广东省珠海市2020-2021学年高二下学期期末学业质量监测数学理试题
2020-2021学年广东省珠海市高二(下)期末数学试卷(文科)(解析版)
可得存在实数 t= 0,使得任意实数 x,均有 f( t)﹣ h( t)≤ f( x)﹣ h(x),故( 4)正
确.
故选: C.
二、填空题(本大题共 8 小题,每小题 5 分,满分 40 分 .请将答案填在答题卡相应位置) 13.【解答】 解:由题意得: x﹣1> 0,
解得: x> 1,
第 7 页(共 12 页)
即有﹣ 3﹣ m=﹣ t,﹣ 3=﹣ t﹣1,﹣ 3=﹣ 1﹣ m﹣ n,
解得 t= 2, m=﹣ 1, n=3,
故选: D . 12.【解答】 解:函数 f (x)= e2x, h( x)= 2x+2,
由 y= f( x)﹣ h( x)= e2x﹣2x﹣ 2, 导数为 y′= 2e2x﹣ 2,
当 x> 0 时,函数 y 递增; x<0 时,函数 y 递减,
x
2
4
5
6
8
y
30
60
70
90
100
( 1)求 y 关于 x 的回归直线方程;
( 2)预测当售货机上产品投入的广告费为 1000 元时的销售额是多少?
3
2
23.( 10 分)已知函数 f(x)= 2x +2ax +bx+c 在 x=﹣ 与 x= 1 时都取得极值.
( 1)求 a、 b 的值与函数 f( x)的单调区间; ( 2)若对 x∈[ ﹣ 1, 2],不等式 f( x)< c2 恒成立,求 c 的取值范围.
2x
e
,h(
x)=
2x+2
,对于下列语句,正确的个数是(
)
( 1) f( x)> h( x)恒成立;
( 2)存在实数 x1, x2,使得 f( x1)< h( x2)成立;
2020年珠海市名校数学高二下期末学业水平测试试题含解析
2020年珠海市名校数学高二下期末学业水平测试试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为12y x =±,则焦点到渐近线的距离为( ) A .1 BC .2D.【答案】A 【解析】 【分析】首先根据双曲线的焦距得到c =.【详解】由题知:2c =,c =,2F .2F 到直线20x y -=的距离1d ==.故选:A 【点睛】本题主要考查双曲线的几何性质,同时考查了点到直线的距离公式,属于简单题.2.设数列{}n a 是单调递减的等差数列,前三项的和为12,前三项的积为28,则1a =() A.1B.4C.7D.1或7 【答案】C 【解析】 试题分析:123212331228a a a a a a a ++==⎧⎨⋅⋅=⎩,所以131387a a a a +=⎧⎨⋅=⎩,因为递减数列,所以0d <,解得1371a a =⎧⎨=⎩。
考点:等差数列3.已知双曲线2222:1(0,0)x y M a b a b-=>>的一条渐近线与y 轴所形成的锐角为30︒,则双曲线M 的离心率为( ) ABC .2 D或2 【答案】C 【解析】 【分析】转化条件得b a =e =即可得解.【详解】由题意可知双曲线的渐近线为by x a=±, 又 渐近线与y 轴所形成的锐角为30︒,∴tan 603ba==∴双曲线离心率2e ==. 故选:C. 【点睛】本题考查了双曲线的性质,属于基础题.4.设m ,n 为两条不同的直线,α,β为两个不同的平面,则( ) A .若//m α,//n α,则//m n B .若//m α,//m β,则//αβ C .若//m n ,n α⊥,则m α⊥ D .若//m α,αβ⊥,则m β⊥【答案】C 【解析】 【分析】根据空间线面关系、面面关系及其平行、垂直的性质定理进行判断. 【详解】对于A 选项,若//m α,//n α,则m 与n 平行、相交、异面都可以,位置关系不确定; 对于B 选项,若l αβ=,且//m l ,m α⊄,m β⊄,根据直线与平面平行的判定定理知,//m α,//m β,但α与β不平行;对于C 选项,若//m n ,n α⊥,在平面α内可找到两条相交直线a 、b 使得n a ⊥,n b ⊥,于是可得出m a ⊥,m b ⊥,根据直线与平面垂直的判定定理可得m α⊥;对于D 选项,若αβ⊥,在平面α内可找到一条直线a 与两平面的交线垂直,根据平面与平面垂直的性质定理得知a β⊥,只有当//m a 时,m 才与平面β垂直. 故选C . 【点睛】本题考查空间线面关系以及面面关系有关命题的判断,判断时要根据空间线面、面面平行与垂直的判定与性质定理来进行,考查逻辑推理能力,属于中等题.5.设定点(0,1)F ,动圆D 过点F 且与直线1y =-相切.则动圆圆心D 的轨迹方程为( ) A .24x y = B .22x y = C .24y x = D .22y x =【答案】A 【解析】 【分析】由题意,动圆圆心的轨迹是以F 为焦点的抛物线,求得p ,即可得到答案. 【详解】由题意知,动圆圆心到定点(0,1)F 与到定直线1y =-的距离相等, 所以动圆圆心的轨迹是以F 为焦点的抛物线,则方程为24x y = 故选A 【点睛】本题考查抛物线的定义,属于简单题.6.已知奇函数()f x 的导函数为()f x ',当0x ≠时,()()0f x f x x'+>,若11(),()a f b ef e e e==--,()1c f =,则,,a b c 的大小关系正确的是( )A .a b c <<B .b c a <<C .c a b <<D .a c b <<【答案】D 【解析】 【分析】令()()g x xf x =,则()()()g x f x xf x ''=+,根据题意得到0x >时,函数()g x 单调递增,求得()()11()g e g g e>>,再由函数的奇偶性得到()()b ef e g e =--=,即可作出比较,得到答案.【详解】由题意,令()()g x xf x =,则()()()g x f x xf x ''=+, 因为当0x ≠时,()()0f x f x x'+>,所以当0x >时,()()0f x xf x '+>,即当0x >时,()0g x '>,函数()g x 单调递增, 因为11e e >>,所以()()11()g e g g e>>, 又由函数()f x 为奇函数,所以()()()()g x xf x xf x g x -=--==, 所以()()b ef e g e =--=,所以b c a >>,故选D .【点睛】本题主要考查了利用导数研究函数的单调性及其应用,其中解答中根据题意,构造新函数()()g x xf x =,利用导数求得函数()g x 的单调性和奇偶性是解答的关键,着重考查了分析问题和解答问题的能力,属于难题.7.设函数()f x 满足:()()2e xxf x f x x '+=,()e12f =,则0x >时,()f x ( ) A .有极大值,无极小值 B .有极小值,无极大值 C .既有极大值,又有极小值 D .既无极大值,又无极小值【答案】B 【解析】 【分析】首先构造函数2()()g x x f x =,由已知得2()xg x x e '=,从而有()()2x xe f x f x x-'=()()3233322x x x e x f x x e g x x x --==,令()()3e 2xh x x g x =-,求得()()()323e 2x h x x x g x ''=+-()32e x x x =+,这样可确定()f x '是增函数,由()01f '=可得()f x '的正负,确定()f x 的单调性与极值. 【详解】()()()()222e 2e x x xf x f x x x f x xf x x ''+=⇔+=,令()()2g x x f x =,则()()()222e xg x x f x xf x x ''=+=,所以()()()()32333222x x x xe f x x e x f x x e g x f x x x x---'===, 令()()3e 2xh x x g x =-,则()()()323e2xh x x xg x ''=+-,即()()()322323e2e e xx x h x x xx x x '=+-=+,当0x >时,()0h x '>,()h x 单调递增,而()()1e 210h g =-=, 所以当01x <<时,()0h x <,()0f x '<,()f x 单调递减; 当1x >时,()0h x >,()0f x '>,()f x 单调递增; 故()f x 有极小值()1f ,无极大值,故选B. 【点睛】本题考查用导数研究函数的极值,解题关键是构造新函数,2()()g x x f x =,求导后表示出()f x ',然后再一次令()()3e 2xh x x g x =-,确定单调性,确定正负,得出结论.8.下列四个不等式:①log 10lg 2(1)x x x +>;②a b a b -<+;③2(0)b a ab a b+≠;④121x x -+-≥,其中恒成立的个数是( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】依次判断每个选项的正误,得到答案. 【详解】 ①1log 10lg lg 2(1)lg x x x x x+=+>,当10x =时等号成立,正确 ②a b a b -<+,0b =时不成立,错误③,a b =时等号成立.正确④12(1)(2)1x x x x -+-≥---=,12x ≤≤时等号成立,正确 故答案选C 【点睛】本题考查了不等式性质,绝对值不等式,均值不等式,综合性较强,是不等式的常考题型.9.设点F 和直线l 分别是双曲线()222210,0x y a b a b-=>>的一个焦点和一条渐近线,若F 关于直线l 的对称点恰好落在双曲线上,则该双曲线的离心率为( ) A .2 B 3C 5D 2【答案】C 【解析】 【分析】取双曲线的左焦点为E ,设右焦点为F ,l 为渐近线,l 与渐近线的交点为,A F 关于直线l 的对称点设为P ,连接PE ,运用三角形的中位线定理和双曲线的定义,离心率公式,计算可得所求值.【详解】如图所示,取双曲线的左焦点为E ,设右焦点为F ,l 为渐近线,l 与渐近线的交点为,A F 关于直线l 的对称点设为P ,连接PE ,直线l 与线段PF 的交点为A ,因为点P 与F 关于直线l 对称,则l PF ⊥,且A 为PF 的中点,所以,,22AF b OA a PE AO a ====, 根据双曲线的定义,有2PF PE a -=,则222b a a -=,即2b a =,所以2215c b e a a==+=, 故选:C .【点睛】本题主要考查了双曲线的离心率的求法,注意运用三角形的中位线定理和双曲线的定义,考查化简整理的运算能力,属于中档题.10.已知曲线3y x ax =+在1x =处的切线与直线 4 3y x =+平行,则a 的值为( ) A .-3 B .-1 C .1 D .3【答案】C 【解析】 【分析】由导数的几何意义求出曲线3y x ax =+在1x =处的切线的斜率,根据两直线平行斜率相等即可得到a 的值。
广东省珠海市2019-2020学年高二下学期期末学业质量检测数学试题+扫描版含答案
2
3
4
5
6
珠海市 2019~2020 学年度第二学期高二学业质量监测
数学参考答案 2020.7
一、 选择题
1
2
3
4
5
6
7
8
9
10 11 12
A
C
B
D
B
C
C
B
C
C
C
D
二、填空题
13. 6 17. [1, )
二、 解答题
14. 15 21
18.
