高中数学:空间向量

合集下载

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点高中数学必修知识点:空间向量知识点一、空间向量的概念与表示空间向量是指具有大小、方向和作用线的量,可以用一个有向线段来表示。

设 A、B 是空间中的两点,用线段 AB 表示的向量称为向量AB,记作⃗AB 或 AB。

二、向量的加法与减法1. 向量的加法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的和,记作⃗AB + ⃗BC = ⃗AC。

2. 向量的减法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的差,记作⃗AB - ⃗BC = ⃗AC。

三、数量积与向量积1. 数量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量 ⃗b = (x₂, y₂, z₂),则向量⃗a 和向量⃗b 的数量积为 a·b = x₁x₂ + y₁y₂ + z₁z₂。

2. 数量积的性质:- 交换律:⃗a·⃗b = ⃗b·⃗a- 结合律:(k⃗a)·⃗b = k(⃗a·⃗b) = ⃗a·(k⃗b) (k 为常数)- 分配律:⃗a·(⃗b + ⃗c) = ⃗a·⃗b + ⃗a·⃗c- ⃗a·⃗a ≥ 0,当且仅当⃗a = ⃗0 时,⃗a·⃗a = 03. 向量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量⃗b = (x₂, y₂,z₂),则向量⃗a 和向量⃗b 的向量积为⃗a × ⃗b = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)。

4. 向量积的性质:- ⃗a × ⃗b = -⃗b × ⃗a- (k⃗a) × ⃗b = ⃗a × (k⃗b) = k(⃗a × ⃗b) (k 为常数)- ⃗a × ⃗b = ⃗0,当且仅当⃗a 与 ⃗b 共线或其中一个为⃗0 时,⃗a × ⃗b = ⃗0四、平面与空间向量的关系1. 平面方程的向量表示:设平面过点 A(x₁, y₁, z₁),且法向量为 ⃗n = (A, B, C),则平面上任意一点 M(x, y, z) 满足向量⃗AM·⃗n = 0。

高中数学--空间向量基本定理--课件

高中数学--空间向量基本定理--课件
问题1:.如何用 , , 表示向量 ?
[答案] .
问题2:.在图中任意找一个向量 ,是否都能用 , , 来表示?表示唯一吗?
[答案] 是,表示唯一.
问题3:.若 , , ,且 , , 两两成 的角,如何求 ?
[答案] , = .
新知生成
1.空间向量基本定理:如果向量 , , 是空间三个不共面的向量, 是空间任意一个向量,那么存在唯一的三元有序实数组 ,使得 ______________.
(3)下结论:利用空间向量的一组基 可以表示出空间所有向量.结果中只能含有 , , ,不能含有其他形式的向量.
1.设 , , ,且 是空间的一组基.给出下列向量组:① ;② ;③ ;④ .其中可以作为空间的基的向量组有____个.
3
[解析] 如图所示,设 , , ,则 , , , .由 , , , 四点不共面可知向量 , , 也不共面,同理可知 , , 不共面, , , 也不共面,可以作为空间的基.因为 ,所以 , , 共面,不能作为空间的基.
4.类比平面向量基本定理,猜想三个不共面的向量如何表示空间中的任意一个向量.
[答案] 如果三个向量 , , 不共面,那么对任意一个空间向量 ,存在唯一的三元有序实数组 ,使得 .
1.判断下列结论是否正确.(正确的打“√”,错误的打“×”)
(1) 只有两两垂直的三个向量才能构成空间的一组基.( )
[解析] 假设 , , 共面,则存在实数 , 使得 , . , , 不共面,∴ 此方程组无解, , , 不共面, 可以作为空间的一组基.
方法总结 空间向量有无数组基.判断给出的某一向量组中的三个向量能否作为一组基,关键是要判断它们是否共面,若从正面难以入手,则常用反证法或一些常见的几何图形来帮助我们进行判断.

高中数学第二章空间向量与立体几何1从平面向量到空间向量ppt课件

高中数学第二章空间向量与立体几何1从平面向量到空间向量ppt课件

→ —→ (2)〈AB,C1A1〉; 解答 〈A→B,C—1→A1〉=π-〈A→B,A—1→C1〉=π-π4=34π.
→ —→ (3)〈AB,A1D1〉.
解答
〈A→B,A—1→D1〉=〈A→B,A→D〉=π2.
引申探求 →→
在本例中,求〈AB1,DA1〉. 解答
如图,衔接B1C,那么B1C∥A1D, →→
梳理
间向量的夹角
(1)文字表达:a,b是空间中两个非零向量,过空间恣意一点O,作
→ OA
=a,O→B=b,那么∠AOB 叫作向量a与向量b的夹角,记作〈a,b〉 .
(2)图形表示:
角度
表示
〈a,b〉=__0_
〈a,b〉是_锐__角__
〈a,b〉是_直__角__ 〈a,b〉是_钝__角__〈a,b〉 Nhomakorabea_π__
第二章 空间向量与立体几何
§1 从平面向量到空间向量
学习目的 1.了解空间向量的概念. 2.了解空间向量的表示法,了解自在向量的概 念. 3.了解空间向量的夹角. 4.了解直线的方向向量与平面的法向量的概念.
内容索引
问题导学 题型探求 当堂训练
问题导学
知识点一 空间向量的概念
思索1
类比平面向量的概念,给出空间向量的概念. 答案 在空间中,把具有大小和方向的量叫作空间向量.
答案 解析
研讨长方体的模型可知,一切顶点两两相连得到的线段中,长度为1 的线段只需4条,故模为1的向量有8个.
12345
5.在直三棱柱ABC-A1B1C1中,以下向量可以作为平面ABC法向量的 是②__③____.(填序号)答案
No Image
12345
规律与方法
在空间中,一个向量成为某直线的方向向量的条件包含两个方面:一是 该向量为非零向量;二是该向量与直线平行或重合.二者缺一不可. 给定空间中恣意一点A和非零向量a,就可以确定独一一条过点A且平行 于向量a的直线.

