高中函数值域的经典例题12种求法

合集下载

高中数学复习专题-函数值域的求法

高中数学复习专题-函数值域的求法

学习必备 欢迎下载专题四、函数及其性质(二)函数值域的求法1.求函数值域的数学思想:( 1)利用函数单调性求函数值域:( 2)利用函数图像求函数值域;注意: 求函数值域时要先关注函数定义域,时刻体现“定义域优先” 原则。

2.求函数值域的方法: 观察法、判别式法、双勾函数法、换元法、平方法、分离常数法、数形结合法、单调性法、构造法。

( 1)观察法:适合于常见的基本函数。

例 1.已知函数 f (x)e x1,g( x)x 24x3 ,若 a 、bR ,且存在有f (a)g(b) ,则b 的取值范围为()A. [22, 22]B. (22, 22)C.[1,3]D.(1,3)kx bdx 2exf的分式函数, 适用条件须函( 2)判别式法:适合于形如y或 yax2bx cax 2 bx c数的定义域应为 R ,即 ax 2bx c0 ,所以b 2 4ac0 。

例 2. 求函数 y2x 2 x3x 2的值域。

x 1( 3)双勾函数法:适合于高中阶段所有的分式函数,比判别式法具有更广泛的应用。

2例 3. 求函数 y2x11x7(0 x 1) 的值域。

x 3( 4)换元法:适合于含有根式的函数。

例 4.求函数 y2x 4 1 x 的值域。

( 5)平方法:适合于平方变形后具有简化效果的函数。

例 5.求函数 yx 3 5 x 的值域。

学习必备欢迎下载( 6)数形结合法:利用数形结合的方法,根据函数图像求得函数值域。

例 6.(2014 湖北 )已知函数 f( x)是定义在 R 上的奇函数,当 x ≥ 0 时, f(x)= 1(|x - a 2|+ |x - 2a 2|- 3a 2),若对于任意 x ∈ R , f( x -1)≤ f(x)恒成立,2则实数 a 的取值范围为( ) A. -1,1 B.- 6, 6 C. -1,1 D.-3, 36 6 6 6 3 3 3 3( 7)单调性法:确定函数在定义域上的单调性,求出函数的值域。

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

高一数学求函数的定义域与值域的常用法一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。

例1. 已知2211()x x x f x x +++=,试求()f x 。

解:设1x t x +=,则11x t =-,代入条件式可得:2()1f t t t =-+,t ≠1。

故得:2()1,1f x x x x =-+≠。

说明:要注意转换后变量围的变化,必须确保等价变形。

2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个程,联立求解。

例2. (1)已知21()2()345f x f x x x +=++,试求()f x ;(2)已知2()2()345f x f x x x +-=++,试求()f x ; 解:(1)由条件式,以1x 代x ,则得2111()2()345f f x x x x +=++,与条件式联立,消去1f x ⎛⎫ ⎪⎝⎭,则得:()222845333x f x x x x =+--+。

(2)由条件式,以-x 代x 则得:2()2()345f x f x x x -+=-+,与条件式联立,消去()f x -,则得:()2543f x x x =-+。

说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。

例4. 求下列函数的解析式:(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f ;(2)已知x x x f 2)1(+=+,求)(x f ,)1(+x f ,)(2x f ;(3)已知x xx x x f 11)1(22++=+,求)(x f ; (4)已知3)(2)(3+=-+x x f x f ,求)(x f 。

【题意分析】(1)由已知)(x f 是二次函数,所以可设)0()(2≠++=a c bx ax x f ,设法求出c b a ,,即可。

函数值域的十五种求法

函数值域的十五种求法

1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。

解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。

例2. 求函数的值域。

解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。

解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。

可以采取如下方法进一步确定原函数的值域。

∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

例4. 求函数值域。

解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。

例5. 求函数的值域。

解:由原函数式可得:,可化为:即∵∴即解得:故函数的值域为6. 函数单调性法例6. 求函数的值域。

解:令则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:例7. 求函数的值域。

解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然y>0,故原函数的值域为7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作例8. 求函数的值域。

求函数值域(最值)的方法

求函数值域(最值)的方法

求函数值域(最值)方法汇总一.单调性法例1.求函数x 53x y ---=的值域 例2.求函数11--+=x x y 的值域例3.求函数x x y -+-=53的值域解一:例4.已知函数.2]2,0[34)(2的值,求实数上有最大值在区间a x ax x f -+= 解:(1)当0=a 时,max ()(2)4232,f x f ==⨯-≠舍去; (2)当↑⇒〈-=〉上在时,对称轴方程为]2,0[)(020x f ax a 舍去,043254)2(〈-=⇒=+=⇒a a f ;(3)当时,0〈a 02〉-=ax 对称轴方程为, ①]1,(]0,1[1]2,0[2--∞∈⇒-∈⇒∈-a a a 1542384)2(-〉-=⇒=--=-⇒a a a a f ,舍去②122-〉⇒〉-a a ↑⇒上在]2,0[)(x f 43-=⇒a纵上,43-=a例5.已知函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。

解:0)0()0()0()00(=⇒+=+f f f f为奇函数则令)()()()()()(,x f x f x f x f x f x x f x y ⇒-=-⇒-+=--= )()()()()(0)(0,121112121221x f x f x f x f x x f x x f x x x x 〉⇒〉+-⇒〉-⇒〉-〈则令422)1()1()11()2(-=--=-+-=--=-f f f f ,2)1()1(=--=f f()[-2,1][-4,2]f x ⇒在上的值域为:二.判别式(∆)法:用于自然定义域下的二次分式形式的函数,变形为关于x 的方程,讨论2x 的系数,当系数为0时,判断方程左边是否等于0;当系数不为0时,得0≥∆。