10
8
15.
81 4039
19.
4
16. (x2 2x)ex 20. (0, e)
=
3x 3x
1 1
………………………………..4
分
f
(x) =
3 x 3 x
1 = 1 3x 1 1 3x
……………………….6 分
故 f (x) = f (x) ,即当且仅当 a = 1 时, f (x) 为奇函数
(2)由(1)知
f
(x)
=
3x 3x
1 1
…………………………7
分
所以
f
(x)
=
3x 3x
【另解】:由 3x 1 0 得 f (x) 定义域为 R …………………..1 分 f (x) 为奇函数,所以 f (x) = f (x) 对任意的 x R 恒成立……2 分 所以 f (0) = 0 1 a = 0 ,所以 a = 1 ………………………….3 分
2
7
当
a
=
1 时,
f
(x)
期望. 下面的临界表供参考:
P K 2 k0 0.15
2020年广东省珠海市数学高二第二学期期末学业水平测试试题含解析
2020年广东省珠海市数学高二第二学期期末学业水平测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.以下说法中正确个数是( )①用反证法证明命题“三角形的内角中至多有一个钝角”的反设是“三角形的三个内角中至少有一个钝角”;<成立,只需证22<; ③用数学归纳法证明2231111n n a a a a aa++-+++++=-L (1a ≠,n ∈+N ,在验证1n =成立时,左边所得项为21a a ++; ④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,但小前提使用错误.A .1B .2C .3D .4 2.已知6)x -展开式的常数项为15,则a =( ) A .±1 B .0 C .1 D .-13.设函数21223,0()1log ,0x x f x x x -⎧+≤=⎨->⎩,若()4f a =,则实数a 的值为( )A .12B .18C .12或18D .1164.已知抛物线22(0)y px p =>上一动点到其准线与到点M (0,4)的距离之和的最小值为F 是抛物线的焦点,O 是坐标原点,则MOF ∆的内切圆半径为ABC1 D.25.某中学高二年级的一个研究性学习小组拟完成下列两项调查:①从某社区430户高收入家庭,980户中等收入家庭,290户低收入家庭中任意选出170户调查社会购买力的某项指标;②从本年级12名体育特长生中随机选出5人调查其学习负担情况;则该研究性学习小组宜采用的抽样方法分别是 ( )A .①用系统抽样,②用简单随机抽样B .①用系统抽样,②用分层抽样C .①用分层抽样,②用系统抽样D .①用分层抽样,②用简单随机抽样6.若a b >,则( )A .()lg 0a b ->B .33a b <C .a b >D .330a b ->A .4B .8C .16D .248.若复数z 满足22i 1i z -=+ ,其中i 为虚数单位,则z = A .1i - B .1i +C .1i -+D .1i -- 9.已知:0x >,0y >,且211x y +=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞UC .()2,4-D .(][),24,-∞-⋃+∞ 10.下列函数既是奇函数又在(﹣1,1)上是减函数的是( )A .()1333x x y -=-B .1233x y log x+=- C .y =x ﹣1D .y =tanx 11.在()82x -的二项展开式中,二项式系数的最大值为a ,含5x 项的系数为b ,则a b =( ) A .532 B .532- C .325 D .325- 12.函数()2cos()3f x x π=-的单调递增区间是( )A .42233k k ππππ⎡⎤++⎢⎥⎣⎦,()k Z ∈ B .22233k k ππππ⎡⎤-+⎢⎥⎣⎦,()k Z ∈ C .22233k k ππππ⎡⎤-+⎢⎥⎣⎦,()k Z ∈ D .242233k k ππππ⎡⎤-+⎢⎥⎣⎦,()k Z ∈ 二、填空题(本题包括4个小题,每小题5分,共20分) 13.命题“0x R ∃∈,使()200110m x mx m +-+-≤”是假命题,则实数m 的取值范围为__________.14.已知焦点在x 轴上的双曲线的渐近线方程为340x y ±=,则双曲线的离心率为____.15.定义在R 上的奇函数()f x ,当0x ≥时,2log (1)(01)()31(1)x x f x x x +≤<⎧=⎨--≥⎩则函数1()()2g x f x =-的所有零点之和为______.焦点,且,则E 的离心率为__________.三、解答题(本题包括6个小题,共70分)17.在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.18.已知函数()()21+ax x f x e =,(其中a R ∈,e 为自然对数的底数).(1)讨论函数()f x 的单调性; (2)若12,x x 分别是()f x 的极大值点和极小值点,且12x x >,求证:()()1212f x f x x x +>+. 19.(6分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A cos A +=30,27a =,b=2. (1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求△ABD 的面积.20.(6分)已知函数2()ln (21)f x x ax a x =+++.(1)讨论()f x 的单调性;(2)当0a <时,证明3()24f x a ≤--. 21.(6分)已知函数(1)若在区间[-2,2]上的最大值为20,求它在该区间上的最小值;(2)若函数()f x 有三个不同零点,求a 的取值范围.22.(8分)已知,设:实数满足 ,:实数满足.(1)若,且为真,求实数的取值范围; (2)若是的必要不充分条件,求实数的取值范围.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)【分析】①根据“至多有一个”的反设为“至少有两个”判断即可。
2020-2021年高二下学期期中考试数学理科试题
高二下学期期中考试 数学(理科)试题一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 是虚数单位,若复数z 满足()23z i i -=+,则Z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.将4封信投入3个信箱,可能的投放方法共有( )种 A .12B .24.C .81D .643.甲乙两人下棋,甲获胜的概率为0.3,两人下成和棋的概率为0.55,那么甲不输的概率为( ) A .0.25B .0.3C .0.55D .0.854.今有8件不同的奖品,从中选6件分成三份,两份各1件,另一份4件,不同的分法有( ) A .420B .840C .30D .1205.若随机变量X 服从正态分布(8,1)N ,则(910)P X <<=( )附:随机变量()()2,0x Nμσσ->,则有如下数据:()0.6826P x μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=,(33)0.9974P X μσμσ-<<+=A .0.4472B .0.3413C .0.1359D .16.若3nx x ⎛+ ⎝展开式的二项式系数之和为64,则展开式中的常数项是( )A .9B .18C .135D .12157.5人排成一排,要求甲乙两人之间至多有1人,则不同的排法有( )种. A .84B .72C .96D .488.某人射击一次击中目标的概率为0.5,则此人射击3次至少2次击中目标的概率为( ) A .38B .34C .18D .129.已知随机变量X 的分布列为:X 0 1P1P - P若()(01)4D X p =<<,则P 的值为( ) A .14 B .13C .12D .2310.在研究打鼾与患心脏病之间的关系中,通过收集数据、整理分析数据得“打鼾与患心脏病有关”的结论,并且有99%以上的把握认为这个结论是成立的.下列说法中正确的是( ) A .100个心脏病患者中至少有99人打鼾B .在100个心脏病患者中可能一个打鼾的人都没有C .1个人患心脏病,那么这个人有99%的概率打鼾D .在100个心脏病患者中一定有打鼾的人11.现有5种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )A .150种B .180种C .240种D .120种12.某公司过去五个月的广告费支出X 与销售额Y (单位:万元)之间有下列对应数据:x2 4 5 6 8y▲ 40 60 50 70工作人员不慎将表格中y 的第一个数据丢失,已知y 对x 呈线性相关关系,且回归方程为 6.517.5y x =+,则下列说法:①销售额y 与广告费支出x 正相关:②丢失的数据(表中▲处)为30;③该公司广告费支出每增加1万元,销售额一定增加6.5万元;④若该公司下月广告投入8万元,则销售额为69.5万元.其中,正确说法有( ) A .4个B .3个C .2个D .1个二、填空题:本大题共4小题,每小题5分,共20分 13.