福建省三明市第一中学下册圆周运动专题练习(word版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第六章圆周运动易错题培优(难)
1.如图所示,一个竖直放置半径为R的光滑圆管,圆管内径很小,有一小球在圆管内做圆周运动,下列叙述中正确的是()
A.小球在最高点时速度v gR
B.小球在最高点时速度v由零逐渐增大,圆管壁对小球的弹力先逐渐减小,后逐渐增大C.当小球在水平直径上方运动时,小球对圆管内壁一定有压力
D.当小球在水平直径下方运动时,小球对圆管外壁一定有压力
【答案】BD
【解析】
【分析】
【详解】
A.小球恰好通过最高点时,小球在最高点的速度为零,选项A错误;
<
B.在最高点时,若v gR
2
v
-=
mg N m
R
可知速度越大,管壁对球的作用力越小;
>
若v gR
2
v
N mg m
+=
R
可知速度越大,管壁对球的弹力越大。
选项B正确;
C.当小球在水平直径上方运动,恰好通过最高点时,小球对圆管内外壁均无作用力,选项C错误;
D.当小球在水平直径下方运动时,小球受竖直向下的重力,要有指向圆心的向心力,则小球对圆管外壁一定有压力作用,选项D正确。
故选BD。
2.如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B两个物块(可视为质点)。
A和B距轴心O的距离分别为r A=R,r B=2R,且A、B与转盘之间的最大静摩擦力都是f m,两物块A和B随着圆盘转动时,始终与圆盘保持相对静止。
则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的是()
A .
B 所受合力一直等于A 所受合力 B .A 受到的摩擦力一直指向圆心
C .B 受到的摩擦力先增大后不变
D .A 、B 两物块与圆盘保持相对静止的最大角速度ωm = 2m
f mR
【答案】CD 【解析】 【分析】 【详解】
当圆盘角速度比较小时,由静摩擦力提供向心力。
两个物块的角速度相等,由2F m r ω=可知半径大的物块B 所受的合力大,需要的向心力增加快,最先达到最大静摩擦力,之后保持不变。
当B 的摩擦力达到最大静摩擦力之后,细线开始提供拉力,根据
2
m 2T f m R ω+=⋅
2A T f m R ω+=
可知随着角速度增大,细线的拉力T 增大,A 的摩擦力A f 将减小到零然后反向增大,当A 的摩擦力反向增大到最大,即A m =f f -时,解得
m
2f mR
ω=
角速度再继续增大,整体会发生滑动。
由以上分析,可知AB 错误,CD 正确。
故选CD 。
3.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。
若木块能保持在离转盘中心的水平距离为40cm 处相对转盘不动,g =10m/s 2,则转盘转动角速度ω的可能值为(设最大静摩擦力等于滑动摩擦力)( )
A .1rad/s
B .3rad/s
C .4rad/s
D .9rad/s
【答案】BC 【解析】 【分析】 【详解】
根据题意可知,斜面体的倾角满足
3
tan 0.54
θμ=
>= 即重力沿斜面的分力大于滑动摩擦力,所以角速度为零时,木块不能静止在斜面上;当转动的角速度较小时,木块所受的摩擦力沿斜面向上,当木块恰要向下滑动时
11cos sin N f mg θθ+= 2111sin cos N f m r θθω-=
又因为滑动摩擦力满足
11f N μ=
联立解得
1ω=
当转动角速度变大,木块恰要向上滑动时
22cos sin N f mg θθ=+
2
222sin cos N f m r θθω+=
又因为滑动摩擦力满足
22f N μ=
联立解得
2ω=
综上所述,圆盘转动的角速度满足
rad/s 2rad/s 7rad/s 11
ω≈≤≤≈ 故AD 错误,BC 正确。
故选BC 。
4.荡秋千是小朋友们喜爱的一种户外活动,大人在推动小孩后让小孩自由晃动。
若将此模型简化为一用绳子悬挂的物体,并忽略空气阻力,已知O 点为最低点,a 、b 两点分别为最高点,则小孩在运动过程中( )
A .从a 到O 的运动过程中重力的瞬时功率在先增大后减小
B .从a 到O 的运动过程中,重力与绳子拉力的合力就是向心力
C .从a 到O 的运动过程中,重力与绳子拉力做的总功等于小球在此过程中获得的动能
D .从a 到O 的运动过程中,拉力向上有分量,位移向下有分量,所以绳子拉力做了负功 【答案】AC 【解析】 【分析】 【详解】
A .由题可知,a 、b 两点分别为最高点,所以在a 、b 两点人是速度是0,所以此时重力的瞬时功率为0;在最低点O 时,速度方向与重力方向垂直,所以此时重力的瞬时功率为0,所以从a 到O 的运动过程中重力的瞬时功率在先增大后减小,故A 正确;
B .从a 到O 的运动过程中,将重力分解为速度方向的分力和背离半径方向的分力,所以提供向心力的是重力背离半径方向的分力和绳子的拉力的合力共同提供的,故B 错误;
C .根据动能定理可知,从a 到O 的运动过程中,重力与绳子拉力做的总功等于小球在此过程中获得的动能,故C 正确;
D .从a 到O 的运动过程中,绳子的拉力与人运动的速度方向垂直,所以拉力不做功,故D 错误。
故选AC 。
5.一小球质量为m ,用长为L 的悬绳(不可伸长,质量不计)固定于O 点,在O 点正下方
2
L
处钉有一颗钉子.如图所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,则( )
A .小球的角速度突然增大
B .小球的线速度突然减小到零
C .小球的向心加速度突然增大
D .小球的向心加速度不变 【答案】AC 【解析】
【分析】 【详解】
由于悬线与钉子接触时小球在水平方向上不受力,故小球的线速度不能发生突变,由于做圆周运动的半径变为原来的一半,由v =ωr 知,角速度变为原来的两倍,A 正确,B 错误;由a =
2T
π
知,小球的向心加速度变为原来的两倍,C 正确,D 错误.