高中数学空间向量与立体几何知识点归纳总结

高中数学空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

高考空间向量知识点

高考空间向量知识点

高考空间向量知识点空间向量是高考数学中的重要内容之一。

本文将围绕空间向量的定义、向量的共线性与共面性、向量的线性运算以及向量的数量积等知识点展开详细论述。

一、空间向量的定义空间向量是具有大小和方向的有向线段,可以表示为A→。

空间中的向量通常用坐标表示,比如向量A可以表示为(A₀, A₁, A₂),其中A₀、A₁、A₂分别表示向量A在x、y、z轴上的投影。

二、向量的共线性与共面性1. 共线性空间中的三个向量A→、B→、C→共线的条件是存在实数k₁、k₂,使得A→=k₁B→+k₂C→成立。

此时,向量A、B、C共线。

2. 共面性空间中的四个向量A→、B→、C→、D→共面的条件是存在实数k₁、k₂、k₃,使得A→=k₁B→+k₂C→+k₃D→成立。

此时,向量A、B、C、D共面。

三、向量的线性运算1. 向量的加法设有向量A→(A₀, A₁, A₂)和B→(B₀, B₁, B₂),则A→+B→=(A₀+B₀, A₁+B₁, A₂+B₂)。

2. 向量的减法设有向量A→(A₀, A₁, A₂)和B→(B₀, B₁, B₂),则A→-B→=(A₀-B₀, A₁-B₁, A₂-B₂)。

3. 向量的数乘设有向量A→(A₀, A₁, A₂)和实数k,则kA→=(kA₀, kA₁, kA₂)。

四、向量的数量积1. 定义向量A→(A₀, A₁, A₂)和向量B→(B₀, B₁, B₂)的数量积记为A→·B→=A₀B₀+A₁B₁+A₂B₂。

数量积是一种标量。

2. 性质(1) A→·B→=B→·A→;即数量积的交换律成立。

(2) A→·(B→+C→)=A→·B→+A→·C→;即数量积的分配律成立。

(3) k(A→·B→)=(kA→)·B→=A→·(kB→);即数量积的数乘性质成立。

五、空间向量的应用1. 三角关系的解题空间向量可以用于解决三角关系的几何问题。

高中数学-空间向量的应用

高中数学-空间向量的应用

第4讲空间向量的应用知识梳理1.空间中任意一条直线l的位置可以由l上一个定点以及一个向量确定,这个向量叫做直线的方向向量.2.若直线l垂直于平面α,取直线l的方向向量a,则a⊥α,则a叫做平面α的法向量.3.(1)线线垂直:设直线l,m的方向向量分别为a,b,则l⊥m⇔a⊥b⇔a·b=0.(2)线面垂直:设直线l的方向向量为a,平面α的法向量为u,则l⊥α⇔a∥u⇔a=k u,k∈R.(3)面面垂直:若平面α的法向量为u,平面β的法向量为ν,则α⊥β⇔u⊥ν⇔u·ν=0.4.设两异面直线所成的角为θ,它们的方向向量分别为a,b,则cos θ=|a·b||a||b|.5.设直线l与平面α所成的角为θ,直线l的方向向量为a,平面α的法向量为n,则sin θ=|cos〈a,n〉|=|a·n||a||n|.6.设二面角α-l-β的平面角为θ,平面α,β的法向量分别为n1,n2,则|cos θ|=|n1·n2| |n1||n2|.考点题型知识点1 直线的方向向量与平面的法向量【例1-1】(焦作期末)若点,在直线l上,则直线l的一个方向向量为A. B. C. D.【例1-2】(广州期末)设是直线l的方向向量,是平面的法向量,则A. B. C. 或 D. 或【变式训练1-1】(沙坪坝区校级模拟)若直线l的方向向量为,平面的法向量为,则能使的是A. B.C. D.【变式训练1-2】(东阳市模拟)已知,,分别是平面,,的法向量,则,,三个平面中互相垂直的有A. 3对B. 2对C. 1对D. 0对知识点2 用空间向量研究直线、平面的平行关系【例2-1】(浙江模拟)已知在正四棱柱中,,,点E为的中点,点F为的中点.求证:.【例2-2】(柯城区校级模拟)如图,在底面为平行四边形的四棱锥中,,平面ABCD,且,点E是PD的中点.求证:平面AEC.【例2-3】(金华期末)如图,已知棱长为4的正方体中,M,N,E,F分别是棱,,,的中点,求证:平面平面EFBD.【变式训练2-1】(宿迁期末)如图,在长方体中,,,,点P在棱上,且,点S在棱上,且,点Q、R分别是棱、AE的中点.求证:.【变式训练2-2】(朝阳区期末)已知正方体的棱长为2,E,F分别是,的中点,求证:平面ADE;平面平面F.知识点3 用空间向量研究直线、平面的垂直关系【例3-1】(扬州期末)如图,在四棱锥中,底面ABCD为直角梯形,,,底面ABCD,且,M为PC的中点.求证:【例3-2】(上城区校级模拟)如图所示,在正方体中,E,F分别是,DC的中点,求证:平面F.【例3-3】(点军区校级月考)如图,在五面体ABCDEF中,平面ABCD,,,M为EC的中点,求证:平面平面CDE.【变式训练3-1】(三明模拟)已知空间四边形ABCD中,,,求证:.【变式训练3-2】(镇海区校级模拟)如图,在四棱锥中,底面ABCD是矩形且,,底面ABCD,E是AD的中点,F在PC上.F在何处时,平面PBC?【变式训练3-3】(未央区校级月考)在四面体ABCD中,平面BCD,,,,E,F分别是AC,AD的中点,求证:平面平面ABC.知识点4 用空间向量研究空间中的距离问题【例4-1】(海淀区校级期末)如图,已知正方形ABCD的边长为1,平面ABCD,且,E,F分别为AB,BC的中点.求点D到平面PEF的距离;求直线AC到平面PEF的距离.