已知,(234022342 5x a a x a x a x a x -=++++4,则()()202423a a a a a ++-+=__________.14.设随机变量ξ服从正态分布()5,3N ,若()(3)1P a P a ξξ>+=<-,则实数a =__________. 15.甲、乙、丙3人站到共有6级的台阶上,若每级台阶最多站3人,同一级台阶上的人不区分站的位置,则不同的站法种数是__________.(用数字作答).16.甲、乙两人参加知识竞赛,甲、乙两人能荣获一等奖的概率分别为35和13,且两人是否获得一等奖相互独立,则两人中恰有一个人获得一等奖的概率是__________. 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤. 17.已知复数()()2212433()Z i m i m i m R =+-+-+∈(1)当m 为何值时,Z 为纯虚数?(2)当m 为何值时,Z 对应的点在21y x =+上?18.已知2nx x ⎫⎪⎭的展开式中,第3项和第10项的二项式系数相等.(1)求n ;(2)求展开式中4x 项的系数.19.甲、乙两人各射击一次,击中目标的概率分别是12和25假设两人射击是否击中目标,相互之间没有影响,每次射击是否击中目标,相互之间没有影响. (1)求甲射击5次,至少1次未击中目标的概率;(2)求两人各射击3次,甲恰好比乙多击中目标2次的概率20.某校准备从报名的6位教师(其中男教师3人,女教师3人)中选3人去边区支教. (I )设所选3人中女教师的人数为X ,求X 的分布列及数学期望;(II )若选派的三人依次到甲、乙、丙三个地方支教,求甲地是男教师的情况下,乙地为女教师的概率. 21.某中学研究性学习小组为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了50名学生.调查结果表明,在爱看课外书的24人中有18人作文水平好,另6人作文水平一般;在不爱看课外书的26人中有7人作文水平好,另19人作文水平一般.(I )试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?高中学生的作文水平与爱看课外书的2×2列联表爱看课外书不爱看课外书总计 作文水平好 作文水平一般总计(Ⅱ)将其中某4名爱看课外书且作文水平好的学生分别编号为1、2、3、4,某4名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为2的倍数或3的倍数的概率.参考公22()()()()()n ad bc K a b c d a c b d -=++++其中n a b c d =+++·参考数据:()20P k k ≥0.10 0.05 0.025 0.010 0.005 0.0010k2.7063.841 5.024 6.635 7.879 10.82822.某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价x 和销售量y 之间的一组数据如下表所示:月份 1 2 3 4 5 6 销售单价x (元) 9 9.5 10 10.5 11 8 销售量y (件)111086514.2(1)根据1至5月份的数据,求出y 关于x 的回归直线方程;(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).附:回归直线方程y bx a =+,其中1221ni ii nii x y nxyb xnx==-=-∑∑,ˆa y bx =-,55211392502.5i i ii i x y x ====∑∑1、在最软入的时候,你会想起谁。
2020学年广东省珠海市高二(下)期末学业质量监测数学(文)试题(解析版)
2020学年广东省珠海市高二(下)期末学业质量监测数学试题一、 单选题 1. 已知复数21iz i =-,则z 为() A .1i -+ B .1i --C .12i -+D .12i -【答案】A【解析】根据题意,利用复数的除法运算法则,分子分母同时乘上分母的共轭复数,再进行计算即可求解出结果。
【详解】22(1)2+2=11(1)(1)2i i i i z i i i i +-===-+--+,故答案选A 。
【点睛】本题主要考查了复数的运算,复数的除法运算必须熟练掌握分母实数化。
2.方程2sin ρθ=表示的图形是( ) A .圆 B .直线 C .椭圆 D .射线【答案】A【解析】将极坐标方程化为22sin ρρθ=,再将222,?x y sin y ρρθ=+=代入可得直角坐标方程,最后可判断图形的形状. 【详解】 ∵2sin ρθ=,∴22sin ρρθ=,将222,?x y sin y ρρθ=+=代入上式可得222x y y +=, 即22(1)1x y +-=,故曲线表示以(0,1)为圆心,以1为半径的圆.故选A . 【点睛】本题考查极坐标和直角坐标间的转化,考查转化能力,记准转化公式222,?,?x y cos x sin y ρρθρθ=+==是解题的关键.3.n 个连续自然数按规律排成下图所示,根据规律,从2019到2021,箭头的方向依次为()A .↓→B .→↑C .↑→D .→↓【答案】D【解析】根据题意,观察上图,归纳总结出数字与箭头之间周期性的规律,利用规律推出从2019到2021的箭头方向,即可得出答案。
【详解】观察上图,从 1到 4,箭头的方向为→↑→↓;从从 5到 8,箭头的方向为→↑→↓,以此类推,可得,从1开始,每隔四个数箭头就会有一个循环,可推得,从2017到2021,箭头的方向也为→↑→↓,所以从2019到2021,箭头的方向依次为→↓。
故答案选D 。
2020年广东省珠海市数学高二(下)期末学业水平测试试题含解析
2020年广东省珠海市数学高二(下)期末学业水平测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1. “0m <”是“函数2()log (1)f x m x x =+≥存在零点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】A 【解析】显然由于21,log 0x x ≥≥,所以当m<0时,函数f( x)= m+log 2x (x≥1)存在零点;反之不成立,因为当m=0时,函数f(x)也存在零点,其零点为1,故应选A .2.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( ) A .小 B .大 C .相等 D .大小不能确定【答案】B 【解析】试题分析:四种不同的玻璃球,可设为,,,A B C D ,随意一次倒出一粒的情况有4种,倒出二粒的情况有6种,倒出3粒的情况有4种,倒出4粒的情况有1种,那么倒出奇数粒的有8种,倒出偶数粒的情况有7种,故倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率大. 考点:古典概型. 3.数列0,75-,135,6317-,…的一个通项公式是( ) A .()312111n n n +--+ B .()32111nn n --+C .()312111n n n ---- D .()32111nn n ---【答案】A 【解析】在四个选项中代n=2,选项B,D 是正数,不符,A 选项值为75-,符合,C 选项值为73-,不符.所以选A.【点睛】对于选择题的选项是关于n 的关系式,可以考虑通过赋特殊值检验法,来减少运算,或排除选项. 4.有3位男生,3位女生和1位老师站在一起照相,要求老师必须站中间,与老师相邻的不能同时为男生或女生,则这样的排法种数是( ) A .144 B .216C .288D .432【答案】D【解析】先排与老师相邻的:11233218C C A = ,再排剩下的:44A ,所以共有4418432A = 种排法种数,选D.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法. 5.已知复数34,z i i =+为虚数单位,z 是z 的共轭复数,则iz=( ) A .4355i -+ B .4355i -- C .432525i -+ D .432525i -- 【答案】C 【解析】i i 3i 434i 25z -==- ,选C. 6.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球数的标准差为0.3,下列说法中,正确的个数为( ) ①甲队的进球技术比乙队好;②乙队发挥比甲队稳定; ③乙队几乎每场都进球;④甲队的表现时好时坏. A .1 B .2 C .3 D .4【答案】D 【解析】分析:根据甲队比乙队平均每场进球个数多,得到甲对的技术比乙队好判断①;根据两个队的标准差比较,可判断甲队不如乙队稳定;由平均数与标准差进一步可知乙队几乎每场都进球,甲队的表现时好时坏.详解:因为甲队每场进球数为3.2,乙队平均每场进球数为1.8,甲队平均数大于乙队较多,所以甲队技术比乙队好,所以①正确;因为甲队全年比赛进球个数的标准差为3,乙队全年进球数的标准差为0.3,乙队的标准差小于甲队,所以乙队比甲队稳定,所以②正确;因为乙队的标准差为0.3,说明每次进球数接近平均值,乙队几乎每场都进球,甲队标准差为3,说明甲队表现时好时坏,所以③④正确, 故选D.点睛:本题考查了数据的平均数、方差与标准差,其中数据的平均数反映了数据的平均水平,方差与标准差反映了数据的稳定程度,一般从这两个方面对数据作出相应的估计,属于基础题.7.