综上,求出y 的范围。

如:,,222211221121c x b x a b x a y b x a c x b x a y +++=+++=22221121c x b x a c x b x a y ++++=等。

高中值域求法[1]

高中值域求法[1]

高中函数值求法重庆市南川中学校高翼1. 直接观察法例1. 求函数的值域。

解:∵∴显然函数的值域是:(﹣∞∪+∞)例2. 求函数的值域。

解:∵故函数的值域是:2. 配方法例3. 求函数的值域。

解:将函数配方得:∵由二次函数的性质可知:当x=1时,当时,故函数的值域是:[4,8]3. 判别式法例4. 求函数的值域。

解:原函数化为关于x的一元二次方程(1)当时,解得:(2)当y=1时,,而故函数的值域为例5. 求函数的值域。

解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。

可以采取如下方法进一步确定原函数的值域。

∵代入方程(1)解得:即当时,原函数的值域为:4. 反函数法例6. 求函数值域。

解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5. 函数有界性法例7. 求函数的值域。

解:由原函数式可得:∵∴解得:故所求函数的值域为例8. 求函数的值域。

解:由原函数式可得:,可化为:即∵∴即解得:故函数的值域为6. 函数单调性法例9. 求函数的值域。

解:令则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:例10. 求函数的值域。

解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然,故原函数的值域为7. 换元法例11. 求函数的值域。

解:令,则∵又,由二次函数的性质可知当时,当时,故函数的值域为例12. 求函数的值域。

解:因即故可令∴∵故所求函数的值域为例13. 求函数的值域。

解:原函数可变形为:可令,则有当时,当时,而此时有意义。

故所求函数的值域为例14. 求函数,的值域。

解:令,则由且可得:∴当时,,当时,故所求函数的值域为。

高中数学:求函数值域的10种常见方法

高中数学:求函数值域的10种常见方法

求函数的值域(常用)一、用非负数的性质例1:求下列函数的值域:(1)y=-3x 2+2;(2)≥-1).练1:函数2()1f x x x =+-的最小值是_________________.练2:求函数y =练3:求函数的值域。

练4:(1)232+-=x x y (2)]8,5[,452∈+-=x x x y(3)2234x x y -+-=]2,1[x ,5x 2x y 2-∈+-=二、分离常数法对某些分式函数,可通过分离常数法,化成部分分式来求值域.例1:求下列函数的值域:(1)y=21x x ++(2)y=2211x x -+.练1:求下列函数的值域:(1)13222++=x x y (2)3214222++++=x x x x y三、利用函数单调性已知函数在某区间上具有单调性,那么利用单调性求值域是一种简单的方法. 例1:求函数y=3x+x 3的值域.练1:求函数122+-=xx y ()0>x 的值域.练2:求函数x x y 213--=的值域.四、利用判别式特殊地,对于可以化为关于x 的二次方程a(y)x 2+b(y)x+c(y)=0的函数y=f(x),可利用0()0,a y y x ∆≥≠且求出的最值后,要检验这个最值在定义域是否具有相应的值. 例1:求函数y =234x x +的最值.练1:利用判别式方法求函数222231x x y x x -+=-+的值域.五、利用换元法求值域有时直接求函数值域有困难,我们可通过换元法转化为容易求值域的问题考虑. 例1:求函数的值域。

练1:求()6log 62log 2222++=x x y 的值域.1x x y -+=练2:设02x ≤≤,求函数1()4321x x f x +=-+的值域.练3:求函数的值域.练4:求函数x x y 213--=的值域.六:判别式法例1:求函数的值域。

七、利用数形结合数形结合是解数学问题的重要思想方法之一,求函数值域时其运用也不例外. 例1:若62--=x x y ,求y 的最大、最小值.练1:求函数342+-=x x y 的值域.22x 1x x 1y +++=练2:求函数186122+-++=x x x y 的值域.练3:若(求x-y 的最大、最小值.八、利用已知函数的有界性. 例1:求函数y=25243x x -+的值域.练1:求函数的值域。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。

2x2x 15例 1 求函数 y的定义域。

| x 3| 8解:要使函数有意义,则必须满足2x 2x 15 0① | x 3 | 8 0②由①解得 x 3或 x 5。

③由②解得x5或 x 11 ④ ③和④求交集得 x 3且 x 11或 x>5。

故所求函数的定义域为 {x | x 3且x 11} {x | x 5} 。

例 2 求函数1ysin x的定义域。

216 x解:要使函数有意义,则必须满足sin x0 ① 216 x② 由①解得 2kx2k ,kZ③ 由②解得 4 x 4 ④由③和④求公共部分,得4 x 或0 x 故函数的定义域为 ( 4, ] (0, ]评注:③和④怎样求公共部分?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。