6.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,管道内侧壁半径为R , 小球半径为r ,则下列说法中正确的是( )
A .小球通过最高点时的最小速度min v Rg =
B .小球通过最高点时的最小速度min 0v =
C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力
D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力 【答案】BC 【解析】 【详解】
AB.因是在圆形管道内做圆周运动,所以在最高点时,内壁可以给小球沿半径向外的支持力,所以小球通过最高点时的最小速度可以为零.所以选项A 错误,B 正确;
C.小球在水平线ab 以下的管道中运动时,竖直向下的重力沿半径方向的分力沿半径方向向外,小球的向心力是沿半径向圆心的,小球与外壁一定会相互挤压,所以小球一定会受到外壁的作用力,内壁管壁对小球一定无作用力,所以选项C 正确;
D.小球在水平线ab 以上的管道中运动时,当速度较小时,重力沿半径方向上的分力大于或等于小球做圆周运动需要的向心力,此时小球与外壁不存在相互挤压,外侧管壁对小球没有作用力,选项D 错误.
7.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘的中心轴'OO 转动。
三个物体与圆盘间的动摩擦因数相同,最大静摩擦力等于滑动摩擦力。
三个物体与轴O 共线且OA OB BC r ===,现将三个物体用轻质细线相连,保持细线伸直且恰无张力。
使圆盘从静止开始转动,角速度极其缓慢地增大,则对于这个过程,下列说法正确的是( )
A .A 、
B 两个物体同时达到最大静摩擦力
B .B 、
C 两个物体所受的静摩擦力先增大后不变,A 物体所受的静摩擦力先增大后减小再增大 C .当g
r
μω>
时整体会发生滑动 D 2μμω<<
g
g
r
r
时,在ω增大的过程中,B 、C 间的拉力不断增大
【答案】BCD 【解析】 【分析】 【详解】
ABC .当圆盘转速增大时,静摩擦力提供向心力,三个物体的角速度相等,由2F m r ω=知,由于C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时
()21222m g m r μω=⋅
解得
12g
r
μω=
当C 的摩擦力达到最大静摩擦力之后,B 、C 间细线开始出现拉力,B 的摩擦力增大,达到最大静摩擦力后,A 、B 间细线开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 达到最大静摩擦力时,对C 有
()2
2222T m g m r μω+=⋅
对A 、B 整体有
2T mg μ=
解得
2g
r
μω=
当g
r
μω>
A 错误,BC 正确;
D 2μμω<<
g
g
r
r
时,C 所受摩擦力已是最大静摩擦力,对C 分析有
224T mg mr μω+=
在ω增大的过程中,B 、C 间的拉力不断增大,故D 正确。
故选BCD 。
8.A 、B 、C 三个物体放在旋转圆台上,它们由相同材料制成,A 的质量为2m ,B 、C 的质量各为m .如果OA=OB=R ,OC=2R ,则当圆台旋转时(设A 、B 、C 都没有滑动),下述结论中正确的是( )
A .物体A 向心加速度最大
B .B 物静摩擦力最小
C .当圆台旋转转速增加时,C 比B 先开始滑动
D .当圆台旋转转速增加时,A 比B 先开始滑动 【答案】BC 【解析】
A 、三个物体都做匀速圆周运动,角速度相等,向心加速度2
n a r ω=,可见,半径越大,
向心加速度越大,所以C 物的向心加速度最大,A 错误; B 、三个物体的合力都指向圆心,对任意一个受力分析,如图
支持力与重力平衡,由静摩擦力f 提供向心力,则得 f n F =. 根据题意,222C A B r r r R ===
由向心力公式2
m n F r ω=,得三个物体所受的静摩擦力分别为:
()2222A f m R m R ωω==,
2B f m R ω=.
