的定义,求代数式的值,解题的关键是熟练掌握平方根和立方根的定义,正确得到m 、n 的值.74.对于任意一个三位数p ,若个位上数字等于百位上的数字与十位上的数字之和,则称这个三位数p 为“桃园数”.例如:112p =,因为112+=,所以112是“桃园数”;253p =,因为253+≠,所以253不是“桃园数”;(1)判断459,615是否是“桃园数”?说明理由;(2)对于“桃园数”p ,去掉个位上的数字得到的两位数记为m ,去掉百位上的数字后将十位与个位的数字交换得到的两位数记为n ,若m n +能被24整除,求所有的p .75.如图,在直角坐标系中,ABC 的三个顶点坐标分别为A (1,4),B (4,2),C (3,5),请回答下列问题:(1)写出ABC 关于x 轴的对称图形111A B C △的顶点坐标.(2)求ABC 的面积.1,4(),A B 1(1,4),A ∴-(2)1,4(),A B 5BD BF ∴==-则ABC BDEF ABD BCF ACE S S S S S =---2111222BD AD BD BF CF AE CE -⋅-⋅-⋅ 111233112222-⨯⨯-⨯⨯-⨯⨯【点睛】本题考查了坐标与图形变化等知识点,掌握点坐标关于x 轴对称的变换规律是解题关键.76.边长为a 的正方形剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是_________(请选择正确的一个);A .2222()a ab b a b -+=-B .22(()a b a b a b -=+-C .2()a ab a a b +=+ (2)若22912,34x y x y -=+=,求3x y -的值;(3)计算:2222211111(1)(1)(1)(1)(1)23499100----- )边长为)229x y -3124y =÷77.如图,已知△ABC 中,E 、F 分别是AB 、AC 上的两点,且EF△BC,D 为EF 上一点,且ED=DF ,BD=CD ,请说明:BE=CF.【答案】见解析.【分析】利用SAS 证明△BDE△△CDF ,根据全等三角形的对应边相等即可得结论.【详解】△BD=CD ,△△DBC=△DCB ,又△EF△BC ,△△EDB =△DBC ,△FDC =△DCB ,△△EDB =△FDC ,又△ED =FD ,BD =CD ,△△BDE△△CDF(SAS),△BE =CF.【点睛】本题考查了等腰三角形的性质,平行线的性质,全等三角形的判定与性质,正确把握相关知识是解题的关键.78.计算:(1)()()201433π--+--;(2)()()4235243a a a a ⋅++-; (3)()()213a a +-;(4)()()22m n m m n ---;(5)2202020222021⨯-. 【答案】(1)-4;(2)11a 8;(3)2a 2-5a -3;(4))n 2;(5)-1.【分析】(1)原式利用绝对值的代数意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用同底数幂的乘法,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用多项式乘多项式法则计算,合并即可得到结果;(4)原式利用完全平方公式,以及单项式乘多项式法则计算,去括号合并即可得到结果;(5)原式变形后,利用平方差公式计算即可求出值.【详解】(1)原式=4+1-9=5-9=-4;(2)原式=a 8+a 8+9a 8=11a 8;(3)原式=2a 2-6a +a -3=2a 2-5a -3;(4)原式=(m 2-2mn +n 2)-(m 2-2mn )=m 2-2mn +n 2-m 2+2mn=n 2;(5)原式=(2021-1)×(2021+1)-20212=20212-1-20212=-1.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.79.如图,ABC 中,△ABC =90°,AB =BC ,P 为AB 上一动点,连接CP ,以AB为边作△BAD=△BCP,AD交CP的延长线于点D,连接BD,过点B作BE△BD交CP 于点E.(1)当△EBC=15°时,△ABD=°;(2)过点P作PH△AC于点H,是否存在点P,使得BC=HC,若存在,请求出此时△ACP 的度数,若不存在,请说明理由;(3)若AD=2,ED=7,求ADC的面积.80.先化简,再求值:(3x +2)(3x -2)-5x (x +1)-(x -1)2,其中x 2-x -10=0. 【答案】3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键. 81.已知:3a b +=,1x y -=,求222a ab b x y ++-+的值.【答案】8【详解】试题分析:本题可先将原代数式化简得出关于a+b 和x -y 的式子,再把已知代入即可.试题解析:△a+b=3,x−y=1,△a 2+2ab+b 2−x+y=(a+b)2−(x−y) =9−1=8.82.求证:有两边和其中一边上的高对应相等的两个锐角三角形全等. 【答案】见解析【分析】根据题意首先写出已知和求证,进而利用全等三角形的判定与性质得出Rt △ABD △ Rt △A B D '''以及△B=△B′进而得出△ABC△A B C '''.【详解】解:如图:已知:如图,在△ABC 与△A B C '''中.AB =A B '',BC =B C '',AD△BC 于D ,A D ''△B C '' 于D 且 AD =A D ''求证:△ABC△△A B C '''证明: 在Rt △ABD 与Rt △A B D '''中△AB A B AD A D ''''=⎧⎨=⎩△Rt △ABD △ Rt △A B D ''' (HL)△△B =△B '(全等三角形对应角相等)在△ABC 与△A B C '''中△AB A B B B BC B C =⎧⎪∠=∠⎨⎪=''''⎩' △△ABC△△'''A B C (SAS)【点睛】本题考查了全等三角形判定的应用,灵活运用全等三角形的判定方法是解题的关键.83.计算:2221244x x x x x x +----+.84.老师给同学们布置了一个“在平面内找一点,使该点到等腰三角形的三个顶点的距离相等”的尺规作图任务:下面是小聪同学设计的尺规作图过程:已知:如图,ABC ∆中,AB AC =,求作:一点P ,使得PA PB PC ==.作法:△作BAC ∠的平分线AM 交BC 于点D ;△作边AB 的垂直平分线EF ,EF 与AM 相交于点P ;△连接,PB PC ,所以,点P 就是所求作的点.根据小聪同学设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹)(2)完成下面的证明.证明:△AB AC =,AM 平分BAC ∠交BC 于点D ,△AD 是BC 的垂直平分线;( )(填推理依据)△PB PC =.△EF 垂直平分AB ,交AM 于点P ,△PA PB =;( )(填推理依据)△PA PB PC ==.【答案】(1)见解析;(2)等腰三角形的三线合一 线段垂直平分线上的点到线段两端点的距离相等.【分析】(1)利用基本作图作角平分线AD 和AB 的垂直平分线,它们相交于P 点;(2)根据等腰三角形的性质得到PB=PC .再根据线段垂直平分线上的点到线段两端的距离相等得到PA=PC ,从而得到PA=PB=PC .【详解】(1)如图,AD 、点P 为所求;(2)证明:△AB AC =,AM 平分BAC ∠交BC 于点D ,△AD 是BC 的垂直平分线;( 等腰三角形的三线合一 )(填推理依据)△PB PC =.△EF 垂直平分AB ,交AM 于点P ,△PA PB =;( 线段垂直平分线上的点到线段两端点的距离相等 )(填推理依据) △PA PB PC ==.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作. 85.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c ,求作Rt △ABC ,使△C =90°,BC =c ,AB =2c .【答案】见解析【分析】在直线l 上取点C ,作CD △l ,在CD 上截取CB =c ,分别以B ,C 为圆心,c 为半径画弧,交于点E ,连接BE 并延长交直线l 于点A ,则AB =2c .【详解】如图所示,Rt △ABC 即为所求.【点睛】本题主要考查了复杂作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作. 86.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,请说明∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 、∠B 、∠C 的数量关系;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,请直接写出∠G 的度数 . )40B ∠=AE 是ABC ∆的高,AEC ∴∠=60C ∠=CAE ∴∠=AD 是∠CAD ∴∠=DAE ∴∠=(2)BAC ∠+180BAC ∴∠=︒-AE 是ABC ∆的高,90,AEC =︒AD 是∠CAD ∴∠=DAE ∴∠=(11802=︒1C =∠-)CAE ∠和2CAE CAG =∠CAE FCB ∠=∠2FCG AEC ∴∠-∠AE 是ABC ∆的高,AEC ∴∠=45G ∴∠=故答案为:【点睛】本题主要考查了三角形内角和定理、角平分线的定义、三角形外角的性质等知识点,灵活应用相关知识成为解答本题的关键.87.把下列各式分解因式:(1)22425x y - (2) 2x y y -(3)224()x y z -- (4)2216()()a b a b --+(5)33327xy x y -+ (6) 2222416a x a y -(7)(2)(80+6a a a +- (8)4481x y -(9)224(23)(3)p q p q +-- (10)22169()196()a b a b --+【答案】(1)(2x+5y)(2x -5y); (2)y(x+1)(x -1); (3)(2x+y -z)(2x -y+z); (4)(5a -3b)(3a -5b);(5)-3xy(y+3x)(y -3x); (6)4a 2(x+2y)(x -2y); (7)(a+4)(a -4); (8)()()229)33x y x y x y ++-(; (9)(7p+5q)(p+7q); (10)-(27a+b)(a+27b);.【详解】试题分析:(1)直接利用平方差公式进行分解即可;(2)首先提取公因式y ,再利用平方差公式进行分解即可;(3)直接利用平方差公式进行分解即可;(4)直接利用平方差公式进行分解即可;(5)首先提取公因式-3xy ,再利用平方差公式进行分解即可;(6)首先提取公因式4a 2,再利用平方差公式进行分解即可;(7)首先进行乘法运算,再利用平方差进行分解即可;(8)直接利用平方差公式进行二次分解即可;(9)首先利用平方差公式进行分解,再把括号里面的同类项进行合并即可; (10)直接利用平方差公式进行分解即可.试题解析:(1)原式=(2x+5y )(2x -5y );(2)原式=y (x 2-1)=y (x+1)(x -1);(3)原式=(2x+y -z )(2x -y+z );(4)原式=(5a -3b )(3a -5b );(5)原式=-3xy (y 2-9)=-3xy (y+3x )(y -3x );(6)原式=4a 2(x 2-4y 2 )=4a 2(x+2y )(x -2y );(7)原式=a 2-16+6a -6a=(a+4)(a -4);(8)原式=(9x 2+y 2)(3x+y )(3x -y );(9)原式=(7p+5q )(p+7q );(10)原式=-(27a+b )(a+27b ).88.在正方形ABCD 的边AB 上任取一点E ,作EF AB ⊥交BD 于点F ,取FD 的中点G ,连接EG 、CG ,如图()1,易证 EG CG =且EG CG ⊥.()1将BEF 绕点B 逆时针旋转90,如图()2,则线段EG 和CG 有怎样的数量关系和位置关系?请直接写出你的猜想.()2将BEF 绕点B 逆时针旋转180,如图()3,则线段EG 和CG 又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明. 90,90EBC ∠,90BCM ∠,BEMC 是矩形.,90EMC ∠,90ABC =,45,AB ,∵BEF 为等腰直角三角形BE EF =,45.EF CM =90EMC ∠=,FG DG =,12MG FD FG ==45,∵F GMC ∠=∠.∵在GFE与GMC中,FG MG F GMC EF CM=⎧⎪∠=∠⎨⎪=⎩,∵()GFE GMC SAS≅.∵EG CG=,FGE MGC∠=∠.∵90FMC∠=,MF MD=,FG DG=,∵MG FD⊥,∵90FGE EGM∠+∠=,∵90MGC EGM∠+∠=,即90EGC∠=,∵EG CG⊥.【点睛】此题综合考查了旋转的性质及全等三角形的判断和性质,如何构造全等的三角形是难点,因此难度较大.89.如图,在平面直角坐标系中,已知点()1,A a a b-+,(),0B a,且()220a b-=,C为x轴上点B右侧的动点,以AC为腰作等腰ACD,使AD AC=,CAD OAB∠=∠,直线DB交y轴于点P.(1)求证:AO AB=;(2)求证:AOC ABD△△≌;(3)当点C运动时,点P在y轴上的位置是否发生变化,为什么?【答案】(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出a、b的值,作AE OB⊥于点E,由SAS定理得出AEO AEB∆≅∆,根据全等三角形的性质即可得出结论;(2)先根据CAD OAB∠=∠,得出OAC BAD∠=∠,再由SAS定理即可得出AEO AEB∆≅∆;(3)设AOB ABOα∠=∠=,由全等三角形的性质可得出ABD AOBα∠=∠=,故)证明:(3,9)A ,3OE ∴=在AEO ∆AE AEO =⎧⎪∠⎨⎪)证明:CAD ∠=BAC OAB =∠ABD 中,BAD ⎪∠⎨⎪,由(2OB =,OP ∴长度不变,∴点P 在【点睛】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键.90.如图,△ABC=90°,点D、E分别在BC、AC上,AD△DE,且AD=DE,点F是AE的中点,FD与AB的延长线相交于点M,连接MC.(1)MF与AC的位置关系是:______.(2)求证:CF=MF.(3)猜想:AD与MC的位置关系,并说明理由.【答案】(1)MF△AC;(2)证明见解析;(3)AD△MC.【分析】(1)只要证明△ADE是等腰直角三角形,即可解决问题;(2)根据等腰直角三角形的性质,得出DF△AE,DF=AF=EF,再证明△DFC△△AFM,得出FC=FM;(3)依据△DFC=90°,DF=EF,△FDE=△FMC=45°,即可得到△DEF、△CFM是等腰直角三角形,进而证明DE△MC,即可得出结论.【详解】(1)△AD△DE,AD=DE,△△ADE是等腰直角三角形,△AF=EF,△DF△AE,即MF△AC.故答案为MF△AC.(2)△AD△DE,且AD=DE,F是AE的中点,△DF△AE,DF=AF=EF,△△AFM=90°,△△FAM+△AMF=90°,△△ABC=90°, △△FAM+△DCF=90°,△△DCF=△AMF ,在△DFC 和△AFM 中,90DFC AFM DCF AMFDF AF ====∠∠︒⎧⎪∠∠⎨⎪⎩, △△DFC△△AFM (AAS ),△FC=FM ;(3)AD△MC .理由:由(2)得:△DFC=90°,DF=EF ,FM=FC,△△DEF 、△CFM 是等腰直角三角形,△△FDE=△FMC=45°,△DE△MC ,△AD△DE ,△AD△MC .【点睛】本题考查了等腰直角三角形的性质与判定以及全等三角形的判定与性质的综合应用,熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键. 91.数学课上,老师在黑板上展示了如下一道探究题:在ABC 中,AB AC m ==,BAC α∠=,点D ,E 分别在边AC ,AB 上,且CE BD =,试探究线段AE 和线段AD 的数量关系.(1)初步尝试如图△,若90α=︒,请探究AE 和AD 的数量关系,并说明理由.(2)类比探究如图△,若120α=︒,小组讨论后,有小组利用120°的角作垂线构造直角三角形,通过证明两次三角形全等,得到AE 和AD 的数量关系仍然成立,请你写出推理过程;(3)延伸拓展如图△,将第(2)中的“点E在边AB上”改为“点E在边BA的延长线上”,其它条件不变,请探究AE和AD的数量关系(用含m的式子表示),并说明理由.试卷第41页,共41页。

人教版八年级上册数学解答题专题训练50题-含答案

人教版八年级上册数学解答题专题训练50题-含答案

人教版八年级上册数学解答题专题训练50题含答案一、解答题1.化简: (1)2221211x x x x x x+-+--;(2)(221a a b a b --+)÷b b a -.2.甲、乙两地相距300km ,乘高铁列车从甲地到乙地比乘特快列车少用0.5h ,已知高铁列车的平均行驶速度是特快列车的1.5倍,求特快列车平均行驶的速度.经检验,x=200是原方程的解,且符合题意.答:特快列车平均行驶的速度为200km/h .【点睛】本题考查的知识点是分式方程的实际应用,读懂题意,找出题目中的等量关系式是解此题的关键.3.先化简,再求值:(x +3)(x ﹣3)﹣x (2x +3)+(x +2)2,其中x =﹣2. 【答案】5x -,-7【分析】直接利用单项式乘多项式,乘法公式化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:()()()()233232x x x x x +--+++=22292344x x x x x ---+++=5x -当x =-2时,原式=-2-5=-7.【点睛】此题主要考查了整式的混合运算-化简求值,正确运用整式的混合运算法则是解题关键.4.如图,在ABC ∆中,AB AC =,DAC ∠是ABC ∆的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作DAC ∠的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接,AE CF ; (3)在(1)和(2)的条件下,若15BAE ∠=︒,求B ∠的度数.(3)AB AC=B ACB∴∠=∠AM∠平分DAC∠=∠B CAM∴∠=∠EF垂直平分AE CE∴=DAM∠+DAM∴∠B55∴∠=【点睛】本题是对平行四边形知识的考查,熟练掌握尺规作图和平行四边形知识是解决本题的关键5.先化简,再求值222112211mm m m m m⎛⎫--÷⎪-+--⎝⎭,其中m满足2260m m+-=.22m m +22m m ∴+∴原式=62【点睛】本题考查了分式的化简求值;掌握好分式的运算法则,注意到代数式、方程的结构特征是解决本题的关键.6.解下列方程:(1)153x x =+; (2)32122x x x =---; (3)2212141x x =--; (4)2231022x x x x-=+-; (5)131x x x x +=--; (6)33122x x x -+=--; (7)221566x x x x +=++; (8)31523162x x -=--.7.列方程解应用题今年1月下旬以来,新冠肺炎疫情在全国范围内迅速蔓延,而比疫情蔓延速度更快的是口罩恐慌.企业复工复产急需口罩,某大型国有企业向生产口罩的A、B两厂订购口罩,向A厂支付了1.32万元,向B厂支付了2.4万元,且在B厂订购的口罩数量是A长的2倍,B厂的口罩每只比A厂低0.2元.求A、B两厂生产的口罩单价分别是多少元?8.已知3a b +=,1ab =,求:(1)22a b +的值;(2)a b -的值.9.计算4xy 2•(﹣2x ﹣2y )2.10.计算(1)2(2)(2)a a a ⋅--- (2)()()344325321510205x y x y x y x y --÷-【答案】(1)26a -;(2)32324y xy -++【分析】(1)先计算单项式乘法,幂的乘方和积的乘方,再合并;(2)直接利用多项式除以单项式法则计算.【详解】解:(1)2(2)(2)a a a ⋅---=2224a a --=26a -;(2)()()344325321510205x y x y x y x y --÷-=32324y xy -++【点睛】本题考查了整式的混合运算,解题的关键是掌握运算法则和运算顺序. 11.如图,在∠ABC 中,AD 平分∠BAC ,点P 为线段AD 上的一个点,PE ∠AD 交BC 的延长线于点E .若∠B =35°,∠ACB =85°,求∠BAD 和∠E 的度数.12.如图,线段AD 、CE 相交于点B ,BC BD =,AB EB =,求证:ACD EDC ≌.【答案】证明见详解【分析】由BC=BD ,可得∠ADC=∠ECD ,再证明CE=DA .而CD 边公共,根据SAS 即可证明∠ACD∠∠EDC .【详解】证明:∠BC=BD , ∠∠ADC=∠ECD ,又AB=EB ,∠BC+EB=BD+AB ,即CE=DA .在∠ACD 与∠EDC 中DA CE ADC ECD CD DC ⎪∠⎪⎩∠⎧⎨=== ∠∠ACD∠∠EDC (SAS ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.已知x+y=xy ,求代数式(222x x y x y x y ---)÷2222x xy x xy y --+的值. 【答案】0【分析】先把除法变成乘法,变形后整体代入,即可求出答案,需要用的公式是22x y -=(x-y )(x+y ),222x xy y -+=2x y -().【详解】原式=[﹣]•=[﹣]•=1﹣,把x+y=xy 代入得:原式=1﹣1=0.【点睛】灵活运用两个数的平方差和完全平方式.14.先化简23939x x x x --+-,再选择一个合适的x 代入求值.15.(1)计算:10211)(1)4-⎛⎫--+ ⎪⎝⎭ (2)化简:2(21)(44)a a a +-+16.(1)计算:(2)求的值: 【答案】(1)-1;(2)x=4或-2【详解】试题分析:(1)先将所给的各式求值,然后加减计算即可;(2)利用平方根的意义可求出x 的值.试题解析:(1)=-2-1+2=-1;(2)因为,2(3)9±=,所以13x -=±,所以13x =±,所以x=4或-2. 考点:实数的计算、平方根.17.解方程:(1)231x x =+ (2)31144x x x--=--18.已知:如图,点A 、B 、C 在同一直线上,AD∠CE ,AD=AC ,∠D=∠CAE.求证:DB=AE.【答案】证明见解析.【详解】试题分析:由平行的性质得到∠DAB=∠C ,从而由ASA 证明∠ABD∠∠CEA ,进而根据全等三角形边相等的性质得到DB=AE.试题解析:∠AD∠CE ,∠∠DAB=∠C,在∠ABD 和∠CEA 中,{D CAEAD AC DAB C∠=∠=∠=∠,∠∠ABD∠∠CEA(ASA).∠DB=AE.考点:1.平行的性质;2.全等三角形的判定和性质.19.如图,已知AO =DO ,∠OBC =∠OCB .求证:∠1=∠2.【答案】见解析.【详解】分析:(1)、根据∠OBC=∠OCB 得出OB=OC ,然后根据SAS 证明∠AOB 和∠DOC 全等,从而得出答案.详解:证明:∠∠OBC =∠OCB ,∠OB =OC .在∠AOB 和∠DOC 中,OA=OD ,∠AOB=∠DOC ,OB=OC ,∠∠AOB∠∠DOC (SAS), ∠∠1=∠2.点睛:本题主要考查的是三角形全等的判定与性质,属于基础题型.根据题意得出OB=OC 是解决这个问题的关键.20.如图是由边长相等的小正方形组成的网格,要求仅用无刻度的直尺在给定的网格中按步骤完成下列画图(画图过程用虚线表示,画图结果用实线表示).(1)在图1中,∠作出ΔABC 的高AH ;∠作出点B 关于AH 的对称点P ;(2)在图2中,∠过BC 上一点D 作DE ∠AB ,使四边形ABDE 为平行四边形;∠在平行四边形ABDE 中,作出∠BDE 的平分线DF . 【答案】(1)见解析;(2)见解析.【分析】(1)根据SAS 判定ADF BEC ,再根据相似三角形的对应角相等得到AFD BCE ∠=∠,结合等角的余角相等可得90B BCE B AFD ∠+∠=∠+∠=︒,继而得到AH BC ⊥,延长AH 至格点即可;∠点B 关于AH 的对称点即在AH 的右侧,取BH=HP 即可;(2)∠根据一组对边平行且相等的四边形是平行四边形,作出线段DE ,且DE =AB ,即可得到平行四边形ABDE ;∠以E 为圆心,DE 为半径作弧,交AE 边于点F ,可知DE =EF ,由等边对等角性质,得到∠=∠EFD EDF ,再由两直线平行,内错角相等性质可得EFD FDB ∠=∠,由此得到EDF FDB ∠=∠,即DF 是∠BDE 的平分线.【详解】解:(1)∠如图1所示,AH 即为所求;∠点P 即为所求的对称点;(2)∠如图1所示,DE 即为所求;∠DF 即为所求的角平分线;【点睛】本题考查尺规作图,涉及相似三角形的判定与性质、平行四边形的性质、角平分线的性质、等边对等角等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.因式分解:(1)229x y -;(2)2()3()x a b b a ---;(3)322363x x y xy -+-. 【答案】(1)(3)(3)x y x y +-(2)()(23)a b x -+(3)23()x x y --【分析】(1)根据平方差公式进行因式分解;(2)提取公因式(a -b ),从而得出答案;(3)首先提取公因式-3x ,然后再利用完全平方公式进行因式分解.(1)原式=()()33x y x y +-;(2)原式=()()23x a b a b -+-=()()23a b x -+;(3)原式=()2232x x xy y --+=()23x x y --. 【点睛】本题考查了因式分解,熟知提公因式法和公式法是解题的关键.22.图,四边形ABCD 中,AD ∠BC ,∠A =90°,CE ∠BD ,垂足为E ,BE =DA .求证:AB =EC .【答案】证明见解析【分析】由“ASA ”可证∠ABD ∠∠ECB ,可得AB =CE .【详解】证明:∠AD ∠BC ,∠∠ADB =∠EBC .∠CE ∠BD ,∠∠CEB =∠A =90°,在∠ABD 和∠EBC 中,A BEC AD BEADB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABD ∠∠ECB (ASA ),∠AB =CE .【点睛】本题考查了全等三角形的判定和性质,灵活选择判定定理是解题的关键. 23.先化简,再求值:(1)(x +1)2﹣(x +2)(x ﹣3),其中x =3(2)已知2a 2+3a ﹣6=0,求代数式3a (2a +1)﹣(2a +1)(2a ﹣1)的值. 【答案】(1)3x +7,16;(2)2a 2+3a +1;7【分析】(1)先进行完全平方运算和多项式乘法,再合并同类项,最后代入求值,即可解答;(2)先将2a 2+3a ﹣6=0变形为2a 2+3a =6,再化简代数式,代入即可求解.【详解】解:(1)原式=(x 2+2x +1)﹣(x 2﹣x ﹣6)=x 2+2x+1﹣x 2+x +6=3x +7,当x =3时,原式=337⨯+= 9+7=16;(2)∠2a 2+3a ﹣6=0,即2a 2+3a =6,∠原式=6a 2+3a ﹣(4a 2﹣1)=6a 2+3a ﹣4a 2+1=2a 2+3a +1=6+1=7.【点睛】本题主要考查了整式的化简求值,熟练掌握整式的四则运算法则是解题的关键.24.如图,已知△ABC 和△ADE ,AB =AD ,∠BAD =∠CAE ,AC =AE ,AD 与BC 交于点P ,点C 在DE 上.求证:BC =DE .【答案】见解析【分析】先证∠BAC =∠DAE ,再证△ABC ∠∠ADE (ASA ),即可得出结论.【详解】∠BAD CAE ∠=∠,∠BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∠()ABC ADE SAS △≌△,∠BC DE =.【点睛】本题考查了全等三角形的判定与性质,证明△ABC ∠∠ADE 是解题的关键. 25.如图,是一个有理数运算程序的流程图,请根据这个程序回答问题:当输入的x 为4时,求最后输出的结果y 是多少?26.已知228=0x x --,求()()241223x x x ---+的值.【答案】23【分析】原式利用完全平方公式及单项式乘以多项式法则计算,整理后将已知等式变形代入计算即可求出值.【详解】解:原式=22484243x x x x -+-++2247x x =-+()2227x x =-+,当228=0x x --,即228x x -=时,原式16723=+=.【点睛】本题考查了完全平方公式及单项式乘以多项式化简求值,整体代入是解题的关键.27.已知△ABC 是等边三角形,点D 是直线AB 上一点,延长CB 到点E ,使BE =AD ,连接DE ,DC ,(1)若点D 在线段AB 上,且AB =6,AD =2(如图∠),求证:DE =DC ;并求出此时CD 的长;(2)若点D 在线段AB 的延长线上,(如图∠),此时是否仍有DE =DC ?请证明你的结论;(3)在(2)的条件下,连接AE ,若23AB AD =,求CD :AE 的值.AB228.如图所示,小刚家门口的商店在装修,他发现工人正在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=7dm,r=1.5dm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的知识帮助小刚计算吗?请写出求解过程(结果保留π).【答案】40πdm 2.,见解析【分析】可利用大圆的面积减去四个小圆的面积列式计算可求解. 【详解】解:∠R =7dm ,r =1.5dm ,∠阴影部分的面积为:πR 2﹣4πr 2=π(R 2﹣4r 2)=π(R +2r )(R ﹣2r )=π(7+2×1.5)(7﹣2×1.5)=10×4π=40π(dm 2),故剩余阴影部分的面积为40πdm 2..【点睛】本题主要考查因式分解的应用,根据题意列算式是解题的关键. 29.计算:(1)()3231(2)22m n mn m ⎛⎫-⋅-÷ ⎪⎝⎭; (2)2(2)(3)(3)a b a b a b --+-.30.计算题:(1)(﹣1)23×(π﹣3)0﹣(﹣12) ﹣3; (2)a •a 2•a 3+(﹣2a 3)2﹣a 8÷a 2;(3)(x +4)2﹣(x +2)(x ﹣2);(4)(a +2b ﹣3c )(a ﹣2b +3c ).31.计算:(1)21(2021)|3|2π-⎛⎫-+---⎪⎝⎭(2)()3212816(4)x x x x-+÷-【点睛】此题考查了实数的混合运算和整式的混合运算,熟记零指数幂、负整数指数幂等运算法则是解题的关键.32.有一电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由. 【答案】(1)2252a +;166a --;(2)24a 12a+9-;和不能为负数,理由见解析.【分析】(1)根据题意,每按一次按键,屏幕的A 区就会自动加上2a ,B 区就会自动减去3a ,可直接求出初始状态按2次后A ,B 两区显示的结果.(2)依据题意,分别求出初始状态下按4次后A ,B 两区显示的代数式,再求A ,B 两区显示的代数式的和,判断能否为负数即可.【详解】解:(1)A 区显示结果为:22225+a +a =25+2a ,B 区显示结果为:163a 3a=166a ﹣--﹣-;(2)初始状态按4次后A 显示为:2222225+a +a +a a 254a +=+B 显示为:163a 3a 3a 3a=1612a ﹣----﹣-∠A+B=225+4a +(-1612a)-=24a 12a+9-=2(2a 3)-∠2(2a 3)0≥-恒成立,∠和不能为负数.【点睛】本题考查了代数式运算,合并同类项,完全平方公式问题,解题关键在于理解题意,列出代数式进行正确运算,并根据完全平方公式判断正负.33.计算并验证:(1)()()232a b a b ++=_____________________;(2)请用图形证明上面等式. 【答案】(1)22672a ab b ++;(2)作图见详解.【分析】(1)利用多项式乘以多项式化简即可;(2)作一个边长为()2a b +和()32a b +的矩形即可.【详解】(1)解:232a b a b226432a ab ab b22672a ab b (2)如图示,作一个边长为()2a b +和()32a b +的矩形,则矩形内个矩形的面积如下图示,即有:232a b a b 22672a ab b【点睛】本题考查了多项式乘以多项式的计算与证明,能作出相应的图形,利用面积来证明是解题的关键.34.如图,在Rt∠ABC 中,∠ACB =90°,∠B =30°,AC =3,AD 是∠ABC 的角平分线,DE ∠AB 于点E ,连接CE .求CE 的长;【答案】3【分析】只要证明ACE △为特殊三角形,则CE 的长度可求,因为60BAC ∠=︒,猜测ACE △为等边三角形,只要AC AE =即可,而通过已知条件可知AED ACD ≅,所以AE AC =,则ACE △为等边三角形,CE 的长度可求.【详解】∠AD 平分∠BAC ,∠∠EAD =∠CAD . ∠∠ACB =90°,DE ∠AB ,∠∠ACD =∠AED .又∠AD =AD ,∠∠ACD ∠∠AED .∠AE =AC .∠∠ACB =90°,∠B =30°,∠∠BAC =60°.∠∠ACE 为等边三角形, ∠CE =AC =3.【点睛】本题主要考查等边三角形的性质及判定,全等三角形的性质及判定,能够证明是等边三角形是解题的关键.35.如图,已知点M 、N 和∠AOB ,用尺规作图作一点P ,使P 到点M 、N 的距离相等,且到∠AOB 两边的距离相等.(保留作图痕迹,不写作法)【答案】见解析【分析】利用角平分线的作法以及线段垂直平分线的作法进而求出其交点即可.【详解】解:(1)作∠AOB 的平分线,(2)作MN 的中垂线,两线相交于点P ,点P 即为所求【点睛】此题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题关键.36.如图,已知∠A=∠F,AB∠EF,BC=DE,请说明AD∠CF.【答案】见解析【分析】根据平行线的性质得到∠B=∠E,根据全等三角形的性质得到∠ADC=∠FCE,由平行线的判定定理即可得到结论.【详解】证明:∠BC=DE,∠BD=EC,∠AB∠EF,∠∠B=∠E,在∠ABD与∠FEC中,A FB EBD CE∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ABD∠∠FEC,∠∠ADC=∠FCE,∠AD∠FC.【点睛】此题主要考查全等三角形的判定及性质,熟练掌握全等三角形的判定和性质定理是解题的关键.37.求证:线段垂直平分线上的点到这条线段两个端点的距离相等.【答案】答案见解析【分析】根据题意得出三角形全等,再根据全等三角形的性质作出证明即可.【详解】解:如图,已知AD是BC的垂直平分线,∠AD∠BC,DB=CD∠在∠ADB和∠ADC中AD=ADADB=ADCBD=DC⎧⎪∠∠⎨⎪⎩∠∠ADB∠∠ADC(SAS)∠AB=AC故线段垂直平分线上的点到这条线段两个端点的距离相等.【点睛】本题主要考查了线段垂直平分线的性质,弄清楚此性质的来源是解题的关键. 38.我们学过三角形的相关知识,在“信息技术应用”——画图找规律的实践学习中,我们发现了几个基本事实:三角形的三条中线交于一点,三角形的三条角平分线交于一点,三角形的三条高所在的直线交于一点.请根据以上的基本事实,解决下面的问题.如图,钝角三角形ABC中,AD,BE分别为BC,CA边上的高.(1)请用无刻度直尺画出AB边上的高CF(保留作图痕迹,不写作法);(2)在(1)的条件下,若4AB=,2AC=,求高CF与BE的比是多少?【答案】(1)见解析(2):1:2CF BE=【分析】(1)延长DA交BE的延长线于点G,连接CG交BA延长线于F,即可得出分别是ABC 的边ABC S =12ABC S AC BE =⋅AB CF ⋅4AB =39.(1)先化简,再求值:,其中.(2)已知,,求的值. 【答案】(1)1;(2)32【详解】(1)先根据完全平方公式、平方差公式以及多项式乘多项式把括号展开,再合并同类项,最后把a 、b 的值代入即可求值;(2)把原式变为含有(a-b )、ab 的式子,然后代入求值.(1)(2x+3)(2x ﹣3)+(x ﹣2)2-3x (1﹣x )=4x 2﹣9+x 2-4x+4+3x ﹣3x 2=2x 2 – x-5,当x=2时,原式=1.(2)a 2+b 2=(a-b)2+2ab=(-4)2+2×8=32.40.某农场开挖一条长960米的渠道,开工后工作效率比原计划提高50%,结果提前4天完成任务.问原计划每天挖多少米渠道?41.如图,点A ,E ,F ,B 在直线l 上,AE BF =,//AC BD ,且AC BD =,求证:ACF BDE ≅△△.【答案】见解析【分析】先证明AF BE =,然后根据平行线的性质得到∠CAF=∠DBE ,用SAS 即可证明∠ACF∠∠BDE .【详解】证明:AE BF =,AE EF BF EF ∴+=+,即AF BE =;//AC BD ,CAF DBE ∴∠=∠在ACF △与BDE △中,AC BD CAF DBE AF BE =⎧⎪∠=∠⎨⎪=⎩ACF BDE ∴≅.【点睛】本题考查的是全等三角形的SAS 判定、平行线的性质,掌握SAS 判定是解题的关键.42.已知 3m a =,3n b =,分别求:(1)3m n +.(2)233m n +.(3)2333m n + 的值. 【答案】(1)ab (2)23a b(3)23a b +【分析】(1)根据同底数幂乘法的逆运算计算法则求解即可;(2)根据同底数幂乘法和幂的乘方的逆运算计算法则求解即可;(3)根据幂的乘方的逆运算计算法则求解即可.(1)解:∠3m a =,3n b =,∠=333m n n m ab +⋅=;(2)解:∠3m a =,3n b =,∠()()2322323233=33333m n m n n m a b a b +⋅=⋅=⋅=;(3)解:∠3m a =,3n b =,∠()()223233+3=333n m n m a b +=+.【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,熟知相关计算法则是解题的关键.43.计算:2136b a ab-.4412121)16(2--+45.计算:22353339m m m m +⎛⎫+÷ ⎪+--⎝⎭.46.先阅读理解下面的例题,再按要求解答下列问题.例题:求代数式248y y ++的最小值.解:22248444(2)4y y y y y ++=+++=++∠()220y +≥∠()2244y ++≥∠代数式248y y ++的最小值为4.(1)求代数式222x x --的最小值.(2)若269|1|0a a b -+++=,则b a =_________.(3)某居民小区要在一块一边靠墙(墙长15m )的空地上建一个长方形花园ABCD ,花园一边靠墙,另三边用总长为20m 的栅栏围成.如图,设()m AB x =,请问:当x 取何值时,花园的面积最大?最大面积是多少?由题意可得,花园的面积为:()()()2222022202102550x x x x x x x -=-+=--=--+, ∠()2250x --≤,∠当x =5时,花园的面积取得最大值,此时花园的面积是50,BC 的长是20−2×5=10<15,答:当x 取5时,花园的面积最大,最大面积是50m 2.【点睛】本题考查了完全平方公式的变形及应用,非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.47.计算: (2)(2)a b c a b c -+--.【答案】22244a ab b c -+-【详解】试题分析:利用平方差公式化简,再利用完全平方公式展开即可得到结果. 试题解析:()()22a b c a b c -+--=(2a-b )2-c 2=22244a ab b c -+-48.因式分解:(1)m 4-81;(2)22363x xy y -+- 【答案】(1)原式2(9)(3)(3)m m m =++-;(2)原式23()x y =--【详解】试题分析:试题分析:(1)用“平方差公式”连续分解两次即可;(2)先提“公因式”,再用“完全平方公式”分解即可.试题解析:(1)原式()()()()()22299933m m m m m =+-=++-; (2)原式()()222323x xy y x y =--+=--. 49.先阅读下列材料,再解答下列问题:材料:因式分解:()()221x y x y ++++.解:将“x y +”看成整体,设x y A +=,则,原式()22211A A A =++=+.再将“A ”还原,得原式()21x y =++.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:()()44a b a b ++-+;(2)求证:若n 为正整数,则式子()()()21231n n n n ++++的值一定是某一个整数的平方. 【答案】(1)()22a b +-(2)证明见解析【分析】(1)把a+b 看作一个整体,去括号后利用完全平方公式即可将原式因式分解;(2)将原式转化为()()223231n n n n ++++,进一步整理为2231n n ,根据n 为正整数得到2231n n 也为正整数,从而说明原式是整数的平方.(1)解:设A a b =+,则原式()()2244442A A A A A =-+=-+=-,所以()()()2442a b a b a b ++-+=+-;(2)证明:()()()()()()212313121n n n n n n n n ⎡⎤++++=++++⎣⎦ ()()223321n n n n =++++,设23B n n =+,原式()()()22222121131B B B B B n n =++=++=+=++. ∠n 为正整数,∠231n n ++也为正整数,∠式子()()()21231n n n n ++++的值一定是某一个整数的平方.【点睛】本题考查因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.50.若x 满足()()944x x --=,求()()2249x x -+-的值. 解:设9x a -=,4x b -=,则()()944x x ab --==,()()945a b x x +=-+-=, ∠()()()22222942522413x x a b a b ab -+-=+=+-=-⨯=请仿照上面的方法求解下面问题:(1)若x 满足()()522x x --=,求()()2252x x -+-的值. (2)若x 满足()()631x x --=,求代数式92x -的值.(3)已知正方形ABCD 的边长为x ,E ,F 分别是AD 、DC 上的点,且2AE =,5CF =,长方形EMFD 的面积是48,分别以MF 、DF 作正方形,求阴影部分的面积.∠(x-2)•(x-5)=48,∠(x-2)-(x-5)=3,∠阴影部分的面积=FM2-DF2=(x-2)2-(x-5)2.设(x-2)=a,(x-5)=b,则(x-2)(x-5)=ab=48,a-b=(x-2)-(x-5)=2,∠a=8,b=6,a+b=14,∠(x-2)2-(x-5)2=a2-b2=(a+b)(a-b)=14×2=28.即阴影部分的面积是28.【点睛】本题考查了完全平方公式和几何图形面积,解决本题的关键是要应从整体和部分两方面来理解完全平方公式的几何意义.。