(1)已知 f (x) 的定义域,求 f[g(x )] 的定义域。

(2)其解法是:已知 f (x) 的定义域是[a ,b ]求 f [g(x)] 的定义域是解 a g(x) b ,即为所求的定义域。

2 例3 已知 f (x) 的定义域为[-2,2],求 f ( x 1)的定义域。

2 解:令 2 x 1 2 2 ,得 1 x 32,即 0x3,因此 0 | x |3 ,从而3 x 3 ,故函数的定义域是 { x | 3 x 3} 。

(2)已知 f [g( x)] 的定义域,求 f(x) 的定义域。

其解法是:已知 f [g(x )] 的定义域是[a , b ],求 f(x) 定义域的方法是:由 a x b ,求g(x)的值域,即所求 f(x) 的定义域。

例 4 已知 f (2x 1) 的定义域为[1,2],求 f(x) 的定义域。

高中数学求函数值域解题方法大全

高中数学求函数值域解题方法大全

高中数学求函数值域解题方法大全高中数学求函数值域解题方法大全一、观察法:从自变量x的范围出发,推出y=f(x)的取值范围。

例1:求函数y=x+1的值域。

解析:由于x≥-1,所以x+1≥0,因此函数y=x+1的值域为[1,+∞)。

例2:求函数y=1/x的值域。

解析:显然函数的定义域为(-∞,0)∪(0,+∞),当x>0时,y>0;当x<0时,y<0.因此函数的值域是:例3:已知函数y=(x-1)-1,x∈{-1,1,2},求函数的值域。

解析:因为x∈{-1,1,2},而f(-1)=f(3)=3,f(2)=-1,f(1)=-∞,所以:y∈{-1,3}。

注意:求函数的值域时,不能忽视定义域,如果该题的定义域为x∈R,则函数的值域为{y|y≥-1}。

二、配方法:配方法式求“二次函数类”值域的基本方法。

形如F(x)=af2(x)+bf(x)+c的函数的值域问题,均可使用配方法。

例1:求函数y=x2-2x+5,x∈[-1,2]的值域。

解析:将函数配方得:y=(x-1)2+4,当x=1∈[-1,2]时,y取得最小值4,当x=-1或x=2时,y取得最大值8,因此函数的值域是:[4,8]。

变式:已知f(x)=ax2+bx+c,其中a>0,且在区间[-1,1]内的最小值为1,求函数在[-2,2]上的最值。

解析:由已知,可得a>0,且f(x)在x=0处取得最小值1,即b=0.又因为在区间[-1,1]内的最小值为1,所以a≤4.将f(x)配方得:f(x)=a(x-1)2+1,当x=-2或x=2时,f(x)取得最大值5a+1;当x=1时,f(x)取得最小值1.因此,当a=4时,函数在[-2,2]上的最值分别为9和17.当a<4时,函数在[-2,2]上的最值分别为1和5a+1.三、其他方法:对于一些特殊的函数,可以采用其他方法求解。

例:已知函数f(x)=sinx+cosx,求函数的值域。

求值域的方法大全

求值域的方法大全

例析求函数值域的方法求函数的值域常和求函数的最值问题紧密相关,是高中数学的重点和难点,虽然没有固定的方法和模式,但常用的方法有:1、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。

例1:求函数1y =的值域。

解:∵011≥, ∴函数1y =的值域为[1,)+∞。

例2. 求函数x 1y =的值域。

解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例3.已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

解:因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y ,注意:求函数的值域时,不能忽视定义域,如果该例的定义域为R x ∈,则函数的值域为{}1|-≥y y 。

2、配方法:配方法式求“二次函数类”值域的基本方法。

形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。

配方法是求二次函数值域最基本的方法之一。

例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y m in =,当1x -=时,8y m ax = 故函数的值域是:[4,8]例2:求函数242y x x =-++([1,1]x ∈-)的值域。

解:2242(2)6y x x x =-++=--+,∵[1,1]x ∈-,∴2[3,1]x -∈--,∴21(2)9x ≤-≤ ∴23(2)65x -≤--+≤,∴35y -≤≤∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。

例3.求函数322+--=x x y 的值域。

分析与解答:因为0322≥+--x x ,即13≤≤-x ,4)1(2++-=x y ,于是:44)1(02≤++-≤x ,20≤≤y 。

最全函数值域的12种求法(附例题,习题)

最全函数值域的12种求法(附例题,习题)

12一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1求函数y=3+√(2-3x) 的值域。

点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。

解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。

∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0≤x≤5)的值域。

(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2求函数y=(x+1)/(x+2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。

此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

配方法是数学的一种重要的思想方法。

练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

高中数学求值域的10种方法

高中数学求值域的10种方法

求函数值域的十种方法一.直接法(察看法):对于一些比较简单的函数,其值域可经过察看获得。

例 1.求函数y x1的值域。

【分析】∵ x0 ,∴x11,∴函数 y x1的值域为[1,) 。

【练习】1.求以下函数的值域:① y 3x 2( 1 x 1) ;② f ( x)2 4 x ;x;○4y21,0,1,2 。

③ y x 1 1 , xx1【参照答案】① [ 1,5];② [2,);③ (,1)(1,) ;{1,0,3} 。

4二.配方法:合用于二次函数及能经过换元法等转变为二次函数的题型。

形如F (x) af 2 ( x) bf ( x) c 的函数的值域问题,均可使用配方法。

例 2.求函数y x24x 2( x[ 1,1] )的值域。

【分析】y x24x 2( x2)2 6 。

∵ 1 x 1 ,∴ 3 x2 1 ,∴1 (x2)29,∴ 3(x 2)2 6 5 ,∴ 3 y 5。

∴函数 y x24x 2 ( x[ 1,1])的值域为 [3,5]。

例 3 .求函数y2x24x( x0, 4 ) 的值域。

【分析】本题中含有二次函数可利用配方法求解,为便于计算不如设:f (x)x2 4 x( f (x)0) 配方得: f (x)(x2)24(x0, 4 ) 利用二次函数的有关知识得f (x)0, 4,从而得出: y0,2 。