(房山区期末)如图,在四棱锥中,平面ABCD,,【变式训练4-1】,,.求点D到平面PBC的距离;求点A到平面PBC的距离.知识点5 用空间向量研究空间中的夹角问题【例5-1】(宝山区校级期末)如图,ABCD为矩形,AB=2,AD=4,P A⊥面ABCD,P A=3,求异面直线PB与AC所成角的余弦值.【例5-2】(常州期末)已知在正三棱柱ABC-A1B1C1中,侧棱长与底面边长相等,求AB1与侧面ACC1A1所成角的正弦值.【例5-3】(漳州三模)已知,P A⊥平面ABC,AC⊥BC,P A=AC=1,BC= 2.求二面角A-PB-C的余弦值.【变式训练5-1】(沭阳县期中)如图,在正四棱柱中,,,点M是BC 的中点.求异面直线与DM所成角的余弦值求直线与平面所成角的正弦值求平面与平面ABCD所成角的正弦值.A组-[应知应会]1.(杨浦区校级期中)若直线l的方向向量为0,,平面的法向量为0,,则A. B. C. D. l与斜交2. (安徽模拟)已知,,,则向量与向量的夹角为A. B. C. D.3. (闵行区校级模拟)已知四边形ABCD是直角梯形,,平面ABCD,,则SC与平面ABCD所成的角的余弦值为A. B. C. D.4. (贵阳模拟)在正方体中,棱长为a,M,N分别为和AC上的点,,则MN与平面的位置关系是A. 垂直B. 相交C. 平行D. 不能确定5.(温州期末)如图,在长方体中,,E为CD的中点,点P在棱上,且平面,则AP的长为A.B.C. 1D. 与AB的长有关6.(鼓楼区校级模拟)二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知,,,,则该二面角的大小为A. B. C. D.7.(和平区校级二模)如图所示,在正方体中,点P是棱AB上的动点点可以运动到端点A和B,设在运动过程中,平面与平面所成的最小角为,则A.B.C.D.8. (多选)(东阳市模拟)已知点P是平行四边形ABCD所在的平面外一点,如果,2,,2,,下列结论正确的有A. B.C. 是平面ABCD的一个法向量D.9.(江苏模拟)已知,,若,,且平面ABC,则y,等于________.10.(南通模拟)已知正三棱柱的各条棱长都相等,M是侧棱的中点,则向量与所成角的大小是.11.(清江浦区校级模拟)在四棱锥中,底面ABCD,底面ABCD是正方形,且,G为的重心,则PG与底面ABCD所成角的正弦值为.12.(沭阳县期中)在四棱锥中,底面ABCD为矩形,侧棱底面ABCD,,E为PD的中点,点N在面PAC内,且平面PAC,则点N到AB的距离为__________13.(滨海新区模拟)如图,在四棱锥中,底面ABCD为平行四边形,,,底面ABCD,,则二面角的余弦值为________.14.(浦东新区校级月考)如图,在正方体中,E为的中点,求异面直线CE 与BD所成的角.15.(江宁区校级月考)如图,四边形ABCD是正方形,平面ABCD,,,,F为PD的中点.求证:;求证:平面PEC.16.(临泉县校级月考)正方体中,E,F分别是,CD的中点.求证:平面平面;在AE上求一点M,使得平面DAE.17. (兴宁区校级期末)如图,在四棱锥中,底面ABCD为直角梯形,,且,平面ABCD.求直线PB与平面PCD所成角的正弦值;在棱PD上是否存在一点E使得?若存在,求AE的长;若不存在,请说明理由.18. (沙坪坝区校级期末)如图,正三棱柱的底面边长是2,侧棱长是,D是AC的中点.求二面角的大小.在线段上是否存在一点E,使得平面平面若存在,求出AE的长若不存在,说明理由.1.(齐齐哈尔期末)如图,在圆锥SO中,A,B是上的动点,是的直径,M,N是SB的两个三等分点,,记二面角,的平面角分别为,,若,则的最大值是A. B. C. D.2.(如皋市期末)如图,在长方体中,E是的中点,点F是AD上一点,,,,动点P在上底面上,且满足三棱锥的体积等于1,则直线CP与所成角的正切值的最小值为________.。

空间向量的基本定理

空间向量的基本定理

空间向量的基本定理空间向量的基本定理是高中数学中的一个重要内容,它涉及到空间向量的表示、运算和应用。

本文将从以下几个方面介绍空间向量的基本定理:一、空间向量的概念和性质1.1 空间向量的定义空间向量是指空间中具有大小和方向的量,它可以用一个有向线段来表示。

有向线段的起点叫做向量的始点,终点叫做向量的终点,箭头表示向量的方向。

用字母 a, b, c 等表示向量,用 AB 表示以 A 为始点,B 为终点的向量。

1.2 空间向量的相等如果两个向量的长度相等且方向相同,那么这两个向量就是相等的。

相等的向量可以用平行移动的方法来判断,即如果一个向量平行移动后与另一个向量重合,那么这两个向量就是相等的。

例如,AB 和 CD 是相等的,因为 AB 平行移动后与 CD 重合。

1.3 空间向量的线性运算空间向量可以进行加法、减法和数乘三种线性运算,它们遵循以下法则:加法交换律:→a +→b =→b +→a加法结合律:(→a +→b )+→c =→a +(→b +→c )减法定义:→a −→b =→a +(−→b )数乘交换律:k →a =→ak 数乘结合律:(k 1k 2)→a =k 1(k 2→a )数乘分配律:(k 1+k 2)→a =k 1→a +k 2→a 和 k (→a +→b )=k →a +k →b空间向量的加法和减法可以用三角形法则或平行四边形法则来进行几何表示。