期中考前必刷解答题(压轴真题60道,八上人教)八年级数学上学期复习备考高分秘籍【人教版】(原卷版)

期中考前必刷解答题(压轴真题60道,八上人教)八年级数学上学期复习备考高分秘籍【人教版】(原卷版)

2023-2024学年八年级数学上学期复习备考高分秘籍【人教版】专题4.6期中考前必刷解答题(压轴真题60道,八上人教)一.解答题(共60小题)1.(2022秋•盐津县期中)在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?2.(2022秋•盐津县期中)如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B,∠ACB的数量关系,并证明.3.(2022秋•金安区校级期中)我们将内角互为对顶角的两个三角形称为“对顶三角形”.例如,在图1中,△AOB的内角∠AOB与△COD的内角∠COD互为对顶角,则△AOB与△COD为“对顶三角形”,根据三角形内角和定理知“对顶三角形”有如下性质:∠A+∠B=∠C+∠D.(1)如图1,在“对顶三角形”△AOB与△COD中,∠AOB=70°,则∠C+∠D=°.(2)如图2,在△ABC中,AD、BE分别平分∠BAC和∠ABC,若∠C=60°,∠ADE比∠BED大6°,求∠BED的度数.4.(2022秋•蜀山区校级期中)如图,在△ABC中,点D在BC上,点E在AC上,AD交BE于F.已知EG∥AD交BC于G,EG平分∠BEH,EH⊥BE交BC于H.(1)求∠BFD的度数.(2)若∠BAD=∠EBC,∠C=47°,求∠BAC的度数.5.(2022春•白云区校级期中)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM 平分∠AEF交CD于点M,且∠FEM=∠FME.(1)直线AB与直线CD是否平行,说明你的理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H 作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=60°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.6.(2022春•罗定市期中)如图,在△ABC中,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)点H在FE的延长线上,若∠EDH=∠C,∠F=2∠H﹣40°,求∠BAC的度数.7.(2022春•仓山区校级期中)已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(60﹣3α)2+|2β﹣40|=0.(1)α= ,β= ;直线AB 与CD 的位置关系是 ;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中FPN 1∠Q 的值是否改变?若不变,请求出其值;若变化,请说明理由.(注:三角形外角等于与它不相邻的两个内角和.)8.(2022春•东平县期中)(问题背景)∠MON =90°,点A 、B 分别在OM 、ON 上运动(不与点O 重合).(问题思考)(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB = .(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D .①若∠BAO =70°,则∠D = °.②随着点A 、B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由;(问题拓展)(3)在图②的基础上,如果∠MON =α,其余条件不变,随着点A 、B 的运动(如图③),∠D = .(用含α的代数式表示)9.(2022秋•阜阳期中)如图,△AOB 与△COD 中的∠AOB 与∠COD 是对顶角.(1)如图1,证明:∠A+∠B=∠C+∠D;(2)如图2,AP,DP分别是∠BAO,∠CDO的平分线,探索∠P,∠B和∠C之间的数量关系并加以证明;(3)如图3,∠BAO与∠CDO的相邻补角平分线交于点P,探索∠P,∠B和∠C之间的数量关系并加以证明.10.(2022秋•滨海新区校级期中)如图所示,在△ABC中,AD平分∠BAC.(1)当点P在线段AD上时,PE⊥AD交BC的延长线于点E.如图1,①若∠B=35°,∠ACB=85°,求∠E的度数;②设∠B=α,∠ACB=β(β>α),求∠E的大小.(用含α、β的代数式表示)(2)当点P在线段AD的延长线上运动时,PE⊥AD交直线BC于点E,请在图2中补全图形,设∠ABC =α,∠ACB=β(β>α),直接写出∠PEB的大小.(用含α,β的代数式表示)11.(2022秋•桓台县期中)如图,在△ABC中,AE,CD分别是∠BAC,∠ACB的平分线,且AE,CD相交于点F.(1)若∠BAC=80°,∠ACB=40°,求∠AFC的度数;(2)若∠B=80°,求∠AFC的度数;(3)若∠B=x°,用含x的代数式表示∠AFC的度数.12.(2022秋•霍邱县期中)如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.【问题解决】(1)如图②,在△ABC中,∠A=75°,∠B=45°,若∠B邻AB三分线BD交AC于点D,则∠BDA =;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,且∠BPC=90°,求∠A的度数;【延伸推广】(3)在△ABC中,BP、CP分别是∠ABC邻BC三分线和∠ACB邻BC三分线,∠A=α,请求出∠BPC 的度数.(用含α的代数式表示)13.(2022秋•铜官区校级期中)△ABC中,三个内角的平分线交于点O,过点O作OD垂直OB,交边BC 于点D.(1)如图1,猜想并直接写出∠COD与∠BAC的数量关系,不需要说明理由;(2)如图2,作△ABC的外角∠ABE交CO的延长线于点F,求证:BF∥OD.14.(2022春•滨海县期中)在△ABC中,BD平分∠ABC交AC于点D,点E是射线AC上的动点(不与点D重合),过点E作EF∥BC交直线BD于点F,∠CEF的角平分线所在直线与射线BD交于点G.(1)如图1,点E在线段AD上运动.①若∠ABC=40°,∠C=60°,则∠BGE=°;②若∠A=70°,则∠BGE=;③探究∠BGE与∠A之间的数量关系,并说明理由;(2)若点E在射线DC上运动时,∠BGE与∠A之间的数量关系与(1)③中的数量关系是否相同?若不同,请写出它们之间的数量关系并说明理由.15.(2022秋•新兴县校级期中)综合与探究:小新在学习过程中,发现课本有一道习题,他在思考过程中,对习题做了一定变式,让我们来一起看一下吧,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图1,如果∠A=80°,求∠BPC的度数.(2)在(1)的条件下,如图2,作△ABC的外角∠MBC,∠NCB的平分线交于点Q,求∠Q的度数.(3)如图3,作△ABC的外角∠MBC,∠NCB的平分线交于点Q,延长线段BP,QC交于点E,在△BQE中,是否存在一个内角等于另一个内角的2倍,若存在,请直接写出∠A的度数;若不存在,请说明理由.16.(2022秋•苏州期中)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.(1)求证:△BDE≌△CDF;(2)若AE=13,AF=7,试求DE的长.17.(2022秋•肇源县校级期中)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC.(2)写出AB+AC与AE之间的等量关系,并说明理由.18.(2022秋•思明区校级期中)如图,在△ABC中,∠B=∠C,点D是边BC上一点,CD=AB,点E在边AC上.(1)若∠ADE=∠B,求证:BD=CE;(2)若BD=CE,∠BAC=70°,求∠ADE的度数;(3)若∠ADE=∠C,试判断∠DAE与∠AED的数量关系,并说明理由.19.(2022秋•新野县期中)为了解学生对所学知识的应用能力,某校老师在八年级数学兴趣小组活动中,设置了这样的问题:因为池塘两端A,B的距离无法直接测量,请同学们设计方案测量A,B的距离.甲、乙两位同学分别设计出了如下两种方案:甲:如图1,先在平地上取一个可以直接到达点A,B的点O,连接AO并延长到点C,连接BO并延长到点D,使CO=AO,DO=BO,连接DC,测出DC的长即可;乙:如图2,先确定直线AB,过点B作直线BE⊥AB,在直线BE上找可以直接到达点A的一点D,连接DA,作DC=DA,交直线AB于点C,最后测量BC的长即可.甲、乙两个同学的方案是否可行?请说明理由.20.(2022秋•金州区期中)如图,△ABC中,AB=AC,∠BAC>90°,BD⊥AC垂足为D,点E在AD上,BE平分∠ABD,点F在BD延长线上,BF=CE,延长FE交BC于点H.(1)求证:∠CBE=45°;(2)写出线段BH和EH的位置关系和数量关系,并证明.21.(2022秋•常州期中)如图,A、B两点分别在射线OM,ON上,点C在∠MON的内部,且AC=BC,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)若AD=3,BO=4,求AO的长.22.(2022春•茂南区期中)如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE 与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠F AG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.23.(2022秋•长垣市期中)如图所示,人教版八年级上册数学教材P53数学活动中有这样一段描述:如图,四边形ABCD中,AD=CD,AB=CB.我们把这种两组邻边分别相等的四边形叫做“筝形”.(1)试猜想筝形的对角线AC与BD有什么位置关系?并用全等三角形的知识证明你的猜想;(2)过点D作DE∥AB交BC于点E,若BC=10,CE=4,求DE的长.24.(2022秋•邓州市期中)如图,AE,BD相交于点C,AC=EC,BC=DC,AB=4cm,点P从点A出发,沿A→B→A方向以3cm/s的速度匀速运动,点Q从点D出发,沿D→E方向以1cm/s的速度匀速运动.P,Q两点同时出发,当点P回到点A时,P,Q两点同时停止运动.设点P的运动时间为t(s).(1)当t=1s时,AP=cm,当t=2s时,AP=cm;(2)求证:AB∥DE;(3)连接PQ,当线段PQ经过点C时,DQ的长为cm.25.(2022秋•西城区校级期中)问题提出:(1)我们把两个面积相等但不全等的三角形叫做偏等积三角形,如图△ABC中,AC=7,BC=9,AB=10,P为AC上一点,当AP=时,△ABP与△CBP是偏等积三角形;问题探究:(2)如图,△ABD与△ACD是偏等积三角形,AB=2,AC=6,且线段AD的长度为正整数,过点C作CE∥AB交AD的延长线于点E,求AD的长度为;问题解决:(3)如图,四边形ABED是一片绿色花园,CA=CB,CD=CE,∠ACB=∠DCE=90°(0°<∠BCE <90°).△ACD与△BCE是偏等积三角形吗?请说明理由.26.(2022秋•莱阳市期中)在一个支架的横杆点O处用一根绳悬挂一个小球A,小球A可以摆动,如图,OA表示小球静止时的位置.当小球从OA摆到OB位置时,过点B作BD⊥OA于点D,当小球摆到OC 位置时,OB与OC恰好垂直,过点C作CE⊥OA于点E,测得CE=24cm,OA=OB=OC=30cm.(1)试说明OE=BD;(2)求AD的长.27.(2022秋•淅川县期中)已知:AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,(1)如图1,求证:BE =CD .(2)如图2,连接AF ,在不添加任何辅助线的情况下,请直接写出图2中所有的全等三角形.28.(2022秋•海城市期中)如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD =AC ,在CF 的延长线上截取CG =AB ,连接AD 、AG .试猜想线段AD 与AG 的关系,并证明你的猜想.29.(2022秋•南沙区校级期中)如图,已知A (a ,0),B (0,b )且a 、b 满足a 2+2ab +b 2=0,C 、D 分别是OA 、OB 边上的动点,同时从原点O 以相同的速度分别匀速向点A 、点B 运动(点C 不与O 、A 重合,点D 不与O 、B 重合),AD 和BC 相交于点M ,过点O 作OE ⊥AD 交AB 于点E ,过点E 作EF ⊥BC 交BO 于点F .(1)求证:△AOD ≌△BOC .(2)在C 、D 运动的过程中,AD−EF OE 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.30.(2022秋•盐津县期中)如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(1)求∠CAD的度数;(2)求证:DE平分∠ADC;(3)若AB=7,AD=4,CD=8,且S△ACD=15,求△ABE的面积.31.(2022秋•郯城县期中)如图,点C在线段AB上,∠A=∠B,AC=BE,AD=BC,CF⊥DE于点F.(1)求证:△ACD≌△BEC;(2)求证:DF=EF.32.(2022秋•延平区校级期中)如图,DE⊥AB于点E,DF⊥AC于点F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)已知AE=5.8,AB=4.7,求AC的长.33.(2022秋•安次区校级期中)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.(1)如图1,求证:BC=AD;(2)如图2,若点E是AB的中点,试判断OE和AB的位置关系,并给予证明;(3)延长AD、BC相交于点E(自己画图),若∠AOB=130°,则∠E=(直接写出答案).34.(2022秋•淇滨区校级期中)问题原型:(1)如图1,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E;连接BE,使BE=AC.求证:DE=CD.问题拓展:(2)如图2,在问题原型的条件下,F为BC的中点,连接EF并延长至点M,使FM=EF,连接CM、AM,则△ACM为三角形.35.(2022秋•云阳县期中)【问题背景】如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由.【学以致用】如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出△DEF的周长.36.(2022秋•东宝区校级期中)如图,△ABC中,AB=AC,点P从点B出发沿线段BA移动(点P不与A,B重合),同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)求证:PD=QD;(2)过点P作直线BC的垂线,垂足为E,P,Q在移动过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.37.(2022秋•北仑区期中)如图,点B,C分别在射线AM,AN上,点E,F都在∠MAN内部的射线AD 上,已知AB=AC,且∠BED=∠CFD=∠BAC.(1)求证:△ABE≌△CAF;(2)试判断EF,BE,CF之间的数量关系,并说明理由.38.(2022秋•宁乡市校级期中)如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC 于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=12∠B.39.(2022秋•蕲春县期中)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.40.(2022秋•东莞市校级期中)已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形.41.(2022秋•郾城区期中)如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动.(1)当点P的运动速度是1cm/s,点Q的运动速度是2cm/s,当Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),当t=2时,判断△BPQ的形状,并说明理由;(2)当它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则当t为何值时,△PBQ是直角三角形?42.(2022秋•颍泉区期中)在边长为9的等边三角形ABC中,点P是AB上一动点,以每秒1个单位长度的速度从点A向点B运动,设运动时间为t秒.(1)如图1,若点Q是BC上一定点,BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位长度的速度从点B经点C向点A运动,当t为何值时,△APQ为等边三角形?43.(2022秋•夏津县期中)已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED =EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB (填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).44.(2022秋•滨江区校级期中)已知:如图,点D在△ABC的外部,DE过点C,BC与AD交于点O.∠1=∠2=∠3,AB=AD.(1)求证:△ACE是等腰三角形;(2)过点A作AF⊥DE于点F,若AB=√21,AE=3,BC=6,求线段AF的长.45.(2022秋•思明区校级期中)在△ABC中,∠B=∠C,点D在BC边上(点B、C除外)点E在AC边上,且∠4=∠AED.(1)如图1,若∠B=∠C=45°,①当∠1=60°时,求∠2的度数;②试猜想∠1与∠2的数量关系(不用证明,直接写出猜想)(2)深入探究:如图2,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠1与∠2的数量关系.要求有简单的推理过程.46.(2022秋•和平区校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当α为多少度时,△AOD是等腰三角形?47.(2022秋•香洲区校级期中)如图,在△ABC中,AB=AC,以BC为边作等边三角形BDC,点E在△ABC外,∠CBE=150°,∠ACE=60°.(1)直接写出∠ADC的度数为;(2)判断△ACE的形状并加以证明;(3)连接DE,若DE⊥CD,AD=4,求DE的长.48.(2022秋•汉阴县期中)如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,BG平分∠ABC,交AD于点E,交AC于点G(1)求证:AE=AG;(2)如图2,过点E作EF∥BC,交AC于点F,若∠C=30°,求证:AG=GF=FC.49.(2022秋•韩城市期中)如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.50.(2022秋•滨海新区校级期中)如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P 到达点B时,P、Q两点同时停止运动,设点P的运动时间为ts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?51.(2022秋•南昌期中)如图,在△ABC中,∠A=90°,∠B=30°,AC=6cm,点D从点A出发以1cm/s 的速度向点C运动,同时点E从点C出发以2cm/s的速度向点B运动,运动的时间为t秒,解决以下问题:(1)当t为何值时,△DEC为等边三角形;(2)当t为何值时,△DEC为直角三角形.52.(2022秋•公安县期中)概念学习:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(1)如图1,在△ABC中,CD为角平分线,∠A=30°,∠B=50°,求证:CD为△ABC的等角分割线;(2)如图2,在△ABC中,若∠A=40°,CD是△ABC的等角分割线,请直接写出∠B的度数.53.(2022秋•江南区期中)如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B=°,∠C=°;(2)若M为线段BD上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.54.(2022秋•西湖区校级期中).探究与发现:在△ABC中,∠B=∠C,点D在BC边上(点B、C除外)点E在AC边上,且∠ADE=∠AED.(1)如图①,若∠B=∠C=45°,①当∠BAD=60°时,求∠CDE的度数;②试猜想∠BAD与∠CDE的数量关系.(2)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.要求有简单的推理过程.55.(2022春•鸡西期中)在△ABC中,AB=AC,点D在BC边所在的直线上,过点D作DE∥AC交直线AB于点E,DF∥AB交直线AC于点F.(1)当点D在BC边上时,如图①,求证:DE+DF=AC;(2)当点D在BC边的延长线上时,如图②:当点D在BC边反向延长线上时,如图③,请分别猜想出图②、图③中DE、DF、AC之间的数量关系,不需要证明.56.(2022春•武功县期中)如图,在△ABC中,AB=AC,AD是BC边上的中线,AC的垂直平分线分别交AC、AD于点E、O,连接OB,OC.(1)求证:点O在AB的垂直平分线上;(2)若∠CAD=24°,求∠OBC的度数.57.(2022秋•南岗区校级期中)已知AB∥CD,点M,N分别在直线AB,CD上,点E在直线AB,CD之间,EP平分∠MEN,交直线CD于点P.(1)如图1,若∠AME=24°,∠EPN=30°,求∠ENC的度数.(2)如图2,在(1)问的条件下,过点P作PF∥EN,交直线EM于点F,交直线AB于点K,连接NF,交直线AB于点Q,过点F作FG⊥EP于点G;当NF平分∠ENP时,求∠NFG的度数.(3)如图3,已知FG=6,EH=3,点E到FN的距离与线段HF的长度之比是2:9,点P到FN的距离等于7,求线段HP的长度.58.(2022春•南城县期中)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=12cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为多少时,△PBQ是等边三角形?(2)P、Q在运动过程中,△PBQ的形状不断发生变化,当t为多少时,△PBQ是直角三角形?请说明理由.59.(2022秋•巴彦县期中)如图,在△ABC中,∠BAC=∠ACB,点D是BC边上一点,且AD=BD,CE 平分∠ACB交AD于点E.(1)若∠ADC=80°,求∠2的度数;(2)过点E作EF∥AB,交BD于点F,求证:∠FEC=3∠3.60.(2022秋•金乡县期中)如图,在△ABC中,点D是边BC上一点,点E在边AC上,且BD=CE,∠BAD=∠CDE,∠ADE=∠C.(1)如图1,求证:△ADE是等腰三角形;(2)如图2,若DE平分∠ADC,在不添加辅助线的情况下,请直接写出图中所有与∠CDE相等的角(∠CDE除外).。