说明:在求解值域 (最值 ) 时,碰到分式、根式、对数式等种类时要注意函数自己定义域的限制,本题为:f ( x)0 。

例 4 .若x 2 y4, x0, y0,试求 lg x lg y 的最大值。

【剖析与解】 本题可当作第一象限内动点P(x, y) 在直线 x 2 y 4 上滑动时函数 lg x lg y lg xy 的最大值。

利用两点(4,0) , (0,2) 确立一条直线,作出图象易得:x (0,4), y (0,2), 而 lg x lg y lg xy lg[ y(4 2y)] lg[ 2( y 1)2 2] ,y=1 时, lg xlg y 取最大值 lg 2 。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

高中函数 【2 】界说域和值域的求法总结一.常规型即给出函数的解析式的界说域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的界说域.例1 求函数8|3x |15x 2x y 2-+--=的界说域.解:要使函数有意义,则必须知足⎩⎨⎧≠-+≥--②①08|3x |015x 2x 2由①解得 3x -≤或5x ≥.③ 由②解得 5x ≠或11x -≠④③和④求交集得3x -≤且11x -≠或x>5.故所求函数的界说域为}5x |x {}11x 3x |x {>-≠-≤ 且.例2 求函数2x 161x sin y -+=的界说域.解:要使函数有意义,则必须知足⎩⎨⎧>-≥②①0x 160x sin 2由①解得Z k k 2x k 2∈π+π≤≤π,③由②解得4x 4<<-④由③和④求公共部分,得π≤<π-≤<-x 0x 4或故函数的界说域为]0(]4(ππ--,,评注:③和④如何求公共部分?你会吗?二.抽象函数型抽象函数是指没有给出解析式的函数,不能常规办法求解,一般表示为已知一个抽象函数的界说域求另一个抽象函数的解析式,一般有两种情形.(1)已知)x (f 的界说域,求)]x (g [f 的界说域.(2)其解法是:已知)x (f 的界说域是[a,b ]求)]x (g [f 的界说域是解b )x (g a ≤≤,即为所求的界说域.例3 已知)x (f 的界说域为[-2,2],求)1x (f 2-的界说域. 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,是以3|x |0≤≤,从而3x 3≤≤-,故函数的界说域是}3x 3|x {≤≤-.(2)已知)]x (g [f 的界说域,求f(x)的界说域.其解法是:已知)]x (g [f 的界说域是[a,b ],求f(x)界说域的办法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的界说域.例4 已知)1x 2(f +的界说域为[1,2],求f(x)的界说域.解:因为51x 234x 222x 1≤+≤≤≤≤≤,,. 即函数f(x)的界说域是}5x 3|x {≤≤.三.逆向型即已知所给函数的界说域求解析式中参数的取值规模.特别是对于已知界说域为R,求参数的规模问题平日是转化为恒成立问题来解决.例5 已知函数8m m x 6m x y 2++-=的界说域为R 求实数m 的取值规模. 剖析:函数的界说域为R,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项的系数是m,所以应分m=0或0m ≠进行评论辩论.解:当m=0时,函数的界说域为R;当0m ≠时,08m mx 6mx 2≥++-是二次不等式,其对一切实数x 都成立的充要前提是1m 00)8m (m 4)m 6(0m 2≤<⇒⎩⎨⎧≤+--=∆>综上可知1m 0≤≤.评注:不少学生轻易疏忽m=0的情形,愿望经由过程此例解决问题.例6 已知函数3kx 4kx 7kx )x (f 2+++=的界说域是R,求实数k 的取值规模.解:要使函数有意义,则必须3kx 4kx 2++≠0恒成立,因为)x (f 的界说域为R,即03kx 4kx 2=++无实数①当k ≠0时,0k 34k 162<⨯-=∆恒成立,解得43k 0<<;②当k=0时,方程左边=3≠0恒成立.综上k 的取值规模是43k 0<≤.四.现实问题型 这里函数的界说域除知足解析式外,还要留意问题的现实意义对自变量的限制,这点要加倍留意,并形成意识.例7 将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数的解析式,并求函数的界说域.解:设矩形一边为x,则另一边长为)x 2a (21-于是可得矩形面积.2x ax 21)x 2a (21x y -=-⋅=ax 21x 2+-=.由问题的现实意义,知函数的界说域应知足⎩⎨⎧>->⇒⎪⎩⎪⎨⎧>->0x 2a 0x 0)x 2a (210x2ax 0<<⇒.故所求函数的解析式为ax 21x y 2+-=,界说域为(0,2a ). 例8 用长为L 的铁丝弯成下部为矩形上部为半圆的框架,如图,若矩形底边长为2x,求此框架围成的面积y 与x 的函数关系式,并求界说域.解:由题意知,此框架围成的面积是由一个矩形和一个半圆构成的图形的面积,如图.因为CD=AB=2x,所以x CD π=⋂,所以2x x 2L 2CD AB L AD π--=--=⋂, 故2x 2x x 2L x 2y 2π+π--⋅= Lx x )22(2+π+-=依据现实问题的意义知2L x 002x x 2L 0x 2+π<<⇒⎪⎩⎪⎨⎧>π--> 故函数的解析式为Lx x )22(y 2+π+-=,界说域(0,2L +π).五.参数型对于含参数的函数,求界说域时,必须对分母分类评论辩论.例9 已知)x (f 的界说域为[0,1],求函数)a x (f )a x (f )x (F -++=的界说域.解:因为)x (f 的界说域为[0,1],即1x 0≤≤.故函数)x (F 的界说域为下列不等式组的解集:⎩⎨⎧≤-≤≤+≤1a x 01a x 0,即⎩⎨⎧+≤≤-≤≤-a 1x a a 1x a即两个区间[-a,1-a ]与[a,1+a ]的交集,比较两个区间左.右端点,知(1)当0a 21≤≤-时,F (x )的界说域为}a 1x a |x {+≤≤-; (2)当21a 0≤≤时,F (x )的界说域为}a 1x a |x {-≤≤; (3)当21a >或21a -<时,上述两区间的交集为空集,此时F (x )不能构成函数.六.