空间向量的数乘可以理解为对向量的长度和方向进行缩放,即数乘后的向量与原向量平行,长度为原长度与数乘因子的乘积,方向由数乘因子的正负决定。

例如,2→a 是 →a 的两倍长且同方向的向量,−12→b 是 →b 的一半长且反方向的向量。

二、空间坐标系和空间向量的坐标表示2.1 空间直角坐标系为了在空间中确定任意一点或任意一个向量的位置,我们需要建立一个参照系。

在数学中,我们常用空间直角坐标系来作为参照系。

空间直角坐标系由三条互相垂直且相交于原点 O 的坐标轴组成,分别称为 x 轴、y 轴和 z 轴。

空间向量知识点

空间向量知识点

空间向量知识点空间向量是高中数学中的重要内容之一,它是几何向量的推广和扩展。

了解空间向量的基本概念和性质,有助于我们更好地理解和应用向量。

一、空间向量的基本概念空间向量是指具有大小和方向的量,它是空间中的一条有向线段。

空间向量用矢量表示,通常用字母a、b、c等表示。

空间向量有以下几个基本要素:1. 大小:空间向量的大小通常用线段的长度表示,即向量的模或长度,记作|a|。

2. 方向:空间向量的方向通常用线段的方向表示,可以用射线或箭头表示。

3. 终点:空间向量的终点用有序的三元组(x, y, z)表示,表示向量在三维坐标系中的终点位置。

二、空间向量的运算1. 加法:空间中的向量加法满足交换律和结合律,即(a+b)+c=a+(b+c),a+b=b+a。

向量相加的结果是两个向量的平行四边形的对角线。

2. 减法:向量减法等价于向量的相反数与向量的加法,即a-b=a+(-b)。

向量相减的结果是连接两个向量起点和终点的线段。

3. 数乘:向量与一个实数k的乘积,记作ka,可以改变向量的大小和方向,当k<0时,向量的方向相反。

三、空间向量的表示方法空间向量有多种表示方法:1. 平行四边形法表示:即将向量的起点与坐标系原点重合,终点与坐标系中某点重合,计算该点的坐标进行表示。

2. 数量对表示:使用有序数对(x,y,z)表示向量的平行于坐标轴的分量。

3. 距离表示:使用两点之间的距离来表示向量的大小。

4. 方向角表示:使用与坐标轴的夹角来表示向量的方向。

四、空间向量的性质1. 平行关系:若a和b平行,则存在实数k使得a=k*b。

2. 垂直关系:若a和b垂直,则a·b=0,即a和b的数量积为0。

3. 长度关系:向量的模或长度与其坐标分量相关,可以使用勾股定理计算。

4. 重要定理:向量a、向量b和向量c组成平面三角形的面积等于以向量a和向量b为两边的平行四边形的面积的一半。

空间向量不仅在数学中有重要的应用,还广泛应用于物理、工程等领域。

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点在高中数学的学习中,空间向量是一个重要的知识点,它为我们解决空间几何问题提供了全新的思路和方法。

接下来,就让我们一起深入了解一下空间向量的相关知识。

一、空间向量的基本概念空间向量是指具有大小和方向的量。

它与平面向量类似,但存在于三维空间中。

一个空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

空间向量的坐标表示:在空间直角坐标系中,若向量的起点坐标为\((x_1,y_1,z_1)\),终点坐标为\((x_2,y_2,z_2)\),则该向量的坐标为\((x_2 x_1, y_2 y_1, z_2 z_1)\)。

零向量:长度为\(0\)的向量,其方向任意。

单位向量:长度为\(1\)的向量。

二、空间向量的运算1、加法和减法空间向量的加法和减法运算遵循三角形法则和平行四边形法则。

若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} +\overrightarrow{b} =(x_1 + x_2, y_1 + y_2, z_1 + z_2)\),\(\overrightarrow{a} \overrightarrow{b} =(x_1 x_2, y_1 y_2, z_1z_2)\)2、数乘运算若\(\lambda\)为实数,\(\overrightarrow{a} =(x,y,z)\),则\(\lambda\overrightarrow{a} =(\lambda x, \lambda y, \lambda z)\)数乘运算的规律:\(\lambda (\overrightarrow{a} +\overrightarrow{b})=\lambda\overrightarrow{a} +\lambda\overrightarrow{b}\)3、数量积空间向量的数量积\(\overrightarrow{a} \cdot \overrightarrow{b} =|\overrightarrow{a}||\overrightarrow{b}|\cos <\overrightarrow{a},\overrightarrow{b}>\)若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} \cdot \overrightarrow{b} = x_1x_2 + y_1y_2 + z_1z_2\)数量积的性质:\(\overrightarrow{a} \perp \overrightarrow{b} \Leftrightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 0\)\(\overrightarrow{a} \cdot \overrightarrow{a} =|\overrightarrow{a}|^2\)4、向量积空间向量的向量积\(\overrightarrow{a} \times \overrightarrow{b}\)是一个向量,其模长为\(|\overrightarrow{a}||\overrightarrow{b}|\sin <\overrightarrow{a},\overrightarrow{b}>\),方向垂直于\(\overrightarrow{a}\)和\(\overrightarrow{b}\)所确定的平面,遵循右手定则。