人教版八年级下册数学解答题专题训练50题含答案

人教版八年级下册数学解答题专题训练50题含答案

人教版八年级下册数学解答题专题训练50题含答案51.如图所示,//AD BC ,90BAD ∠=︒,以B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ,过C 作CF BE ⊥于点F .(1)线段BF 与图中哪条线段相等?写出来并加以证明;(2)若12AB =,13BC =,P 从E 沿ED 方向运动,Q 从C 出发向B 运动,两点同时出发且速度均为每秒1个单位.①当t =_____秒时,四边形EPCQ 是矩形;①当t =_____秒时,四边形EPCQ 是菱形.=90,①当CP AD ⊥时,90CPE ∠=︒,则平行四边形EPCQ 为矩形,如图所示,此时13AP BC ==,即513t +=,解得8t =,即当8t =时,四边形EPCQ 是矩形; ①作CH AD ⊥于H ,如图,当CP CQ EP t ===,平行四边形EPCQ 为菱形,而5138=+-=-PH t t ,在∆Rt PCH 中,()222128+-=t t ,解得13t =,即当13t =,四边形EPCQ 是菱形.【点睛】本题考查全等三角形的判定和性质,以及矩形和菱形的性质,熟练掌握特殊平行四边形的性质,从而建立方程求解是关键.52.如图1,若四边形ABCD 、四边形GFED 都是正方形,显然图中有AG CE =,AG CE ⊥; ()1当正方形GFED 绕D 旋转到如图2的位置时,AG CE =是否成立?若成立,请给出证明;若不成立,请说明理由;()2当正方形GFED 绕D 旋转到如图3的位置时,延长CE 交AG 于H ,交AD 于M . ①求证:AG CH ⊥;②当4AD =,DG =CH 的长.90.90ADE -∠=∠∴AGD CED ≅.AG CE =.)2①类似()1可得AGD CED ≅,12∠=∠. 又∵HMA DMC ∠=∠,90=,AD 于P ,连接CG ,为底边的CDG 的高为AGD ACD ACG CGD ACDG S S S S S +==+四边形41441041CH ⨯+⨯=⨯+⨯53.如图,在Rt ABC 中,90B ,60AC cm =,60A ∠=︒,点D 从点C 出发沿CA 方向以4/cm 秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm 秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(015t <≤).过点D 作DF BC ⊥于点F ,连接DE ,EF .(1)求证:DF AE =;(2)当10t =时,四边形AEFD 是什么四边形?请说明理由(3)在运动过程中,四边形BEDF 能否为正方形?若能,求出t 的值;若不能,请说明理由.中,90B ,A ∠=︒,4CD t =,54.如图,在△ABC中,AB=5,AC=3,AD,AE分别为△ABC的中线和角平分线,过点C作CH①AE于点H,并延长交AB于点F,连接DH,求线段DH的长.55.如图,在△ABC中,AC=BC,△ACB=90°,△O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作△O的切线交AC于点F.延长CO交AB于点G,作ED△AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan△DEF=2,求BG的值.①MB=GM,①四边形CDEF是平行四边形,①①FCD=①FED,①①ACD+①GCB=①GCB+①CGM=90°,①①CGM=①ACD,①①CGM=①DEF,①tan①DEF=2,①tan①CGM==2,①CM=2GM,①CM+BM=2GM+GM=3,①GM=1,①BG=GM=.考点:切线的性质;平行四边形的判定与性质;解直角三角形.56.如图,在Rt①ABC中,①ACB=90°,E为AC上一点,且AE=BC,过点A作AD①CA,垂足为A,且AD=AC,AB、DE交于点F(1)判断线段AB与DE的数量关系和位置关系,并说明理由(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE 的面积证明勾股定理.【答案】(1)AB=DE,AB①DE.理由见解析;(2)证明见解析.【详解】试题分析:(1)根据垂直的定义可证得①DAE=①ACB=90°,然后根据ASA可证①ABC①①DEA,从而得证AB=DE,且①3=①1,然后根据直角三角形的内角和等量代换可证得AB①DE;(2)根据三角形的面积和四边形的面积,可知S四边形ADBE= S△ADE+ S△BDE,S四边形=S△ABE+S△ADB=a2+b2可得证符合勾股定理的逆定理.ADBE试题解析:(1)解:AB=DE,AB①DE.如图2,①AD①CA,①①DAE=①ACB=90°,①AE=BC,①DAE=①ACB,AD=AC,①①ABC①①DEA,①AB=DE,①3=①1,①①DAE=90°,①①1+①2=90°,①①3+①2=90°,①①AFE=90°,①AB①DE.(2)如图2,①S四边形ADBE= S△ADE+ S△BDE=DE·AF+DE·BF=DE·AB =c2,S四边形ADBE=S△ABE+S△ADB=a2+b2,①a2+b2=c2,①a2+b2=c2.考点:三角形全等的判定与性质,面积的拆分,勾股定理的逆定理57.某地区在一次九年级数学做了检测中,有一道满分8分的解答题,按评分标准,所有考生的得分只有四种:0分,3分,5分,8分.老师为了了解学生的得分情况与题目的难易情况,从全区4500名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如下两幅图不完整的统计图.请根据以上信息解答下列问题:(1)填空:a=,b=,并把条形统计图补全;(2)请估计该地区此题得满分(即8分)的学生人数;(3)已知难度系数的计算公式为L=XW,其中L为难度系数,X为样本平均得分,W为试题满分值.一般来说,根据试题的难度系数可将试题分为以下三类:当0<L≤0.4时,此题为难题;当0.4<L≤0.7时,此题为中等难度试题;当0.7<L<1时,此题为容易题.试问此题对于该地区的九年级学生来说属于哪一类?铅笔与用400元购进水笔的数量相同,且每支铅笔比每支水笔进价高1元.(1)求这两种笔每支的进价分别是多少元?(2)该商店计划购进水笔的数量比铅笔数量的2倍还多60支,且两种笔的总数量不超过360支,售价见店内海报(如图所示).该商店应如何安排进货才能使利润最大?最大利润是多少?【答案】(1)每支铅笔3元,每支水笔2元.(2)商店购进铅笔100支,水笔260支时,能使利润最大,最大利润为230元.59.如图1, 2,4OA OB ==,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC △.(1)求C 点的坐标;(2)如图2,在平面内是否存在一点H ,使得以A C B H 、、、为顶点的四边形为平行四边形?若存在,请写出H 点坐标;若不存在,请说明理由;【答案】(1)点C 的坐标为()6,2--;(2)(-4,-6)或(-8,2)或(4,-2).(2)解方程组34620 x yx y+=⎧⎨+=⎩61.甲、乙两位同学5次数学选拔赛的成绩统计如下表,他们5次考试的总成绩相同,请同学们完成下列问题:(1)统计表中,=a ______,甲同学成绩的极差为______;(2)小颖计算了甲同学的成绩平均数为60,方差是2200s =甲.请你求出乙同学成绩的平均数和方差;(3)从平均数和方差的角度分析,甲、乙两位同学谁的成绩更稳定.和方差的意义.62.秦椒,是辣椒中的佳品,素有“椒中之王”的美称,它具有颜色鲜红、辣味浓郁、体形纤长、肉厚油大、表面皱纹均匀等特点.是陕西一项大宗出口商品,畅销国际市场.某超市的秦椒标价为80元/千克.同时规定:如果一次性购买5千克以上,超过部分可以打8折.若在该超市一次性购买x (千克)秦椒,付款金额为y (元).(1)求y 与x 之间的函数关系式;(2)宁宁妈妈在该超市一次性购买秦椒共花了720元,求宁宁妈妈购买了多少千克秦椒? 【答案】(1)y 与x 之间的函数关系式为()()800564805x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)宁宁妈妈购买了10千克秦椒【分析】(1)分两种情况,利用付款金额等于单价乘以数量可得函数关系式;(2)先判断付款720元属于两种情况当中的哪种情况,再把720y =代入符合题意的函数解析式求解即可.(1)解:当05x ≤≤时,80y x =;当5x >时,()805800.856480y x x =⨯+⨯-=+.①y 与x 之间的函数关系式为()()800564805x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)①805400⨯=(元),400720<,①宁宁妈妈购买的秦椒超过5千克.将720y =代入6480y x =+,得10x =,①宁宁妈妈购买了10千克秦椒.【点睛】本题考查的是一次函数的实际应用,根据函数值求解自变量的值,理解题意,列出正确的函数关系式与方程是解本题的关键.63.如图,在四边形ABCD 中,90ABC ADC ︒∠=∠=,对角线AC 与BD 相交于点O ,M N 、分别是边AC 、BD 的中点.(1)求证:MN BD ⊥;(2)当15,10,BCA AC cm OB OM ︒∠===时,求MN 的长.64.甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在某次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.(1)请根据乙校的数据补全条形统计图:(2)两组样本数据的平均数.中位数众数如下表所示,写出m、n的值:(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好些,请为他们各写出条可以使用的理由;甲校:____.乙校:________.(4)综合来看,可以推断出________校学生的数学学业水平更好些,理由为________.【答案】(1)见解析;(2)86m =;92n =;(3)答案不唯一,理由需包含数据提供的信息;(4)综合来看,甲校学生的数学学业水平更好一些,理由:甲校的平均分高于乙校,说明总成绩甲校好于乙校,中位数甲校高于乙校,说明甲校一半以上的学生成绩较好 【点睛】本题考查条形统计图、中位数、众数、平均数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.65.如图,在ABC 中,CA CB =,D 是BC 上的一点,10AB =,6BD =,8AD =.求ABC 的面积.【详解】解:在ABC 中,2AB ,,则CD=x -中,①2CD AD +①ABC 的面积【点睛】本题考查了勾股定理及其逆定理,解题的关键.66.表示汽车性能的参数有很多,例如:长宽高.轴距.排量.功率.扭矩.转速.百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:①根据上表可知,每小时耗油升;①根据上表的数据,写出用Q 与t 的关系式:; ①汽车油箱中剩余油量为55L ,则汽车行驶了小时. 【答案】(1)6 (2)Q=100-6t (3)7.5 【分析】①根据表中数据即可得到结论;①由表格可知,开始油箱中的油为100L ,每行驶1小时,油量减少6L ,据此可得t 与Q 的关系式;①求汽车油箱中剩余油量为55L ,则汽车行驶了多少小时即是求当Q=55时,t 的值; 【详解】①据上表可知,每小时耗油100-94=6 升; ①Q=100-6t ;①当Q=55时,55=100-6t , 6t=45, t=7.5.答:汽车行驶了7.5小时;【点睛】此题考查常量与变量,函数的表示方法,整式的加减,解答本题的关键是列出表达式.67.(1b ,求()4b b +的值;(2)已知1x =,1y =,求22x y +的值.68.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小英家3月份用水24吨,她家应交水费多少元.【答案】(1)每吨水的政府补贴优惠价为1元,市场调节价为2.5元;(2)()()0142.52114x x y x x ⎪≤≤=>⎧⎪⎨⎩-;(3)39元【分析】(1)设每吨水的政府补贴优惠价为x 元,市场调节价为y 元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y 与x 之间的函数关系,注意自变量的取值范围;(3)根据小英家的用水量判断其再哪个范围内,代入相应的函数关系式求值即可. 【详解】解:(1)设每吨水的政府补贴优惠价为x 元,市场调节价为y 元. ()()1420142914181424x y x y ⎪+-⎧-+=⎪⎨⎩= 解得12.5x y ==⎧⎨⎩ 答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)当0≤x≤14时,y x =;当x >14时,()1414 2.5 2.521y x x =+-⨯=-, 所求函数关系式为:()()0142.52114x x y x x ⎪≤≤=>⎧⎪⎨⎩- (3)2414x =>, 把x=24代入 2.521y x =- 2.5242139y =⨯-=答:小英家三月份应交水费39元.【点睛】本题考查了一次函数的应用,题目还考查了二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围. 69.先化简,后求值:22321113x x x x x -++⋅---,其中1x =.70.如图,在①ABC 中,①BAC =90°,AB =AC =1,P 是①ABC 内一点,求P A +PB +PC 的最小值.71.4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:一、数据收集,从全校随机抽取20学生,进行每周用于课外阅读时间的调查,数据如下(单位:min):二、整理数据,按如下分段整理样本数据并补全表格:三、分析数据,补全下列表格中的统计量:四、得出结论:a,b=,c=;①表格中的数据:=①用样本中的统计量估计该校学生每周用于课外阅读时间的等级为;①如果该校现有学生400人,估计等级为“B”的学生有人;①假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读本课外书.第72.如图,点A,B,P是5×5的网格上的格点,连接点A,B得到线段AB,请分别在下列图中使用无刻度的直尺按要求画图(画图时保留画图痕迹)(1)在图①中,画以点A,B为顶点,以点P为对称中心的平行四边形ABCD.(2)在图①中,利用图①所做的平行四边形,在AB和AD边上确定点M、N,使MN + PN的值最小,这个最小值为____________【答案】(1)见解析(2)画图见解析,2【分析】(1)取格点C、D则四边形ABCD即为所求;(2)如图所示,取格点E、M,连接EM交AD于N,点M、N即为所求;(1)解:如图所示,四边形ABCD即为所求;①AB CD AB CD∥,,=①四边形ABCD是平行四边形,①点P是AC与BD的交点,①点P是平行四边形ABCD的对中心;(2)解:如图所示,取格点E、M,连接EM交AD于N,点M、N即为所求;①四边形ENPD是正方形,①点E、P关于AD对称,①PN=EN,①PN+MN=EN+MN,①当E、M、N三点共线且垂直于AB时,EN+MN有最小值,即PN+MN有最小值,最小值为2;【点睛】本题主要考查了平行四边形的性质与判定,轴对称最短路径问题,正方形的性质,垂线段最短等等,熟知相关知识是解题的关键.73.如图,正方形ABCD中,点E、F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.【答案】见解析.【分析】根据正方形的性质得出AD=AB,①D=EAB=90°,然后结合AE=DF得出①ADF和①BAE 全等,得到BE=AF.【详解】解:①四边形ABCD是正方形,①AD=AB,①D=①EAB=90°,在①EAB和①FDA中,①AE=DF,①EAB=①D,AB=AD,①①EAB①①FDA,①BE=AF.74.我市某医药公司要把药品运往外地,现有两种运输方式可供选择:方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每千米再加收2元.(1) 请分别写出邮车、火车运输的总费用y 1 (元)、y 2 (元)与运输路程x(千米)之间的关系式;(2)若医药公司现有1600元将一批药品运输到同一个地方,最远可运输多少千米?【答案】解:(1)由题意得:y1=4x+400;y2=2x+820.(2)令4x+400=2x+820,解得x=210.①当运输路程小于210千米时,y1<y2,,选择邮车运输较好;当运输路程小于210千米时,y1=y2,,两种方式一样;当运输路程大于210千米时,y1>y2,选择火车运输较好.【详解】一次函数的应用.(1)根据方式一、二的收费标准即可得出y1(元)、y2(元)与运输路程x(公里)之间的函数关系式.(2)比较两种方式的收费多少与x的变化之间的关系,从而根据x的不同,选择合适的运输方式.75.如图,四边形ABCD 是平行四边形,AE ①BC 于E ,AF ①CD 于F ,且BE =DF .(1)求证:四边形ABCD 是菱形;(2)连接EF ,若①CEF =30°,BE =2,直接写出四边形ABCD 的周长. 【答案】(1)见解析 (2)16【分析】(1)根据平行四边形的性质可得①B =①D ,进而易证△ABE ≌△ADF (ASA ),即得出AB =AD ,进而即可求证结论:▱ABCD 是菱形;(2)由菱形的性质可知BC =CD ,进而可得CE =CF ,再由等腰三角形的性质和三角形内角和定理即可求出①ECF =120°,即求出①B =60°,最后利用含30°角的直角三角形的性质即可求出AB 的长,进而即可求出菱形的周长. (1)证明:①四边形ABCD 是平行四边形 ①①B =①D , ①AE ①BC ,AF ①CD , ①①AEB =①AFD =90°, 在①AEB 和①AFD 中, B D BE DFAEB AFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AEB ①①AFD (ASA ), ①AB =AD ,①四边形ABCD 是菱形. (2)如图,由(1)可知BC =CD ,①BE =DF , ①CE =CF ,①①CFE =①CEF =30°, ①①ECF =180°−2①CEF =120°, ①①B =180°−①ECF =60°, 在Rt①ABE 中,①BAE =30°, ①24AB BE ==,①菱形ABCD 的周长为4416⨯=.【点睛】本题考查平行四边形的性质,菱形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质以及含30°角的直角三角形的性质等知识.利用数形结合的思想是解答本题的关键.76.已知一次函数的图象与正比例函数23y x =-的图象平行,且经过点()04,. (1)求一次函数的解析式;(2)若点()8M m -,和()5N n ,在一次函数的图象上,求m ,n 的值.77.计算:(1)(﹣(2)(﹣2﹣(2.78.计算:(1×((2)(1-1+1x)÷21xx-.79.某校开展了一次综合实践活动,参加该活动的每个学生持有两张宽为6cm,长足够的矩形纸条.探究两张纸条叠放在一起,重叠部分的形状和面积.如图1所示,一张纸条水平放置不动,另一张纸条与它成45︒的角,将该纸条从右往左平移.当重叠部分的形状为如图2所示的四边形ABCD时,(1)求证:四边形ABCD是菱形;(2)求菱形ABCD的面积.①ABCD 是菱形.(2)根据勾股定理,ABCD S AD =【点睛】本题主要考查菱形的性质及判定,勾股定理,掌握相关知识是解本题的关键.80.将正方形ABCD 放置在平面直角坐标系中,B 与原点重合,点A 的坐标为()0,a ,点E的坐标为(),0b ,并且实数a ,b 使式子3b =成立,(1)直接写出点D 、E 的坐标:D ______,E ______. (2)①AEF =90°,且EF 交正方形外角的平分线CF 于点F , ①如图①,求证AE =EF ;①如图①,连接AF 交DC 于点G ,作GM AD 交AE 于点M ,作EN AB 交AF 于点N ,连接MN ,求四边形MNGE 的面积;(3)如图①,连接正方形ABCD 的对角线AC ,若点P 在AC 上,点Q 在CD 上,且AP =CQ ,求()2BP BQ +的最小值.①OC =CD =OA =6, ①D (6,6),故答案为:(6,6),(3,0);(2)解:①如图①,取OA 的中点K ,连接KE ,①①AEF =90°,①①FEC +①AEO =①AEO +①OAE =90°, ①①FEC =①OAE ,①OE =EC =3,K 为OA 的中点,OA =OC , ①AK =EC ,OK =OE , ①①OKE =45°, ①①AKE =135°,①CF 是正方形外角的平分线, ①①DCF =45°, ①①ECF =135°, ①①AKE =①ECF , 在△AKE 和△ECF 中,AKE ECF AK ECKAE FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AKE ①①ECF (ASA ), ①AE =EF ;①如图①,延长CD ,并在延长线上截取DH =OE ,连接AH ,①四边形AOCD是正方形,①AO=AD,①AOE=①ADH=90°,①△AOE①△ADH(SAS),①①OAE=①DAH,AE=AH,①AEO=①AHD,由①知AE=EF,①①AEF为等腰直角三角形,①①EAF=45°,①①OAE+①DAG=①DAH+①DAG=①GAH=45°,①①GAH=①GAE,①①AEG①①AHG(SAS),①EG=GH=DG+OE,①AGE=①AGH,①AEG=①AHD,①①AEO=①AEG,①EN CD,①①AGH=①GNE=①AGE,①EN=EG,同理可得GM=GE,①GM=EN,又①GM①EN,设DG=x,则CG=6-x,①OE=CE=3,①EG=x+3,在Rt△ECG中,32+(6-x)2=(x+3)2,解得x=2,①EG=EN=GM=5,81.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理,在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;①勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)如图4,以直角三角形的三边为直径,分别向外部作半圆,则1S ,2S ,3S 满足的关系是______.(3)如图5,直角三角形的两直角边长分别为3,5,分别以直角三角形的三边为直径作半圆,则图中两个月形图案(阴影部分)的面积为______.【答案】(1)①直角三角形两直角边的平方和等于斜边的平方(如果用a ,b 和c 分别表示直角三角形的两直角边和斜边,那么222+=a b c );①证明见解析;(2)123S S S +=;(3)7.5. 【分析】(1)①根据勾股定理的内容即可得;①图1和图2:利用四个小直角三角形的面积与小正方形的面积的和等于大正方形的面积即可得;图3:利用三个直角三角形的面积之和等于直角梯形的面积即可得; (2)根据勾股定理、圆的面积公式即可得;(3)根据阴影部分的面积等于以两直角边为直径的两个半圆面积与直角三角形的面积之和减去以斜边为直径的半圆面积即可得.【详解】(1)①直角三角形两直角边的平方和等于斜边的平方(如果用a ,b 和c 分别表示直角三角形的两直角边和斜边,那么222+=a b c ); ①图1:大正方形的面积为2c ,82.如图,ABC 中,BA BC =,CO AB ⊥于点O ,6AO =,9BO =.(1)求BC ,AC 的长;(2)若点D 是射线OB 上的一个动点,作DE AC ⊥于点E ,连接OE .①当点D 在线段OB 上时,若AOE △是以AO 为腰的等腰三角形,请求出所有符合条件的OD 的长;①设直线DE 交直线BC 于点F ,连接OF ,CD ,若:1:4OBF OCF S S =△△,则CD 的长为______(直接写出结果).DE AC⊥ON DE∴∥ON∴是ADE的中位线,6OD AO∴==;)ii当6AO AE==和DAE中,90AED=︒(DAE ASA△65=,ΔΔ:OBF OCF S S ∴14BF CF =∴13BF CB =15CB =,=5BF ∴,EF AC ⊥BG AC ∴∥GBF ∴∠BG AE ∵∥A ∴∠=∠AB BC =A ACB ∴∠=∠DBG ∴∠BG DF ⊥BDF ∴是等腰三角形,BD BF ∴=OD OB ∴=BF1BC=15∴=,BF3同理得:BDF是等腰三角形,∴==,BD BF3∴=+=9OD BO BDRt COD中,CD=综上所述,CD的长为故答案为:【点睛】本题是三角形的综合题,考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定和性质、三角形的面积、勾股定理、分类讨论等知识;证明BDF是等腰三角形83.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写自变量x的取值范围)(2)已知当油箱中的剩余油量为10升时,该汽车会开始提示加油,在此次行驶过程中,行驶了482千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?84.以下是小辰同学阅读的一份材料和思考:五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图①),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图①).小辰阅读后发现,拼接前后图形的面积相等,若设新的正方形的边长为x (x >0),可得x 2=5,由此可知新正方形边长等于两个小正方形组成的矩形的对角线长.参考上面的材料和小辰的思考方法,解决问题:五个边长为1的小正方形(如图①放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.具体要求如下:(1)设拼接后的长方形的长为a,宽为b,则a的长度为;(2)在图①中,画出符合题意的两条分割线(只要画出一种即可);(3)在图①中,画出拼接后符合题意的长方形(只要画出一种即可)(2)如图(画出其中一种情况即可) :考点:1.作图—应用与设计作图;2.勾股定理.85.如图,在平面直角坐标系中,已知点(4,4)A ,C ,B 两点分别是x ,y 轴正半轴上的动点,且满足90BAC ∠=︒.(1)写出BOA ∠的度数;(2)求BO OC +的值;(3)若BP 平分OBC ∠,交OA 于点P ,PN y ⊥轴于点N ,AQ 平分BAC ∠,交BC 于点Q ,随着C ,B 位置的变化,NP AQ +的值是否会发生变化?若不变,求其值;若变化,说明理由.【答案】(1)45BOA ︒∠=;(2)8BO OC +=;(3)NP AQ +的值为4,不变,见解析【分析】(1)过点A 作AE x ⊥轴于E ,AF y ⊥轴于F ,由点(4,4)A ,得到OA 是BOC ∠的角平分线,由此得到45BOA ︒∠=;(2)由(1)得四边形AEOF 为正方形,证明①BAF ①①CAE ,得到BF=CE ,根据BO OC OF OE +=+求出结果;(3)过点A 作AE x ⊥轴于E ,AF y ⊥轴于F ,延长NP 交AE 于K ,则四边形OEKN 为矩形,由OBP BOA CBP ABC ∠+∠=∠+∠推出AB=AP ,证明ΔΔAQB AKP ≅,得到AQ AK =,证明ΔAKP 是等腰直角三角形,得到AK=PK ,由此得到AQ PK =,依据NP AQ NP PK NK +=+=求出结果.(1)解:过点A 作AE x ⊥轴于E ,AF y ⊥轴于F ,如图1所示:点(4,4)A ,4AE AF ∴==,OA ∴是BOC ∠的角平分线,90BOC ∠=︒,45BOA ∴∠=︒;(2)解:由(1)得:四边形AEOF 为矩形,4AE AF ==,∴四边形AEOF 为正方形,4AE AF OE OF ∴====,90EAF ∠=︒,90BAC ∠=︒,90BAF FAC FAC CAE ∴∠+∠=∠+∠=︒,BAF CAE ∴∠=∠,AE x ⊥轴,AF y ⊥轴,90BFA CEA ∴∠=∠=︒,在ΔBAF 和CAE ∆中,BAF CAE AF AEBFA CEA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ΔΔBAF CAE ASA ∴≅,BF CE ∴=,448BO OC OF BF OC OF CE OC OF OE ∴+=++=++=+=+=;(3)解:随着C ,B 位置的变化,NP AQ +的值为4,不变,理由如下:过点A 作AE x ⊥轴于E ,AF y ⊥轴于F ,延长NP 交AE 于K ,如图2所示: 则四边形OEKN 为矩形,90AKP ∴∠=︒,4NK OE ==,由(2)得:ΔΔBAF CAE ≅,AB AC ∴=,90BAC ∠=︒,ΔBAC ∴是等腰直角三角形,45ABC ACB ∴∠=∠=︒,BP 平分OBC ∠,OBP CBP ∴∠=∠,45BOA ABC ∠=∠=︒,OBP BOA CBP ABC ABP ∴∠+∠=∠+∠=∠,BPA OBP BOA ∠=∠+∠,BPA ABP ∴∠=∠,AB AP =∴,PN y ⊥轴,45BOA ∠=︒,ΔONP ∴是等腰直角三角形,45NPO ∴∠=︒,45APK NPO ∴∠=∠=︒,AQ 平分BAC ∠,BAC ∆是等腰直角三角形,AQ BC ∴⊥,90AQB AKP ∴∠=∠=︒,在ΔAQB 和ΔAKP 中,45AQB AKP AB AP ABQ APK ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()ΔΔAQB AKP ASA ∴≅,AQ AK ∴=,90AKP ∠=︒,45APK ∠=︒,ΔAKP ∴是等腰直角三角形,AK PK ∴=,AQ PK ∴=,4NP AQ NP PK NK ∴+=+==.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、坐标与图形性质、正方形的判定与性质、等腰直角三角形的判定与性质等知识,本题综合性强,熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.86.学校准备购进一批节能灯,已知1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元.(1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购进这两种型号的节能灯共80只,并且A 型节能灯的数量不多于B 型节能灯的3倍,问如何购买最省钱,说明理由.【答案】(1)1只A 型节能灯的售价为5元,1只B 型节能灯的售价为7元;(2)购买60只A 型节能灯,20只B 型节能灯最省钱,理由见解析【分析】(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价y 元,根据题意列出方程组,求出方程组的解即可;(2)设A 型节能灯买了a 只,则B 型节能灯买了(80-a )只,共花费w 元,根据题意列出不等式组,求出不等式组的解集即可.【详解】解(1)设1只A 型节能灯的售价为x 元,1只B 型节能灯的售价为y 元由题意得:3263229x y x y +=⎧⎨+=⎩解得:57x y =⎧⎨=⎩ 答:1只A 型节能灯的售价为5元,1只B 型节能灯的售价为7元(2)设购买A 型节能灯a 个,则购买B 型节能灯(80-a )个,总费用为w 元由题意得:a≤3(80-a )解得a≤60又①w=5a+7(80-a )=-2a+560①w 随a 的增大而减小①当a 取最大值60时,w 有最小值w=-2×60+560=440即购买60只A 型节能灯,20只B 型节能灯最省钱【点睛】本题考查了解二元一次方程组和一元一次不等式组的应用,能根据题意列出方程组或不等式组是解此题的关键.87.思维启迪:(1)如图1,点P 是线段AB ,CD 的中点,则AC 与BD 的数量关系为 ___________,位置关系为 ___________;思维探索:(2)①如图2,在ABC 中,90ACB ∠=︒,点D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使CE CD =,连接AE ,若BD AE ⊥,请用等式表示AB ,BD ,AE 之间的数量关系,并说明理由;①如图3,在ABC 中,90ACB ∠=︒,=AC BC ,点D 为AB 中点,点E 在线段BD 上(点E。