隐含型有些问题从表面上看并不求界说域,但是不留意界说域,往往导致错解,事实上界说域隐含在问题中,例如函数的单调区间是其界说域的子集.是以,求函数的单调区间,必须先求界说域.例10 求函数)3x 2x (log y 22++-=的单调区间.解:由03x 2x 2>++-,即03x 2x 2<--,解得3x 1<<-.即函数y 的界说域为(-1,3).函数)3x 2x (log y 22++-=是由函数3x 2x t t log y 22++-==,复合而成的. 4)1x (3x 2x t 22+--=++-=,对称轴x=1,由二次函数的单调性,可知t 在区间]1(,-∞上是增函数;在区间)1[∞+,上是减函数,而t log y 2=在其界说域上单调增; 3)[1)[1)31(]11(]1()31(,,,,,,,=∞+--=-∞- ,所以函数)3x 2x (log y 22++-=在区间]11(,-上是增函数,在区间)31[,上是减函数. 函数值域求法十一种1. 直接不雅察法对于一些比较简略的函数,其值域可经由过程不雅察得到.例1. 求函数x 1y =的值域. 解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域. 解:∵0x ≥3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞2. 配办法配办法是求二次函数值域最根本的办法之一.例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域. 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域.解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域.解:双方平方整顿得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的界说域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的规模可能比y 的现实规模大,故不能肯定此函数的值域为⎥⎦⎤⎢⎣⎡23,21.可以采取如下办法进一步肯定原函数的值域.∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1) 解得:]2,0[22222x 41∈-+= 即当22222x 41-+=时, 原函数的值域为:]21,0[+注:由判别式法来断定函数的值域时,若原函数的界说域不是实数集时,应分解函数的界说域,将扩展的部分剔除.4. 反函数法直接求函数的值域艰苦时,可以经由过程求其原函数的界说域来肯定原函数的值域.例6. 求函数6x 54x 3++值域. 解:由原函数式可得:3y 5y 64x --= 则其反函数为:3x 5y 64y --=,其界说域为:53x ≠ 故所求函数的值域为:⎪⎭⎫ ⎝⎛∞-53,5. 函数有界性法直接求函数的值域艰苦时,可以应用已学过函数的有界性,反宾为主来肯定函数的值域.例7. 求函数1e 1e y x x +-=的值域. 解:由原函数式可得:1y 1y e x -+=∵0e x >∴01y 1y >-+解得:1y 1<<-故所求函数的值域为)1,1(-例8. 求函数3x sin xcos y -=的值域.解:由原函数式可得:y 3x cos x sin y =-,可化为:y 3)x (x sin 1y 2=β++ 即1y y3)x (x sin 2+=β+∵R x ∈ ∴]1,1[)x (x sin -∈β+ 即11y y312≤+≤- 解得:42y 42≤≤- 故函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡-42,42 6. 函数单调性法例9. 求函数)10x 2(1x log 2y 35x ≤≤-+=-的值域. 解:令1x log y ,2y 325x 1-==-则21y ,y 在[2,10]上都是增函数所以21y y y +=在[2,10]上是增函数当x=2时,8112log 2y 33min =-+=-当x=10时,339log 2y 35max =+= 故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81例10. 求函数1x 1x y --+=的值域.解:原函数可化为:1x 1x 2y -++= 令1x y ,1x y 21-=+=,显然21y ,y 在],1[+∞上为无上界的增函数 所以1y y =,2y 在],1[+∞上也为无上界的增函数所以当x=1时,21y y y +=有最小值2,原函数有最大值222=显然0y >,故原函数的值域为]2,0( 7. 换元法 经由过程简略的换元把一个函数变为简略函数,其题型特点是函数解析式含有根式或三角函数公式模子,换元法是数学办法中几种最重要办法之一,在求函数的值域中同样施展感化.例11. 求函数1x x y -+=的值域.解:令t 1x =-,)0t (≥则1t x 2+= ∵43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知当0t =时,1y min =当0t →时,+∞→y故函数的值域为),1[+∞例12. 求函数2)1x (12x y +-++=的值域.解:因0)1x (12≥+- 即1)1x (2≤+ 故可令],0[,cos 1x π∈ββ=+ ∴1cos sin cos 11cos y 2+β+β=β-++β=1)4sin(2+π+β= ∵π≤π+β≤π≤β≤4540,0211)4sin(201)4sin(22+≤+π+β≤∴≤π+β≤-∴ 故所求函数的值域为]21,0[+例13. 求函数1x 2x x x y 243++-=的值域. 解:原函数可变形为:222x 1x 1x 1x 221y +-⨯+⨯=可令β=tg x ,则有β=+-β=+2222cos x 1x 1,2sin x 1x 2β-=β⨯β-=∴4sin 412cos 2sin 21y 当82k π-π=β时,41y max = 当82k π+π=β时,41y min -=而此时βtan 有意义. 故所求函数的值域为⎥⎦⎤⎢⎣⎡-41,41 例14. 求函数)1x )(cos 1x (sin y ++=,⎥⎦⎤⎢⎣⎡ππ-∈2,12x 的值域.