已知各项不为0的等差数列{}n a ,满足273110a a a --=,数列{}n b 是等比数列,且77b a =,则68b b = ( )A .2B .4C .8D .16【答案】B 【解析】根据等差数列的性质得:2311773112,0a a a a a a +=--= ,变为:2772a a = ,解得772,0a a == (舍去),所以772b a == ,因为数列{}n b 是等比数列,所以2268774b b b a === ,故选B.8.如果函数()y f x =在[,]a b 上的图象是连续不断的一条曲线,那么“()()0f a f b ⋅<”是“函数()y f x =在(,)a b 内有零点”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】由零点存在性定理得出“若()()0f a f b ⋅<,则函数()y f x =在(,)a b 内有零点”举反例即可得出正确答案. 【详解】由零点存在性定理可知,若()()0f a f b ⋅<,则函数()y f x =在(,)a b 内有零点而若函数()y f x =在(,)a b 内有零点,则()()0f a f b ⋅<不一定成立,比如2()f x x =在区间(2,2)-内有零点,但(2)(2)0f f -⋅>所以“()()0f a f b ⋅<”是“函数()y f x =在(,)a b 内有零点”的充分而不必要条件 故选:A 【点睛】本题主要考查了充分不必要条件的判断,属于中档题.9.函数12(0,1)x y a a a -=+>≠的图像恒过定点A ,若定点A 在直线1x ym n+=()0,0m n >>上,则3m n +的最小值为( )A .13B .14C .16D .12【答案】D 【解析】 【详解】分析:利用指数型函数的性质可求得定点()1,3A ,将点A 的坐标代入1x ym n+=,结合题意,利用基本不等式可得结果.详解:1x =Q 时,函数12(0,1)x y aa a -=+>≠值恒为3,∴函数12(0,1)x y a a a -=+>≠的图象恒过定点()1,3A ,又点A 在直线1x y m n +=上,131m n∴+=, 又(),0,331m n m n m n >∴+=+⋅()133m n m n ⎛⎫=+⋅+ ⎪⎝⎭933n m m n =+++96212n mm n≥+⋅=,(当且仅当3m n =时取“=”), 所以,3m n +的最小值为12,故选D.点睛:本题主要考查指数函数的性质,基本不等式求最值,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立). 10.已知双曲线,则的渐近线方程为( )A .B .C .D .【答案】C 【解析】 【分析】根据双曲线的性质,即可求出。
2020年珠海市名校数学高二第二学期期末学业水平测试试题含解析
2020年珠海市名校数学高二第二学期期末学业水平测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.设a Z ∈,且0100a ≤<,若9291a +能被100整除,则a 等于( ) A .19 B .91 C .18 D .81【答案】A 【解析】 【分析】将9291a +化为92(901)a ++,根据二巷展开式展开后再根据余数的情况进行分析后可得所求. 【详解】由题意得9291a +92(901)a =++0921912290919192929292929292190190190190C C C C C a =⨯+⨯⨯+⨯⨯++⨯⨯+⨯+L 1229191929292929292190909090C C C C a =+⨯+⨯++⨯+⨯+L 2291919292929292(909090)8281C C C a =⨯++⨯+⨯++L , 其中2291919292929292909090C C C ⨯++⨯+⨯L 能被100整除,所以要使9291a +能被100整除, 只需要8281a +能被100整除.结合题意可得,当19=a 时,82818281198300a +=+=能被100整除. 故选A . 【点睛】整除问题是二项式定理中的应用问题,解答整除问题时要关注展开式的最后几项,本题考查二项展开式的应用,属于中档题. 2.如果函数的图象如下图,那么导函数'()y f x =的图象可能是( )A .B .C .D .试题分析:()y f x =的单调变化情况为先增后减、再增再减 因此'()y f x =的符号变化情况为大于零、小于零、大于零、小于零,四个选项只有A 符合,故选A. 考点:1、函数的单调性与导数的关系;2、函数图象的应用.【方法点晴】本题通过对多个图象的选择考查函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.3.已知12F F 为椭圆M:22x m +22y =1和双曲线N:22xn-2y =1的公共焦点,P 为它们的一个公共点,且112PF F F ⊥,那么椭圆M 和双曲线N 的离心率之积为( )A B .1 C .2D .12【答案】B 【解析】 【分析】根据题意得到21||||,||||PF m n PF m n =+=-,根据勾股定理得到2||mn c =,计算得到答案.【详解】12F F 为椭圆M:22x m +22y =1和双曲线N:22x n-2y =1的公共焦点 故21212||,2||PF PF m PF PF n +=-=,故21||||,||||PF m n PF m n =+=-112PF F F ⊥,故()222||||(||||)4m n m n c +=-+即2||mn c =2121||||||c c c e e m n mn =⋅==故选:B 【点睛】本题考查了椭圆和双曲线的离心率,意在考查学生的计算能力. 4.函数()2f x ax a =--在[2,6]上有唯一零点,则a 的取值范围为分析:函数有唯一零点,则()()260f f ≤n 即可详解:函数()2f x ax a =--为单调函数,且在[]26,上有唯一零点, 故()()260f f ≤n()()2520a a --≤,解得225a ≤≤故选C点睛:函数为一次函数其单调性一致,不用分类讨论,为满足有唯一零点列出关于参量的不等式即可求解。
广东省珠海市2021-2022高二数学下学期期末学业质量监测试题 理(含解析).doc
珠海市2021~2021高二下学期期末学业质量监测数学理试题试卷满分为150分,考试用时120分钟.考试内容:选修2-2、选修2-3.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上.)1.已知z C ∈,()2zi bi b R =-∈,z 的实部与虚部相等,则b =() A. 2 B.12C. 2D. 12-【答案】C 【解析】 【分析】利用待定系数法设复数z ,再运用复数的相等求得b .【详解】设z a ai =+ (R a ∈),则()2,a ai i bi +=- 即2a ai bi -+=-22,2a a a b b -==-⎧⎧∴∴⎨⎨=-=⎩⎩.故选C.【点睛】本题考查用待定系数法,借助复数相等建立等量关系,是基础题.2.函数121x y x -=+在()1,0处的切线与直线l :y ax =垂直,则a =() A. 3 B. 3C.13D. 13-【答案】A 【解析】 【分析】先利用求导运算得切线的斜率,再由互相垂直的两直线的关系,求得a 的值。
【详解】''213()21(21)x y x x -==++ 11,3x y =∴='∴ 函数在(1,0)处的切线的斜率是13,所以,与此切线垂直的直线的斜率是3,-3.a ∴=- 故选A.【点睛】本题考查了求导的运算法则和互相垂直的直线的关系,属于基础题.3.若随机变量X 满足(),X B n p ~,且3EX =,94DX =,则p =() A.14B.34C.12D.23【答案】A 【解析】 【分析】根据二项分布的数学期望和方差求解.【详解】由题意得:39(1)4np np p =⎧⎪⎨-=⎪⎩ 解得:1214n p =⎧⎪⎨=⎪⎩,故选A.【点睛】本题考查二项分布的数学期望和方差求解,属于基础题.4.若函数()y f x =的图像如下图所示,则函数()'y f x =的图像有可能是()A. B. C. D.【答案】A 【解析】【分析】根据函数图象的增减性与其导函数的正负之间的关系求解。
2020-2021学年广东省深圳市高二(下)期末数学模拟试卷