()2222C f m R m R ωω==,
故B 物受到的静摩擦力最小,B 正确;
C 、
D 当ω变大时,所需要的向心力也变大,当达到最大静摩擦力时,物体开始滑动.当转速增加时,A 、C 所需向心力同步增加,且保持相等.B 所需向心力也都增加,A 和C 所需的向心力与B 所需的向心力保持2:1关系.由于B 和C 受到的最大静摩擦力始终相等,都比A 小,所以C 先滑动,A 和B 后同时滑动,C 正确;D 错误;故选BC .
9.如图所示,b球在水平面内做半径为R的匀速圆周运动,BC为圆周运动的直径,竖直平台与b球运动轨迹相切于B点且高度为R。
当b球运动到切点B时,将a球从切点正上方的A点水平抛出,重力加速度大小为g,从a球水平抛出开始计时,为使b球在运动一周的时间内与a球相遇(a球与水平面接触后不反弹),则下列说法正确的是()
A.a球在C点与b球相遇时,a球的运动时间最短
B.a球在C点与b球相遇时,a球的初始速度最小
C.若a球在C点与b球相遇,则a2gR
D.若a球在C点与b球相遇,则b 2R g
【答案】C 【解析】【分析】【详解】
A.平抛时间只取决于竖直高度,高度R不变,时间均为
2R
t
g
=A错误。
BC.平抛的初速度为
x
v
t
=时间相等,在C点相遇时,水平位移最大
max 2
x R
=
则初始速度最大为:
max 2
2 R
v gR
t
==
故B错误,C正确。
D.在C点相遇时,b球运动半个周期,故b球做匀速圆周运动的周期为
2
22
b R
T t
g
==
故D错误。
故选C。
10.如图所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是()
A .A 对
B 的摩擦力指向圆心
B .B 运动所需的向心力大于A 运动所需的向心力
C .盘对B 的摩擦力是B 对A 的摩擦力的2倍
D .若逐渐增大圆盘的转速(A 、B 两物块仍相对盘静止),盘对B 的摩擦力始终指向圆心且不断增大 【答案】C 【解析】 【详解】
A .两物体随圆盘转动,都有沿半径向外的滑动趋势,受力分析如图
则所受静摩擦力均沿半径指向圆心,由牛顿第三定理可知A 对B 的静摩擦力沿半径向外,故A 错误;
B .两物体随圆盘转动,角速度相同为ω,运动半径为r ,则两物体转动所需的向心力均为
2m r ω,即B 运动所需的向心力等于A 运动所需的向心力,故B 错误;
C .对整体由牛顿第二定律可知
22B f m r ω=
对A 由牛顿第二定律得
2BA f m r ω=
则盘对B 的摩擦力是B 对A 的摩擦力的2倍,故C 正确;
D .在增大圆盘转速的瞬间,两物体有沿半径向外的趋势和沿切线向后的趋势,则此时静摩擦力方向在径向和切向之间,与线速度成锐角,径向分力继续提供向心力,切向分力提供切向加速度使线速度增大,从而保证滑块继续跟着圆盘转动,而物体随转盘一起转时静摩擦力又恢复成沿半径方向提供向心力,故增大圆盘转速,盘对B 的摩擦力大小不断增大,但方向不是始终指向圆心,故D 错误。
故选C 。
11.在游乐园质量为m 的人乘坐如图所示的过山车,当过山车从高度释放之后,在竖直平面内通过了一个光滑的圆周轨道(车的轨迹如图所示的虚线),下列说法正确的是( )
A .车在最高点时人处于倒坐状态,全靠保险带拉住,若没有保险带,人一定会掉下去
B .人在最低点时对座位的压力大于mg
C .人在最高点和最低点时的向心加速度大小相等
D .人在最高点时对座位仍可能产生压力,但压力一定小于mg 【答案】B 【解析】 【分析】 【详解】
A .当人与保险带间恰好没有作用力时,由重力提供向心力得
2v mg m
R
=临
解得临界速度为
=v gR 临
当速度v gR ≥
时,没有保险带,人也不会掉下来。
选项A 错误;
B .人在最低点时,加速度方向竖直向上,根据牛顿第二定律分析可知,人处于超重状态,人对座位的压力大于mg ,选项B 正确;
C .在最高点和最低点速度大小不等,根据向心加速度公式2
=v a r
可知,人在最高点和最低
点时的向心加速度大小不相等,选项C 错误; D .当人在最高点的速度v gR >时人对座位就产生压力。
当速度增大到2v gR =时,
压力为3mg ,选项D 错误。
故选B 。
12.如图所示为某一传动机构中两个匀速转动的相互咬合的齿轮,a 、b 、c 、d 四点均在齿轮上。
a 、b 、c 、d 四个点中角速度ω与其半径r 成反比的两个点是( )
A .a 、b
B .b 、c