解:)1x )(cos 1x (sin y ++=1x cos x sin x cos x sin +++=令t x cos x sin =+,则)1t (21x cos x sin 2-=22)1t (211t )1t (21y +=++-= 由)4/x sin(2x cos x sin t π+=+= 且⎥⎦⎤⎢⎣⎡ππ-∈2,12x 可得:2t 22≤≤∴当2t =时,223y max +=,当22t =时,2243y +=故所求函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡++223,2243. 例15. 求函数2x 54x y -++=的值域.解:由0x 52≥-,可得5|x |≤故可令],0[,cos 5x π∈ββ= 4)4sin(10sin 54cos 5y +π+β=β++β=∵π≤β≤04544π≤π+β≤π∴当4/π=β时,104y max += 当π=β时,54y min -=故所求函数的值域为:]104,54[+-8. 数形结正当其题型是函数解析式具有显著的某种几何意义,如两点的距离公式直线斜率等等,这类标题若应用数形结正当,往往会加倍简略,一目了然,心旷神怡.例16. 求函数22)8x ()2x (y ++-=的值域.解:原函数可化简得:|8x ||2x |y ++-=上式可以算作数轴上点P (x )到定点A (2),)8(B -间的距离之和. 由上图可知,当点P 在线段AB 上时,10|AB ||8x ||2x |y ==++-=当点P 在线段AB 的延伸线或反向延伸线上时,10|AB ||8x ||2x |y =>++-=故所求函数的值域为:],10[+∞例17. 求函数5x 4x 13x 6x y 22++++-=的值域. 解:原函数可变形为:2222)10()2x ()20()3x (y ++++-+-=上式可算作x 轴上的点)0,x (P 到两定点)1,2(B ),2,3(A --的距离之和, 由图可知当点P 为线段与x 轴的交点时,43)12()23(|AB |y 22min =+++==,故所求函数的值域为],43[+∞例18. 求函数5x 4x 13x 6x y 22++-+-=的值域. 解:将函数变形为:2222)10()2x ()20()3x (y -++--+-=上式可算作定点A (3,2)到点P (x,0)的距离与定点)1,2(B -到点)0,x (P 的距离之差.即:|BP ||AP |y -=由图可知:(1)当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点'P ,则构成'ABP ∆,依据三角形双方之差小于第三边,有26)12()23(|AB |||'BP ||'AP ||22=-++=<-即:26y 26<<-(2)当点P 正好为直线AB 与x 轴的交点时,有26|AB |||BP ||AP ||==-综上所述,可知函数的值域为:]26,26(-注:由例17,18可知,求两距离之和时,要将函数式变形,使A.B 两点在x 轴的两侧,而求两距离之差时,则要使A,B 两点在x 轴的同侧. 如:例17的A,B 两点坐标分离为:(3,2),)1,2(--,在x 轴的同侧;例18的A,B 两点坐标分离为(3,2),)1,2(-,在x 轴的同侧.9. 不等式法应用根本不等式abc 3c b a ,ab 2b a 3≥++≥+)R c ,b ,a (+∈,求函数的最值,其题型特点解析式是和式时请求积为定值,解析式是积时要乞降为定值,不过有时须要用到拆项.添项和双方平方等技能.例19. 求函数4)x cos 1x (cos )x sin 1x (sin y 22-+++=的值域.解:原函数变形为:52x cot x tan 3xcot x tan 3xsec x ces 1x cos 1x sin 1)x cos x (sin y 22322222222=+≥++=++=+++=当且仅当x cot x tan =即当4k x π±π=时)z k (∈,等号成立故原函数的值域为:),5[+∞例20. 求函数x 2sin x sin 2y =的值域.解:x cos x sin x sin 4y =x cos x sin 42=2764]3/)x sin 22x sin x [(sin 8)x sin 22(x sin x sin 8xcos x sin 16y 322222224=-++≤-== 当且仅当x sin 22x sin22-=,即当32x sin 2=时,等号成立. 由2764y 2≤可得:938y 938≤≤- 故原函数的值域为:⎥⎥⎦⎤⎢⎢⎣⎡-938,938 10. 一一映射法 道理:因为)0c (d cx b ax y ≠++=在界说域上x 与y 是一一对应的.故两个变量中,若知道一个变量规模,就可以求另一个变量规模.例21. 求函数1x 2x31y +-=的值域. 解:∵界说域为⎭⎬⎫⎩⎨⎧->-<21x 21x |x 或 由1x 2x 31y +-=得3y 2y 1x +-= 故213y 2y 1x ->+-=或213y 2y 1x -<+-= 解得23y 23y ->-<或 故函数的值域为⎪⎭⎫ ⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,2323, 11. 多种办法分解应用例22. 求函数3x 2x y ++=的值域. 解:令)0t (2x t ≥+=,则1t 3x 2+=+(1)当0t >时,21t 1t 11t t y 2≤+=+=,当且仅当t=1,即1x -=时取等号,所以21y 0≤<(2)当t=0时,y=0.综上所述,函数的值域为:⎥⎦⎤⎢⎣⎡21,0注:先换元,后用不等式法例23. 求函数42432x x 21x x x 2x 1y ++++-+=的值域. 解:4234242x x 21x x x x 21x x 21y +++++++-=2222x 1x x 1x 1++⎪⎪⎭⎫ ⎝⎛+-= 令2tan x β=,则β=⎪⎪⎭⎫ ⎝⎛+-2222cos x 1x 1β=+sin 21x 1x 21sin 21sin sin 21cos y 22+β+β-=β+β=∴161741sin 2+⎪⎭⎫ ⎝⎛-β-= ∴当41sin =β时,1617y max =当1sin -=β时,2y min -= 此时2tan β都消失,故函数的值域为⎥⎦⎤⎢⎣⎡-1617,2 注:此题先用换元法,后用配办法,然后再应用βsin 的有界性. 总之,在具体求某个函数的值域时,起首要细心.卖力不雅察其题型特点,然后再选择适当的办法,一般优先斟酌直接法,函数单调性法和根本不等式法,然后才斟酌用其他各类特别办法.。