2020-2021学年广东省深圳市高二(下)期末数学模拟试卷试题数:22,总分:1501.(单选题,5分)已知集合A={x∈Z|x<5},B={y|y=2x},则A∩B=()A.(-∞,5)B.(0,5)C.{1,2,3,4}D.{0,1,2,3,4}2.(单选题,5分)已知复数z满足z(1+i)=2i(i为虚数单位),则z的模为()A. √2B. √3C.2D.33.(单选题,5分)安排4名记者到3家公司做采访,每位记者去一家公司,每家公司至少安排一名记者,不同的安排方法共有()A.16种B.18种C.36种D.81种4.(单选题,5分)半径为√2的球O中有一内接圆柱,当该圆柱的侧面积取得最大值时,则圆柱的体积为()A.πB.2πC.4πD.8π5.(单选题,5分)某艺术机构随机调查了50名学员,其中报名插花艺术或瑜伽的学员共有30名,报名插花艺术的学员共有15名,报名瑜伽的学员共有25名,报名插花艺术且瑜伽的学员人数与该艺术机构学员的总数比值的估计值为()A.0.1B.0.15C.0.2D.0.256.(单选题,5分)为了衡量星星的明暗程度,公元前二世纪古希腊天文学家喜帕恰斯提出了星等这个概念.星等的数值越小,星星就越亮.1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=2.5(lgE 2-lgE 1),其中星等为m k 的星的亮度为E k (k=1,2).已知小熊座的“北极星”与大熊座的“玉衡”的星等分别为2.02和1.77,且当|x|较小时,10x ≈1+2.3x+2.7x 2,则“玉衡”与“北极星”的亮度之比大约为( ) A.1.28 B.1.26 C.1.24 D.1.227.(单选题,5分)已知直角梯形ABCD ,A=90°,AB || CD ,AD=DC= 12 AB=1,P 是BC 边上的一点,则 AP ⃗⃗⃗⃗⃗ •PC ⃗⃗⃗⃗⃗ 的取值范围为( ) A.[-1,1] B.[0,2] C.[-2,2] D.[-2,0]8.(单选题,5分)设函数 f (x )=xln(x +√1+x 2) ,则不等式f (2x )-f (3x-2)>0的解集为( ) A. (−25,0) B.(0,2) C. (25,2)D. (−∞,−2)∪(25,+∞)9.(多选题,5分)已知圆锥曲线C 的一个焦点为F (0,1),则C 的方程可以为( ) A.y 2=4x B. y =14x 2C. x 2m−1+y 2m =1(0<m <1)D. x 21−m+y 2m =1(0<m <1)10.(多选题,5分)已知函数 f (x )=Asin (ωx +φ)(x ∈R ,A >0,ω>0,|φ|<π2) 的部分图象如图所示,则下列说法正确的是( )A.直线x=2π3是f(x)图象的一条对称轴B.f(x)图象的对称中心为(−π12+kπ,0),k∈ZC.f(x)在区间[−π3,π6]上单调递增D.将f(x)的图象向左平移π12个单位长度后,可得到一个奇函数的图象11.(多选题,5分)已知a>0,b>0,则下列结论正确的是()A.若a>b,则a3+b3>a2b+ab2B.若a+b2=1,则2a−b≥12C.若log a2020>log b2020>0,则e a−b<abD.若a>1,则a+1a−1≥312.(多选题,5分)如图,正六棱柱ABCDEF-A'B'C'D'E'F'的所有棱长均为1,点M为对角线A'D上的动点,设过M且与A'D垂直的平面截此正六棱柱所得截面为σ,则下列说法正确的有()A.σ可以为△AB'F'B.σ可以为四边形C.σ可以为五边形D.σ的面积最大值为√15213.(填空题,5分)已知等差数列{a n},a1+a5=a2+3,则S7=___ .14.(填空题,5分)椭圆C:x2a2+y2b2=1(a>b>0)的一个焦点是圆M:(x-3)2+y2=1的圆心,且C的长轴长为10,则该椭圆的离心率等于___ .15.(填空题,5分)据气象台监测,在海滨城市A附近的海面有一台风.台风中心位于A东偏南45°方向、距离城市200√3km的海面P处,并以25km/h的速度向西偏北15°方向移动,则台风中心___ 小时后距离城市A最近.如果台风侵袭范围为圆形区域,半径150km,台风移动的方向与速度不变,那么该城市___ (填“会”或“不会”)受台风侵袭.16.(填空题,5分)3σ准则又称为拉依达准则,它是先假设一组检测数据只含有随机误差,对其进行计算处理得到标准偏差,按一定概率确定一个区间,认为凡超过这个区间的误差,就不属于随机误差而是粗大误差,含有该误差的数据应予以剔除.对于正态分布的随机误差,落在±3σ之外的概率只有0.27%,它在有限次测量中发生的可能性很小,故存在3σ准则.3σ准则是最常用也是最简单的粗大误差判别准则.为估计某精密仪器的测量误差,取其n次结果的平均值得εn~N(0,1n2),为误差使εn在(-0.3,0.3)的概率不小于0.9973,至少要测量___ 次.17.(问答题,10分)在① sinA=√2sinB;② tanB=13;③ −√2cosC(acosB+ bcosA)=c这三个条件中任选一个,补充在下列问题中并解答.问题:在△ABC中,角A、B、C所对的边分别是a、b、c,b 2+c2−a2bccosB=4√23,且____.(1)求tanA;(2)若△ABC的最大边长为4,求△ABC的面积.18.(问答题,12分)已知等比数列{a n}的前n项和为S n,且a n+1-S n=2,其中n∈N*.(1)求数列{a n}的通项公式;(2)在a n与a n+1之间插入n个数,使这n+2个数组成一个公差为d n的等差数列,求数列{1d n}前n+1项的和T n+1.19.(问答题,12分)2020年5月14日,中国经济“双循环”首次提出——“要深化供给侧结构性改革,充分发挥中国超大规模市场优势和内需潜力,构建国内国际双循环相互促进的新发展格局”.为了解国内不同年龄段的民众服装消费的基本情况,某服装贸易公司从其网站数据库中随机抽取了1000条客户信息进行分析,这些客户一年的服装消费金额数据如表所示.老年50 125 105 (1)若从这1000位客户中随机选一人,请估算该客户的消费期望;(2)把一年服装消费金额满8千元称为“高消费”,否则称为“低消费”.根据所给数据,完成下面的2×2列联表,判断能否有99%的把握认为服装消费的高低与年龄有关?低消费高消费合计年轻人中老年人合计附表及公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.05 0.010 0.005 0.001 k0 3.841 6.635 7.879 10.82820.(问答题,12分)如图,在四面体ABCD中,△BCD为等边三角形,点M,N分别为棱BD,CD的中点,且AD=AM=BM.(1)证明:AN⊥BD;(2)若二面角A-BD-C的大小为2π3,求二面角A-MN-D的余弦值.21.(问答题,12分)已知抛物线C:y2=2px(p>0),动直线l经过C的焦点F,且与C交于A、B两点.当F为线段AB中点时,|AB|=4.(1)求抛物线方程;(2)问:在x轴上是否存在点Q(异于点F),满足|QB||QA|=|BF||AF|?若存在,求出点Q的坐标;若不存在,请说明理由.22.(问答题,12分)设函数f(x)=sin(x−π4 )√2e x −x,x∈[−π4,π4].(1)求f(x)的极大值点;(2)若f(x1)=f(x2),且x1≠x2,求证:x1+x2<0.2020-2021学年广东省深圳市高二(下)期末数学模拟试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)已知集合A={x∈Z|x<5},B={y|y=2x},则A∩B=()A.(-∞,5)B.(0,5)C.{1,2,3,4}D.{0,1,2,3,4}【正确答案】:C【解析】:利用交集定义直接求解.【解答】:解:∵集合A={x∈Z|x<5},B={y|y=2x}={y|y>0},∴A∩B={1,2,3,4}.故选:C.【点评】:本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.(单选题,5分)已知复数z满足z(1+i)=2i(i为虚数单位),则z的模为()A. √2B. √3C.2D.3【正确答案】:A【解析】:利用复数模的运算性质求解即可.【解答】:解:因为z(1+i)=2i,则|z||1+i|=|2i|,即|z|• √2 =2,=√2.所以|z|=√2故选:A.【点评】:本题考查了复数模的求解,解题的关键是掌握复数模的运算性质,属于基础题.3.(单选题,5分)安排4名记者到3家公司做采访,每位记者去一家公司,每家公司至少安排一名记者,不同的安排方法共有()A.16种B.18种C.36种D.81种【正确答案】:C【解析】:根据题意,分2步进行分析:① 将4名记者分为3组,② 将分好后的三组全排列,安排到三家公司,由分步计数原理计算可得答案.【解答】:解:根据题意,分2步进行分析:① 将4名记者分为3组,有C42=6种分组方法,② 将分好后的三组全排列,安排到三家公司,有A33=6种安排方法,则有6×6=36种安排方法,故选:C.【点评】:本题考查排列组合的应用,涉及分步计数原理的应用,属于基础题.4.(单选题,5分)半径为√2的球O中有一内接圆柱,当该圆柱的侧面积取得最大值时,则圆柱的体积为()A.πB.2πC.4πD.8π【正确答案】:B【解析】:根据圆柱的底面为球的截面,由球的截面性质得出圆柱的高h、底面半径r与球的半径R之间的关系,用h和r表示出圆柱的侧面积,利用基本不等式求最值,再计算对应圆柱的体积.【解答】:解:画出球内接圆柱的轴截面,如图所示:设圆柱的高为h,底面半径为r,侧面积为S,)2+r2=R2,则(ℎ2解得h=2 √R2−r2.=2πR2,所以圆柱的侧面积为S=2πrh=4πr• √R2−r2=4π √r2(R2−r2)≤4π• √(r2+R2−r2)24R=1,高为h= √2 R=2.当且仅当r2=R2-r2时取等号,此时球内接圆柱底面半径为r= √22圆柱的体积为:V=πr2h=π•12•2=2π.故选:B.【点评】:本题考查了球与圆柱的组合体应用问题,也考查了利用基本不等式求最值问题,是中档题.5.(单选题,5分)某艺术机构随机调查了50名学员,其中报名插花艺术或瑜伽的学员共有30名,报名插花艺术的学员共有15名,报名瑜伽的学员共有25名,报名插花艺术且瑜伽的学员人数与该艺术机构学员的总数比值的估计值为()A.0.1B.0.15C.0.2D.0.25【正确答案】:C【解析】:由集合原理先求出报名插花艺术且瑜伽的学员,即可求得答案.