初二下册数学练习题解答题

初二下册数学练习题解答题

初二下册数学练习题解答题解答题一:有理数的运算题目:计算:(3/4) + (9/12) - (1/6)解答:首先我们需要将所有分数化为相同的分母。

将3/4和9/12都化为12分之一的分数:(3/4) * (3/3) = 9/12所以,我们的计算式变为:9/12 + 9/12 - (1/6)接下来,我们可以直接进行分数的加减运算:9/12 + 9/12 = 18/12再减去1/6:18/12 - 2/12 = 16/12最后,我们可以将16/12化简为最简分数:16/12 = 4/3所以,计算结果为4/3。

解答题二:平行线的性质题目:已知直线l与平行线m、n相交于点A和B,若∠CAB = 110°,求证∠ABC = 70°。

根据平行线性质,我们可以得出结论:同位角互等。

∠CAB与∠ABC是同位角,根据已知条件∠CAB = 110°,我们可以得出∠ABC也应该等于110°。

然而,题目中要求我们证明∠ABC = 70°,与已知条件不符。

所以,该命题不成立。

解答题三:面积与体积题目:已知一个正方形的周长为16厘米,求其面积。

解答:我们知道正方形的周长等于四条边的长度之和,假设正方形的一条边长为x。

根据已知条件,我们可以列出方程式:4x = 16。

解方程,得到x = 4/1 = 4。

所以,正方形的边长为4厘米,面积为边长的平方,即4^2 = 16厘米²。

解答题四:比例与相似题目:两个相似三角形的周长之比等于它们的相似比,若两个相似三角形的周长之比为3:4,相似比为2:3,求这两个相似三角形的周长。

假设较小三角形的周长为2x,较大三角形的周长为3x。

根据题目给出的条件,我们可以得到:2x/3x = 3/4。

解方程,得到x = 9。

所以,较小三角形的周长为2x = 2 * 9 = 18,较大三角形的周长为3x = 3 * 9 = 27。

因此,这两个相似三角形的周长分别为18和27。

初二数学解答题练习试题集

初二数学解答题练习试题集

初二数学解答题练习试题答案及解析1.化简求值:,其中a=,b=-3.【答案】.【解析】原式利用除法法则变形,约分得到最简结果,将a与b的值代入计算即可求出值.试题解析:原式==当a=,b=-3时,原式=.【考点】分式的化简求值.2.如图,四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点.(1)判断四边形EFGH是何种特殊的四边形,并说明你的理由;(2)要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.【答案】(1)详见解析;(2)AD=BC【解析】(1)利用三角形的中位线定理可证得EF∥GH,EF=GH后利用一组对边平行且相等的四边形是平行四边形判定即可;(2)由(1)中的结论,再根据菱形的判定定理即可得到条件.试题解析:(1)四边形EFGH是平行四边形;理由如下:在△ACD中∵G、H分别是CD、AC的中点,∴GH∥AD,GH= AD,在△ABC中∵E、F分别是AB、BD的中点,∴EF∥AD,EF= AD,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形.(2)要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是AD=BC.理由如下:∵E,F分别是AB,BD的中点,∴EF= AD,同理可得:FG=BC,∵AD=BC,即EF=FG,又∵四边形EFGH是平行四边形.∴▱EFGH是菱形.【考点】1.菱形的判定;2.平行四边形的判定;3.三角形的中位线定理3.若解关于x的分式方程会产生增根,求m的值。

【答案】-4或6.【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.试题解析:方程两边都乘(x+2)(x-2),得2(x+2)+mx=3(x-2)∵最简公分母为(x+2)(x-2),∴原方程增根为x=±2,∴把x=2代入整式方程,得m=-4.把x=-2代入整式方程,得m=6.综上,可知m=-4或6.【考点】分式方程的增根.4.分解下列因式:(1). (2).【答案】(1)原式=" (x-y)(x-y+2);" (2)原式= (5a-4b)(4b-3a).【解析】因式分解的一般步骤是:1.提公因式;2.公式法(平方差公式的逆用a2- b2=(a+b)(a-b)和完全平方公式的逆用a2±2ab+b2= (a±b)2);3.十字相乘法; (1)原式=(x-y)2+2(x-y) ="(x-y)(x-y+2);" (2)原式="[a+4(a-b)][a-4(a-b)]=" (a+4a-4b)(a-4a+4b) =(5a-4b)(4b-3a).试题解析:(1)原式=(x-y)2+2(x-y) ="(x-y)(x-y+2);" (2)原式=" [a+4(a-b)][a-4(a-b)]=" (a+4a-4b)(a-4a+4b) =(5a-4b)(4b-3a).【考点】因式分解.5.如图,已知四边形ABCD中,AD∥BC,OE=OF,OA=OC.求证:【答案】通过证明四边形ABCD为平行四边形得【解析】∵OE=OF,OA="OC" ∴四边形AECF为平行四边形∴EC//AF即:DC//AB 又AD//BC∴四边形ABCD为平行四边形∴【考点】平行四边形点评:本题考查平行四边形,要求考生掌握平行四边形的判定方法,以及平行四边形的性质6.解不等式组:并把解集在数轴上表示出来.【答案】【解析】先分别求得两个不等式的解,再根据求不等式组解集的口诀求解即可.由1得,由2得,所以原不等式的解集是【考点】解一元一次不等式组点评:解题的关键是熟练掌握求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.(7分)如图,一次函数y=-x+3的图象与x轴和y轴分别交于点A和B ,再将△AOB沿直线CD对折,使点A与点B重合.直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为,点B的坐标为。

初二数学练习题加答案

初二数学练习题加答案

初二数学练习题加答案
一、选择题:
1. 下列各数中哪个数是负数?
A. 3
B. -5
C. 2
D. 0
答案:B
2. 2的平方根是多少?
A. 2
B. 4
C. -2
D. 0
答案:A
3. 下列各组数中,哪组数中所有数字的和都是负数?
A. -1, -2, -3
B. 2, -4, -5
C. 1, 2, -3
D. -2, 3, -4
答案:D
二、填空题:
1. 已知 x + 5 = 10,那么 x 的值是___。

答案:5
2. 一根铁丝长12cm,要铸成一个长方形的边长比为2:3的铁块,则该铁块的较小边长为___cm。

答案:4
3. 一个数的2倍加3等于15,这个数是___。

答案:6
三、计算题:
1. (5 + 2) × (3 - 1) = ___。

答案:14
2. 350 ÷ (2 + 3) = ___。

答案:70
3. 如果 x = 3,那么 2x - 5 的值是___。

答案:1
四、解答题:
1. 请列举出两个互为负数的例子。

答案:-2 和 2 是互为负数的例子,因为它们的积是负数。

2. 在数轴上,-3 和 5 的位置关系是什么?请用不等式表示。

答案:-3 < 5
3. 请用运算符号填空,使得等式成立:4 ___ 2 = 8。

答案:×(乘法)。

初二数学解答题练习试题集

初二数学解答题练习试题集

初二数学解答题练习试题答案及解析1. 如图,在△ABC 中,AD ⊥BC ,垂足为D ,∠B=60°,∠C=45°. (1)求∠BAC 的度数.(2)若AC=2,求AD 的长.【答案】(1)75°;(2).【解析】(1)根据三角形内角和定理,即可推出∠BAC 的度数; (2)由题意可知AD=DC ,根据勾股定理,即可推出AD 的长度. 试题解析:(1)∠BAC=180°-60°-45°=75°; (2)∵AD ⊥BC ,∴△ADC 是直角三角形, ∵∠C=45°, ∴∠DAC=45°, ∴AD=DC , ∵AC=2, ∴AD=.【考点】勾股定理.2. 在图①至图③中,已知△ABC 的面积为.(1)如图①,延长△ABC 的边BC 到点D ,使CD=BC ,连结DA 。

若△ACD 的面积为S 1,则S 1=______(用含的代数式表示);(2)如图②,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD=BC ,AE=CA ,连结DE .若△DEC 的面积为S 2,则S 2=__________(用含的代数式表示);(3)在图①—②的基础上延长AB 到点F ,使BF=AB ,连结FD ,FE ,得到△DEF (如图③). 阴影部分的面积为S 3,则S 3=__________(用含的代数式表示),并运用上述(2)的结论写出理由.理由:【答案】(1)a ;(2)2a ;(3)6a;等底同高的三角形面积相等.【解析】(1)由三角形ABC 与三角形ACD 中BC=CD ,且这两边上的高为同一条高,根据等底同高即可得到两三角形面积相等,由三角形ABC 的面积即可得到三角形ACD 的面积,即为S 1的值.(2)连接AD ,由CD=BC ,且三角形ABC 与三角形ACD 同高,根据等底同高得到两三角形面积相等,同理可得三角形ABC 与三角形ADC 面积相等,而三角形CDE 面积等于两三角形面积之和,进而表示出三角形CDE 的面积.(3)根据第二问的思路,同理可得阴影部分的面积等于3S 2,由S 2即可表示出S 3. 试题解析:(1)∵BC=CD ,且△ABC 与△ACD 同高, ∴S △ABC =S △ADC ,又S △ABC ="a." ∴S △ADC =a. (2)连接AD ,如图2所示,∵BC=CD ,且△ABC 与△ACD 同高,∴S △ABC =S △ADC =a.同理S △ADE =S △ADC =a ,∴S △CDE =2S △ABC =2a. (3)如图3,连接AD ,EB ,FC , 同理可得:S △AEF =S △BFD =S △CDE , 则阴影部分的面积为S 3=3S △CDE =6a .理由:等底同高的三角形面积相等.【考点】等腰三角形的性质;三角形的面积.3. 希望中学八年级学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩较好的甲班和乙班5名学生的比赛成绩(单位:个)经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.请你回答下列问题: (1)求两班比赛数据的中位数;(2)计算两班比赛数据的方差,并比较哪一个小;(3)根据以上信息,你认为应该把冠军奖状发给哪一个班?简述理由. 【答案】(1)甲班的中位数为100,乙班为97;(2)甲班的方差为,乙班为;;(3)冠军应发给甲,理由见解析.【解析】(1)中位数就是一组数据中先把所有数据按从大到小或从小到大的顺序排列起来,如果是奇数个时,就是中间的那一个数,如果是偶数个时,就是中间两个数的平均数.(2)方差就是就是反映一组数据波动大小的幅度,方差大,波动大,方差小则波动小. (3)根据计算出来的统计量的意义分析判断. (1)两班5名学生踢毽子个数近大小排列为甲班8998100103110(2)甲的平均数为:100+98+110+89+103)÷5=100,;乙的平均数为:(89+100+95+119+97)÷5=100,.∵;∴.(3)∵甲班的中位数比乙班高;甲班的方差比乙班低,比较稳定,综合评定甲班比较好,∴冠军应发给甲.【考点】1.中位数;2.方差.4.端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0﹤m﹤1)元.(1)零售单价下降m元后,该店平均每天可卖出只粽子,利润为元(用含m的代数式表示);(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?【答案】(1);(2)0.4.【解析】(1)每天的销售量等于原有销售量加上增加的销售量即可;利润等于销售量乘以单价即可得到.(2)利用总利润等于销售量乘以每件的利润即可得到方程求解.(1).(2)令,化简得,100m2-70m+12=0.即,m2-0.7m+0.12=0.解得m=0.4或0.3.可得,当m=0.4时卖出的粽子更多.答:当m定为0.4时,才能使商店每天销售该粽子获取的利润是420元并且卖出的粽子更多.【考点】一元二次方程的应用.5.某市对一大型超市销售的甲、乙、丙3种大米进行质量检测,共抽查大米200袋,质量评定分为A、B两个等级(A级优于B级),相应数据的统计图如下:根据所给信息,解决下列问题:(1)a=,b=;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.【答案】(1)a=55,b=5;(2)该超市乙种大米中有100袋B级大米;(3)应选择购买丙种大米.【解析】(1)根据甲的圆心角度数是108°,求出所占的百分比,再根据总袋数求出甲种大米的袋数,即可求出a、b的值;(2)根据题意得先求出该超市乙种大米中B级大米所占的百分比,再乘以乙种大米的总袋数即可;(3)分别求出超市的甲种大米A等级大米所占的百分比和丙种大米A等级大米所占的百分比,即可得出答案.(1)∵甲的圆心角度数是108°,所占的百分比是×100=30%,∴甲种大米的袋数是:200×30%=60(袋),∴a=60﹣5=55(袋),∴b=200﹣60﹣65﹣10﹣60=5(袋);(2)根据题意得:750×=100,答:该超市乙种大米中有100袋B级大米;(3)∵超市的甲种大米A等级大米所占的百分比是×100%=91.7%,丙种大米A等级大米所占的百分比是×100%=92.3%,∴应选择购买丙种大米.【考点】1.条形统计图2.用样本估计总体3.扇形统计图.6.已知点P(2x,3x-1)是平面直角坐标系上的点。

人教版八年级上册数学解答题期末专项训练及答案二

人教版八年级上册数学解答题期末专项训练及答案二

人教版八年级上册数学解答题期末专项训练及答案二解答题(共50分)21.(6分)分解因式(1)a3﹣ab2(2)a2+6ab+9b2.22.(8分)解方程:(1)(2).23.(6分)先化简,再求值:(﹣)÷,其中x=3.24.(6分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.25.(7分)如图,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上的一点,求证:BD=CD.26.(7分)如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F .求证:∠1=∠2.27.(10分)如图,在△ABC 中,∠ACB=90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB 交CE 于点F ,DF 的延长线交AC 于点G . 求证:(1)DF ∥BC ;(2)FG=FE .解答题(23题6分,24题10分,27题12分,其余每题8分,共60分) 21.计算:(1)x (x -2y )-(x +y )2;(2)⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2.22.(1)先化简,再求值:(2+a )(2-a )+a (a -2b )+3a 5b ÷(-a 2b )4,其中ab =-12.(2)因式分解:a(n-1)2-2a(n-1)+a. 23.解方程:(1)xx-1=3x+1+1;(2)x+14x2-1=32x+1-44x-2.24.如图,已知网格上最小的正方形的边长为1.(1)分别写出A,B,C三点的坐标;(2)作△ABC关于y轴对称的△A′B′C′(不写作法),想一想:关于y轴对称的两个点之间有什么关系?(3)求△ABC的面积.25.如图,△ABC为等边三角形,D是BC延长线上一点,连接AD,以AD为边作等边三角形ADE,连接CE,用你学过的知识探索AC,CD,CE三条线段的长度的关系.试写出证明过程.26.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?27.如图①,在四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.(1)求证:△ABC≌△ADE;(2)求证:CA 平分∠BCD ;(3)如图②,若AF 是△ABC 的边BC 上的高,求证:CE =2AF .解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.先化简,再求值:⎝ ⎛⎭⎪⎫3x +4x 2-1-2x -1÷x +2x 2-2x +1,其中x =-3.20. 解分式方程:x x -2-1=8x 2-4.21.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证∠B=∠D.(第21题)22.如图,在平面直角坐标系中,每个小正方形的边长为1,△ABC的顶点都在格点上,点A的坐标为(-3,2).请按要求分别完成下列各题:(1)把△ABC向下平移7个单位长度,再向右平移7个单位长度,得到△A1B1C1,画出△A1B1C1;(2)画出△A1B1C1关于x轴对称的△A2B2C2;画出△A1B1C1关于y轴对称的△A3B3C3;(3)求△ABC的面积.(第22题)23.如图,在△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC 于点F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证∠CFD=12∠B.(第23题)24.新冠肺炎疫情期间,某商店老板第一次用1 000元购进了一批口罩,很快销售完毕;第二次购进时发现每个口罩的进价比第一次上涨了2.5元.老板用2 500元购进了第二批口罩,所购进口罩的数量是第一次购进口罩数量的2倍,同样很快销售完毕,两批口罩的售价均为每个15元.(1)第二次购进了多少个口罩?(2)商店老板第一次购进的口罩有3%的损耗,第二次购进的口罩有5%的损耗,商店老板销售完这些口罩后是盈利还是亏本?盈利或亏本多少元?25.(1)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,点A,B分别是y 轴、x轴上的两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.①如图①,已知点C的横坐标为-1,求点A的坐标;②如图②,当点D恰好为AC中点时,连接DE,求证∠ADB=∠CDE.(2)如图③,点A在x轴上,且A(-4,0),点B在y轴的正半轴上,分别以OB,AB为直角边在第一、二象限作等腰直角三角形BOD和等腰直角三角形ABC 且∠OBD=90°,∠ABC=90°,连接CD交y轴于点P,当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化,请说明理由;若不变化,请求出BP的长.(第25题)参考答案解答题(共50分)21.(6分)分解因式(1)a3﹣ab2(2)a2+6ab+9b2.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式a,进而利用平方差公式分解因式得出答案;(2)直接利用完全平方公式分解因式得出答案.【解答】解:(1)a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b);(2)a2+6ab+9b2=(a+3b)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.22.(8分)解方程:(1)(2).【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:x﹣3+2x+6=12,移项合并得:3x=9,解得:x=3,经检验x=3是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.(6分)先化简,再求值:(﹣)÷,其中x=3.【考点】分式的化简求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x=3代入计算可得.【解答】解:原式=[﹣]•=•=,当x=3时,原式==3.【点评】本题主要考查分式的化简求值,熟练掌握分数的混合运算顺序和运算法则是解题的关键.24.(6分)如图,(1)画出△ABC关于Y轴的对称图形△A1B1C1;(2)请计算△ABC的面积;(3)直接写出△ABC关于X轴对称的三角形△A2B2C2的各点坐标.【考点】作图-轴对称变换.【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可;(2)先求出三角形各边的长,得出这是一个直角三角形,再根据面积公式计算;(3)利用轴对称图形的性质可得.【解答】解:(1)如图(2)根据勾股定理得AC==,BC=,AB=,再根据勾股定理可知此三角形为直角三角形,则s=;△ABC(3)根据轴对称图形的性质得:A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1).【点评】做轴对称图形的关键是找出各点的对应点,然后顺次连接.25.(7分)如图,已知PB⊥AB,PC⊥AC,且PB=PC,D是AP上的一点,求证:BD=CD.【考点】角平分线的性质.【分析】先利用HL判定Rt△PAB≌Rt△PAC,得出∠APB=∠APC,再利用SAS判定△PBD≌△PCD,从而得出BD=CD.【解答】证明:∵PB⊥BA,PC⊥CA,在Rt△PAB,Rt△PAC中,∵PB=PC,PA=PA,∴Rt△PAB≌Rt△PAC,∴∠APB=∠APC,又D是PA上一点,PD=PD,PB=PC,∴△PBD≌△PCD,∴BD=CD.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.26.(7分)如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD 于F.求证:∠1=∠2.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据AB=DC,AC=BD可以联想到证明△ABC≌△DCB,可得∠DBC=∠ACB,从而根据平行线的性质证得∠1=∠2.【解答】证明:∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB.∴∠DBC=∠ACB.∵EF∥BC,∴∠1=∠DBC,∠2=∠ACB.∴∠1=∠2.【点评】本题考查了全等三角形的判定和性质;由全等得对应角相等是一种很重要的方法,也是解决本题的关键.27.(10分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.求证:(1)DF∥BC;(2)FG=FE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据已知,利用SAS判定△ACF≌△ADF,从而得到对应角相等,再根据同位角相等两直线平行,得到DF∥BC;(2)已知DF∥BC,AC⊥BC,则GF⊥AC,再根据角平分线上的点到角两边的距离相等得到FG=EF.【解答】(1)证明:∵AF平分∠CAB,∴∠CAF=∠DAF.在△ACF和△ADF中,∵,∴△ACF≌△ADF(SAS).∴∠ACF=∠ADF.∵∠ACB=90°,CE⊥AB,∴∠ACE+∠CAE=90°,∠CAE+∠B=90°,∴∠ACF=∠B,∴∠ADF=∠B.∴DF∥BC.②证明:∵DF∥BC,BC⊥AC,∴FG⊥AC.∵FE⊥AB,又AF平分∠CAB,∴FG=FE.【点评】此题考查了学生以全等三角形的判定及平行线的判定的理解及掌握. 三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.解:(1)原式=x 2-2xy -x 2-2xy -y 2=-4xy -y 2.(2)原式=⎣⎢⎡⎦⎥⎤3a +2+(a +2)(a -2)a +2·a +2(a -1)2=a 2-1a +2·a +2(a -1)2=a +1a -1.22.解:(1)原式=4-a 2+a 2-2ab +3a 5b ÷a 8b 4=4-2ab +3a -3b -3.当ab =-12时,原式=4-2×⎝ ⎛⎭⎪⎫-12+3×⎝ ⎛⎭⎪⎫-12-3=4+1-3⎝ ⎛⎭⎪⎫123=5-24=-19. (2)原式=a [(n -1)2-2(n -1)+1]=a (n -1-1)2=a (n -2)2.23.解:(1)方程两边乘x 2-1,得x (x +1)=3(x -1)+x 2-1,解得x =2.检验:当x =2时,x 2-1≠0.∴原分式方程的解为x =2;(2)去分母,得2(x +1)=6(2x -1)-4(2x +1),去括号,得2x +2=12x -6-8x -4,解得x =6.经检验x =6是分式方程的解.∴原分式方程的解为x =6.24.解:(1)A (-3,3),B (-5,1),C (-1,0).(2)图略,关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等(两点连线被y 轴垂直平分).(3)S △ABC =3×4-12×2×3-12×2×2-12×4×1=5.25.解:CE =AC +CD .证明:∵△ABC 为等边三角形,∴AB =AC ,∠BAC =60°.又∵△ADE 为等边三角形,∴AD =AE ,∠DAE =60°,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS),∴BD =CE .∵AC =BC ,∴BD =BC +CD =AC +CD ,∴CE =AC +CD .26.解:(1)设甲工程队每天修路x 千米,则乙工程队每天修路(x -0.5)千米.根据题意,得1.5×15x =15x -0.5, 解得x =1.5.经检验,x =1.5是原分式方程的解,且符合题意,则x -0.5=1.答:甲工程队每天修路1.5千米,乙工程队每天修路1千米.(2)设甲工程队修路a 天,则乙工程队需要修路(15-1.5a )千米,∴乙工程队需要修路=(15-1.5a )(天).由题意可得0.5a +0.4(15-1.5a )≤5.2,解得a ≥8,答:甲工程队至少修路8天.27.证明:(1)∵∠ABC +∠ADC =180°,∠ADE +∠ADC =180°,∴∠ABC =∠ADE .在△ABC 与△ADE 中,⎩⎨⎧∠BAC =∠DAE ,AB =AD ,∠ABC =∠ADE ,∴△ABC ≌△ADE .(2)∵△ABC ≌△ADE ,∴AC =AE ,∠BCA =∠E ,∴∠ACD =∠E ,∴∠BCA =∠ACD ,即CA 平分∠BCD .(3)如图,过点A 作AM ⊥CE ,垂足为点M .∵AM ⊥CD ,AF ⊥CF ,∠BCA =∠ACD ,∴AF =AM .∵∠BAC =∠DAE ,∴∠CAE =∠CAD +∠DAE =∠CAD +∠BAC =∠BAD =90°,∴∠ACE =∠E =45°.∵AM ⊥CE ,∴M 为CE 的中点.∴CM =AM =ME .又∵AF =AM ,∴CE =2AM =2AF .三、19.解:⎝ ⎛⎭⎪⎫3x +4x 2-1-2x -1÷x +2x 2-2x +1=⎣⎢⎡⎦⎥⎤3x +4(x +1)(x -1)-2(x +1)(x +1)(x -1)÷x +2(x -1)2=3x +4-2x -2(x +1)(x -1)÷x +2(x -1)2=x +2(x +1)(x -1)·(x -1)2x +2=x -1x +1. 当x =-3时,原式=x -1x +1=-3-1-3+1=2. 20.解:方程两边同时乘(x +2)(x -2),得x (x +2)-(x +2)(x -2)=8.去括号,得x 2+2x -x 2+4=8.移项、合并同类项,得2x =4.系数化为1,得x =2.检验:当x =2时,(x +2)(x -2)=0,即x =2不是原分式方程的解. 所以原分式方程无解.21.证明:∵∠BCE =∠DCA ,∴∠BCE +∠ACE =∠DCA +∠ACE ,即∠ACB =∠ECD .在△ACB 和△ECD 中,⎩⎨⎧∠A =∠E ,AC =EC ,∠ACB =∠ECD ,∴△ACB ≌△ECD (ASA).∴∠B =∠D .22.解:(1)如图所示.(第22题)(2)如图所示.(3)S △ABC =2×3-12×2×1-12×1×2-12×1×3=6-1-1-32=52.23.(1)解:∵∠AFD =155°,∴∠DFC =25°.∵DF ⊥BC ,DE ⊥AB ,∴∠FDC =∠AED =90°.∴∠C =180°-90°-25°=65°.∵AB =BC ,∴∠A=∠C=65°.∴∠EDF=360°-65°-155°-90°=50°.(2)证明:如图,连接BF.(第23题)∵AB=BC,且点F是AC的中点,∴BF⊥AC, ∠ABF=∠CBF=12∠ABC.∴∠CFD+∠BFD=90°.∵FD⊥BC,∴∠CBF+∠BFD=90°.∴∠CFD=∠CBF.∴∠CFD=12∠ABC.24.解:(1)设第一次购进了x个口罩.依题意,得1 000x=2 5002x-2.5,解得x=100.经检验,x=100是原方程的解,且符合题意.则2x=2×100=200.答:第二次购进了200个口罩.(2)[100(1-3%)+200(1-5%)]×15-1 000-2 500=805(元).答:商店老板销售完这些口罩后盈利,盈利805元.25.(1)①解:如图①,过点C作CF⊥y轴于点F,则∠CAF+∠ACF=90°.∵∠BAC=90°,即∠BAO+∠CAF=90°,∴∠ACF=∠BAO.又∵∠AFC=∠BOA=90°,AC=BA,∴△AFC≌△BOA(AAS).∴CF=AO=1.∴点A的坐标是(0,1).②证明:如图②,过点C作CG⊥AC,交y轴于点G.∵CG⊥AC,∴∠ACG=90°.∴∠CAG+∠AGC=90°.∵∠AOD=90°,∴∠ADO+∠DAO=90°.∴∠AGC=∠ADO.又∵∠ACG=∠BAD=90°,AC=BA,∴△ACG≌△BAD(AAS).∴CG=AD=CD.∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°.又∵CD=CG,CE=CE,∴△DCE≌△GCE(SAS).∴∠CDE=∠CGE.∴∠ADB=∠CDE.(第25题)(2)解:BP的长度不变.如图③,过点C作CE⊥y轴于点E.∵∠ABC=90°,∴∠CBE+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO.∵∠CEB=∠AOB=90°,AB=BC,∴△CBE≌△BAO(AAS).∴CE=BO,BE=AO=4.∵BD=BO,∴CE=BD.∵∠CEP=∠DBP=90°,∠CPE=∠DPB,∴△CPE≌△DPB(AAS).∴BP=EP=2.。