高中数学必修2--空间向量与立体几何知识点归纳总结

高中数学必修2--空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

高中高三数学《空间向量》教案、教学设计

高中高三数学《空间向量》教案、教学设计
2.通过小组合作、讨论交流,培养学生团队协作能力和解决问题的方法。
3.运用案例教学法,结合实际生活中的空间几何问题,激发学生学习兴趣,提高学生运用空间向量解决实际问题的能力。
4.引导学生运用数形结合思想,将空间向量与空间几何图形相结合,培养学生直观想象和逻辑思维能力。
5.设计丰富的课堂练习,让学生在实际操作中掌握空间向量的运算方法和技巧。
-已知空间向量$\vec{a} = (1, 2, 3)$和$\vec{b} = (4, 5, 6)$,求向量$\vec{a} + \vec{b}$、$\vec{a} - \vec{b}$和$3\vec{a} - 2\vec{b}$的坐标表示。
-设点A(2, 3, 4)和点B(5, 6, 7),向量$\vec{v} = (x, y, z)$,若$\vec{v}$与向量$\vec{AB}$垂直,求$\vec{v}$的坐标。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生探索空间几何问题的热情。
2.培养学生严谨求实的科学态度,让学生在解决问题的过程中,体验数学的简洁美和逻辑美。
3.培养学生勇于挑战困难、克服挫折的精神,增强自信心。
4.引导学生认识到数学知识在科学技术、生产生活中的重要应用,增强学生的社会责任感和使命感。
(二)教学设想
1.针对教学重点和难点,采用以下教学策略:
-通过引入生动的实际案例,激发学生学习兴趣,引导学生从二维空间向三维空间过渡;
-采用多媒体教学手段,如动画、模型等,帮助学生建立空间想象力,降低学习难度;
-设计层次分明的教学活动,逐步引导学生掌握空间向量的性质、运算和应用;
-加强课堂练习,及时反馈,针对学生的错误进行有针对性的指导。
2.教学过程设想:

高中数学空间向量

高中数学空间向量

1、空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)空间的两个向量可用同一平面内的两条有向线段来表示。

2、空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

;;运算律:⑴加法交换律:⑵加法结合律:⑶数乘分配律:3、共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作。

当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线。

(2)共线向量定理:空间任意两个向量、(≠),//存在实数λ,使=λ。

4、共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量不共线,与向量共面的条件是存在实数使。

5、空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使。

若三向量不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使。

6、空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标。

(2)若空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表示。

(3)空间向量的直角坐标运算律:①若,,则,,,,,。

②若,,则。

一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

(4)模长公式:若,,则,(5)夹角公式:。

(6)两点间的距离公式:若,,则,或7、空间向量的数量积。

(1)空间向量的夹角及其表示:已知两非零向量,在空间任取一点,作,则叫做向量与的夹角,记作;且规定,显然有;若,则称与互相垂直,记作:。

高中数学知识点总结大全空间向量与立体几何

高中数学知识点总结大全空间向量与立体几何

高中数学知识点总结空间向量与立体几何一、考点概要:1、空间向量及其运算〔1〕空间向量的根本知识:①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。

②空间向量根本定理:ⅰ定理:如果三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。

且把叫做空间的一个基底,都叫基向量。

ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。

ⅲ单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。

ⅳ空间四点共面:设O、A、B、C是不共面的四点,那么对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。

③共线向量〔平行向量〕:ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量,记作。

ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数λ,使。

④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。

ⅱ向量与平面平行:如果直线OA平行于平面或在α内,那么说向量平行于平面α,记作。

平行于同一平面的向量,也是共面向量。

ⅲ共面向量定理:如果两个向量、不共线,那么向量与向量、共面的充要条件是:存在实数对x、y,使。

ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。

ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。

⑤空间两向量的夹角:两个非零向量、,在空间任取一点O,作,〔两个向量的起点一定要相同〕,那么叫做向量与的夹角,记作,且。

⑥两个向量的数量积:ⅰ定义:空间两个非零向量、,那么叫做向量、的数量积,记作,即:。

高中数学第1部分第3章3.1空间向量及其运算3.1.1空间向量及其线性运算讲义含解析苏教版选修2_1

高中数学第1部分第3章3.1空间向量及其运算3.1.1空间向量及其线性运算讲义含解析苏教版选修2_1

3.1.1 空间向量及其线性运算[对应学生用书P48]春节期间,我国南方遭受了寒潮袭击,大风降温天气频发,已知某人某天骑车以a km/h 的速度向东行驶,感到风是从正北方向吹来.问题:某人骑车的速度和风速是空间向量吗?提示:是.1.空间向量(1)定义:在空间中,既有大小又有方向的量,叫做空间向量.(2)表示方法:空间向量用有向线段表示,并且空间任意两个向量都可以用同一平面内的两条有向线段表示.2.相等向量凡是方向相同且长度相等的有向线段都表示同一向量或者相等向量.问题1:如何进行平面向量的加法、减法及数乘运算.提示:利用平行四边形法则、三角形法则等.问题2:平面向量的加法及数乘向量满足哪些运算律?提示:交换律、结合律、分配律.1.空间向量的加减运算和数乘运算=+=a+b,=-=a-b,=λa(λ∈R).2.空间向量的加法和数乘运算满足如下运算律(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c);(3)分配律:λ(a+b)=λa+λb(λ∈R).空间中有向量a,b,c(均为非零向量).问题1:向量a与b共线的条件是什么?提示:存在惟一实数λ,使a=λb.问题2:空间中任意两个向量一定共面吗?任意三个向量呢?提示:一定;不一定.1.共线向量或平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.向量a与b平行,记作a∥b.规定,零向量与任何向量共线.2.共线向量定理对空间任意两个向量a,b(a≠0),b与a共线的充要条件是存在实数λ,使b=λa.1.空间向量的加法满足平行四边形和三角形法则.2.空间向量的数乘运算是线性运算的一种,结果仍是一个向量,方向取决于λ的正负,模为原向量模的|λ|倍.3.两向量共线,两向量所在的直线不一定共线,可能平行.[对应学生用书P49][例1] 下列四个命题:(1)所有的单位向量都相等;(2)方向相反的两个向量是相反向量;(3)若a、b满足|a|>|b|,且a、b同向,则a>b;(4)零向量没有方向.其中不正确的命题的序号为________.[思路点拨] 根据空间向量的概念进行逐一判断,得出结论.[精解详析] 对于(1):单位向量是指长度等于1个单位长度的向量,而其方向不一定相同,它不符合相等向量的定义,故(1)错;对于(2):长度相等且方向相反的两个向量是相反向量,故(2)错;对于(3):向量是不能比较大小的,故不正确;对于(4):零向量有方向,只是没有确定的方向,故(4)错.[答案] (1)(2)(3)(4)[一点通]1.因为空间任何两个向量都可以平移到同一平面上,故空间的两个向量间的关系都可以转化为平面向量来解决.2.对于有关向量基本概念的考查,可以从概念的特征入手,也可以通过举出反例而排除或否定相关命题。