【解答】:解:由题意根据集合原理可知,报名插花艺术且瑜伽的学员有15+25-30=10名,10÷50=0.2,所以报名插花艺术且瑜伽的学员人数与该艺术机构学员的总数比值的估计值为0.2.故选:C.【点评】:本题考查了用样本数字特征估计总体的数字特征的应用,考查了逻辑推理能力,属于基础题.6.(单选题,5分)为了衡量星星的明暗程度,公元前二世纪古希腊天文学家喜帕恰斯提出了星等这个概念.星等的数值越小,星星就越亮.1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=2.5(lgE 2-lgE 1),其中星等为m k 的星的亮度为E k (k=1,2).已知小熊座的“北极星”与大熊座的“玉衡”的星等分别为2.02和1.77,且当|x|较小时,10x ≈1+2.3x+2.7x 2,则“玉衡”与“北极星”的亮度之比大约为( ) A.1.28 B.1.26 C.1.24 D.1.22【正确答案】:B【解析】:把已知数据代入公式计算 E1E 2.【解答】:解:由题意2.02-1.77=2.5(lgE 2-lgE 1),可得 lg E1E 2=0.1 ,∴ E1E 2=100.1≈1+2.3×0.1+2.7×0.12=1.257≈1.26 .故选:B .【点评】:本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.7.(单选题,5分)已知直角梯形ABCD ,A=90°,AB || CD ,AD=DC= 12 AB=1,P 是BC 边上的一点,则 AP ⃗⃗⃗⃗⃗ •PC ⃗⃗⃗⃗⃗ 的取值范围为( ) A.[-1,1] B.[0,2] C.[-2,2] D.[-2,0] 【正确答案】:D【解析】:P 在BC 上,不妨设 BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,则 PC ⃗⃗⃗⃗⃗⃗⃗ =(1−λ)BC ⃗⃗⃗⃗⃗ (其中0≤λ≤1),把 AP ⃗⃗⃗⃗⃗ •PC ⃗⃗⃗⃗⃗ 转化为关于λ的函数求解即可.【解答】:解:因为P 在BC 上,不妨设 BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ , 则 PC ⃗⃗⃗⃗⃗⃗⃗ =(1−λ)BC ⃗⃗⃗⃗⃗ (其中0≤λ≤1) 所以 AP ⃗⃗⃗⃗⃗ •PC ⃗⃗⃗⃗⃗ =( AB ⃗⃗⃗⃗⃗ +BP ⃗⃗⃗⃗⃗ )• PC⃗⃗⃗⃗⃗= AB ⃗⃗⃗⃗⃗ • PC ⃗⃗⃗⃗⃗ + BP ⃗⃗⃗⃗⃗ •PC ⃗⃗⃗⃗⃗ =(1-λ) AB ⃗⃗⃗⃗⃗ • BC ⃗⃗⃗⃗⃗ + λBC ⃗⃗⃗⃗⃗ • PC ⃗⃗⃗⃗⃗ =(1-λ) AB ⃗⃗⃗⃗⃗ • BC ⃗⃗⃗⃗⃗ + λBC ⃗⃗⃗⃗⃗ •(1-λ) BC⃗⃗⃗⃗⃗ =(1-λ)×2× √2 ×cos135°+λ(1-λ)×( √2 )² =-2(1-λ)+2λ(1-λ) =-2λ2+4λ-2=-2(λ-1)²,因为0≤λ≤1,所以-2(λ-1)²∈[-2,0], 故选:D .【点评】:本题考查平面向量的数量积运算,考查数学转化思想,是中档题.8.(单选题,5分)设函数 f (x )=xln(x +√1+x 2) ,则不等式f (2x )-f (3x-2)>0的解集为( ) A. (−25,0) B.(0,2) C. (25,2)D. (−∞,−2)∪(25,+∞) 【正确答案】:C【解析】:先判断函数f (x )为偶函数,然后利用导数判断函数f (x )的单调性,利用奇偶性以及单调性将不等式等价转化为|2x|>|3x-2|,求解即可.【解答】:解:因为函数 f (x )=xln(x +√1+x 2) , 则f (-x )= (−x )ln [(−x )+√1+(−x )2]=−xln 1√x 2+1+x= xln(x +√1+x 2)=f (x ) ,故函数f (x )为偶函数,当x >0时,f'(x )= ln(x +√1+x 2)+x •1+2x 2√x 2+1x+√x 2+1>0 ,所以f (x )在(0,+∞)上单调递增,不等式f (2x )-f (3x-2)>0,即f (2x )>f (3x-2), 等价于f (|2x|)>f (|3x-2|), 所以|2x|>|3x-2|,解得 25<x <2 .,所以不等式f (2x )-f (3x-2)>0的解集为 (25,2) .故选:C.【点评】:本题考查了函数性质的综合应用,主要考查了函数奇偶性的判断与应用,函数单调性的判断与应用,含有绝对值的不等式的解法,考查了逻辑推理能力与化简运算能力,属于中档题.9.(多选题,5分)已知圆锥曲线C的一个焦点为F(0,1),则C的方程可以为()A.y2=4xB. y=14x2C. x2m−1+y2m=1(0<m<1)D. x21−m +y2m=1(0<m<1)【正确答案】:BC【解析】:由题意可得焦点在y轴上,可得A不正确,将B中的方程写成标准形式可得B正确,由m的范围,将C中的方程写成标准形式,可得C正确,D中由m的范围,如果分母相等时可得曲线为圆,所以D不正确.【解答】:解:由焦点坐标在y轴,而A中焦点在x轴上,可得A不正确,B中标准形式为x2=4y,所以可得焦点坐标为(0,1),所以B正确;C中,因为m∈(0,1),所以m-1<0,所以双曲线的标准形式为y 2m - x21−m=1,且c2=m+1-m=1,所以可得C正确;D中,因为m∈(0,1),所以当m=1-m时,即m= 12,此时曲线为圆,所以D不正确;故选:BC.【点评】:本题考查圆锥曲线的标准方程的写法及焦点坐标的求法和命题真假的判断,属于基础题.10.(多选题,5分)已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<π2)的部分图象如图所示,则下列说法正确的是()A.直线x=2π3是f(x)图象的一条对称轴B.f(x)图象的对称中心为(−π12+kπ,0),k∈ZC.f(x)在区间[−π3,π6]上单调递增D.将f(x)的图象向左平移π12个单位长度后,可得到一个奇函数的图象【正确答案】:ABC【解析】:由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用正弦函数的图象和性质,得出结论.【解答】:解:根据函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<π2)的部分图象,可得A=2,14• 2πω= 5π12- π6,∴ω=2.结合五点法作图,可得2× π6+φ= π2,∴φ= π6,即 f(x)=2sin(2x+ π6).令x= 2π3,求得f(x)=-2,为最小值,故直线x=2π3是f(x)图象的一条对称轴,故A正确;令x=- π12+kπ,求得f(x)=0,f(x)图象的对称中心为(−π12+kπ,0),k∈Z,故B正确;在区间[−π3,π6]上,2x+ π6∈[- π2,π2'],函数f(x)单调递增,故C正确;将f(x)的图象向左平移π12个单位长度后,可得到y=2sin(2x+ π3)的图象,故D错误,故选:ABC.【点评】:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的图象和性质,属于中档题.11.(多选题,5分)已知a>0,b>0,则下列结论正确的是()A.若a>b,则a3+b3>a2b+ab2B.若a+b2=1,则2a−b≥12C.若log a2020>log b2020>0,则e a−b<abD.若a>1,则a+1a−1≥3【正确答案】:ACD【解析】:利用作差法判断A ,利用二次函数的性质判断B ,利用构造函数的单调性判断C ,利用基本不等式判断D .【解答】:解:A :∵a >b ,∴(a 3+b 3)-(a 2b+ab 2)=(a-b )2(a+b )>0,∴A 正确, B :∵a+b 2=1,a >0,b >0,∴0<b <1,∴a -b=-b 2-b+1∈(-1,1),∴2a-b ∈( 12 ,2),∴B 错误, C :由log a 2020>log b 2020>0,则1<a <b , 设函数f (x )= e x x ,f′(x )= e x (x−1)x 2 ,则f (x )在(1,+∞)单调递增,所以f (a )<f (b ),即 e a a < e bb ,则有e a-b <ab ,∴C 正确,D :若a >1,则a+ 1a−1 =a-1+ 1a−1 +1≥2 √1 +1=3,当且仅当a-1= 1a−1 ,即a=2时取等号,∴a+ 1a−1 ≥3,∴D 正确. 故选:ACD .【点评】:本题考查了命题真假的判定,涉及到不等式的性质、函数单调性,属于中档题. 12.(多选题,5分)如图,正六棱柱ABCDEF-A'B'C'D'E'F'的所有棱长均为1,点M 为对角线A'D 上的动点,设过M 且与A'D 垂直的平面截此正六棱柱所得截面为σ,则下列说法正确的有( )A.σ可以为△AB'F'B.σ可以为四边形C.σ可以为五边形D.σ的面积最大值为√152【正确答案】:ABD【解析】:利用线面垂直的判定定理即可判断选项A ,将平面AB'F'沿直线A'D 方向平移,分析变化过程中σ的形状,即可判断选项B ,C ,当截面σ为矩形时,其投影面积最大,截面σ的面积最大,求解即可判断选项D .