北师大版数学八年级下册解答题专题训练50题含答案

北师大版数学八年级下册解答题专题训练50题含答案

北师大版数学八年级下册解答题专题训练50题含答案1.如图,四边形ABCD 是平行四边形,BE ∥DF ,且分别交对角线AC 于点E ,F ,连接ED ,BF ,求证:∥ABE ∥∥CDF .【答案】见解析【分析】首先由平行四边形的性质可得AB =CD ,AB ∥CD ,再根据平行线的性质可得∥BAE =∥DCF ,∥BEC =∥DF A ,即可根据AAS 定理判定∥ABE ∥∥CDF . 【详解】∥在平行四边形ABCD 中AB =CD ,AB ∥CD , ∥∥BAC =∥DCA 又∥BE ∥DF ∥∥BEF =∥DFE ∥∥BEA =∥CFD 在∥ABE 和∥CDF 中 BAE DCF AEB CFD AB CD ∠∠⎧⎪∠∠⎨⎪=⎩== ∥∥ABE ∥∥CDF .【点睛】此题考查平行四边形的性质,由平行四边形可得AB =CD ,AB ∥CD ,再可得∥BAE =∥DCF ,∥BEC =∥DF A ,即可根据AAS 定理判定△ABE ∥∥CDF . 52.计算:(1)2(2)(1)a a a -++; (2)2122111x x x x x --⎛⎫+-÷ ⎪+-⎝⎭, 【答案】(1)4a+1,(2)2x x -.【分析】(1)先分别用单项式乘多项式和完全平方公式计算,最后合并同类项即可; (2)先在括号内通分计算,再对能因式分解的部分因式分解,最后再化除为乘计算即可.【详解】解:(1)2(2)(1)a a a -++=22221a a a a -+++ =41a +;53.某公司有960件新产品需经加工后才能投放市场,现有甲、乙两家工厂都想加工加工这批产品.已知甲工厂单独完成这批产品比乙工厂单独完成这批产品多用20天,而甲工厂每天加工数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费每天80元,需付乙工厂加工费每天120元.(1)甲、乙两工厂每天能加工多少件新产品?(2)公司制定的方案如下:可以由每个厂家单独完成,也可以有两个厂家合作完成.在加工过程中,公司派一名工程师进行技术指导,并担负每天25元的午餐补助,请帮公司需出一种既省时又省钱的加工方案,并说明理由.∥甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品;(2)方案一:甲工厂单独完成此项任务,则需要的时间为:960÷16=60 天, 需要的总费用为:60×(80+25)=6300 元 方案二:乙工厂单独完成此项任务,则 需要的时间为:960÷24=40 天需要的总费用为:40×(120+25)=5800元方案三:甲、乙两工厂合作完成此项任务,设共需要 a 天完成任务,则 16a +24a =960 ∥a =24∥需要的总费用为:24×(80+120+25)=5400元综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.【点睛】本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列出方程求解.需要注意:∥分式方程求解后,应注意检验其结果是否符合题意;∥选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案. 54.先化简,再求值:221241442x x x x x x x -+⎛⎫⎛⎫-÷- ⎪ ⎪-+-⎝⎭⎝⎭,其中x 是不等式253x -≤x ﹣3的最小整数解.55.如图,在ABC 中,AB AC =,点D 为AC 上一点,且满足AD BD BC ==.点E 是AB 的中点,连接ED 并延长,交BC 的延长线于点F ,连接AF .(1)求BAC ∠和ACB ∠的度数; (2)求证:ACF △是等腰三角形. 【答案】(1)36BAC ∠=︒,72ACB ∠=︒ (2)见解析【分析】(1)设BAC x ∠=︒,由AD BD BC ==知A ABD x ∠=∠=︒,2BDC BCD x ∠=∠=︒,由180BAC ABC ACB ∠+∠+∠=︒列方程求解可得;(2)依据E 是AB 的中点,即可得到FE AB ⊥,AE BE =,可得FE 垂直平分AB ,进而得出BAF ABF ∠=∠,依据ABD BAD ∠=∠,即可得到36FAD FBD ∠=∠=︒,再根据36AFC ACB CAF ∠=∠-∠=︒,可得36CAF AFC ∠=∠=︒,进而得到AC CF =.【详解】(1)解:设BAC x ∠=︒, ∥AD BD =,∥BAD ABD x ∠=∠=︒, ∥2BDC x ∠=︒, ∥BD BC =,∥2BDC BCD x ∠=∠=︒, ∥AB AC =,∥2ABC ACB x ∠=∠=︒, ∥180BAC ABC ACB ∠+∠+∠=︒, ∥22180x x x ++=, 解得:36x =,则36BAC ∠=︒,72ACB ∠=︒.(2)解:∥E 是AB 的中点,AD BD =, ∥AE CE =,DE AB ⊥,即FE AB ⊥, ∥AF BF =, ∥BAF ABF ∠=∠,又∥ABD BAD ∠=∠, ∥36FAD FBD ∠=∠=︒, 又∥72ACB ∠=︒,∥36AFC ACB CAF ∠=∠-∠=︒, ∥36CAF AFC ∠=∠=︒,∥AC CF =,即ACF △为等腰三角形.【点睛】本题主要考查了等腰三角形的判定与性质,解决问题的关键是综合运用等腰三角形的判定与性质,线段垂直平分线的判定与性质,三角形外角的性质. 56.对于任意两个代数式M ,N 的大小比较,有下面的方法: 当0M N ->时,M N >; 当0M N -=时,M N ; 当0M N -<时,M N <.我们把这种比较两个代数式大小的方法叫做“作差法”.(1)在a 克盐水中含有b 克盐(完全溶解),则盐水浓度可表示为______;如果再加入c 克盐(完全溶解),则盐水浓度可表示为______. (2)请用“作差法”说明加盐前后盐水浓度的大小关系.57.小明的数学研学作业单上有这样一道题:已知2x y -+=,且3x <,0y ≥,设2w x y =+-,那么w 的取值范围是什么?【回顾】小明回顾做过的一道简单的类似题目:已知:12x -<<,设y = 1x +,那么y 的取值范围是 .(请你直接写出答案) 【探究】小明想:可以将研学单上的复杂问题转化为上面回顾的类似题目. 由2x y -+=得2y x =+,则2222w x y x x x =+-=++-=, 由3x <,0y ≥,得关于..x 的一元一次不等式组 , 解该不等式组得到x 的取值范围为 , 则w 的取值范围是 . 【应用】(1)已知a ﹣b =4,且a >1,b <2,设t =a +b ,求t 的取值范围;(2)已知a ﹣b =n (n 是大于0的常数),且a >1,b ≤1,2a b +的最大值为 (用含n 的代数式表示); 【拓展】若36122x y z =+=,且0x >,4y ≥-,9z ≤,设22m x y z =--,且m 为整数,那么m 所.有可能的值的和.......为 .【答案】0<y<3;320xx⎧⎨+≥⎩<;-2≤x<3;-4≤w<6;(1)-2<t<8;(2)2n+3;6【分析】回顾:利用不等式的基本性质求出0<x+1<3,即可求解;探究:根据所给材料的过程进行解题即可;(1)由题意得t=4+2b,则关于b的一元一次不等式组412bb+>⎧⎨<⎩,求出﹣3<b<2,即可求﹣2<t<8;(2)由题意可得关于a的一元一次不等式组11aa n>⎧⎨-≤⎩,解得1<a≤n+1,设t=2a+b=3a﹣n,求出3﹣n<t≤2n+3,即可求t的最大值;拓展:由题意分别求出x=2y+4,z=3y+6,则关于y的不等式组为2404369yyy+>⎧⎪≥-⎨⎪+≤⎩,解得﹣2<y≤1,可得m=﹣y+2,求出1≤m<4,可知m=1,2,3,则m所有可能的值的和为6.【详解】【回顾】∥﹣1<x<2,∥0<x+1<3,∥y=x+1,∥0<y<3,故答案为:0<y<3;【探究】由题意可得320xx<⎧⎨+≥⎩,解不等式组可得:﹣2≤x<3,∥w=2x,∥﹣4≤w<6,故答案为:320xx<⎧⎨+≥⎩,﹣2≤x<3,﹣4≤w<6;(1)由a﹣b=4得a=4+b,∥t=a+b=4+b+b=4+2b,∥a>1,b<2,∥关于b的一元一次不等式组412bb+>⎧⎨<⎩,解该不等式组得﹣3<b <2, ∥﹣2<t <8; (2)∥a ﹣b =n , ∥b =a ﹣n , ∥a >1,b ≤1,∥关于a 的一元一次不等式组11a a n >⎧⎨-≤⎩,解得1<a ≤n +1,设t =2a +b =2a +a ﹣n =3a ﹣n , ∥3﹣n <t ≤2n +3, ∥2a +b 的最大值为2n +3, 故答案为:2n +3; 【拓展】∥3x =6y +12, ∥x =2y +4, ∥6y +12=2z , ∥z =3y +6,∥关于y 的一元一次不等式为2404369y y y +>⎧⎪≥-⎨⎪+≤⎩ ,解得﹣2<y ≤1,∥m =2x ﹣2y ﹣z =2(2y +4)﹣2y ﹣(3y +6)=﹣y +2, ∥1≤m <4, ∥m 为正数, ∥m =1,2,3,∥m 所有可能的值的和为6, 故答案为:6.【点睛】本题考查解一元一次不等式组,熟练掌握一元一次不等式组的解法,理解阅读材料,并能灵活应用阅读材料的方法解题是关键.58.如图,在ABC 中,90ACB ∠=︒,<AC BC .分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧交于D ,E 两点,直线DE 交BC 于点F ,连接AF .以点A 为圆心,AF 为半径画弧,交BC 延长线于点H ,连接AH .(1)使用直尺和圆规完成作图过程(保留作图痕迹);(2)通过作图过程,可以发现直线DE是线段AB的______,AFH是______三角形;(3)若4BC ,则AFH的周长为______.【答案】(1)见解析(2)垂直平分线;等腰(3)8【分析】(1)根据题意直接作图即可;(2)根据(1)的作图过程可得DE垂直平分AB,由以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH,可得AF=AH,即可判定AFH的形状;(3)利用等腰三角形的性质、线段垂直平分线的性质可得AF+FC=BF+FC=AH+CH=BC,最后根据三角形的周长公式解答即可.【详解】(1)解:作图如下所示:(2)解:由(1)的作图过程可知,DE垂直平分AB且AF=AH,即∥AFH是等腰三角形.故答案为:垂直平分线,等腰.(3)解:由(1)基本作图方法得出:DE垂直平分AB∥ AF=BF,∥AF=AH,AC∥FH,∥FC=CH,∥AF+FC=BF+FC=AH+CH=BC=4∥∥AFH的周长为:AF+FC+CH+AH=2BC=8.【点睛】本题主要考查了基本作图以及等腰三角形的性质、线段垂直平分线的性质等知识,运用等腰三角形的性质、线段垂直平分线的性质得到AF+FC=BF+FC=AH+CH=BC 是解答本题关键.59.已知,如图,AB =AC ,BD =CD ,DE ∥AB 于点E ,DF ∥AC 于点F ,求证:DE =DF .【答案】见解析【分析】连接AD ,利用“边边边”证明△ABD 和△ACD 全等,然后根据全等三角形对应角相等可得∥BAD =∥CAD ,再根据角平分线上的点到角的两边距离相等证明即可. 【详解】证明:如图,连接AD, 在△ABD 和△ACD 中, AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩, ∥∥ABD ∥∥ACD (SSS ),∥∥BAD =∥CAD , ∥AD 是∥BAC 的平分线, 又∥DE ∥AB ,DF ∥AC , ∥DE =DF .【点睛】本题考查了全等三角形的判定与性质,角平分线的判定及性质,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键. 60.先化简,再求值:2219(1)22x x x x--÷--,其中3x =.61.(1)解方程组:1243231y x x y ++⎧=⎪⎨⎪-=⎩ (2)解不3312183(1)x x x x -⎧+≥+⎪⎨⎪+<+-等式组,并把解集在数轴上表示出来.是解答此题的关键62.求出下列图中x 的值.【答案】(1)60;(2)115.【分析】(1)根据三角形的外角等于两个不相邻的内角的和,即可求解;(2)根据五边形的内角和即可列方程求解.【详解】解:(1)根据三角形外角的性质可得:7010x x x ︒+︒=︒+︒+︒(),解得:60x =;(2)根据五边形的内角和是52180540-⨯=︒()可得:201070540x x x x ︒+︒+︒+︒-︒+︒+︒=︒()(),解得:115x =.【点睛】本题考查了三角形外角的性质以及多边形的内角和,只要结合三角形外角的性质与多边形的内角和公式来构建方程即可求解.63.如图,在▱ABCD 中,点O 是对角线AC 、BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.64.如图1,已知点A 、B 、C 、D 在一条直线上,BF 、CE 相交于O ,AE =DF ,∥E =∥F ,OB =OC .(1)求证:∥ACE∥∥DBF ;(2)如果把∥DBF 沿AD 折翻折使点F 落在点G ,如图2,连接BE 和CG . 求证:四边形BGCE 是平行四边形. 【答案】(1)见解析;(2)见解析.【分析】(1)直接利用等腰三角形的性质结合全等三角形的判定与性质得出即可;(2)利用翻折变换的性质得出∥DBG=∥DBF ,再利用平行线的判定方法得出CE∥BG ,进而求出四边形BGCE 是平行四边形【详解】(1)如图1,∥OB =OC ,∥∥ACE =∥DBF ,在∥ACE 和∥DBF 中,ACE DBF E FAE FD =⎧⎪=⎨⎪=⎩∠∠∠∠ ,∥∥ACE∥∥DBF (AAS );(2)如图2,∥∥ACE =∥DBF ,∥DBG =∥DBF ,∥∥ACE=∥DBG,∥CE∥BG,∥CE=BF,BG=BF,∥CE=BG,∥四边形BGCE是平行四边形.【点睛】此题考查了平行四边形的判定,全等三角形的判定与性质和翻折变换(折叠问题),综合利用判定的性质是解题关键65.用尺规作图从∥ABC(CB<CA)中裁出一个以AB为底边的等腰∥ABD,并使得∥ABD的面积尽可能大(保留作图痕迹,不要求写作法、证明)【答案】【详解】试题分析:利用∥ABD是以AB为底边的等腰三角形,则点D在AB的垂直平分线上,于是作AB的垂直平分线交AC于D,则∥ABD满足条件.试题解析:如图,∥ABD为所作.考点:作图﹣复杂作图.66.如图,供电所张师傅要安装电线杆,按要求电线杆要与地面垂直,因此,从离地面8m高的处向地面拉一条长10m的钢绳,现测得地面钢绳固定点到电线杆底部的距离为6m,请问:张师傅的安装方法是否符合要求?请说明理由.【答案】张师傅的安装方法符合要求.理由见解析.【分析】根据已知数据,利用勾股定理可证明△ABC是直角三角形,即做法是正确.【详解】张师傅的安装方法符合要求.理由是:依题意,可知BC=8,AC=10,AB=6∥BC2+AB2=82+62=100,AC2=102=100∥BC2+AB2=AC2∥∥ABC是Rt△∥∥ABC=90°∥BC∥A B.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.67.如图,△ABC中,∥A=84°.(1)试求作一点P,使得点P到B、C两点的距离相等,并且到AC、BC两边的距离也相等(尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,若∥ABP=15°,求∥BPC的度数.【答案】(1)作图见解析;(2)126°68.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A'B'C',图中标出了点B的对应点B'.利用网格点和三角板画图:(1)补全△A'B'C'根据下列条件;(2)画出△ABC中AB边上的中线CD;(3)画出△ABC中BC边上的高线AE;(4)线段A'B'与AB的关系是.△A'B'C'的面积为.69.利用简便方法计算:(1)2001×1999;(2)8002-2×800×799+7992.【答案】(1)3999999 ;(2)1.【分析】(1)把2001×1999写成(2000+1)(2000-1)的形式,再利用平方差进行计算即可.(2)将原式化为()2800799-运算即可.【详解】(1)20011999⨯=(2000+1)(20001)-=2220001-=40000001-=3999999(2)8002-2×800×799+7992=()2800799-=1【点睛】观察算式特点,考虑利用公式法因式分解逆用完全平方公式,即可将原式化为两数差的平方的形式;接下来对上步所得进一步计算,问题即可解答.70.先化简,再求值:,其中a=2. 【答案】3.【详解】试题分析:原式括号中的两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果. 试题解析:(a+)÷, =[]×==当a=2时,原式==3.考点:分式的化简求值.71.对于一个三位正整数n ,如果n 满足:它的百位数字、十位数字之和与个位数字的差等于6,那么称这个数n 为“开心数”,例如:1936n =,∥9366+-=,∥936是“开心数”;2602n =,∥60246+-=≠,∥602不是“开心数”.(1)判断666、785是否为“开心数”?请说明理由;(2)若将一个“开心数”m 的个位数的两倍放到百位,原来的百位数变成十位数,原来的十位数变成个位数,得到一个新的三位数s (例如;若543m =,则654s =),若s 也是一个“开心数”,求满足条件的所有m 的值 666+-666∴是“785+-785∴不是(2)解:设则s 的百位数字为m 和s 都是2a b c a +-⎧∴⎨+⎩解得18b =09b ≤≤,018∴≤-解得154≤又a 为正整数,a ∴所有符合条件的取值为4a =时,5a =时,综上,满足条件的所有理解“开心数”的定义是解题关键.72.如图,在平面直角坐标系中,∥ABC 的三个顶点的坐标分别为A (-3,-1),B (-5,-4),C (-2,-3)(1)作出∥ABC 向上平移6个单位,再向右平移7个单位的∥A 1B 1C 1.(2)作出∥ABC 关于y 轴对称的∥A 2B 2C 2,并写出点C 2的坐标;(3)将∥ABC 绕点O 顺时针旋转900后得到∥A 3B 3C 3,请你画出旋转后的∥A 3B 3C 3 【答案】(1)见解析图;(2)见解析图,点2C 的坐标是(2,-3);(3)见解析图.【详解】试题分析:(1)分别将点A 、B 、C 向上平移6个单位,再向右平移7个单位,然后顺次连接;(2)分别作出点A 、B 、C 关于y 轴对称的点,然后顺次连接;(3)分别将点A 、B 、C 绕点O 顺时针旋转90°后得到三点,然后顺次连接.试题解析:(1)∥ABC 向上平移6个单位,再向右平移7个单位的111A B C △如图所示;(2)∥ABC 关于y 轴对称的222A B C 如图所示;点2C 的坐标是(2,-3);(3)∥ABC 绕点O 顺时针旋转900后得到333A B C 如图所示.考点:∥作图—平移变换;∥作图—旋转变换.73.如图,已知四边形ABCD 中,AB=24,AD=15,BC=20,CD=7,∥ADB+∥CBD=90°. (1)在BD 的上方作∥A'BD ,使∥A'BD∥∥ADB (点A 与点'A 不重合)(不写作法,保留作图痕迹);(2)求四边形ABCD的面积.【答案】(1)见详解;(2)234【分析】(1)作BD的中垂线MN,作点A关于MN的对称点A′,连接A′D、A′B,则∥A′BD即为所求;(2)由(1)中作图得知:∥A′BD=∥ADB,A′B=AD=15,A′D=AB=24,如图2,连接A′C,由∥ADB+∥CBD=90°,得到∥A′BD+∥CBD=90°,证得∥A′BC=90°,根据勾股定理得到A′C=25,根据勾股定理的逆定理得到∥A′DC是直角三角形,于是得到结果.【详解】解:(1)如图1所示,∥A′BD即为所求;(2)由(1)中作图得知:∥A′BD=∥ADB,A′B=AD=15,A′D=AB=24,连接A′C,如图2,(2)因式分解:322x x x-+(3)解方程组:24 3213x yx y+=⎧⎨-=⎩(4)解不等式组3223(1)7xxx x-⎧+≥⎪⎨⎪--<-⎩75.高铁的开通给滕州人民出行带来极大的方便,从滕州到北京相距700km,现在乘高铁列车比以前乘特快列车少用4.5h,已知高铁列车的平均速度是特快列车的2.8倍,求高铁列车的平均行驶速度.76.在平面直角坐标系中,已知A 点坐标为()0,4,B 点坐标为()0m ,(40m -<<),点C 为第四象限内一点,∥BAC =45°,连接BC .(1)当AB ∥BC 时,∥如图1,若m =-2,请直接写出C 点坐标;∥如图2,D 为AC 的中点,连接OD ,求∥AOD 的度数; (2)如图3,BC 与y 轴交于E 点,若EA =EC ,求C 点的横坐标.【答案】(1)∥(2,-2);∥45° (2)点C 的横坐标为4【分析】(1)∥设点C 的坐标为(s ,t ),先证AB =BC ,得到22222AC AB BC AB =+=,然后求出()2224AC s t =+-,2224220AB =+=,()2222BC s t =++,由此求解即可;∥如图所示,过点D 作DH ∥y 轴于H ,先求出点D 的坐标为(1,1),得到OH =DH =1,则∥HOD =∥HDO =45°,即∥AOD =45°;(2)如图所示,过点C 作CG ∥AB ,交AB 延长线于G ,交y 轴于P ,CH ∥y 轴于P ,则∥AGC =90°,先证明∥ABE ∥∥CPE 得到CP =AB ,再证∥CHP ∥∥AOB 得到CH =AO =4,则点C 的横坐标为4. (1)解:∥设点C 的坐标为(s ,t ), ∥m =-2,∥点B 的坐标为(-2,0), ∥AB ∥BC ,∥BAC =45°, ∥∥BCA =45°=∥BAC , ∥AB =BC ,∥22222AC AB BC AB =+=, ∥A (0,4),B (-2,0),C (s ,t ),∥()2224AC s t =+-,2224220AB =+=,()2222BC s t =++,∥()()22224=402=20s t s t ⎧+-⎪⎨++⎪⎩, 22s t =⎧⎨=-⎩或62s t =-⎧⎨=⎩(舍去), ∥点C 的坐标为(2,-2)∥如图所示,过点D 作DH ∥y 轴于H , ∥D 是AC 的中点,A (0,4),C (2,-2), ∥点D 的坐标为(1,1), ∥OH =DH =1,∥∥HOD =∥HDO =45°,即∥AOD =45°;(2)解:如图所示,过点C作CG∥AB,交AB延长线于G,交y轴于P,CH∥y轴于P,则∥AGC=90°,∥∥GAC=45°,∥∥GAC=∥GCA=45°,∥EA=EC,∥∥EAC=∥ECA,∥∥PCE=∥BAE,又∥∥AEB=∥CEP,AE=CE,∥∥ABE∥∥CPE(ASA),∥CP=AB,∥∥CHP=∥AGC=90°,∥APG=∥CPH,∥∥PCH=∥BAO,∥∥CHP∥∥AOB(AAS),∥CH=AO=4,∥点C的横坐标为4.【点睛】本题主要考查了坐标与图形,两点距离公式,全等三角形的性质与判定,等腰直角三角形的性质与判定,线段中点坐标公式等等,熟练掌握相关知识是解题的关键.77.如图,ABC 中,∥C =90°(1)将ABC 绕点B 逆时针旋转90度,画出得到的A BC ''△; (2)已知BC =3,AC =4,求AA '的长.78.(1)在图中画出ABC 关于点O 对称的111A B C △;(2)在图中画出ABC 绕点O 顺时针旋转90︒后的222A B C △. 【答案】(1)作图见解析 (2)作图见解析【分析】(1)根据中心对称,作出ABC 三个顶点关于点O 对称的点,连线即可得到111A B C △;(2)根据题意,将ABC 三个顶点绕点O 顺时针旋转90︒后,连线即可得到222A B C △. 【详解】(1)解:作图如下:∴111A B C △即为所求;(2)解:作图如下:∴222A B C △即为所求.【点睛】本题考查利用中心对称作图、旋转作图,理解中心对称及旋转的定义,掌握作图方法是解决问题的关键.79.若方程组3293x y x y a +=⎧⎨-=-⎩的解满足0x >,0y >,试求a 的取值范围.80.化简:25(3)263x x x x --÷----81.如图,△ABC 中,作三角形一边BC 的延长线BD,∥ABC 的角平分线与∥ACD 的角平分线交于一点A1.(1)探索规律:若∥A=60°,则∥A1= . 若∥A=50°,则∥A1= .(2)猜想证明:由(1)你猜想∥A 和∥A1有什么样的数量关系? 结合图1 证明你的猜想.(3)规律应用:如图2,四边形ABCD 中,F 为∥ABC 的角平分线和∥DCE 的角平分线的交点,若∥A+∥D=230°,直接写出∥F 的度数.(4)拓展延伸:如图3,若E 为BA 延长线上一动点,连EC,∥AEC 与∥ACE的角平分线交于Q,当E滑动时有∥Q+∥A1的值为定值,∥ABC 的角平分线与∥ACD 的角平分线交于一点A1,∥Q+∥A1的值是否为定值?若是,求出这个定值,若不是,说明理由.82.计算.(1)2xx y x y-+ +(2)22012()(3π--++83.2019年4月4日,珊瑚中学组织七年级学生乘车前往距学校130km 的大观参观。