C .b 、d
D .a 、d
【答案】B
【解析】
【分析】
【详解】
a、b同轴转动,c、d同轴转动,角速度相同,
b、c紧密咬合的齿轮是同缘传动,边缘点线速度相等,根据v=ωr得b、c两点角速度ω与其半径r成反比,选项B正确,ACD错误。
故选B。
13.上海磁悬浮线路需要转弯的地方有三处,其中设计的最大转弯处半径达到8000米,用肉眼看几乎是一条直线,而转弯处最小半径也达到1300米。
一个质量50kg的乘客坐在以360km/h不变速率驶过半径2500米弯道的车厢内,下列说法不正确的是()
A.弯道半径设计特别长可以使乘客在转弯时更舒适
B.弯道半径设计特别长可以减小转弯时列车的倾斜程度
C.乘客受到来自车厢的力大小约为539N
D.乘客受到来自车厢的力大小约为200N
【答案】D
【解析】
【分析】
【详解】
A.根据
2
v
=
a
R
在速度一定的情况下,转弯半径越大,需要的向心加速度越小,乘客在转弯时感觉越平稳、舒适,A正确;
B.为了使列车行驶安全,在转弯时一般内轨比外轨低,让支持力的水平分力提供列车做圆周运动的向心力,转弯半径越大,需要的向心力越小,列车的倾斜程度越小,B正确;CD.根据
2
v
=
F m
R
代入数据可得,转弯时的向心力大约为200N,而车箱给人的合力
F=
539N
合
C正确,D错误。
故不正确的应选D。
14.如图是德国物理学家史特恩设计的最早测定气体分子速率的示意图.M、N是两个共轴圆筒的横截面,外筒N的半径为R,内筒的半径比R小得多,可忽略不计.筒的两端封闭,两筒之间抽成真空,两筒以相同角速度ω绕其中心轴线匀速转动.M筒开有与转轴
平行的狭缝S,且不断沿半径方向向外射出速率分别为v1和v2的分子,分子到达N筒后被吸附,如果R、v1、v2保持不变,ω取某合适值,则以下结论中正确的是()
A.当
12
2
R R
n
V V
π
ω
-≠时(n为正整数),分子落在不同的狭条上
B.当
12
2
R R
n
V V
π
ω
+=时(n为正整数),分子落在同一个狭条上
C.只要时间足够长,N筒上到处都落有分子
D.分子不可能落在N筒上某两处且与S平行的狭条上
【答案】A
【解析】
微粒从M到N运动时间
R
t
v
=,对应N筒转过角度
R
t
v
ω
θω
==,即如果以v1射出时,转过
角度:1
1
R
t
v
ω
θω
==,如果以v
2射出时,转过角度:2
2
R
t
v
ω
θω
==,只要θ
1、θ2不是相差2π的整数倍,即当
12
2
R R
n
v v
π
ω
-≠
时(n为正整数),分子落在不同的两处与S平行的狭条上,故A正确,D错误;若相差2π的整数倍,则落在一处,即当
12
2
R R
n
v v
π
ω
-=
时(n为正整数),分子落在同一个狭条上.故B错误;若微粒运动时间为N筒转动周期的整数倍,微粒只能到达N筒上固定的位置,因此,故C错误.故选A
点睛:
解答此题一定明确微粒运动的时间与N筒转动的时间相等,在此基础上分别以v1、v2射出时来讨论微粒落到N筒上的可能位置.
15.质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的A 点和B 点,如图所示,绳a 与水平方向成θ角,绳b 在水平方向且长为l,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,则下列说法正确的是()
A .a 绳的张力可能为零
B .a 绳的张力随角速度的增大而增大
C .若 b 绳突然被剪断,则 a 绳的弹力一定发生变化
D .当角速度tan g l ωθ>
,b 绳将出现弹力 【答案】D
【解析】
【分析】
【详解】
A 、小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,故A 错;
B 、根据竖直方向上平衡得,F a sinθ=mg ,解得sin a mg F θ=
,可知a 绳的拉力不变,故B 错误.
D 、当b 绳拉力为零时,有:2mgcot m l θω= ,解得tan g l ωθ
= ,可知当角速度tan g l ωθ
> ,b 绳将出现弹力,故D 对; C 、由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,故C 错误 故选D
【点睛】
小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变.。