【解答】:解:∵四边形A'ABB'为正方形,∴AB'⊥BA',连接BD,在正六棱柱ABCDEF-A'B'C'D'E'F'中,∠ABC=∠BCD=120°,则∠DBC=30°,∴∠ABD=90°,∴AB⊥BD,∵B'B⊥BD,AB∩B'B=B,∴BD⊥平面ABB'A',∵AB'⊂平面ABB'A',∴AB'⊥BD,∵BD∩BA'=B,∴AB'⊥平面A'BD,∴A'D⊥AB',∵B'F'⊥A'D,∴A'D⊥平面AB'F',故选项A正确;由题意可知,截面σ与平面AB'F'平行或重合,亦可视为将平面AB'F'沿直线A'D方向平移,若将平面AB'F'向点A'平移,则σ为三角形;若将平面AB'F'向点D平移,则σ的形状变化过程为:等腰三角形→六边形→矩形(四边形)→六边形→等腰三角形,故选项B正确,选项C错误;因为截面σ与底面ABCDEF所成的角相等,欲使截面σ的面积最大,只需考虑其在底面ABCDEF的投影面积最大,故当截面σ为矩形时,其投影面积最大,设B'C'和E'F'的中点分别为P,Q,则矩形BPQF面积为√152,即σ的面积最大值为√152,故选项D正确.故选:ABD.【点评】:本题主要考查了空间直线与直线、直线与平面、平面与平面的位置关系,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等,属于中档题.13.(填空题,5分)已知等差数列{a n},a1+a5=a2+3,则S7=___ .【正确答案】:[1]21【解析】:根据已知条件,结合等差数列的性质,以及等差数列的等差中项,即可求解.【解答】:解:∵{a n}为等差数列,∴2a1+4d=a1+d+3,化简可得,a1+3d=3,即a4=3,∴S7=7a4=7×3=21.故答案为:21.【点评】:本题考查了等差数列的性质,以及等差数列的等差中项,需要学生熟练掌握公式,属于基础题.14.(填空题,5分)椭圆C:x2a2+y2b2=1(a>b>0)的一个焦点是圆M:(x-3)2+y2=1的圆心,且C的长轴长为10,则该椭圆的离心率等于___ .【正确答案】:[1] 35【解析】:由圆M的方程可得圆心M的坐标,由题意可得椭圆中的c的值,再由长轴长可得a的值,进而求出椭圆的离心率.【解答】:解:由圆M的方程可得圆心M(3,0),所以由题意可得c=3,由题意2a=10,所以a=5,所以椭圆的离心率e= ca = 35,故答案为:35.【点评】:本题考查椭圆的离心率的求法及由圆的方程可得圆心坐标的方法,属于基础题.15.(填空题,5分)据气象台监测,在海滨城市A附近的海面有一台风.台风中心位于A东偏南45°方向、距离城市200√3km的海面P处,并以25km/h的速度向西偏北15°方向移动,则台风中心___ 小时后距离城市A最近.如果台风侵袭范围为圆形区域,半径150km,台风移动的方向与速度不变,那么该城市___ (填“会”或“不会”)受台风侵袭.【正确答案】:[1]12; [2]不会【解析】:由题意画出图形,求解三角形可得台风中心距A最近时,台风中心B距A与P的距离,可得台风中心距离城市A最近的时间;进一步判断城市A是否受到台风影响.【解答】:解:如图,台风中心沿PB由P向B行驶,当台风中心距A最近时,AB⊥PB,由题意可知,∠APB=30°,又AP=200 √3 km,∴AB=200 √3 ×sin30°=100 √3 km,PB= 200√3 ×cos30°=300km,=12 h.而风速为25km/h,∴ 30025即台风中心12小时后距离城市A最近;∵台风侵袭范围为圆形区域的半径150km,且100√3>150,∴该城市不会受到台风侵袭.故答案为:12;不会.【点评】:本题考查解三角形在实际问题中的应用,考查运算求解能力,是基础题.16.(填空题,5分)3σ准则又称为拉依达准则,它是先假设一组检测数据只含有随机误差,对其进行计算处理得到标准偏差,按一定概率确定一个区间,认为凡超过这个区间的误差,就不属于随机误差而是粗大误差,含有该误差的数据应予以剔除.对于正态分布的随机误差,落在±3σ之外的概率只有0.27%,它在有限次测量中发生的可能性很小,故存在3σ准则.3σ准则是最常用也是最简单的粗大误差判别准则.为估计某精密仪器的测量误差,取其n次结果),为误差使εn在(-0.3,0.3)的概率不小于0.9973,至少要测量的平均值得εn~N(0,1n2___ 次.【正确答案】:[1]10【解析】:利用正态分布的意义以及正态分布曲线的对称性进行分析求解即可.【解答】:解:由题意,正态分布的随机误差落在±3σ之外的概率只有0.27%,所以落在(-3σ,3σ)的概率为0.9973,根据正态曲线的对称性,要使误差εn在(-0.3,0.3)的概率不小于0.9973,则3n≤0.3,解得n≥10.故答案为:10.【点评】:本题考查了正态分布曲线的特点以及曲线所表示的意义,解题的关键是利用正态分布曲线的对称性,属于基础题.17.(问答题,10分)在① sinA=√2sinB;② tanB=13;③ −√2cosC(acosB+ bcosA)=c这三个条件中任选一个,补充在下列问题中并解答.问题:在△ABC中,角A、B、C所对的边分别是a、b、c,b 2+c2−a2bccosB=4√23,且____.(1)求tanA;(2)若△ABC的最大边长为4,求△ABC的面积.【正确答案】:【解析】:(1)利用余弦定理消去边,得到A、B两角余弦值的关系;联立条件① 或② 或③ 、内角和公式,利用三角恒等变换解出tanA;(2)利用“大角对大边“得c=4,利用正弦定理得a,b的值,再求面积.【解答】:解:(1)由b 2+c2−a2bccosB=2bccosAbccosB=4√23有3cosA=2√2cosB(*),则A、B都是锐角.........(2分)若选① sinA=√2sinB,则sinB=√2*)有cosB=2√2由1=cos2B+sin2B=(√2)2+(2√2)2 = 12sin2A+98cos2A又sin2A+cos2A=1且A是锐角,可得sinA=√55,cosA=2√55,所以tanA=12......................(6分)若选② tanB=13,则cosB=3√1010,又由(*)有cosA=2√55,又sin2A+cos2A=1,可得sinA=√55,所以tanA=12......................(6分)若选③ −√2cosC(acosB+bcosA)=c,由正弦定理有−√2cosC(sinAcosB+sinBcosA)=−√2cosCsinC=sinC,则cosC=−√22,则C=135°,由(*)有3cosA=2√2cosB=2√2cos(180°−135°−A)=2cosA+2sinA,故tanA=12......................(6分)(2)由① ② ③ 都可得sinA=√55,cosA=2√55,sinB=√1010,cosB=3√1010,sinC=√22,................................(8分)因为sinA<sinB<sinC,所以a<b<c,所以最长边c=4,由正弦定理有asinA =bsinB=csinC,则a=4√105,b=4√55,......................(10分)所以△ABC的面积为12absinC=12×4√105×4√55×√22=85...................(12分)【点评】:本题主要考查正弦定理、余弦定理、三角恒等变换等知识,渗透数形结合、转化与化归、方程等思想,意在考查学生的逻辑推理,数学运算等核心素养.18.(问答题,12分)已知等比数列{a n}的前n项和为S n,且a n+1-S n=2,其中n∈N*.(1)求数列{a n}的通项公式;(2)在a n与a n+1之间插入n个数,使这n+2个数组成一个公差为d n的等差数列,求数列{1d n}前n+1项的和T n+1.【正确答案】:【解析】:(1)直接利用数列的递推关系式求出数列的通项公式;(2)利用(1)的结论,进一步利用乘公比错位相减法在数列求和中的应用求出数列的和.【解答】:解:(1)(解法一)设等比数列{a n}的公比为q,已知a n+1-S n=2,当n≥2时,a n-S n-1=2,两式相减可得a n+1-a n-(S n-S n-1)=0,即a n+1=2a n,则q=2,当n=1时,得a2-a1=2,即a1q-a1=2,解得a1=2,故等比数列{a n}的通项公式为a n=2n,n∈N∗.(解法二)设等比数列{a n}的公比为q,已知a n+1-S n=2,当n=1时,得a2-a1=2,即a1q-a1=2,当n=2时,得a3-s2=2,即a1q2−a1q−a1=2,两式相除可得q2-2q=0,因为q≠0,所以q=2,a1=2,故等比数列{a n}的通项公式为a n=2n,n∈N∗.(2)若在a n与a n+1之间插入n个数,使这n+2个数组成一个公差为d n的等差数列,则a n+1=a n+(n+2-1)d n,即为2n+1-2n=(n+1)d n,整理得d n=2nn+1,所以1d n=n+12n,(解法一)T n+1=1d1+1d2+1d3+⋅⋅⋅+1d n+1d n+1,即T n+1=221+322+423+⋅⋅⋅+n+12n+n+22n+1,1 2T n+1=222+323+424+⋅⋅⋅+n+12n+1+n+22n+2,两式相减,得12T n+1=1+122(1−12n)1−12−n+22n+2=32−12n+1−n+22n+2,故数列{1d n }前n+1项的和T n+1=3−n+42n+1.(解法二)T n=1d1+1d2+1d3+⋅⋅⋅+1d n−1+1d n,即T n=221+322+423+⋅⋅⋅+n2n−1+n+12n,1 2T n=222+323+424+⋅⋅⋅+n2n+n+12n+1,两式相减得:12T n=1+122(1−12n−1)1−12−n+12n+1=32−12n−n+12n+1,所以T n=3−n+32n,故数列{1d n }前n+1项的和T n+1=3−n+42n+1.