人教版八年级上册数学期末考试复习:第11章《三角形》解答题专项训练

人教版八年级上册数学期末考试复习:第11章《三角形》解答题专项训练

人教版八年级数学第11章《三角形》解答题专项训练1.如图,在四边形ABCD 中,∠C +∠D =210°(1)∠DAB +∠CBA = 度;(2)若∠DAB 的角平分线与∠CBA 的角平分线相交于点E ,求∠E 的度数.2.阅读下面的材料,并解决问题.(1)已知在△ABC 中,∠A =60°,图1﹣3的△ABC 的内角平分线或外角平分线交于点O ,请直接求出下列角度的度数.如图1,∠O = ;如图2,∠O = ;如图3,∠O = ;如图4,∠ABC ,∠ACB 的三等分线交于点O 1,O 2,连接O 1O 2,则∠BO 2O 1= .(2)如图5,点O 是△ABC 两条内角平分线的交点,求证:∠O =90°+12∠A . (3)如图6,△ABC 中,∠ABC 的三等分线分别与∠ACB 的平分线交于点O 1,O 2,若∠1=115°,∠2=135°,求∠A 的度数.3.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并证明.4.如图,在△ABC 中,AD 是高,AE 是角平分线,∠B =70°,∠DAE =10°,求∠C 的度数.5.(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的27,求这个多边形的边数.6.(如图所示,在△ABC 中,D 是BC 边上一点∠1=∠2,∠3=∠4,∠BAC =69°,求∠DAC 的度数.7.探究与发现:如图①,在△ABC 中,∠B =∠C =45°,点D 在BC 边上,点E 在AC 边上,且∠ADE =∠AED ,连接DE .(1)当∠BAD =60°时,求∠CDE 的度数;(2)当点D 在BC (点B 、C 除外)边上运动时,试猜想∠BAD 与∠CDE 的数量关系,并说明理由.(3)深入探究:如图①,若∠B =∠C ,但∠C ≠45°,其他条件不变,试探究∠BAD 与∠CDE 的数量关系.8.(2019秋•江城区期末)如图,Rt △ABC 中,∠C =90°,∠B =3∠A ,求∠B 的度数.9.如图,在四边形ABCD 中,AD ∥BC ,连接BD ,点E 在BC 边上,点F 在DC 边上,且∠1=∠2.(1)求证:EF ∥BD ;(2)若DB 平分∠ABC ,∠A =130°,求∠2的度数.10.(1)如图1,已知AB ∥CD ,求证:∠EGF =∠AEG +∠CFG .(2)如图2,已知AB ∥CD ,∠AEF 与∠CFE 的平分线交于点G .猜想∠G 的度数,并证明你的猜想.(3)如图3,已知AB ∥CD ,EG 平分∠AEH ,EH 平分∠GEF ,FH 平分∠CFG ,FG 平分∠HFE ,∠G =95°,求∠H 的度数.11.如图1,在△ABC中,∠A=80°,BD、CE分别平分∠ABC、∠ACB,BD与CE交于点F.(1)求∠BFC的度数;(2)如图2,EG、DG分别平分∠AEF、∠ADF,EG与DG交于点G,求∠EGD的度数.12.(2018秋•澄海区期末)如图,已知AD,AE是△ABC的高和角平分线,∠B=44°,∠C=76°,求∠DAE的度数.13.如图,六边形ABCDEF的内角都相等,∠F AD=60°.(1)求∠ADE的度数;(2)求证:EF∥BC.14.CE是△ABC的一个外角∠ACD的平分线,且EF∥BC交AB于点F,∠A=60°,∠CEF=50°,求∠B的度数.15.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(),∴∠CDQ=∠β().∴∠β=(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.16.如图,在△ABC中,点D在BC边上,点E在AC边上,连接AD,DE,∠B=60°(1)若∠3=60°,试说明∠1=∠2;(2)∠C=40°,∠1=50°,且∠3=∠4,求∠2的度数.17.如图,在四边形ABCD中,AD∥BC,∠ABC的平分线交CD于点E.(1)若∠A=70°,求∠ABE的度数;(2)若AB∥CD,且∠1=∠2,判断DF和BE是否平行,并说明理由.18.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,若∠A=42°.(1)求∠BOC的度数;(2)把(1)中∠A=42°这个条件去掉,试探索∠BOC和∠A之间有怎样的数量关系.19.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.20.叙述并证明“三角形的内角和定理”.(要求根据下图写出已知、求证并证明)21.完成下列推理说明.如图,在三角形ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,∠CDG=∠B,∠1+∠FEA =180°,试说明:∠BFE=∠ADF.理由:因为∠CDG=∠B(已知)所以DG∥AB()所以=∠BAD()因为∠1+∠FEA=180°(已知)所以+∠FEA=180°(等量代换)所以AD∥EF()所以∠BFE=()22.已知点C(﹣10,10),直线CE∥x轴交y轴于点B,点A是x轴的负半轴上的动点,作AD⊥AC交线段BO 于点D(点D不与点O、B重合),MD⊥AD交CE于点M,∠EMD,∠OAD的角平分线MN,AN交于点N (1)直接写出OB的长度;(2)求出∠MNA的度数;(3)若NH⊥x轴于点H,求∠ANH的取值范围.23.如图,AB、ED分别垂直于BD,点B、D是垂足,且∠ACB=∠CED.求证△ACE是直角三角形.24.如图,在△ABC中,AD⊥BC,垂足为D,∠1=∠B,∠C=67°,求∠BAC的度数.25.(1)如图①,在四边形ABCD中,AD∥BC,点E是线段CD上一点.求证:∠AEB=∠DAE+∠CBE;(2)如图①,若AE平分∠DAC,∠CAB=∠CBA.①求证:∠ABE+∠AEB=90°;①如图①,若∠ACD的平分线与BA的延长线交于点F,与AE交于点P,且∠F=65°,求∠BCD的度数.26.已知:在四边形ABCD中,连接AC、BD,∠1=∠2,∠3=∠4.求证:∠ABC=∠ADC.27.如图1,已知∠A+∠E+∠F+∠C=540°.(1)试判断直线AB与CD的位置关系,并说明理由(2)如图2,∠P AB=3∠P AQ,∠PCD=3∠PCQ,试判断∠APC与∠AQC的数量关系,并说明理由.28.如图,AC、BD相交于点O,∠A=∠ABC,∠DBC=∠D,BD平分∠ABC,点E在BC的延长线上.(1)求证:CD∥AB;(2)若∠D=38°,求∠ACE的度数.29.已知:△ABC,∠A、∠B、∠C之和为多少?为什么?解;∠A+∠B+∠C=180°理由:作∠ACD=∠A,并延长BC到E∵∠ACD=∠(已作)AB∥CD()∴∠B=()而∠ACB+∠ACD+∠DCE=180°∴∠ACB++=180°()30.如图1,线段AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.(1)求证:∠EAB=∠CED;(2)如图2,AF、DF分别平分∠BAE和∠CDE,EH平分∠DEC交CD于点H,EH的反向延长线交AF于点G.①求证EG⊥AF;①求∠F的度数.【提示:三角形内角和等于180度】参考答案与试题解析一.解答题(共30小题)1.【解答】解:(1)∵∠DAB+∠CBA+∠C+∠D=360°,∴∠DAB+∠CBA=360°﹣(∠C+∠D)=360°﹣210°=150°.故答案为:150;(2)∵∠DAB与∠ABC的平分线交于四边形内一点E,∴∠EAB=12∠DAB,∠EBA=12∠ABC,∴∠E=180°﹣(∠EAB+∠EBA)=180°−12(∠DAB+∠CBA)=180°−12(360°﹣∠C﹣∠D)=12(∠C+∠D),∵∠C+∠D=210°,∴∠E=12(∠C+∠D)=105°.2.【解答】解;(1)如图1,∵BO平分∠ABC,CO平分∠ACB∴∠OBC=12∠ABC,∠OCB=12∠ACB∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣∠BAC)=12(180°﹣60°)=60°∴∠O=180°﹣(∠OBC+∠OCB)=120°;如图2,∵BO平分∠ABC,CO平分∠ACD∴∠OBC=12∠ABC,∠OCD=12∠ACD∵∠ACD=∠ABC+∠A∴∠OCD=12(∠ABC+∠A)∵∠OCD=∠OBC+∠O ∴∠O=∠OCD﹣∠OBC=12∠ABC+12∠A−12∠ABC=12∠A =30°如图3,∵BO 平分∠EBC ,CO 平分∠BCD∴∠OBC =12∠EBC ,∠OCB =12∠BCD∴∠OBC +∠OCB=12(∠EBC +∠BCD )=12(∠A +∠ACB +∠BCD )=12(∠A +180°)=12(60°+180°)=120°∴∠O =180°﹣(∠OBC +∠OCB )=60°如图4,∵∠ABC ,∠ACB 的三等分线交于点O 1,O 2∴∠O 2BC =23∠ABC ,∠O 2CB =23∠ACB ,O 1B 平分∠O 2BC ,O 1C 平分∠O 2CB ,O 2O 1平分BO 2C ∴∠O 2BC +∠O 2CB=23(∠ABC +∠ACB ) =23(180°﹣∠BAC )=23(180°﹣60°) =80°∴∠BO 2C =180°﹣(∠O 2BC +∠O 2CB )=100°∴∠BO 2O 1=12∠BO 2C =50°故答案为:120°,30°,60°,50°;(2)证明:∵OB 平分∠ABC ,OC 平分∠ACB ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∠O =180°﹣(∠OBC +∠OCB )=180°−12(∠ABC +∠ACB )=180°−12(180°﹣∠A )=90°+12∠A . (3)∵∠O 2BO 1=∠2﹣∠1=20°∴∠ABC =3∠O 2BO 1=60°,∠O 1BC =∠O 2BO 1=20°∴∠BCO 2=180°﹣20°﹣135°=25°∴∠ACB =2∠BCO 2=50°∴∠A =180°﹣∠ABC ﹣∠ACB =70°或由题意,设∠ABO 2=∠O 2BO 1=∠O 1BC =α,∠ACO 2=∠BCO 2=β, ∴2α+β=180°﹣115°=65°,α+β=180°﹣135°=45°∴α=20°,β=25°∴∠ABC +∠ACB =3α+2β=60°+50°=110°,∴∠A =70°.3.【解答】解:(1)∵BP 、CP 分别平分∠ABC 和∠ACB ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB ,∴∠BPC =180°﹣(∠PBC +∠PCB )=180°﹣(12∠ABC +12∠ACB ), =180°−12(∠ABC +∠ACB ),=180°−12(180°﹣∠A ), =180°﹣90°+12∠A , =90°+32°=122°,故答案为:122°;(2)∵CE 和BE 分别是∠ACB 和∠ABD 的角平分线,∴∠1=12∠ACB ,∠2=12∠ABD ,又∵∠ABD 是△ABC 的一外角,∴∠ABD =∠A +∠ACB ,∴∠2=12(∠A +∠ABC )=12∠A +∠1,∵∠2是△BEC 的一外角,∴∠BEC =∠2﹣∠1=12∠A +∠1﹣∠1=12∠A =α2;(3)∠QBC =12(∠A +∠ACB ),∠QCB =12(∠A +∠ABC ), ∠BQC =180°﹣∠QBC ﹣∠QCB ,=180°−12(∠A +∠ACB )−12(∠A +∠ABC ),=180°−12∠A −12(∠A +∠ABC +∠ACB ),结论∠BQC =90°−12∠A . 4.【解答】解:∵AD 是高,∠B =70°,∴∠BAD =20°,∴∠BAE =20°+10°=30°,∵AE 是角平分线,∴∠BAC =60°,∴∠C =180°﹣70°﹣60°=50°.5.【解答】解:(1)设这个多边形的每个内角是x °,每个外角是y °, 则得到一个方程组{α=4α+30α+α=180 解得{α=150α=30, 而任何多边形的外角和是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n ,依题意得:27(n ﹣2)180°=360°,解得n =9,答:这个多边形的边数为9.6.【解答】解:设∠1=∠2=x °,则∠3=∠4=2x °,∵∠2+∠4+∠BAC=180°,∴x+2x+69=180,解得x=37,即∠1=37°,∴∠DAC=∠BAC﹣∠1=69°﹣37°=32°.7.【解答】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=90°+α2,∴∠CDE=45°+x−90°+α2=12x,∴∠BAD=2∠CDE;(3)设∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+12 x,∴∠CDE=∠B+x﹣(∠C+12x)=12x,∴∠BAD=2∠CDE.8.【解答】解:∵∠B=3∠A,∴∠A=13∠B,∵∠C=90°,∴∠A+∠B=90°,∴13∠B+∠B=90°,解得∠B=67.5°.9.【解答】(1)证明:如图,∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等).∵∠1=∠2,∴∠3=∠2(等量代换).∴EF∥BD(同位角相等,两直线平行).(2)解:∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=12∠ABC=25°.∴∠2=∠3=25°.10.【解答】证明:(1)如图1,过点G作GH∥AB,∴∠EGH=∠AEG.∵AB∥CD,∴GH∥CD.∴∠FGH=∠CFG.∴∠EGH+∠FGH=∠AEG+∠CFG.即:∠EGF=∠AEG+∠CFG;(2)如图2所示,猜想:∠G=90°;证明:由(1)中的结论得:∠EGF=∠AEG+∠CFG,∵EG、FG分别平分∠AEF和∠CEF,∴∠AEF=2∠AEG,∠CEF=2∠CFG,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2∠AEG+2∠CFG=180°,∴∠AEG+∠CFG=90°,∴∠G=90°;(3)解:如图3,∵EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∴∠AEG=∠GEH=∠HEF=13αααα,∠CFH=∠HFG=∠EFG=13αααα,由(1)可知,∠G=∠AEG+∠CFG,∠H=∠AEH+∠CFH,∴∠G=13∠AEF+23∠CFE=95°,∵AB∥CD,∴∠AEF+∠CFE=180°,∴13(∠AEF+∠CFE)+13αCFE=95°,∴∠CFE=105°,∴∠AEF=75°,∴∠H=23∠AEF+13∠CFE=23×75°+13×105°=85°.11.【解答】解:(1)∵BD、CE分别平分∠ABC、∠ACB∴∠CBD=12∠CBA,∠BCE=12∠ACB,∵∠CBA +∠BCA =180°﹣80°=100°,∴∠BFC =180°−12(∠CBA +∠ACB )=130°.(2)∵EG 、DG 分别平分∠AEF 、∠ADF∴∠GEF =12∠AEF ,∠GDF =12∠ADF ,∵∠AEF +∠ADF =360°﹣80°﹣130°=150°,∴∠GEF +∠GDF =12×150°=75°,∴∠EGD =360°﹣(∠GEF +∠GDF )﹣∠EFD =360°﹣75°﹣130°=155°.12.【解答】解:∵∠B =44°,∠C =76°,∴∠BAC =180°﹣∠B ﹣∠C =60°,∵AE 是角平分线,∴∠EAC =12∠BAC =30°.∵AD 是高,∠C =76°,∴∠DAC =90°﹣∠C =14°,∴∠DAE =∠EAC ﹣∠DAC =30°﹣14°=16°.13.【解答】解:(1)∵六边形ABCDEF 的内角都相等,∴∠BAF =∠B =∠C =∠CDE =∠E =∠F =(6−2)×180°6=120°, ∵∠F AD =60°,∴∠F +∠F AD =180°,∴EF ∥AD ,∴∠E +∠ADE =180°,∴∠ADE =60°;(2)∵∠BAD =∠F AB ﹣∠F AD =60°,∴∠BAD +∠B =180°,∴AD ∥BC ,∴EF ∥BC .14.【解答】解:∵EF ∥BC ,∴∠CEF =∠ECD =50°,∵CE 平分∠ACD ,∴∠ACE =∠ECD ,∴∠ACD =∠ACE +∠ECD =100°,∴∠ACB =180°﹣∠ACD =180°﹣100°=80°,∴∠B =180°﹣(∠A +∠ACB )=180°﹣60°﹣80°=40°.15.【解答】解:(1)证明:∵∠CDQ 是△CBD 的一个外角(三角形外角的定义),∴∠CDQ =∠α+∠C (三角形的一个外角等于和它不相邻的两个内角的和)∵PQ ∥MN (已知),∴∠CDQ =∠β(两直线平行,同位角相等).∴∠β=∠α+∠C (等量代换).∵∠C =45°(已知),∴∠β=∠α+45°(等量代换);故答案为:已知,两直线平行,同位角相等,∠α+∠C ,(2)证明:∵∠CFN 是△ACF 的一个外角(三角形外角的定义),∴∠CFN =∠β+∠C (三角形的一个外角等于和它不相邻的两个内角的和),∵PQ ∥MN (已知),∴∠CFN =∠α(两直线平行,同位角相等)∴∠α=∠β+∠C (等量代换).∵∠C =45°(已知),∴∠α=∠β+45°(等量代换).16.【解答】解:(1)∠B =60°,∠3=60°,∴△ABD 中,∠1=180°﹣∠B ﹣∠ADB =120°﹣∠ADB ,又∵∠2=180°﹣∠3﹣∠ADB =120°﹣∠ADB ,∴∠1=∠2;(2)∵∠C =40°,∠B =60°,∴∠BAC =80°,又∵∠1=50°,∴∠DAE=30°,又∵∠3=∠4,∴∠4=75°,∴∠2=∠4﹣∠C=75°﹣40°=35°.17.【解答】(1)解:∵AD∥BC,∠A=70°,∴∠ABC=180°﹣∠A=110°,∵BE平分∠ABC,∴∠ABE=12∠ABC=55°;(2)证明:DF∥BE.∵AB∥CD,∴∠A+∠ADC=180°,∠2=∠AFD,∵AD∥BC,∴∠A+∠ABC=180°,∴∠ADC=∠ABC,∵∠1=∠2=12∠ADC,∠ABE=12∠ABC∴∠2=∠ABE,∴∠AFD=∠ABE,∴DF∥BE.18.【解答】解:(1)∵∠A=42°,∴∠ABC+∠ACB=180°﹣∠A=138°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠1=12∠ABC,∠2=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB)=12×138°=69°,∴∠BOC=180°﹣(∠1+∠2)=180°﹣69°=111°;(2)∠BOC=90°+12∠A,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠1=12∠ABC,∠2=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB)=12(180°﹣∠A),∴∠BOC=180°﹣(∠1+∠2)=180−12(180°−αα)=90°+12αα.19.【解答】解:∵AD⊥BC,∠B=60°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∵∠BAC=80°,∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°,∵AE平分∠DAC,∴∠DAE=12∠DAC=12×50°=25°,∴∠BAE=30°+25°=55°,∴∠AEC=∠BAE+∠B=55°+60°=115°.20.【解答】已知:△ABC中,求证:∠A+∠B+∠C=180°.证明:过点A作直线MN,使MN∥BC.∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等)∵∠MAB+∠NAC+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换)即∠A+∠B+∠C=180°.21.【解答】解:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠BAD(两直线平行,内错角相等),∵∠1+∠FEA=180°(已知),∴∠BAD+∠FEA=180°(等量代换),∴AD∥EF(同旁内角互补,两直线平行),∴∠BFE=∠ADF(两直线平行,同位角相等),故答案为:同位角相等,两直线平行,∠1,两直线平行,内错角相等,∠BAD,同旁内角互补,两直线平行,∠ADF,两直线平行,同位角相等.22.【解答】解:(1)∵C(﹣10,10),CE∥x轴,∴B(0,10),∴OB=10.(2)连接AM.∵AD⊥DM,∴∠DAM+∠DMA=90°,∵EC∥AH,∴∠EMA+∠HAM=180°,∴∠EMD+∠HAD=90°,∵MN平分∠EMD,AN平分∠DAH,∴∠EMN+∠NAH=45°,∴∠NMA+∠NAM=135°,∴∠MNA=180°﹣135°=45°.(3)由题意:0°<∠DAO<45°,∵AN平分∠DAO,∴0°<∠NAH<22.5°,∵NH⊥AH,∴∠AHN=90°,∴∠ANH=90°﹣∠NAH,∴67.5°<∠ANH<90°.23.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠CDE=90°,∴∠ACB+∠BAC=90°,∠CED+∠DCE=90°.∵∠ACB=∠CED,∴∠BAC=∠DCE,∴∠ACB+∠DCE=90°,∴∠ACE=180°﹣(∠ACB+∠DCE)=90°.∴△ACE是直角三角形.24.【解答】解:∵AD⊥BC,∴∠ADB=90°,∴∠1=∠B=45°,又∵∠C=67°,∴∠BAC=180°﹣∠B﹣∠C=68°.25.【解答】(1)证明:如图①,过E作EF∥AD,∵AD∥BC,∴EF∥BC,∴∠DAE=∠AEF,∠CBE=∠BEF,∴∠AEB=∠DAE+∠CBE;(2)①证明:∵AD∥BC,∴∠DAC=∠ACB.∵AE平分∠DAC,∴∠EAC=12∠DAC=12∠ACB,∵∠ABC=∠BAC,∠ABC+∠BAC+∠ACB=180°,∴∠BAC+∠EAC=90°,∴∠ABE+∠AEB=90°;①解:如图(3),由①知∠BAE=90°,∴∠F AE=90°.∵∠F=65°,∴∠APC=90°+60°=155°.∴∠P AC+∠ACP=25°.∵AE平分∠DAC,CF平分∠ACD,∴∠DAC+∠ACD=2(∠P AC+∠ACP)=50°,∴∠D=180°﹣50°=130°.∵AD∥BC,∴∠BCD=180°﹣∠D=180°﹣130°=50°.26.【解答】证明:方法1:∵∠1=∠2,∴AB∥CD,∴∠ABC+∠DCB=180°,∵∠3=∠4,∴AD∥BC,∴∠ADC+∠DCB=180°,∴∠ABC=∠ADC.方法2:∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴AD∥BC,∴ABCD是平行四边形,∴∠ABC=∠ADC.27.【解答】解:(1)AB∥CD,理由是:分别过点E、F作EM∥AB,FN∥AB,∵EM∥AB,FN∥AB,∴EM∥FN∥AB,∴∠1+∠A=180°,∠3+∠4=180°,∵∠A+∠E+∠F+∠C=540°,∴∠2+∠C=540°﹣180°﹣180°=180°,∴FN∥CD,∵FN∥AB,∴AB∥CD;(2)设∠P AQ=x,∠PCD=y,∵∠P AB=3∠P AQ,∠PCD=3∠PCQ,∴∠P AB=3x,∠BAQ=2x,∠PCD=3y,∠QCD=2y,过P作PG∥AB,过Q作QH∥AB,∵AB∥CD,∴AB∥CD∥PG∥GH,∴∠AQH=∠BAQ=2x,∠QCD=∠CQH=2y,∴∠AQC=2x+2y=2(x+y),同理可得:∠APC=3x+3y=3(x+y),∴αααααααα=23,即∠AQC=23∠APC.28.【解答】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠DBC=∠D,∴∠ABD=∠D,∴CD∥AB,(2)∵∠D=38°,∴∠ABD=∠D=38°,∵BD平分∠ABC,∴∠ABC=2∠ABD=76°,∴∠ABC=∠A=76°,∵CD∥AB,∴∠ACD=∠A=76°,∠ABC=∠DCE=76°,∴∠ACE=∠ACD+∠DCE=76°+76°=152°29.【解答】解;∠A+∠B+∠C=180°.理由:作∠ACD=∠A,并延长BC到E∵∠ACD=∠A(已作)∴AB∥CD(内错角相等,两直线平行)∴∠B=∠DCE(两直线平行,同位角相等)而∠ACB+∠ACD+∠DCE=180°∴∠ACB+∠A+∠B=180°(等量代换)故答案为:A,内错角相等,两直线平行,∠DCE,两直线平行,同位角相等,∠A,∠B,等量代换.30.【解答】解:(1)∵AB⊥BC,∴∠EAB+∠AEB=90°,∵AE⊥ED,∴∠CED+∠AEB=90°,∴∠EAB=∠CED.(2)①∵AF平分∠BAE,∴∠EAG=12∠EAB,∵EH平分∠CED,∴∠HED=12∠CED,∵∠EAB=∠CED,∴∠HED=∠EAG,∴∠HED+∠AEG=90°,∴∠EAG+∠AEG=90°,∴∠EGA=90°,∴EG⊥AF.①作FM∥CD.∵AB⊥BC,CD⊥BC,∴AB∥CD,∴FM∥AB,∴∠DFM=∠CDF=12∠CDE,∠AFM=∠F AB=12∠EAB,∵∠CDE+∠CED=90°,∴∠CDE+∠EAB=90°,∴∠DF A=∠DFM+∠AFM=12∠CDE+12∠EAB=12(∠CDE+∠EAB)=45°.。

北师大版数学八年级上册解答题专题训练50题(含答案)

北师大版数学八年级上册解答题专题训练50题(含答案)