空间向量知识点总结

空间向量知识点总结

空间向量知识点总结空间向量是高中数学中的重要内容,它为解决立体几何问题提供了一种全新的思路和方法。

下面我们来对空间向量的相关知识点进行一个系统的总结。

一、空间向量的基本概念1、空间向量的定义在空间中,具有大小和方向的量称为空间向量。

2、空间向量的表示空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

向量通常用小写字母加箭头表示,如\(\vec{a}\)。

3、空间向量的模空间向量\(\vec{a}\)的模(长度)记作\(|\vec{a}|\),其计算公式为\(|\vec{a}|=\sqrt{a_1^2 + a_2^2 + a_3^2}\)(假设\(\vec{a} =(a_1, a_2, a_3)\))。

4、零向量长度为\(0\)的向量称为零向量,记作\(\vec{0}\),其方向是任意的。

5、单位向量模为\(1\)的向量称为单位向量。

若\(\vec{a}\)是非零向量,则与\(\vec{a}\)同向的单位向量为\(\frac{\vec{a}}{|\vec{a}|}\)。

6、相等向量长度相等且方向相同的向量称为相等向量。

7、相反向量长度相等但方向相反的向量称为相反向量。

二、空间向量的运算1、加法空间向量的加法满足三角形法则和平行四边形法则。

设\(\vec{a}\)、\(\vec{b}\)为两个空间向量,则它们的和向量\(\vec{c} =\vec{a} +\vec{b}\)。

2、减法空间向量的减法是加法的逆运算,\(\vec{a} \vec{b} =\vec{a} +(\vec{b})\)。

3、数乘运算实数\(\lambda\)与空间向量\(\vec{a}\)的乘积\(\lambda\vec{a}\)仍然是一个向量。

当\(\lambda > 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)同向;当\(\lambda < 0\)时,\(\lambda\vec{a}\)与\(\vec{a}\)反向;当\(\lambda =0\)时,\(\lambda\vec{a} =\vec{0}\)。

高中数学空间向量

高中数学空间向量

第6讲空间向量及其运算最新考纲 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;2.掌握空间向量的线性运算及其坐标表示;3.掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.知识梳理1.空间向量的有关概念名称定义空间向量在空间中,具有大小和方向的量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量(或平行向量)表示空间向量的有向线段所在的直线互相平行或重合的向量共面向量平行于同一个平面的向量(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是[0,π],若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②非零向量a ,b 的数量积a·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律: ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).垂直 a·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0) cos 〈a ,b 〉=错误!诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)空间中任意两非零向量a ,b 共面( )(2)对任意两个空间向量a ,b ,若a·b =0,则a ⊥b ( ) (3)若{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量( )(4)若a·b <0,则〈a ,b 〉是钝角( )2.在空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A.垂直 B.平行C.异面D.相交但不垂直3.(选修2-1P97A2改编)如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA →1=c ,则下列向量中与BM→相等的向量是( ) A.-12a +12b +c B.12a +12b +c C.-12a -12b +cD.12a -12b +c4.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.5.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C 四点共面,则实数t =________.考点一 空间向量的线性运算【例1】 如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP→;(2)MP →+NC 1→.【训练1】 (2017·上饶期中)如图,三棱锥O -ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM→=( ) A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )考点二 共线定理、共面定理的应用【例2】 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证: (1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .【训练2】 已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →). (1)判断MA→,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 考点三 空间向量数量积的应用【例3】 如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点. (1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值. 【训练3】 如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.其它向量,向量运算转化为基向量的运算.[易错防范]1.在利用MN→=xAB →+yAC →①证明MN ∥平面ABC 时,必须说明M 点或N 点不在面ABC 内(因为①式只表示MN →与AB →,AC →共面).2.求异面直线所成角,一般可转化为两向量夹角,但要注意两种角范围不同,注意两者关系,合理转化.3.找两个向量的夹角,应使两个向量具有同一起点,不要误找成它的补角.4.a ·b <0不等价为〈a ,b 〉为钝角,因为〈a ,b 〉可能为180°; a ·b >0不等价为〈a ,b 〉为锐角,因为〈a ,b 〉可能为0°.基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·黄冈模拟)已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于( ) A.32B.-2C.0D.32或-22.(2017·海南模拟)在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为( ) A.19B.459C.259D.233.空间四边形ABCD 的各边和对角线均相等,E 是BC 的中点,那么( )A.AE→·BC →<AE →·CD → B.AE→·BC →=AE →·CD → C.AE→·BC →>AE →·CD → D.AE→·BC →与AE →·CD →的大小不能比较 4.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值是( ) A.-1B.43C.53D.755.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( ) A.a 2B.12a 2C.14a 2D.34a 2二、填空题6.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.7.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 中点,则EF 的长为________.8.(2017·南昌调研)已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且MG→=2GN →,现用基底{OA →,OB →,OC →}表示向量OG →,有OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别为________. 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB→,b =AC →. (1)若|c |=3,且c ∥BC→,求向量c . (2)求向量a 与向量b 的夹角的余弦值. 10.如图,在棱长为a 的正方体OABC -O 1A 1B 1C 1中,E ,F 分别是棱AB ,BC 上的动点,且AE =BF =x ,其中0≤x ≤a ,以O 为原点建立空间直角坐标系Oxyz . (1)写出点E ,F 的坐标; (2)求证:A 1F ⊥C 1E ;(3)若A 1,E ,F ,C 1四点共面,求证:A 1F →=12A 1C 1→+A 1E →.。