高中数学求函数值域的解题方法总结(16种)

高中数学求函数值域的解题方法总结(16种)
构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。
练习:求函数 y = x2 + 9 + (5 − x)2 + 4 的值域。(答案:{y|y≥ 5 2 })
九、比例法:
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函 数,进而求出原函数的值域。
例:已知 x,y∈R,且 3x-4y-5=0,求函数 z = x2 + y2 的值域。
例:求函数 y = x - 3 + 2x +1 的值域。 点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值, 确定原函数的值域。
解:设 t = 2x +1 (t≥0),则
x = t2 -1 。 2
于是 y = t2 -1 - 3 + t = (t +1)2 − 4 ≥ 1 − 4 = − 7 .
( )( ) 例:已知 2x2 - x - 3 3x2 + x +1 ≤ 0 ,且满足 x + y = 1,求函数 z = xy + 3x 的值域。
点拨:根据已知条件求出自变量 x 的取值范围,将目标函数消元、配方,可 求出函数的值域。
解:3x2 + x +1 0 ,上述分式不等式与不等式 2x2 - x - 3 ≤ 0 同解,解之得
3 3 3
3
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区 间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值 域。
练习:求函数 y = 3 + 4 - x 的值域。(答案:{y|y≥3})
七、换元法:
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形 式,进而求出值域。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)高中函数定义域和值域的求法总结一、常规型常规型是指已知函数的解析式,求函数的定义域和值域。

解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例如,对于函数 $y=\frac{x^2-2x-15}{|x+3|-8}$,要使函数有意义,则必须满足 $x^2-2x-15\geq 0$ 且 $|x+3|\neq 8$。

解得$x\leq -3$ 或 $x\geq 5$,且 $x\neq -11$ 或 $x\neq 5$。

将两个条件求交集得 $x\leq -3$ 且 $x\neq -11$ 或 $x>5$,即函数的定义域为 $\{x|x\leq -3\text{ 且 }x\neq -11\}\cup\{x|x>5\}$。

二、抽象函数型抽象函数型是指没有给出解析式的函数,需要根据已知条件求解。

一般有两种情况:1)已知 $f(x)$ 的定义域,求 $f[g(x)]$ 的定义域。

解法是:已知 $f(x)$ 的定义域为 $[a,b]$,则 $f[g(x)]$ 的定义域为解$a\leq g(x)\leq b$。

例如,已知 $f(x)$ 的定义域为 $[-2,2]$,求 $f(x^2-1)$ 的定义域。

令 $-2\leq x^2-1\leq 2$,得 $-1\leq x^2\leq 3$,即 $-|x|\leq x\leq |x|$。

因此,$-3\leq x\leq 3$,即函数的定义域为$\{x|-3\leq x\leq 3\}$。

2)已知 $f[g(x)]$ 的定义域,求 $f(x)$ 的定义域。

解法是:已知 $f[g(x)]$ 的定义域为 $[a,b]$,则 $f(x)$ 的定义域为$g(x)$ 的值域。

例如,已知 $f(2x+1)$ 的定义域为 $[1,2]$,求 $f(x)$ 的定义域。

因为 $1\leq x\leq 2$,所以 $2\leq 2x\leq 4$,$3\leq2x+1\leq 5$。

函数值域的求法大全

函数值域的求法大全

函数值域的求法大全题型一 求函数值:特别是分段函数求值例1 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112.反思与感悟 求函数值时,首先要确定出函数的对应关系f 的具体含义,然后将变量代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别. 跟踪训练4 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f [f (1)].解 (1)∵f (x )=x +1x +2,∴f (2)=2+12+2=34.(2)f (1)=1+11+2=23,f [f (1)]=f (23)=23+123+2=58.5.已知函数f (x )=x 2+x -1. (1)求f (2),f (1x );(2)若f (x )=5,求x 的值. 解 (1)f (2)=22+2-1=5, f (1x )=1x 2+1x -1=1+x -x 2x 2. (2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2,或x =-3. (3)4.函数f (x )对任意自然数x 满足f (x +1)=f (x )+1,f (0)=1,则f (5)=________. 答案 6解析 f (1)=f (0)+1=1+1=2,f (2)=f (1)+1=3,f (3)=f (2)+1=4,f (4)=f (3)+1=5,f (5)=f (4)+1=6.二、值域是函数y=f(x)中y 的取值范围。

高中数学求值域的10种方法

高中数学求值域的10种方法

求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。

例1.求函数1y =的值域。

【解析】0≥11≥,∴函数1y =的值域为[1,)+∞。

【练习】1.求下列函数的值域:①32(11)y x x =+-≤≤; ②x x f -+=42)(;③1+=x xy ;○4()112--=x y ,{}2,1,0,1-∈x 。

【参考答案】①[1,5]-;②[2,)+∞;③(,1)(1,)-∞+∞;○4{1,0,3}-。

二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。

形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。

例2.求函数242y x x =-++([1,1]x ∈-)的值域。

【解析】2242(2)6y x x x =-++=--+。

∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。

∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。

例3.求函数][)4,0(422∈+--=x x x y 的值域。

【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:)0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得][4,0)(∈x f ,从而得出:]0,2y ⎡∈⎣。