北师大版数学八年级上册解答题专题训练50题含答案1.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与x之间的函数关系式;(4)何时两车相距300千米.2.如图,在∴ABC 中,∴B=58°,AD 平分∴CAB ,交BC 于D ,E 为AC 边上一点,连结DE ,∴EAD=∴EDA ,EF∴BC 于点F .(1)试说明AB∴DE.(2)求∴FED 的度数.【答案】(1)见解析;(2)∴FED =32°【分析】(1)根据角平分线得到∴BAD=∴CAD ,由已知条件得到∴EAD=∴EDA ,于是得到∴BAD=∴ADE ,得到DE∴AB ;(2)由(1)得:∴EDF=∴B=54°,再根据两锐角互余,即可得到结果.【详解】(1)∴AD 平分∴CAB ,∴∴BAD=∴CAD ,∴∴EAD=∴EDA ,∴∴BAD=∴ADE ,∴DE∴AB ;(2)∴DE∴AB ,∴B=58°,∴∴EDF=∴B=58°,∴EF∴BC ,∴∴FED=90°-∴EDF=32°.【点睛】考查了平行线的判定和性质,直角三角形的性质,熟练掌握平行线的判定与性质定理是解题的关键.3.已知,如图,点A(a,b),B(c,d)在平面直角坐标系中的任意两点,且AC∴x 轴于点C,BD∴x轴于点D.(1)CD=,|DB﹣AC|=;(用含a,b,c,d的代数式表示)(2)请猜想:A,B两点之间的距离;(3)利用猜想,若A(﹣2,5),B(4,﹣4),求AB两点之间的距离.4.尺规作图:(不写作法,但要保留作图痕迹)∴画出∴AOB的平分线OC.∴画出与∴ABC 关于l 对称的图形.【答案】见详解.【分析】∴根据角平分线的做法作图即可;∴分别找出A 、B 、C 关于l 的对称点,再顺次连接即可.【详解】解:∴如图,OC 为∴AOB 的平分线;∴如图,'''A B C ∆为所求;【点睛】此题主要考查了基本作图,解题的关键是熟练掌握画角平分线的方法和画轴对称图形的方法.55.如图,在平面直角坐标系中,已知点1,0A 、()0,2B -,直线4y x =-+与x 轴交于点C ,与y 轴交于点D ,且交直线AB 于点E .(1)求直线AB 的函数解析式;(2)求ACE △的面积;(3)若点F 为直线AB 上的一点,且满足3ACF ACE SS =,求点F 的坐标. 3ACF ACE SS =,可得ACF S =的函数解析式为()0y kx b k =+,3ACF ACE SS =, 13222ACF S m =⨯-226m -=,解得m =56.计算:21|12-⎛⎫- ⎪⎝⎭.57.在等式y kx b =+中,当6x =时,2y =;当3x =时,3y =.求当3x =-时,y 的值.【答案】5【分析】把6x =,2y =和3x =,3y =代入等式y kx b =+得到方程组,求出k ,b ,然后6233kb k b ,解得:13k =-∴等式为:y =∴当3x =-时,1341453y .本题主要考查对解二元一次方程组的理解和掌握,是解此题的关键.58.如图,已知带孔的长方形零件尺寸(单位:mm ),求两孔中心的距离.【详解】59.已知某一次函数的图象经过点()0,2A ,()1,3B ,(),1C a 三点,求a 的值.【答案】1a =-【分析】根据点A (0,2),B (1,3)的坐标求出函数解析式,再将C (a ,1)代入解析式求出a 的值.【详解】解:设一次函数的解析式为y kx b =+,将点()0,2A ,()1,3B 的坐标分别代入解析式得:23b k b =⎧⎨+=⎩, 解得12k b =⎧⎨=⎩, ∴函数解析式为2y x =+,将(),1C a 的坐标代入解析式得:21a +=,解得1a =-.【点睛】本题考查了一次函数图像上点的坐标特征,熟悉待定系数法是解题的关键. 60.如图,已知AB ∴CD ,分别探讨下面三个图形中∴AEC 与∴EAB ,∴ECD 之间的关系,请你从所得到的关系中任选一个加以证明.(1)在图1中,∴AEC 与∴EAB ,∴ECD 之间的关系是:________________. (2)在图2中,∴AEC 与∴EAB ,∴ECD 之间的关系是:________________. (3)在图3中,∴AEC 与∴EAB ,∴ECD 之间的关系是:________________. (4)在图______中,求证:________________.(并写出完整的证明过程)【答案】(1)∴AEC +∴EAB +∴ECD =360°;(2)∴AEC =∴BAE +∴ECD ;(3)∴AEC +∴EAB =∴ECD ;(4)见详解【分析】(1)过点E 作PE ∴AB ,然后根据平行线的性质求证即可;(2)过点E 作PE ∴AB ,然后根据平行线的性质求证即可;(3)把AB 和EC 的交点记作P ,然后根据平行线的性质和三角形内角和180︒求证即可; (4)选取(1)(2)(3)任意一个根据平行线性质证明即可.【详解】(1)∴AEC +∴EAB +∴ECD =360°, 过点E 作PE ∴AB ,如图1所示:∴AB∴CD,∴AB∴PE∴CD,∴∴BAE+∴PEA=180°,∴PEC+∴ECD=180°,∴∴BAE+∴PEA +∴PEC +∴ECD=360°,∴∴AEC+∴EAB+∴ECD=360°;(2)∴AEC=∴BAE+∴ECD,过点E作PE∴AB,如图2所示:∴AB∴CD,∴AB∴PE∴CD,∴∴PEA =∴BAE,∴PEC =∴ECD,∴∴AEC=∴PEA +∴PEC =∴BAE+∴ECD;(3)把AB和EC的交点记作P,如图3所示:∴AB∴CD,∴∴ECD=∴EPB∴∴AEC +∴EAB +∴EP A =180°,∴EPB +∴EP A =180°∴∴AEC +∴EAB =∴EPB∴∴AEC +∴EAB =∴ECD(4)任意选取图1、2、3,证明过程见(1)(2)(3)【点睛】本题主要考查平行线的性质,熟练掌握性质是关键.61.计算:. 【答案】 【详解】试题分析:先算乘方和小括号里的,再算乘除,最后算加减.原式考点:实数的运算点评:实数的运算是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.62.如图,在平面直角坐标系中,∴ABC 各顶点的坐标分别为:()24A -,,()42B -,,()31C -,,按下列要求作图.(1)画出ABC 关于x 轴对称的图形111A B C △(点A 、B 、C 分别对应1A 、1B 、1C ),并写出1A 、1B 、1C 坐标:1A ___________,1B ___________,1C ___________;(2)求111A B C △的面积为___________;(3)若点P 在y 轴上,当线段1AP B P +的值最小时,请直接写出P 点坐标___________.【答案】(1)画图见解析,()24--,,()42--,,()31--, (2)2(3)()02,,.63.证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.【答案】见解析【分析】由HL证明Rt△ABH∴Rt△DEK得∴B=∴E,再用边角边证明△ABC∴∴DEF.【详解】已知:如图所示,在△ABC和△DEF中,AB=DE,BC=EF,AH∴BC,DK∴EF,且AH=DK.求证:△ABC∴∴DEF,证明:∴AH∴BC,DK∴EF,∴∴AHB=∴DKE=90°,在Rt△ABH和Rt△DEK中,AH DKAB DE=⎧⎨=⎩,∴Rt△ABH∴Rt△DEK(HL),∴B=∴E,在△ABC和△DEF中,AB DEB EBC EF=⎧⎪∠=∠⎨⎪=⎩,∴∴ABC∴∴DEF(SAS)【点睛】本题综合考查了全等三角形的判定与性质和命题的证明方法,重点掌握全等三角形的判定与性质,难点是将命题用几何语言规范书写成几何证明格式.64.如图,直线l1:y1=2x+1与坐标轴交于A,C两点,直线l2:y2=-x-2与坐标轴交于B,D两点,两直线交于P点.(1)求P点的坐标;(2)求∴APB的面积.65.计算:14++-(2)(⎛÷⨯ ⎝661122-⎛⎫- ⎪⎝⎭67.如图,∴1+∴2=180°,∴C =∴D .求证:AD //BC .证明:∴∴1+∴2=180°,∴2+∴AED =180°,∴∴1=∴AED ( ),∴AC // ( ),∴∴D =∴DAF ( ).∴∴C =∴D ,∴∴DAF = (等量代换).∴AD //BC ( ).【答案】同角的补角相等;DE ;内错角相等,两直线平行;两直线平行,内错角相等;∠C ;同位角相等,两直线平行.【分析】根据平行线的判定和性质定理即可得到结论.【详解】证明:12180∠+∠=︒,2180AED ∠+∠=︒,1AED ∴∠=∠(同角的补角相等),//AC DE ∴(内错角相等,两直线平行),D DAF ∴∠=∠(两直线平行,内错角相等), C D ∠=∠,DAF C ∴∠=∠(等量代换),//AD BC ∴(同位角相等,两直线平行).故答案为:同角的补角相等;DE ;内错角相等,两直线平行;两直线平行,内错角相等;C ∠;同位角相等,两直线平行.【点睛】本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键.68.如图所示,直线13:3y x l =-+与直线2:l y kx b =+相交于点C ,且1l 与x 轴交于点2,D l 经过点()34,0,3,2A B ⎛⎫- ⎪⎝⎭. ()1求点D 的坐标和直线2l 的表达式;()2求ADC △的面积.ADC S =【点睛】考核知识点:一次函数与方程组69.求下列各式的值:(1)(2)(3)(4(503-3.14π+()+11()2- (6) 21(3)1203x +-=x+3=±6,所以x=3或-9.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 70.(1)如图∴,已知ABC 中,AB AC =,D ,A ,E 三点都在同一直线上,且有BDA AEC BAC ∠=∠=∠,当90BAC ∠=︒时,求证:ABD CAE △△≌;(2)如图∴,在(1)的条件下,当0180BAC ︒<∠<︒时,求证:DE BD CE =+;(3)如图∴,AC BC =,90ACB ∠=︒,点C 为()20-,,点B 为()12,,求点A 的坐标. 【答案】(1)见解析(2)见解析(3)()4,3A -【分析】(1)根据90BDA AEC BAC ∠=∠=∠=︒,证得ABD CAE ∠=∠,再根据AAS 证明ABD CAE △△≌;(2)利用外角性质推出ABD CAE ∠=∠,进而证明ABD CAE △△≌,得到,AD CE BD AE ==,由此得到结论;(3)过点A 作AM x ⊥轴于M ,过点B 作BN x ⊥轴于N ,证明BCN CAM △≌△,得到,AM CN CM BN ==,求出,AM OM ,即可得到点A 的坐标.【详解】(1)证明:∴90BAC ∠=︒,∴90BDA AEC BAC ∠=∠=∠=︒,∴90ABD BAD CAE BAD ∠+∠=∠+∠=︒∴ABD CAE ∠=∠在ABD △和CAE 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABD CAE AAS ≌;(2)∴BAE ∠是ABD △的一个外角,∴BAE ADB ABD ∠=∠+∠,∴BDA BAC ∠=∠∴ABD CAE ∠=∠在ABD △和CAE 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABD CAE AAS ≌;∴,AD CE BD AE ==∴DE AD AE BD CE =+=+;(3)过点A 作AM x ⊥轴于M ,过点B 作BN x ⊥轴于N ,∴90ACB ∠=︒,∴90ACM BCN ACM CAM ∠+∠=∠+∠=︒∴BCN CAM ∠=∠在BCN △和CAM 中BCN CAM BNC AMC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BCN CAM AAS ≌∴,AM CN CM BN ==∴点C 为()20-,,点B 为()12,, ∴2,1,2OC ON BN ===∴213CN OC ON =+=+=,∴3,224AM CN OM OC CM ===+=+=∴()4,3A -.【点睛】此题考查了全等三角形的判定和性质,坐标与图形,正确掌握全等三角形的判定和性质定理是解题的关键.71.计算:(1)(2)2+72.完善下列解题步骤.井说明解题依据.如图,已知∴1=∴2,∴B=∴C,求证:AB∴CD.证明:∴∴1=∴2(已知)且∴1=∴CGD(______)∴∴2=∴CGD(______)∴______∴______(______),∴∴C=______(______)又∴∴B=∴C(已知)∴______=∴BAB∴CD(______)【答案】对顶角相等,等量代换,EC,BF,同位角相等两直线平行,∴DFH,两直线平行同位角相等,∴DFH,内错角相等两直线平行.【分析】利用平行线的判定和性质等知识即可解决问题.【详解】证明:∴∴1=∴2(已知)且∴1=∴CGD(对顶角相等)∴∴2=∴CGD(等量代换)∴EC∴BF(同位角相等两直线平行),∴∴C=∴DFH(两直线平行同位角相等)又∴∴B=∴C(已知)∴∴DFH=∴BAB∴CD(内错角相等两直线平行).故答案为:对顶角相等,等量代换,EC,BF,同位角相等两直线平行,∴DFH,两直线平行同位角相等,∴DFH,内错角相等两直线平行.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.73.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.【答案】12m【分析】根据题意设旗杆的高AB 为x m ,则绳子AC 的长为(x +1)m ,再利用勾股定理即可求得AB 的长,即旗杆的高.【详解】解:设旗杆的高AB 为x m ,则绳子AC 的长为(x +1)m在Rt ∴ABC 中,222AB BC AC +=∴2225(1)x x +=+解得x =12∴AB =12∴旗杆的高12m.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,关键是利用勾股定理即可求得AB 的长. 74.下面的证明过程有四处..是不完整的,请将说理过程补充完整:如图,已知,//CD EF ,12∠=∠,390∠=︒.求证:AC BC ⊥.证明:∴//CD EF ,∴2DCB =∠∠,(__∴__)∴12∠=∠,∴1DCB ∠=∠,(__∴__)∴//GD CB ,(__∴__)∴3ACB ,∴390∠=︒∴90ACB ∠=︒∴AC BC ⊥.(__∴__) 【答案】见解析【分析】根据平行线的性质和判定以及垂直的定义即可得出答案.【详解】证明:∴CD ∴EF ,∴∴2=∴DCB ,( 两直线平行,同位角相等)∴∴1=∴2,∴∴1=∴DCB ,( 等量代换 )∴GD ∴CB ,( 内错角相等,两直线平行 )∴∴3=∴ACB ,∴∴3=90°,∴∴ACB =90°,∴AC ∴BC ( 垂直的定义 )【点睛】本题考查平行线的性质和判定,掌握两直线平行,同位角相等;内错角相等,两直线平行以及垂直的定义是解题关键.75.已知如图,CD ∴AB 于点D ,EF ∴AB 于点F ,∴1=∴2.(1)求证:CD ∴EF ;(2)判断∴ADG 与∴B 的数量关系?如果相等,请说明理由;如果不相等,也请说明理由.【答案】(1)见解析;(2)结论∴ADG=∴B .理由见解析.【分析】(1)根据垂直于同一条直线的两条直线平行即可证明;(2)结论∴ADG=∴B .只要证明DG∴BC即可解决问题.【详解】(1)∴CD∴AB于点D,EF∴AB于点E,∴CD∴EF.(2)结论∴ADG=∴B.理由:∴CD∴EF,∴∴2=∴3,∴∴1=∴2,∴∴1=∴3,∴DG∴BC,∴∴ADG=∴B.【点睛】本题考查了平行线的性质和判定、垂线的定义等知识,解题的关键是熟练掌握平行线的判定和性质.76.解方程(组):(1)11132x xx+-+=-;(2)2+=35+=9.x yx y⎧⎨⎩【答案】(1)x=5;(2)x=2 y=-1⎧⎨⎩【详解】试题分析:(1)去分母、去括号、移项、合并同类项、系数化成1,最后在数轴上把不等式的解集在数轴上表示出来即可;(2)用加减消元法解答即可.试题解析:解:(1)去分母得:2(x+1)+6=6x-3(x-1)去括号得:2x+2+6=6x-3x+3移项得:2x-6x+3x=3-2-6合并同类项得:-x=-5系数化为1得:x=5.(2)2359x yx y+=⎧⎨+=⎩①②,∴-∴得:3x=6,解得:x=2,把x=2代入∴得:y=-1,∴21xy=⎧⎨=-⎩.77.欣欣服装厂加工A、B两种款式的运动服共100件,加工A种运动服的成本为每件80元,加工B 种运动服的成本为每件100元,加工两种运动服的成本共用去9200元. (1)A 、B 两种运动服各加工多少件?(2)A 种运动服的标价为200元,B 种运动服的标价为220元,若两种运动服均打八折出售,则该服装厂售完这100件运动服共盈利多少元?【答案】(1)A 种运动服加工40件,B 种运动服加工60件;(2)该服装厂售完这100件运动服共盈利7760元.【分析】(1)设A 种运动服加工了x 件,B 种运动服加工了y 件,根据该服装厂加工A 、B 两种款式的运动服共100件且共用去9200元的成本,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据利润与标价、折扣、售价、进价之间的关系,计算解答【详解】解:(1)设A 种运动服加工x 件,B 种运动服加工y 件,根据题意可得: 100801009200x y x y +=⎧⎨+=⎩, 解得:4060x y =⎧⎨=⎩, 答:A 种运动服加工40件,B 种运动服加工60件;(2)依题意得:40×(200×0.8﹣80)+60×(220×0.8﹣100)=7760(元) , 答:共盈利7760元.【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)牢记利润公式,利润=售价-进价,售价=标价×折扣. 78.如图所示,牧童在A 处放牛,其家在B 处,A ,B 处到河岸的距离分别为AC =400m ,BD =200m ,且CD =800m ,牧童从A 处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?【答案】见解析【详解】如图所示,作点A 关于直线CD 的对称点G ,连接GB 交CD 于点E ,由“两点之间线段最短”可以知道在E 处饮水后再回家,所走路程最短.说明如下: 在直线CD 上任意取一异于点E 的点I ,连接AI ,AE ,BI ,GI .∴点G,A关于直线CD对称,∴AI=GI,AE=GE.∴AI+BI=GI+BI,AE+BE=GE+BE=GB.由“两点之间线段最短”或“三角形两边之和大于第三边”可得GI+BI>GB=AE+BE,于是得证.最短路程为GB的长,过点G作BD的垂线,与BD的延长线交于点H.在Rt∴GHB中,∴GH=CD=800m,BH=BD+DH=BD+GC=BD+AC=200+400=600(m),∴由勾股定理得GB2=GH2+BH2=8002+6002=1000000.∴GB=1000m,即最短路程为1000m.79.(1)如图1,P是∴ABC内一点,请过点P画射线PD,使PD∴BC;过点P画直线PE∴BA,交BC于点E.请画图并通过观察思考后你发现∴ABC与∴DPE的大小关系是,并说明理由.(2)如图2,直线a,b所成的角跑到画板外面去了,为了测量这两条直线所成的角的度数,请画图并简单地写出你的方法.【答案】(1)相等或互补(2)见解析【详解】试题分析:(1)分两种情况讨论;(2)利用平行线的性质或三角形的内角和设计方法.试题解析:(1)相等或互补理由如下:如图1∴,DP交AB于点F.∴PD∴BC,∴∴ABC=∴AFP,∴PE∴BA,∴∴AFP=∴DPE,∴∴ABC=∴DPE;如图1∴,设DP交AB于点F.∴PD∴BC,∴∴ABC=∴CEP,∴PD∴BC,∴∴CEP+∴DPE=180°,∴∴ABC+∴DPE=180°;(2)方法一:如图2∴,设直线b与木板交于点P,过点P作PC∴a,量出直线b与PC的夹角度数,即为直线a,b所成角的度数,依据是:两直线平行,同位角相等;方法二:如图2∴,在直线a,b上各取一点A,B,连结AB,测得∴1,∴2的度数,则180°﹣∴1﹣∴2即为直线a,b所成角的度数;依据是:三角形内角和为180°.考点:平行线的判定与性质.80.如图,数轴上表示1A、B,点B关于A的对称点为C则C点表示的数是多少?=-+交y轴于点A,交x轴于点B,点C 81.如图,在平面直角坐标系中,直线y x m为线段OB的中点,作点C关于直线AB的对称点F,连接BF和OF,OF交AC于点E,交AB于点M.(1)求点F的坐标.(用m表示)(2)求证:OF AC⊥.Rt OABRt OAB 中,为线段OB (2m ,0),F 关于直线AB ⊥,且∴AC OF ⊥. 【点睛】本题主要考查了一次函数的应用、轴对称的性质、全等三角形的判定与性质等知识,解题关键是熟练运用数形结合的数学思想分析问题.82.(1)已知3m =,2n =,且m n <,求22m mn n ++的值.(2)1... 又,m n <∴当时,2296419m mn n ++=++=3,m n =-=2)原式=考点:1.绝对值;84.【阅读材料】数列是一个古老的数学课题,我国对数列概念的认识很早,例如《易传•系辞》:“河出图,洛出书,圣人则之;两仪生四象,四象生八卦”.这是世界数学史上有关等比数列的最早文字记载.【问题提出】求等比数列1+a 1+a 2+a 3+…+an 的值(a >0,且a ≠1,n 是正整数,请写出计算过程).【等比数列】按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1,排在第二位的数称为第二项,记为a 2,依此类推,排在第n 位的数称为第n 项,记为an .所以,数列的一般形式可以写成:a 1,a 2,a 3,…,an ,….一般地,如果一个数列从第二项起,每一项与它前一项的比值等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用q 表示.如:数列1,2,4,8,…为等比数列,其中a 1=1,a 2=2,公比为q =2.根据以上材料,解答下列问题: (1)等比数列3,9,27,…的公比q 为_____,第5项是_____.【公式推导】如果一个数列a 1,a 2,a 3,…,an …,是等比数列,且公比为q ,那么根据定义可得到:21a a =q ,32a a =q ,43a a =q ,…,1n n a a +=q . 所以a 2=a 1•q ,a 3=a 2•q =a 1q •q =a 1•q 2,a 4=a 3•q =a 1•q 2=a 1•q 3,…(2)由此,请你填空完成等比数列的通项公式:an =a 1•(_____).【拓广探究】等比数列求和公式并不复杂,但是其推导过程——错位相减法,构思精巧、形式奇特.欧几里得在《几何原本》中就给出了等比数列前n 项和公式,而错位相减法则直到1822年才由欧拉在《代数学基础》中给出,时间相差两千多年.下面是小明为了计算1+2+22+…+22019+22020的值,采用的方法:设S=1+2+22+…+22019+22020∴,则2S=2+22+…+22020+22021∴,∴-∴得2S-S=S=22021-1,∴S=1+2+22+…+22019+22020=22021-1.【解决问题】(3)请仿照小明的方法求等比数列1+a1+a2+a3+…+an的值(a>0,且a≠1,n 是正整数,请写出计算过程).【拓展应用】(4)计算25+252+253+…+25n的值为_____.(直接写出结果)85.A城有肥料200t,B城有肥料300t.现要把这些肥料全部运往C,D两乡,从A城往C,D两乡运肥料的费用分别为20元/t和25元/t;从B城往C,D两乡运肥料的费用分别为15元/t和24元/t.现C乡需要肥料240t,D乡需要肥料260t.设从A城调往C 乡肥料xt.(1)根据题意,填写下表:(2)设调运肥料的总运费y(单位:元)是x的函数,求y与x的函数解析式;(3)请根据(2)给出完成调运任务总费用最少的调运方案,并说明理由.【答案】(1)200﹣x,240﹣x,60+x;(2)y=4x+10040(0≤x≤200);(3)从A城运往C 乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,∴从B城运往C乡为(240-x)吨,∴从B城运往D乡为:300-(240-x)=60+x(吨);(2)设总运费为y元,A城运往C乡的肥料量为x吨,则运往D乡的肥料量为(200﹣x)吨;B城运往C、D乡的肥料量分别为(240﹣x)吨和(60+x)吨.由总运费与各运输量的关系可知,反映y与x之间的函数关系为:y=20x+25(200﹣x)+15(240﹣x)+24(60+x),化简得:y=4x+10040,∴A城有200吨肥料,B城有300吨肥料,C乡需要240吨肥料,∴从A城运往C乡的肥料量,最少为0吨,最多为200吨,∴0≤x≤200,∴y=4x+10040(0≤x≤200);(3)由解析式可知:∴4>0,∴y随x的增大而增大,∴当x=0时,y有最小值10040.因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值是10040元.【点睛】此题主要考查了一次函数应用,根据已知得出A城和B城运往各地的肥料吨数是解题关键.86.某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系满足:m=﹣2t+96.且未来40天t+25(1≤t≤20内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=12t+40且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=﹣12(21≤t<40且t为整数).下面我们就来研究销售这种商品的有关问题(1)请分别写出未来40天内,前20天和后20天的日销售利润w(元)与时间t的函数关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.【答案】(1)w=()()22384801208819202140t t t tt t t t⎧-++≤≤⎪⎨-+≤<⎪⎩且为整数且为整数;(2)第19天日销售利润最大,解得a≥0.5,又a <4,则0.5≤a <4.【点睛】本题考查二次函数的应用、二次函数的最大值,熟练掌握二次函数的性质是解题关键.87.如图,在平面直角坐标系中,直线12y x b =+与x 轴交于点A ,直线2y x =-+与x 轴交于点B ,两直线相交于点()2,C a -.(1)求a 和b 的值;(2)求ABC 的面积;(3)动点(),0P m 在点A 的右侧,连接PC ,当ACP △为等腰三角形时,求m 的值.ABC S =3)解:如图,作Rt PCD 中,)(210+=-AC AP =时,104=-+CA CP =时,点。

浙教版数学八上第三章不等式组的应用解答题 专项练习

浙教版数学八上第三章不等式组的应用解答题  专项练习

浙教版初中数学八年级上册第三章不等式组的应用解答题专项练习一、解答题1.一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运输.已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.2.一个三角形的三边长分别是xcm、(x+2)cm、(x+5)cm.它的周长不超过37cm.求x的取值范围.3.已知a,b,c是△ABC的三边长,若b=2a﹣1,c=a+5,且△ABC的周长不超过20cm,求a的范围.4.某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案.5.一幢学生宿舍楼有一些空宿舍,现有一批学生要入住,若每间住5人,则有25人无法入住;若每间住10人,则有1间房不空也不满.求空宿舍的间数和这批学生的人数.6.工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需要甲种原料9千克,乙种原料3千克;生产一件B 种产品需要甲种原料4千克,乙种原料10千克.则安排A、B两种产品的生产件数有几种方案?7.为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?8.把若干颗花生分给若干只猴子,如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子得不到5颗,求猴子的只数和花生的颗数.9.某旅店有两种客房,甲种客房每间可安排4位客人入住,乙种客房每间可安排3位客人入住。

人教版八年级上册数学期末复习:解答题专项练习题 2套(含答案解析)

人教版八年级上册数学期末复习:解答题专项练习题 2套(含答案解析)
解得:x=200,
经检验,x=200是原方程的解,且符合题意,
∴2x=2×200=400.
答:这一售票点售出售出平日票400张,指定日票200张.
5.(2020秋•钱塘区期末)如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,AB∥DE,AB=DE,∠A=∠D.
(1)求证:△ABC≌△DEF;
(2)(x+1)(x﹣p)=x2+qx﹣3,求pq的值.
【分析】(1)首先根据已知得出a2m=4,再根据同底数幂的除法法则求出即可.
(2)先根据多项式乘多项式法则进行计算,再根据已知得出1﹣p=q,﹣p=﹣3,求出p、q,再代入计算即可求解.
【解答】解:(1)∵am=2,
∴a2m=4,
∵an=5,
∴a2m﹣n=a2m÷an= ;
(2)若BF=11,EC=5,求BE的长.
【分析】(1)由平行线的性质得出∠B=∠DEF,根据AAS可证明△ABC≌△DEF;
(2)由全等三角形的性质得出BE=CF,则可求出答案.
【解答】(1)证明:∵AB∥DE,
∴∠B=∠DEF,
在△ABC与△DEF中,

∴△ABC≌△DEF(ASA);
(2)解:∵△ABC≌△DEF,
5.(2020秋•钱塘区期末)如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,AB∥DE,AB=DE,∠A=∠D.
(1)求证:△ABC≌△DEF;
(2)若BF=11,EC=5,求BE的长.
6.(2021春•靖边县期末)如图所示,在△ABC和△A′B′C′中,CD⊥AB于点D,C′D′⊥A′B′于点D',BC=B′C′,CD=C′D′.若AB=A′B′,求证:AD=A′D′.

专题01 三角形-2021-2022学年八年级数学上学期期末解答题必刷专题训练(人教版)(解析版)

专题01 三角形-2021-2022学年八年级数学上学期期末解答题必刷专题训练(人教版)(解析版)