高中数学空间向量公式大全

高中数学空间向量公式大全

高中数学中,空间向量是一个重要的概念,与之相关的公式较多。

以下是一些主要的空间向量公式:
1.空间向量的模长公式:若向量a = (x1, y1, z1),则其模长|a| = √(x1² + y1² + z1²)。

2.空间向量的数量积公式:若向量a = (x1, y1, z1),向量b = (x2, y2, z2),则它们的数
量积a·b = x1x2 + y1y2 + z1z2。

3.空间向量的夹角公式:cosθ = (a·b) / (|a||b|),其中θ是向量a和向量b之间的夹角,a·b
是它们的数量积,|a|和|b|分别是它们的模长。

4.空间向量的加法公式:若向量a = (x1, y1, z1),向量b = (x2, y2, z2),则它们的和a +
b = (x1 + x2, y1 + y2, z1 + z2)。

5.空间向量的减法公式:若向量a = (x1, y1, z1),向量b = (x2, y2, z2),则它们的差a - b
= (x1 - x2, y1 - y2, z1 - z2)。

6.空间向量的数乘公式:若向量a = (x, y, z),实数λ,则数乘λa = (λx, λy, λz)。

以上是空间向量的基础公式,通过这些公式,可以解决很多与空间向量相关的问题。

请注意,这些公式都基于向量的坐标表示,因此在实际应用中,需要首先确定向量的坐标。

此外,还有一些空间向量的性质,如共线向量、共面向量等,这些性质在解决空间几何问题时非常有用。

如果需要更详细的信息,建议查阅高中数学教材或相关资料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量一、向量的基本概念与运算1.定义:在空间内,把具有大小和方向的量叫空间向量,可用有向线段来表示.用同向且等长的有向线段表示同一向量或相等的向量.2.零向量:起点与终点重合的向量叫做零向量,记为0或0.3.书写:在手写向量时,在字母上方加上箭头,如a ,AB .4.模:表示向量a 的有向线段的长度叫做向量的长度或模,记作||a5.方向:有向线段的方向表示向量的方向.6.基线:有向线段所在的直线叫做向量的基线.7.平行向量:如果空间中一些向量的基线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记为a b ∥.8.向量运算:与平面向量类似;二、空间向量的基本定理1.共线向量定理:对空间两个向量a ,b (0b ≠),a b ∥的充要条件是存在实数x ,使a xb =.2.共面向量:通常我们把平行于同一平面的向量,叫做共面向量.3.共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是,存在唯一的一对实数x ,y ,使c xa yb =+.4.空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p xa yb zc =++.表达式xa yb zc ++,叫做向量a ,b ,c 的线性表示式或线性组合.注:上述定理中,a ,b ,c 叫做空间的一个基底,记作{}a b c ,,,其中a b c ,,都叫做基向量.由此定理知,空间任意三个不共面的向量都可以构成空间的一个基底.三、向量的数量积1.两个向量的夹角已知两个非零向量a b ,,在空间任取一点O ,作OA a =,OB b =,则AOB ∠叫做向量a 与b 的夹角,记作a b 〈〉,.通常规定0πa b 〈〉≤,≤.在这个规定下,两个向量的夹角就被唯一确定了,并且a b b a 〈〉=〈〉,,.如果90a b 〈〉=,°,则称a 与b 互相垂直,记作a b ⊥. 2.两个向量的数量积已知空间两个向量a ,b ,定义它们的数量积(或内积)为:||||cos a b a b a b ⋅=〈〉,空间两个向量的数量积具有如下性质: 1)||cos a e a a e ⋅=〈〉,;(2)0ab a b ⇔⋅=;(3)2||a a a =⋅;(4)a b a b ⋅||≤||||. 空间两个向量的数量积满足如下运算律:1)()()a b a b λλ⋅=⋅;(2)a b b a ⋅=⋅;(3)()a b c a c b c +⋅=⋅+⋅.四、空间向量的直角坐标运算前提:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i j k ,,,这三个互相垂直的单位向量构成空间向量的一个基底{}i j k ,,,这个基底叫做单位正交基底.空间直角坐标系Oxyz ,也常说成空间直角坐标系[]O i j k ;,,. 1.坐标在空间直角坐标系中,已知任一向量a ,根据空间向量分解定理,存在唯一数组123()a a a ,,,使123a a i a j a k =++,1a i ,2a j ,3a k 分别叫做向量a 在i j k ,,方向上的分量,有序实数组123()a a a ,,叫做向量a 在此直角坐标系中的坐标.上式可以简记作123()a a a a =,,.若123()a a a a =,,,123()b b b b =,,, 则:112233()a b a b a b a b +=+++,,;112233()a b a b a b a b -=---,,;123()a a a a λλλλ=,,;112233a b a b a b a b ⋅=++.注:一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.2. 空间向量的平行和垂直的条件:设111()a a b c =,,,123()b b b b =,,, a b ∥(0b ≠)a b λ⇔=112233a b a b a bλλλ=⎧⎪⇔=⎨⎪=⎩;11223300ab a b a b a b a b ⇔⋅=⇔++=.两个向量的夹角与向量的长度的坐标计算公式:2212||a a a a a a =⋅=++21||b b b b =⋅=+ 21cos ||||a b a b a b a ⋅〈〉==,.五、位置向量定义:已知向量a ,在空间固定一个基点O ,再作向量OA a =,则点A 在空间的位置就被向量a 所唯一确定了.