说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f 。

例4.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。

【分析与解】本题可看成第一象限内动点(,)P x y 在直线42=+y x 上滑动时函数xy y x lg lg lg =+的最大值。

利用两点(4,0),(0,2)确定一条直线,作出图象易得:2(0,4),(0,2),lg lg lg lg[(42)]lg[2(1)2]x y x y xy y y y ∈∈+==-=--+而,y=1时,y x lg lg +取最大值2lg 。

高中数学_求函数值域的方法十三种

高中数学_求函数值域的方法十三种

高中数学:求函数值域的十三种方法一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性八、函数单调性法(☆)九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、一一映射法 十三、 多种方法综合运用一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。

【例1】求函数1y =的值域。

0≥11≥,∴函数1y 的值域为[1,)+∞。

【例2】求函数x 1y =的值域。

【解析】∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ∈,则函数的值域为{}1|-≥y y 。

二. 配方法:配方法式求“二次函数类”值域的基本方法。

形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。

【例1】 求函数225,[1,2]y x x x =-+∈-的值域。

【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8]【变式】已知,求函数的最值。

【解析】由已知,可得,即函数是定义在区间上的二次函数。

将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。

显然其顶点横坐标不在区间内,如图2所示。

函数的最小值为,最大值为。

图2【例2】 若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,(1)求函数()g t(2)当∈t [-3,-2]时,求g(t)的最值。

(说明:二次函数在闭区间上的值域二点二分法,三点三分法) 【解析】(1)函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1求函数y=3+√(根据算术平方根的性质,先求出√(2-3x) 的值域。

解:由算术平方根的性质,知√(2-3x)≥0,故3+√知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0≤x≤5{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=( y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函或y&gt;1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可2]。

此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:关系的应用,而且要特别注意定义域对值域的制约作用。

配方法是数学的一种重要的思想方法。

练习:求函数y=案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法函数y=(2x2-2x+3)/(x2-x+1)的值域。

点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)当y≠2时,由Δ=(y-2)2-4(<x≤10/3当y=2时,方程(*)无解。

∴函数的值域为2<y≤10/3。

点评:把函数关系化为二次方程F(x,其判别式为非负数,可求得函数的值域。

常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。

-3x+1)的值域。

(答案:值域为y≤-8或y&gt;0)。

五.最值法对于闭区间[a,b]上的连续函数y=f(x 内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。

例5已知(2x2-x-3)/(3x2+x+ z=xy+3x的值域。

点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。

述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。

当x=-1时,z=-5;当x=3/2时,z 为{z∣-5≤z≤15/4}。

点评:本题是将函数的值域问题转化为函数的最值。

对开区间,若存在最值,也可通域。

练习:若√x为实数,则函数y=x2+3x-5的值域为()A.(-∞]C.[0,+∞)D.[-5,+∞)(答案:D)。

六.图象法通过观察函数的图象,运用数域。

例6求函数y=∣x+1∣+√(x-2)2 的值域。

点拨:根据绝对值的意义,去掉符号后转化为分段函数,数化为-2x+1 (x≤1) y= 3 (-1&lt;x≤2)2x-1(x&gt;2) 它函数值y≥3,所以,函数值域[3,+∞]。

点评:分段函数应注意函数的端点。

利用函数的图象求函数的值域,决问题的重要方法。

求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值用函数在给定的区间上的单调递增或单调递减求值域。

例1求函数y=4x-√1-3x(x≤1/3)的值域。

点拨:即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。

√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x 在定义域为x≤1/3上也为增y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。

点评:利用单调性求函数的值域,是在函数给含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。

练习:求函数y=3{y|y≥3}) 八.换元法以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进数y=x-3+√2x+1 的值域。

点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定t=√2x+1 (t≥0),则x=1/2(t2-1)。

于是y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2. 所以,原点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。

这的思想方法。

它的应用十分广泛。

练习:求函数y=√x-1 –x的值域。

(答案:{y|y≤-3/4}九.构造赋予几何图形,数形结合。

例3求函数y=√x2+4x+5+√x2-4x+8 的值域。

点拨:将原函数变形,构造平面函数的值域。

解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22 作一个长为4、宽为3的矩形ABCD,再切割成则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,KC=√(x+2)2+1 。

由三角形三边关系知,AK+KC≥AC=5。

当A、K、C三点数的知域为{y|y≥5}。

点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图了、方便简捷。

这是数形结合思想的体现。

练习:求函数y=√x2+9 +√(5-x)2+4的值域。

(答案:{y|y≥5√
于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。

例4已函数z=x2+y2的值域。

点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。

解:由3x-4y-5=0为参数) ∴x=3+4k,y=1+3k,∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。

当k=-3/5时,x=3/5,y=-4/域为{z|z≥1}. 点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原这种解题方法体现诸多思想方法,具有一定的创新意识。

练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)={f(x,y)|f(x,y)≥1})十一.利用多项式的除法例5求函数y=(3x+2)/(x+1)的值域。

点拨:将原一个整式与一个分式之和。

解:y=(3x+2)/(x+1)=3-1/(x+1)。

∵1/(x+1)≠0,故y≠3。

∴函数y的值域评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。

练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。

等式法例6求函数Y=3x/(3x+1)的值域。

点拨:先求出原函数的反函数,根据自变量的取值范围,构造不数的反函数为y=log3[x/(1-x)], 由对数函数的定义知x/(1-x)>0 1-x≠0
数的值域(0,1)。

点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域要的解题工具,它的应用非常广泛。

是数学解题的方法之一。

以下供练习选用:求下列函数的值域1.Y=√(15-4x)+2-1)。

(y&gt;1或y&lt;0)注意变量哦。

相关文档
最新文档