三角形1.如图,在四边形ABCD 中,90A C Ð=Ð=°,BE 平分ABC Ð,DF 平分ADC Ð.(1)求ABC ADC Ð+Ð的度数;(2)求证:BE DF ∥.【答案】(1)∠ABC +∠ADC =180°;(2)见解析.【分析】(1)根据四边形的内角和定理求出即可;(2)求出∠2=∠DFC ,根据平行线的判定推出即可.【详解】(1)解:∵∠A =∠C =90°,∴∠ABC +∠ADC =360°-90°-90°=180°;(2)证明:∵BE 平分∠ABC ,DF 平分∠ADC ,∴∠2=12∠ABC ,∠4=12∠ADC ,∵四边形ABCD 中,∠A =∠C =90°,∴∠4+∠DFC =90°,由(1)得∠ABC +∠ADC =180°,∴∠2+∠4=90°,∵∠4+∠DFC =90°,∴∠2=∠DFC ,∴BE ∥DF ..【点睛】本题考查了平行线的判定,角平分线定义,三角形的内角和定理,四边形的内角和定理的应用,解此题的关键是求出∠EBC =∠DFC .2.如图,在△ABC中,AE是角平分线,AD是高,∠BAC=70°,∠EAD=10°,求∠B的度数.【答案】45°【分析】∠BAC=35°,那么∠BAD=∠BAE+∠EAD=45°.根据AD是△ABC的高,根据AE是角平分线,得∠BAE=12得∠ADC=90°.根据三角形外角的性质,得∠ADC=∠B+∠BAD,那么∠B=∠ADC−∠BAD=45°.【详解】解:∵AE是角平分线,∴∠BAE=1∠BAC=35°.2∴∠BAD=∠BAE+∠EAD=35°+10°=45°.∵AD是△ABC的高,∴∠ADC=90°.∵∠ADC=∠B+∠BAD,∴∠B=∠ADC−∠BAD=90°−45°=45°.【点睛】本题主要考查三角形的高、角平分线的定义、三角形外角的性质,熟练掌握三角形的高、角平分线的定义、三角形外角的性质是解决本题的关键.3.如图,AD为V ABC中线,AB=12cm,AC=9cm,V ACD的周长为27cm,求V ABD的周长.【答案】△ABD的周长为30cm【分析】利用中线定义可得BD=CD,进而可得AD+DC=AD+BD,然后再求△ABD的周长即可.【详解】解:∵△ACD的周长为27cm,∴AC+DC+AD=27cm,∵AC=9cm,∴AD+CD=18cm,∵AD为△ABC的中线,∴BD=CD,∴AD+BD=18cm,∵AB=12cm,∴AB+AD+BD=30cm,∴△ABD的周长为30cm.【点睛】此题主要考查了三角形的中线,关键是掌握三角形的中线定义.4.如图①,V ABC的角平分线BD、CE相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,则有∠MPB+∠NPC=90°﹣12∠A.①若将直线MN绕点P旋转,如图③,试探索∠MPB、∠NPC、∠A三者之间的数量关系是否依然成立,并说明理由;②当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问①中∠MPB、∠NPC、∠A三者之间的数量关系是否仍然成立?若不成立,请给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.【答案】(1)130°;(2)①仍然成立,见解析;②不成立,∠MPB﹣∠NPC=90°﹣12∠A,见解析【分析】(1)运用三角形的内角和定理及角平分线的定义,首先求出∠1+∠2,进而求出∠BPC即可解决问题.(2)运用(1)中的结论,结合三角形的内角和定理逐一分类解析,即可解决问题.【详解】解:(1)如图①∵在△ABC中,∠A+∠ABC+∠ACB=180°,且∠A=80°,∴∠ABC+∠ACB=100°,∵∠1=12∠ABC,∠2=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB)=12×100°=50°,∴∠BPC =180°﹣(∠1+∠2)=180°﹣50°=130°.(2)①如图③,由(1)知:∠BPC =180°﹣(∠1+∠2);∵∠1+∠2=12(180°﹣∠A )=90°-12∠A ,∴∠BPC =180°﹣(90°﹣12∠A )=90°+12∠A ;∴∠MPB +∠NPC =180°﹣∠BPC =180°﹣(90°+12∠A )=90°﹣12∠A .②不成立,∠MPB ﹣∠NPC =90°﹣12∠A .如图④,由①知:∠BPC =90°+12∠A ,∴∠MPB ﹣∠NPC =180°﹣∠BPC=180°﹣(90°+12∠A )=90°﹣12∠A .【点睛】该题主要考查了三角形的内角和定理、角平分线的定义等几何知识点及其应用问题;牢固掌握三角形的内角和定理、角平分线的定义等几何知识点是基础,灵活运用是关键.5.如图,在△ABC 中,AE 是BC 边上的高,AD 是角平分线,∠B =42°,∠C =68°.①求∠DAE 的度数;②若∠B =α,∠C =β(α<β),用含α,β的代数式表示∠DAE .(直接写出结论)【答案】(1)13°(2)2b a -【分析】(1)根据三角形内角和定理求出∠BAC ,求出∠DAC ,根据三角形内角和定理求出∠AC ,代入∠DAE =∠DAC −∠EAC 求出即可.(2)同(1)的方法即可求解.【详解】解:(1)∵∠B =42°,∠C =68°,∴∠BAC =180°−∠B −∠C =70°,∵AD 是∠BAC 的平分线,∴∠DAC =12∠BAC =35°,∵AE 是BC 边上的高,∴∠AEC =90°,∵∠C =68°,∴∠EAC =180°−∠AEC −∠C =22°,∴∠DAE =∠DAC −∠EAC =35°−22°=13°.(2)∵∠B =α,∠C =β,∴∠BAC =180°−∠B −∠C =180°−α−β,D 是∠BAC 的平分线,∴∠DAC =12∠BAC =90°−12α−12β,AE 是BC 边上的高,∴∠AEC =90°,∵∠C =β,∴∠EAC =180°−∠AEC −∠C =90°−β,∠DAE =∠DAC −∠EAC =(90°−12α−12β)−(90°−β)=2b a -.【点睛】本题考查了三角形内角和定理的应用,主要考查学生运用定理进行推理和计算的能力.6.如图,在ABC V 中,BF 平分ABC Ð,CF 平分ACB Ð,65A Ð=°,求F Ð的度数.【答案】122.5°【分析】由题意直接根据三角形内角和定理和角平分线的定义进行分析,并利用角的等量替换即可得出答案.【详解】解:在ABC V 中,∵65A Ð=°(已知),∴180115ABC ACB A Ð+Ð=°-Ð=°(三角形内角和定理).∵BF 平分ABC Ð,CF 平分ACB Ð(已知),∴12FBC ABC Ð=Ð,12FCB ACB Ð=Ð(角平分线的定义).在FBC V 中,∵180F FBC FCB Ð+Ð+Ð=°(三角形内角和定理),∴(180)F FBC FCB Ð=°-Ð+Ð1118022ABC ACB æö=°-Ð+Ðç÷èø1180()2ABC ACB =°-Ð+Ð11801152=-´°122.5=°.【点睛】本题考查三角形内角和定理和角平分线的定义,熟练掌握三角形内角和定理和角平分线的定义是解题的关键.7.阅读下列材料:阳阳同学遇到这样一个问题:如图1,在ABC D 中AB AC =,BD 是ABC D 的高,P 是BC 边上一点,PM 、PN 分别与直线AB ,AC 垂直,垂足分别为点M 、N .求证:BD PM PN =+.阳阳发现,连接AP ,有ABC ABP ACP S S S D D D =+,即111222AC BD AB PM AC PN ×=×+×.由AB AC =,可得BD PM PN =+.他又画出了当点P 在CB 的延长线上,且上面问题中其他条件不变时的图形,如图2所示,他猜想此时BD 、PM 、PN 之间的数量关系是:BD PN PM =-.请回答:(1)请补全阳阳同学证明猜想的过程;证明:连接AP .ABC APC S S D D =-Q ________,1122AC BD AC \×=×________12AB -×________.AB AC =Q ,BD PN PM \=-.(2)参考阳阳同学思考问题的方法,解决下列问题:在ABC D 中,AB AC BC ==,BD 是ABC D 的高.P 是ABC D 所在平面上一点,PM 、PN 、PQ 分别与直线AB 、AC 、BC 垂直,垂足分别为点M 、N 、Q .①如图3,若点P 在ABC D 的内部,猜想BD 、PM 、PN 、PQ 之间的数量关系并写出推理过程.②若点P 在如图4所示的位置,利用图4探究得此时BD 、PM 、PN 、PQ 之间的数量关系是:_______.(直接写出结论即可)【答案】(1)S △APB ;PN ;PM ;(2)①BD =PM +PN +PQ ,证明见解析②BD =PM +PQ −PN .【分析】(1)根据图形,结合阅读材料填写即可;(2)①连接AP 、BP 、CP ,根据S △ABC =S △APC +S △APB +S △BPC 得出12AC •BD =12AC •PN +12AB •PM +12BC •PQ ,由AB =AC =BC ,即可得出BD =PM +PN +PQ ;②连接AP 、BP 、CP ,根据S △ABC =S △APB +S △BPC −S △APC ,得出12AC •BD =12AB •PM +12BC •PQ −12AC •PN ,由于AB =AC =BC ,即可证得BD =PM +PQ −PN .【详解】解:(1)证明:连接AP .∵S △ABC =S △APC −S △APB ,∴12AC •BD =12AC •PN −12AB •PM .∵AB =AC ,∴BD =PN −PM .故答案为:S △APB ;PN ;PM ;(2)①BD =PM +PN +PQ ;如图3,连接AP 、BP 、CP ,∵S △ABC =S △APC +S △APB +S △BPC ∴12AC •BD =12AC •PN +12AB •PM +12BC •PQ ,∵AB =AC =BC ,∴BD =PM +PN +PQ ;②BD =PM +PQ −PN ;如图4,连接AP 、BP 、CP ,∵S △ABC =S △APB +S △BPC −S △APC .∴12AC •BD =12AB •PM +12BC •PQ −12AC •PN ,∵AB =AC =BC ,∴BD =PM +PQ −PN .【点睛】本题考查了等边三角形的性质,三角形的面积等,作出辅助线构建三个三角形是解题的关键.8.(1)如图1,在ABC V 中,BP 平分ABC Ð,CP 平分ACB Ð,求证:1902P A Ð=°+Ð;(2)如图2,在ABC V 中,BP 平分ABC Ð,CP 平分外角ACE Ð,猜想P Ð和A Ð有何数量关系,并证明你的结论.【答案】(1)见解析;(2)12P A Ð=Ð,证明见解析【分析】(1)根据三角形内角和定理以及角平分线的定义进行证明即可:(2)根据一个三角形的外角等于与它不相邻的两个内角和,可求出A ACE ABC Ð=Ð-Ð,P PCE PBC Ð=Ð-Ð,再由角平分线的定义得到12PBC ABC Ð=Ð,12PCE ACE Ð=Ð, 则()11112222P ACE ABC ACE ABC A Ð=Ð-Ð=Ð-Ð=Ð.【详解】(1)证明:()180P PBC PCB Ð=-Ð+Ðo ,∵BP 平分ABC Ð,CP 平分ACB Ð,∴12PBC ABC Ð=Ð,12PCB ACB Ð=Ð,∴()111222PBC PCB ABC ACB ABC ACB Ð+Ð=Ð+Ð=Ð+Ð∴()11801802P PBC PCB ABC ACB Ð=--=-Ð+Ðo o ∠∠,∵=180ABC ACB A+-o ∠∠∠()11180180=9022P A A \Ð=--+Ðo o o ∠;(2)猜想:12P A Ð=Ð,证明:ACE A ABC Ð=Ð+ÐQ ,A ACE ABC \Ð=Ð-Ð,∵PCE P PBC Ð=Ð+Ð,∴P PCE PBC Ð=Ð-Ð,又BP 平分ABC Ð,CP 平分ACE Ð,∴12PBC ABC Ð=Ð,12PCE ACE Ð=Ð,()11112222P ACE ABC ACE ABC A \Ð=Ð-Ð=Ð-Ð=Ð,12P A \Ð=Ð.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,解题的关键在于能够熟练掌握角平分线的定义.9.如图,在ABC V 中,75A Ð=°,45C Ð=°,BE 是ABC V 的角平分线,BD 是边AC 上的高.(1)求CBE Ð的度数;(2)求DBE Ð的度数.【答案】(1)∠CBE =30°;(2)∠DBE =15°.【分析】(1)根据三角形内角和可求∠ABC =180°-∠A -∠C =180°-75°-45°=60°,然后根据角平分线∠CBE =11603022ABC Ð=´°=°;(2)先求∠DBC =90°-∠C=90°-45°=45°,再利用两角之差计算即可.【详解】解:(1)∵∠ABC +∠A +∠C =180°,75A Ð=°,45C Ð=°,∴∠ABC =180°-∠A -∠C =180°-75°-45°=60°,∵BE 是ABC V 的角平分线,∴∠CBE =11603022ABC Ð=´°=°;(2)∵BD ⊥AC ,∴∠BDC =90°,∴∠DBC +∠C =90°,∵45C Ð=°∴∠DBC =90°-∠C=90°-45°=45°,∴∠DBE =∠DBC -∠CBE =45°-30°=15°.【点睛】本题考查三角形内角和,角平分线定义,直角三角形两锐角互余,角的和差,掌握三角形内角和,角平分线定义,直角三角形两锐角互余,角的和差是解题关键.10.如图,在V ABC中,∠1=∠2=∠3.(1)求证:∠ABC=∠EDF;(2)若∠ABC=45°,∠DFE=50°,求∠BAC的度数.【答案】(1)见解析;(2)85°【分析】(1)利用三角形的外角的性质可得∠EDF=∠1+∠ABD,再结合∠ABC=∠2+∠ABD,∠1=∠2即可证得∠ABC =∠EDF;(2)先根据三角形的内角和定理求得∠DEF=85°,再利用三角形的外角的性质结合∠1=∠3即可求得答案.【详解】(1)证明:∵∠1=∠2,∴∠1+∠ABD=∠2+∠ABD,又∵∠EDF=∠1+∠ABD,∠ABC=∠2+∠ABD,∴∠ABC=∠EDF;(2)解:∵∠ABC=∠EDF,∠ABC=45°,∴∠EDF=45°,又∵∠DFE=50°,∴∠DEF=180°-∠DFE-∠EDF=85°,∴∠EAC+∠3=∠DEF=85°,又∵∠1=∠3,∴∠BAC=∠EAC+∠1=∠EAC+∠3=85°.【点睛】本题考查三角形内角和定理,三角形外角的性质等知识,解题的关键是熟练掌握三角形内角和定理,属于中考常考题型.11.如图,在V ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=56°,∠C=70°.(1)求∠DAE的度数;(2)求∠BOA的度数.【答案】(1)8°;(2)125°【分析】(1)根据角平分线的定义求出∠CAE ,根据直角三角形两锐角互补可得CAD Ð,根据DAE CAE CAD Ð=Ð-Ð计算即可;(2)根据三角形内角和求出ABC Ð,根据角平分线的定义求出,BAO ABO ÐÐ的度数,然后根据三角形内角和可得结果.【详解】解:(1)∵∠BAC =56°,∠C =70°,AE 是∠BAC 的平分线,∴∠CAE =1282BAC Ð=°∵AD 是BC 边上的高,∴90ADC Ð=°,∴∠CAD =907020°-°=°,∴28208DAE CAE CAD Ð=Ð-Ð=°-°=°;(2)∵∠C =70°,∠BAC =56°,∴∠ABC =180°−70°−56°=54°,∵BF 平分∠ABC ,∴1272ABO ABC Ð=Ð=°,∵AE 平分∠BAC ,1282OAB BAC Ð=Ð=°,∴∠BOA 180125ABO OAB =°-Ð-Ð=°.【点睛】本题考查的是三角形内角和定理,掌握三角形内角和等于180°是解题的关键.12.如图,△ABC 中,角平分线AD 、BE 、CF 相交于点H ,过H 点作HG ⊥AC ,垂足为G ,如果∠AHE=50度,求∠CHG 的度数.【答案】∠CHG =50°【分析】根据角平分线的定义可设可设=BAD CAD x =∠∠,=ABE CBE y Ð=Ð,=BCF ACF z Ð=Ð,则由三角形内角和定理可得90x y z ++=o ,再由三角形外角的性质可得==90AHE BAD ABE x y z ++=-o ∠∠∠,=90AGH ACF CHG +=o ∠∠∠,从而可以推出50CHG AHE Ð=Ð=o .【详解】解:∵AD ,BE ,CF 为△ABC 的角平分线,∴可设=BAD CAD x =∠∠,=ABE CBE y Ð=Ð,=BCF ACF z Ð=Ð,∵=180ABC BAC ACB ++o ∠∠∠,∴222180x y z ++=o ,即90x y z ++=o ,∵==90AHE BAD ABE x y z ++=-o ∠∠∠,=90AGH ACF CHG +=o ∠∠∠,∴==90CHG AGH ACF z --o ∠∠∠,∴50CHG AHE Ð=Ð=o .【点睛】本题主要考查了角平分线的定义,三角形内角和定理,三角形外角的性质,解题的关键在于能够熟练掌握角平分线的定义.13.已知,Rt △ABC 中,∠C =90°,点D 、E 分别是边AC ,BC 上的点,点P 是斜边AB 上一动点.令∠PDA =∠1,∠PEB =∠2,∠DPE =∠α.(1)如图①所示,当点P 运动至∠α=50°时,则∠1+∠2= ;(2)如图②所示,当P 运动至AB 上任意位置时,试探求∠α,∠1,∠2之间的关系,并说明理由.【答案】(1)12140Ð+Ð=°;(2)1290a Ð+Ð=Ð+°,理由见解析【分析】(1)根据平角的定义求得1180,2180PDC PEC Ð+Ð=°Ð+Ð=°,进而根据四边形的内角和等于360°,以及∠α=50°,即可求得∠1+∠2的值;(2)方法同(1).【详解】(1)Q 1180,2180PDC PEC Ð+Ð=°Ð+Ð=°,12360PDC PEC \Ð+Ð+Ð+Ð=°,在四边形CEPD 中,360C PDC PEC a Ð+Ð+Ð+Ð=°,12C a \Ð+Ð=Ð+Ð,Q ∠α=50°,90C Ð=°,\12140Ð+Ð=°,故答案为:140°(2)1290a Ð+Ð=Ð+°,理由如下,Q Q 1180,2180PDC PEC Ð+Ð=°Ð+Ð=°,12360PDC PEC \Ð+Ð+Ð+Ð=°,在四边形CEPD 中,360C PDC PEC a Ð+Ð+Ð+Ð=°,12C a \Ð+Ð=Ð+Ð,Q 90C Ð=°,\1290a Ð+Ð=Ð+°【点睛】本题考查了平角的定义,四边形内角和为360°,掌握四边形的内角和是解题的关键.14.如图,AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =50°,∠BCE =25°,求∠AOC 和∠ADB 的度数.【答案】∠AOC 的度数为115°,∠ADB 的度数为90°【分析】根据AD是△ABC的角平分线,CE是△ABC的高,∠BAC=50°可得∠BAD=∠CAD=25°,∠CEA=90°,从而求得∠ACE的度数,由此可得∠AOC的度数,又因为∠BCE=25°,∠ADB=∠BCE+∠ACE+∠CAD,从而求得∠ADB的度数.【详解】解:∵AD是△ABC的角平分线,∠BAC=50°,∴∠BAD=∠CAD=12∠BAC=25°,∵CE是△ABC的高,∴∠CEA=90°,∴∠ACE=90°-∠BAC=40°,∴∠AOC=180°-∠ACE-∠CAD=180°-40°-25°=115°,∵∠BCE=25°,∠ACE=40°,∠CAD=25°,∴∠ADB=∠BCE+∠ACE+∠CAD=25°+40°+25°=90°,答:∠AOC的度数为115°,∠ADB的度数为90°.【点睛】本题考查三角形的内角和、三角形的平分线和高的定义以及三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案.15.如图,在△ABC中,∠ACB=90°,CD,CE分别是△ABC的高和中线,F是CB的延长线上一点.(1)若∠ACD=53°,求∠ABF的度数;(2)若BC=6 cm,AC=8 cm,AB=10 cm,求CD的长和△BCE的面积.【答案】(1)127°;(2)24cm5CD=,212cmBCES=V【分析】(1)结合CD为△ABC的高,先求出∠A,然后结合三角形的外角定理求解即可;(2)先根据等面积法求出CD,然后结合中线的性质求出BE,从而利用三角形的面积公式求解即可.【详解】解:(1)∵CD 为△ABC 的高,∴CD ⊥AB ,∠ADC =90°,∵∠ACD =53°,∴∠A =180°-90°-53°=37°,∵∠ABF 为△ABC 的外角,∴∠ABF =∠A +∠ACB =37°+90°=127°;(2)由题意,1122ABC S AC BC AB CD ==V g g ,∴6824cm 105AC BC CD AB ´===g ,∵CE 是△ABC 的中线,∴E 为AB 的中点,即:152AE BE AB ===,∴21124512cm 225BCE S BE CD ==´´=V g .【点睛】本题考查三角形中线,高相关的定义与计算,理解三角形中重要线段的定义与性质,熟悉等面积法是解题关键.16.如图,在△ABC 中,30A Ð=°,60B Ð=°,CF 平分ACB Ð交AB 于点E .(1)求ACE Ð的度数:(2)若CD AB ^于点D ,75CDF Ð=°.判断△CFD 的形状,并说明理由.【答案】(1)45ACE Ð=°;(2)CFD △是直角三角形,理由见解析.【分析】(1)依据三角形内角和定理以及角平分线的定义,即可得到ACE Ð的度数.(2)依据三角形内角和定理以及直角三角形的性质,即可得到DCF Ð的度数,进而得出CFD Ð的度数.【详解】解:(1)ABC QV 中,30A Ð=°,60B Ð=°,180306090ACB \Ð=°-°-°=°,又CE Q 平分ACB Ð,1452ACE ACB \Ð=Ð=°,即45ACE Ð=°;(2)CFD △是直角三角形,理由:CD AB ^Q 于点D ,60B Ð=°,906030BCD \Ð=°-°=°,又45BCE ACE Ð=Ð=°Q ,15DCF BCE BCD \Ð=Ð-Ð=°,又75CDF Ð=°Q ,180751590CFD \Ð=°-°-°=°,CFD \△是直角三角形.【点睛】本题考查了三角形的内角和定理,直角三角形的性质,角平分线定义等知识点,关键是求出各个角的度数.17.已知,如图,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线,若∠B =30°,∠C =50°.(1)求∠DAE 的度数.(2)试写出∠DAE 与∠C -∠B 有何关系,给出证明.【答案】(1)10°;(2)()1,2DAE C B Ð=Ð-Ð证明见解析【分析】(1)先求解,,BAC CAE ÐÐ 再求解,CAD Ð 再利用角的和差可得答案;(2)先求解()190,90,2CAE B C DAC C Ð=°-Ð+ÐÐ=°-Ð 再利用角的和差可得结论.【详解】解:(1)Q ∠B =30°,∠C =50°,180100,BAC B C \Ð=°-Ð-Ð=°Q AD ,AE 分别是 △ ABC 的高和角平分线,150,90,2BAE CAE BAC ADE ADC \Ð=Ð=Ð=°Ð=Ð=° 905040,DAC \Ð=°-°=°504010.DAE EAC DAC \Ð=Ð-Ð=°-°=°(2)()1,2DAE C B Ð=Ð-Ð 理由如下:Q AD ,AE 分别是 △ ABC 的高和角平分线。

苏科版数学八年级上册6.4《用一次函数解决问题》解答题专项练习

苏科版数学八年级上册6.4《用一次函数解决问题》解答题专项练习

《用一次函数解决问题》解答题专题练习1.星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km ;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h .爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km .设爸爸骑行时间为x (h ).(1)请分别写出爸爸的骑行路程y 1(km )、李玉刚同学和妈妈的乘车路程y 2(km )与x (h )之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.2.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF 所在直线的函数解析式;(3)若线段FG ∥x 轴,则此段时间,甲机器人的速度为 米/分;(4)求A 、C 两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.3.甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地,甲出发1h 后,y 甲、y 乙与x 之间的函数图象如图所示.(1)甲的速度是 km/h ;(2)当1≤x≤5时,求y关于x的函数解析式;乙(3)当乙与A地相距240km时,甲与A地相距km.4.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?5.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值;(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(2)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(2)中的最大利润少了2250元.请问本次成套的销售量为多少?6.根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.7.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:表二:(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.8.暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y (km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?9.小李是某服装厂的一名工人,负责加工A,B两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A型服装1件可得20元,加工B型服装1件可得12元.已知小李每天可加工A型服装4件或B型服装8件,设他每月加工A型服装的时间为x天,月收入为y元.(1)求y与x的函数关系式;(2)根据服装厂要求,小李每月加工A型服装数量应不少于B型服装数量的,那么他的月收入最高能达到多少元?10.都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2:1.(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式.(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.11.我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg﹣5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.12.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?13.某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量和租金如表所示:经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的代数式填写下表:(2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?14.我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?15.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为km/h,H点坐标.(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加活动的教师有人,学生有人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?17.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.18.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)19.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.20.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.21.(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.22.一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?23.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?24.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D 两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x 的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a ≤200)作为优惠,其它费用不变,如何调运,使总费用最少?25.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.26.下表是世界人口增长趋势数据表:(1)请你认真研究上面数据表,求出从1960年到2010年世界人口平均每年增长多少亿人;(2)利用你在(1)中所得到的结论,以1960年30亿人口为基础,设计一个最能反映人口数量y关于年份x的函数关系式,并求出这个函数的解析式;(3)利用你在(2)中所得的函数解析式,预测2020年世界人口将达到多少亿人.27.某公司有A型产品40件,B型产品60件,分配给甲、乙两个商店销售,其中70件给甲店,30件给乙店,且全部售出,两种产品的利润如表所示:(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求x的取值范围.(2)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品每件的利润仍高于甲店B型产品每件的利润,其它利润不变,问该公司如何设计分配方案,可使得总利润最大?28.某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A、B两地区收割水稻,其中30台派往A地区,20台派往B 地区,两地区与该农机公司商定的每天租赁价格如下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.29.甲、乙两组同学玩“两人背夹球”比赛,即:每组两名同学用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲组两位同学掉了球;乙组两位同学则顺利跑完.设比赛距出发点用y表示,单位是米;比赛时间用x表示,单位是秒.两组同学比赛过程用图象表示如下.(1)这是一次米的背夹球比赛,获胜的是组同学;(2)请直接写出线段AB的实际意义;(3)求出C点坐标并说明点C的实际意义.30.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?参考答案与解析1.(2016•滨州)星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km ;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h .爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km .设爸爸骑行时间为x (h ).(1)请分别写出爸爸的骑行路程y 1(km )、李玉刚同学和妈妈的乘车路程y 2(km )与x (h )之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.【分析】(1)根据速度乘以时间等于路程,可得函数关系式,(2)根据描点法,可得函数图象;(3)根据图象,可得答案.【解答】解;(1)由题意,得y 1=20x (0≤x ≤2)y 2=40(x ﹣1)(1≤x ≤2);(2)由题意得;(3)由图象可得李玉刚和妈妈乘车和爸爸骑行同时到达老家.【点评】本题考查了一次函数图象,利用描点法是画函数图象的关键.2.(2016•齐齐哈尔)有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是70 米,甲机器人前2分钟的速度为95 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为60 米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.【分析】(1)结合图象得到A、B两点之间的距离,甲机器人前2分钟的速度;(2)根据题意求出点F的坐标,利用待定系数法求出EF所在直线的函数解析式;(3)根据一次函数的图象和性质解答;(4)根据速度和时间的关系计算即可;(5)分前2分钟、2分钟﹣3分钟、4分钟﹣7分钟三个时间段解答.【解答】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距28米,由题意得,60x+70﹣95x=28,解得,x=1.2,前2分钟﹣3分钟,两机器人相距28米时,35x﹣70=28,解得,x=2.8.4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),则直线GH的方程为y=﹣x+,当y=28时,解得x=4.6,答:两机器人出发1.2分或2.8分或4.6分相距28米.【点评】本题考查的是一次函数的综合运用,掌握待定系数法求一次函数解析式、正确列出一元一次方程、灵活运用数形结合思想是解题的关键.3.(2016•吉林)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是60 km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距220 km.【分析】(1)根据图象确定出甲的路程与时间,即可求出速度;关于x的函数解析式即可;(2)利用待定系数法确定出y乙(3)求出乙距A地240km时的时间,加上1,再乘以甲的速度即可得到结果.【解答】解:(1)根据图象得:360÷6=60km/h;(2)当1≤x≤5时,设y=kx+b,乙把(1,0)与(5,360)代入得:,解得:k=90,b=﹣90,=90x﹣90;则y乙(3)∵乙与A地相距240km,且乙的速度为360÷(5﹣1)=90km/h,∴乙用的时间是240÷90=h,则甲与A地相距60×(+1)=220km,故答案为:(1)60;(3)220【点评】此题考查了一次函数的应用,弄清图象中的数据是解本题的关键.4.(2016•连云港)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y=,把(3,4)代入求出m的值即可;(2)令y==1,得出x=12<15,即可得出结论.【解答】解:(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得,解得:,∴y=﹣2x+10;②当x>3时,设y=,把(3,4)代入得:m=3×4=12,∴y=;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=;(2)能;理由如下:令y==1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L.【点评】本题考查了扬州市的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.5.(2016•达州)某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值;(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(2)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(2)中的最大利润少了2250元.请问本次成套的销售量为多少?【分析】(1)根据餐桌和餐椅数量相等列出方程求解即可;(2)设购进餐桌x张,餐椅(5x+20)张,销售利润为W元.根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据“总利润=成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,根据一次函数的性质即可解决最值问题;(3)设本次成套销售量为m套,先算出涨价后每张餐桌及餐椅的进价,再根据利润间的关系找出关于m的一元一次方程,解方程即可得出结论.【解答】解:(1)由题意得=,解得a=150,经检验,a=150是原分式方程的解;(2)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.由题意得:x+5x+20≤200,解得:x≤30.∵a=150,∴餐桌的进价为150元/张,餐椅的进价为40元/张.依题意可知:W=x•(500﹣150﹣4×40)+x•(270﹣150)+(5x+20﹣x•4)•(70﹣40)=245x+600,∵k=245>0,∴W 关于x 的函数单调递增,∴当x=30时,W 取最大值,最大值为7950.故购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.(3)涨价后每张餐桌的进价为160元,每张餐椅的进价为50元,设本次成套销售量为m 套.依题意得:(500﹣160﹣4×50)m+(30﹣m )×(270﹣160)+(170﹣4m )×(70﹣50)=7950﹣2250,即6700﹣50m=5700,解得:m=20.答:本次成套的销售量为20套.【点评】本题考查了一次函数的应用、解一元一次不等式、一次函数的性质及解一元一次方程,解题的关键是:(1)由数量相等得出关于a 的分式方程;(2)根据数量关系找出W 关于x 的函数解析式;(3)根据数量关系找出关于m 的一元一次方程.本题属于中档题,难度不大,但较繁琐,解决该题型题目时,根据数量关系找出函数关系式(方程或方程组)是关键.6.(2016•绍兴)根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q (m 3)和开始排水后的时间t (h )之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t ≤3.5时,求Q 关于t 的函数表达式.。

精选八年级数学解答题专项练习

精选八年级数学解答题专项练习

精选八年级数学解答题专项练习1.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90∘,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.证明以下结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45∘;④BE2=2(AD2+AB2),第1题图2.如图,在平面直角坐标系中,D是线段OC的垂直平分线上的点,AD平分△OAC的外角,DE⊥AO于点E,DF⊥AC于点F.(1) 求证:∠ODC=∠OAC;(2) 计算:的值第2题图3.在平面直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点。

(1)如图,当C点在x轴上运动时,设AC=x,请用x表示线段AD的长;(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式。

(3)若点C(4,0),点F为BC的中点,点G、H分别是CD、DF上的动点,求HG+HC的最小值第3题图4.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA 绕点P顺时针旋转2α得到线段PQ.(1)若α=60∘且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围。

5.如图,Rt△ABC,∠ACB=90∘,AC=3,BC=4,将边Ac沿CE翻折,使点A落在AB上的D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点F处,两条折痕与斜边AB分别交于点E. F,则线段BF的长为( )第5题图6.如图,P为正方形ABCD的边BC上一动点(P与B. C不重合),连接AP,过点B作BQ⊥AP 交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长。

初二数学一次函数解答题大全100题

初二数学一次函数解答题大全100题
17.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)当△OMC的面积是△OAC的面积的 时,求出这时点M的坐标.
18.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.
(2)求C点的坐标;
(3)求△AOD的面积.
3.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.
(1)求温馨提示牌和垃圾箱的单价各是多少元?
(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?
45Biblioteka 25现在的运费30
20
(1)求每次运输的农产品中A,B产品各有多少件?
(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?
5.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.
(2)求S△AOC﹣S△BOC的值;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.
14.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:

初二数学解答题练习试题集

初二数学解答题练习试题集

初二数学解答题练习试题答案及解析1.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【答案】(1)证明见解析;(2)MP与NQ相等,理由见解析.【解析】(1)根据正方形的性质可得AB=AD,∠BAE=∠D=90°,再根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后与(1)相同.试题解析:(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,∵AB∥CD,AD∥BC,∴四边形AMPF与四边形BNQE是平行四边形,∴AF=PM,BE=NQ,∴在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;∴MP=NQ.【考点】1.正方形的性质;2.全等三角形的判定与性质.2. (1)关于x的方程2x一3=2m+8的解是负数,求m的取值范围.(2)如果代数式有意义,求x的取值范围.【答案】(1) ;(2) .【解析】(1)首先解关于x的方程,然后根据方程的解是负数即可得到一个关于m的不等式,求得m的范围.(2)根据二次根式有意义的条件:被开方数是非负数以及分母不等于0即可求解.试题解析:(1)由已知解得,根据题意得:<0,解得.(2)由已知3x+8>0,则.【考点】1.一元一次方程的解;2.分式和二次根式有意义的条件;3.解一元一次不等式.3.解不等式组:并把它的解集在数轴上表示出来.【答案】【解析】解一元一次不等式的一般步骤:去分母、去括号、移项、合并同类项、化系数为1;先求出两个不等式的解集,再根据求不等式组的解集的口诀:同大取大,同小取小,大小小大取中间,大大小小找不到(无解),即可求得不等式组的解集;注意在数轴上表示不等式的解集时,要注意大于向右,小于向左,含等号实心,不含等号空心.试题解析:由①得,由②得所以原不等式组的解集为【考点】解一元一次不等式组4.如图,已知△ABC、△ADE均为等边三角形,点D是BC延长线上一点,连结CE,求证:BD=CE【答案】详见解析【解析】由△ABC、△ADE均为等边三角形,根据等边三角形的三边相等,三个角均为60°可得AB=AC,AD=AE,∠BAC=∠DAE=60°,再由∠BAD=∠BAC+∠CAD,∠CAE=∠DAE+∠CAD 可得∠BAD=∠CAE,然后根据“SAS“即可判定△ABD≌△ACE,再根据全等三角形的对应边相等即可作出判断.试题解析:∵△ABC、△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE.【考点】1.全等三角形的判定与性质;2.等边三角形的性质5.阅读下列解题过程:;.请回答下列问题:(1)观察上面的解题过程,请直接写出式子;(2分)(2)利用上面所提供的解法,请化简:的值.(3分)【答案】(1);(2).【解析】(1)通过观察题目中的解题过程可以看出:相邻的两个数算术平方根的和的倒数等于它们算术平方根的差;(2)根据规律,先化简成二次根式的加减运算,再进行计算就可以了.试题解析:(1);(2)原式=.【考点】分母有理化.6.某位同学做一道题:已知两个多项式A、B,求A﹣B的值.他误将A﹣B看成A+B,求得结果为3x2﹣3x+5,已知B=x2﹣x﹣1.(1)求多项式A;(2)求A﹣B的正确答案.【答案】(1)A=2x2﹣2x+6;(2)A﹣B=x2﹣x+7.【解析】多项式的加法实际上是同类项的合并,是同类项的合并,去括号法则实际上是乘法对加法的分配律,一项一项乘,其中要注意括号前是负数的情况,减去一个多项式,需要加括号,(1)由已知,A+B=3x2﹣3x+5,B=x2﹣x﹣1,则A=A+B-B=3x2﹣3x+5﹣(x2﹣x﹣1)=3x2﹣3x+5﹣x2+x+1=2x2﹣2x+6;(2)A﹣B=2x2﹣2x+6﹣(x2﹣x﹣1)=2x2﹣2x+6﹣x2+x+1=x2﹣x+7.试题解析:(1)由已知,A+B=3x2﹣3x+5,B=x2﹣x﹣1,则A=A+B-B=3x2﹣3x+5﹣(x2﹣x﹣1)=3x2﹣3x+5﹣x2+x+1=2x2﹣2x+6;(2)A﹣B=2x2﹣2x+6﹣(x2﹣x﹣1)=2x2﹣2x+6﹣x2+x+1=x2﹣x+7.【考点】多项式的加法和去括号.7.如图,∠AOB=30°,OC平分∠AOB,CD⊥OA于D,CE∥AO交OB于E,CE=20cm,求CD的长.【答案】10cm.【解析】过C作CF⊥OB,垂足为F.由平行线的性质易求得∠ECO=∠AOC=15°,则OE=CE,即可得到∠FEC=∠EOC+∠ECO=30°,根据直角三角形中30°的锐角所对的直角边等于斜边的一半和角平分线的性质即可求解.试题解析:过C作CF⊥OB于F∵OC平分∠AOB,CD⊥OA于D,CF⊥OB于F∴CD=CF∵CE∥AD∴∠CEF=∠AOB=30°∴在RT⊿CEF中,CE=20㎝∴CF=CE=×20=10(㎝)∴CD=CF=10㎝.【考点】1.角平分线的性质;2.平行线的性质;3.含30°角的直角三角形的性质.8.初中生的视力状况受到社会的广泛关注,某市有关部门对全市3万名初中生的视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图,根据图中所提供的信息回答下列问题:(1)本次调查共抽测了多少名学生?(2)在这个问题中的样本指什么?(3)如果视力在4.9-5.1(含4.9和5.1)均属正常,那么全市有多少名初中生视力正常?【答案】(1)共抽测了240名学生(2)样本是240名学生的视力情况(3)【解析】(1)共抽测了学生人数:20+40+90+60+30=240(名)(2)易知题意为调查某市3万学生是哩情况所抽取学生视力情况样本,故样本是240名学生的视力情况(3)依题意知,视力在4.9-5.1(含4.9和5.1)均属正常,可从直方图判断一共有(60+30)人合格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档