这时,我们称这个向量为位置向量. 由此,我们可以用向量及其运算来研究空间图形的性质.1.给定一个定点A 和一个向量a ,O 为空间中任一确定的点,B 为直线l 上的点, 则P 在为过点A 且平行于向量a 的直线l 上 ⇔ AP ta = ① ⇔ OP OA ta =+ ② ⇔ (1)OP t OA tOB =-+ ③这三个式子都称为直线l 的向量参数方程.向量a 称为该直线的方向向量. 2.设直线1l 和2l 的方向向量分别为1v 和2v ,12l l ∥(或1l 与2l 重合)12v v ⇔∥;12l l 12v v ⇔.若向量1v 和2v 是两个不共线的向量,且都平行于平面α(即向量的基线与平面平行或在平面内),直线l 的一个方向向量为v ,则l α∥或l 在α内⇔存在两个实数x y ,,使12v xv yv =+.六、异面直线所成的角1.定义:过空间任意一点O 分别做异面直线a 与b 的平行线'a 与'b ,那么直线'a 与'b 所成的不大于90︒的角,叫做异面直线a 与b 所成的角.2.异面直线所成角的向量公式:两条异面直线a 与b 的方向向量m 与n ,当m 与n 的夹角不大于90︒,异面直线a b ,所成的角θ与m 和n 的夹角相等;当m 与n 的夹角大于90︒,异面直线a b ,所成的角与m 和n 的夹角互补.所以直线a b ,所成的角θ的余弦值为m n m n⋅.七、直线和平面所成的角1.定义:平面的斜线与它在平面上的射影所成的角叫做这条斜线与平面所成的角.2.直线与平面所成角的向量公式:直线a 的方向向量与平面α的法向量分别为m 和n ,若m 与n 的夹角不大于90︒,直线a 与平面α所成的角等于m 与n 夹角的余角,若m 与n 的夹角大于90︒,直线a 与平面所成的角等于m 与n 夹角的补角的余角,所以直线a 与平面α所成的角θ的正弦值为m n m n⋅.八、平面和平面所成的角1.定义:过二面角l αβ--棱上任意一点O 做垂直于棱l 的夹角与平面αβ,的交线分别为OA OB ,,那么AOB ∠叫做二面角l αβ--的平面角.2.平面与平面所成角的向量公式:平面α与β的法向量分别为m 和n ,则二面角与m n ,的夹角θ相等或互补.当二面角l αβ--大于90︒时,则二面角arccosm n m nθπ⋅=-;当二面角l αβ--不大于90︒时,则二面角arccos m n m nθ⋅=;一.选择题(共15小题)1.(2018•奉贤区二模)设直线l 的一个方向向量d →=(6,2,3),平面α的一个法向量n →=(﹣1,3,0),则直线l 与平面α的位置关系是( ) A .垂直B .平行C .直线l 在平面α内D .直线l 在平面α内或平行2.(2018•梅州二模)过正方体ABCD ﹣A 1B 1C 1D 1的顶点A 作平面α,使棱AB ,AD ,AA 1所在直线与平面α所成角都相等,则这样的平面α可以作( ) A .1个 B .2个 C .3个D .4个3.(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .3√34B .2√33C .3√24D .√324.(2018•浙江模拟)在三棱锥O ﹣ABC 中,若D 为BC 的中点,则AD →=( ) A .12OA →+12OC →﹣OB →B .12OA →+12OB →+OC →C .12OB →+12OC →﹣OA →D .12OB →+12OC →+OA →5.(2018•全国)若四面体棱长都相等,则相邻两侧面所成的二面角的余弦值为()A.14B.13C.12D.236.(2018•城关区校级模拟)在棱长为1的正方体ABCD﹣A1B1C1D1中,M是对角线A1D上的一点,过M且与平面A1ACC1平行的平面与对角线CD1交于点N,则|MN|的最小值为()A.13B.√3C.√33D.2√337.(2018•金华模拟)如图,若三棱锥A﹣BCD的侧面ABC内一动点P到底面BCD 的距离与到点A的距离之比为正常数λ,且动点P的轨迹是抛物线,则二面角A ﹣BC﹣D平面角的余弦值为()A .λB .√1−λ2C .1λD .√1−1λ28.(2018•西城区一模)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,BC=1,点P 在侧面A 1ABB 1上.满足到直线AA 1和CD 的距离相等的点P ( )A .不存在B .恰有1个C .恰有2个D .有无数个9.(2017秋•和平区期末)已知向量a →=(2,4,5),b →=(3,x ,y ),分别是直线l 1、l 2 的方向向量,若l 1∥l 2,则( ) A .x=6,y=15B .x=3,y=15C .x=83,y=103D .x=6,y=15210.(2018•新疆一模)在空间中,与边长均为3cm 的△ABC 的三个顶点距离均为1cm 的平面的个数为( ) A .2 B .4C .6D .811.(2018•淮南二模)在平面四边形ABCD中,AD=AB=2,CD=CB=√6,且AD⊥AB,现将△ABD沿着对角线BD翻折成△A′BD,则在△A′BD折起至转到平面BCD 内的过程中,直线A′C与平面BCD所成角最大时的正弦值为()A.√55B.√33C.12D.√2212.(2018•浙江模拟)如图,在正方体ABCD﹣A1B1C1D1中,直线A1C与平面ABCD 所成角的余弦值是()A.13B.√33C.23D.√6313.(2018•桃城区校级模拟)某四棱锥的三视图所示,其中每个小格是边长为1的正方形,则最长侧棱与底面所成角的正切值为()A .2√55B .√52C .83D .3214.(2018•赣州二模)已知三棱锥S ﹣ABC ,满足SA ⊥SB ,SA ⊥SC ,SB ⊥BC ,且SA=SB=BC=1,Q 是三棱锥S ﹣ABC 外接球上一动点,则点Q 到平面ABC 的距离最大值为( ) A .√36B .√32C .2√33D .√315.(2018•资阳模拟)如图,二面角α﹣BC ﹣β的大小为π6,AB ⊂α,CD ⊂β,且AB =√2,BC =CD =2,∠ABC =π4,∠BCD =π3,则AD 与β所成角的大小为( )A .π4B .π3C .π6D .π12。

相关文档
最新文档