【点评】:本题主要考查数列通项a n与前n项和S n的关系、等比数列的定义、等比等差数列的通项公式、错位相减法求和,考察了学生的运算、逻辑推理等核心素养.19.(问答题,12分)2020年5月14日,中国经济“双循环”首次提出——“要深化供给侧结构性改革,充分发挥中国超大规模市场优势和内需潜力,构建国内国际双循环相互促进的新发展格局”.为了解国内不同年龄段的民众服装消费的基本情况,某服装贸易公司从其网站数据库中随机抽取了1000条客户信息进行分析,这些客户一年的服装消费金额数据如表所示.(2)把一年服装消费金额满8千元称为“高消费”,否则称为“低消费”.根据所给数据,完成下面的2×2列联表,判断能否有99%的把握认为服装消费的高低与年龄有关?附表及公式:K2=(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.【正确答案】:【解析】:(1)求出ξ的可能取值,求出概率,再求解期望即可.(2)利用已知条件求解联列表,然后求解K2,即可判断结果.【解答】:解:(1)随机选一人,设该客户的消费额为ξ千元,则ξ的可能取值为:2,6,10,依题意可得,p(ξ=2)=3001000=310,p(ξ=6)=4001000=25,p(ξ=10)=3001000=310,所以该客户的消费期望是:E(ξ)=2×310+6×25+10×310=6千元.(2)2×2列联表如下:K2=1000×(300×200−100×400)2400×600×700×300≈7.937,因为7.937>6.635,所以有99%的把握认为服装消费的高低与年龄有关.【点评】:该题在国内经济“双循环”的大背景下,选取学生熟知的服装消费分析消费者的消费现状,并以此提供决策依据.本题试图考察随机变量的分布列与数学期望,2×2列联表以及独立性检验.并以此检验学生的数学抽象、数据分析、数学运算、逻辑推理等数学核心素养.20.(问答题,12分)如图,在四面体ABCD中,△BCD为等边三角形,点M,N分别为棱BD,CD的中点,且AD=AM=BM.(1)证明:AN⊥BD;(2)若二面角A-BD-C的大小为2π3,求二面角A-MN-D的余弦值.【正确答案】:【解析】:(1)不妨设O为MD的中点,且OD=a,则BD=4a,AD=BM=2a,连接AO,NO,MC,通过△AOD∽△BAD,证明AO⊥BD,MC⊥BD,推出ON || MC,证明ON⊥BD,证明BD⊥平面AON,然后证明AN⊥BD.(2)建立如图所示空间直角坐标系O-xyz,说明∠AON为二面角A-BD-C的平面角,求出平面AMN的一个法向量,平面DMN的一个法向量,利用空间向量的数量积求解二面角A-MN-D的余弦值即可.【解答】:(1)证明:如图1,不妨设O为MD的中点,且OD=a,则BD=4a,AD=BM=2a,连接AO,NO,MC,∵点M为棱BD的中点,且AM=BM,∴BA⊥AD,即∠BAD=π2,………………(1分)∵ AD BD =12=ODAD,且∠ADO=∠BDA,∴△AOD∽△BAD,∴ ∠AOD=∠BAD=π2,即AO⊥BD,………………(2分)又∵△BCD 为等边三角形,点M 为棱BD 的中点, ∴MC⊥BD ,……………………………………………(3分) ∵点O ,N 分别为MD ,CD 的中点, ∴ON || MC ,∴ON⊥BD ,…………………………………(4分) ∵AO ,ON⊂平面AON ,且AO∩ON=O , ∴BD⊥平面AON ,…………………………(5分) 又∵AN⊂平面AON ,∴AN⊥BD . …………………………………(6分) (2)解:建立如图所示空间直角坐标系O-xyz ,由(1)可知,∠AON 为二面角A-BD-C 的平面角,且 AO =NO =√3a , 若二面角A-BD-C 的大小为 2π3 ,则 ∠AON =2π3,……………………(7分)∴ A (0,−√3a2,3a 2) ,M (a ,0,0), N(0,√3a ,0) ,……………………(8分)∴ MA ⃗⃗⃗⃗⃗⃗ =(−a ,−√3a 2,3a 2) , MN ⃗⃗⃗⃗⃗⃗⃗ =(−a ,√3a ,0) , 不妨设平面AMN 的一个法向量为 n ⃗ =(x ,y ,z) ,则 {−x −√3y 2+3z 2=0,−x +√3y =0,解得 {x =√3y ,z =√3y , 令y=1,则 n ⃗ =(√3,1,√3) ,……………………(10分)显然 m ⃗⃗ =(0,0,1) 为平面DMN 的一个法向量, ∴ cos <m ⃗⃗ ,n ⃗ >=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n|⃗⃗⃗⃗ =√31×√7=√217,……………………(11分)二面角A-MN-D 的大小即为 <m ⃗⃗ ,n ⃗ > , ∴二面角A-MN-D 的余弦值为 √217.【点评】:本题以空间四面体为载体,主要涉及到线面垂直的位置关系和二面角的求法,重点考查学生的直观想象,逻辑推理,数学运算等核心素养,是中档题.21.(问答题,12分)已知抛物线C:y2=2px(p>0),动直线l经过C的焦点F,且与C交于A、B两点.当F为线段AB中点时,|AB|=4.(1)求抛物线方程;(2)问:在x轴上是否存在点Q(异于点F),满足|QB||QA|=|BF||AF|?若存在,求出点Q的坐标;若不存在,请说明理由.【正确答案】:【解析】:(1)由题意可得AB与x轴垂直,可得A的横坐标与焦点F的相同,纵坐标为2,代入抛物线的方程可得参数p的值,进而求出抛物线的方程;(2)设直线AB的方程与抛物线的方程联立求出两根之和及两根之积,|QB||QA|=|BF||AF|,可得k QA+k QB=0,进而求出存在这样的点Q满足条件.【解答】:解:(1)∵|AB|=4且F为线段AB中点,∴AB⊥x轴,不妨设点A在x轴上方,设A(p2,2),代入C:y2=2px(p>0),有p2=4且p>0,∴p=2;抛物线方程为y2=4x;(2)假设存在点Q(t,0)满足题意,设直线l AB:x=my+1,A(y124,y1),B(y224,y2),由{y2=4x,x=my+1,可得y2-4my-4=0,所以{y1+y2=4m,y1y2=−4.由 |QB||QA|=|BF||FA| ,得 |BF||QB|=|FA||QA| ,由抛物线定义可知∠AQF=∠BQF ,即k QA +k QB =0, k QA +k QB =y 1y 124−t +y2y 224−t =4(y 1+y 2)(y 1y 2−4t )(y 12−4t)(y 22−4t)=0 ,y 1y 2=4t=-4,t=-1,∴Q (-1,0), 综上所述,存在Q (-1,0)满足题意.【点评】:本题主要考查了抛物线的方程,抛物线的定义,探究性问题,考查了学生的运算能力,逻辑推理等核心素养.属于中档题. 22.(问答题,12分)设函数 f (x )=sin(x−π4)√2ex −x , x ∈[−π4,π4] .(1)求f (x )的极大值点;(2)若f (x 1)=f (x 2),且x 1≠x 2,求证:x 1+x 2<0.【正确答案】:【解析】:(1)根据导数符号与函数单调性之间的关系求出函数f (x )的单调性,进而可求得f (x )的极大值点;(2)不妨设x 1<x 2,则 −π4≤x 1<0<x 2≤π4 ,要证x 1+x 2<0,即证x 1<-x 2,即证f (x 2)=f (x 1)<f (-x 2),构造性函数作差证明即可.【解答】:解:(1)因为 f′(x )=cosx e x−1 , f″(x )=−√2sin(x+π4)e x,由 x ∈[−π4,π4] ,得 sin (x +π4)≥0 ,故f''(x )≤0, 所以f'(x )在 x ∈(−π4,π4) 单调递减,又f'(0)=0, 所以f (x )在 [−π4,0] 单调递增,f (x )在 (0,π4) 单调递减, 所以x=0是f (x )的极大值点,(2)证明:不妨设x 1<x 2,则 −π4≤x 1<0<x 2≤π4, 要证x 1+x 2<0,即证x 1<-x 2,又f (x 1)=f (x 2),且x 1≠x 2,f (x )在 (−π4,0) 单调递增,],即证f(x2)<f(-x2),x2∈(0,π4令函数g(x)=f(x)-f(-x),则g'(x)=f'(x)+f'(-x)=cosx(e x+e-x)-2,记h(x)=cosx(e x+e-x)-2,则h'(x)=-sinx(e x+e-x)+cosx(e x-e-x),设m(x)=h'(x),因为m′(x)=-2sinx(e x-e-x)<0,)上单调递减,且h'(0)=0,h'(x)在(0,π4)上单调递减,且h(0)=0,所以h'(x)<0,h(x)在(0,π4)上单调递减,且g(0)=0,即g'(x)<0,g'(x)在(0,π4所以g(x)<0,即f(x)-f(-x)<0,命题得证.【点评】:本题以基本初等函数的极值、单调性问题和不等式证明为载体,考查学生利用导数分析、解决问题的能力,化归转化思想和逻辑推理、数学运算等核心素养,具有较强的综合性.。
2020-2021学年高二数学下学期第一次月考试题理[1]
2020-2021学年高二数学下学期第一次月考试题理本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是 符合题目要求的.(1)已知集合{1,2,}M zi =,i 为虚数单位,{3,4}N =,{4}MN =,则复数z =(A )2i - (B )2i (C )4i - (D )4i (2)已知函数()y f x =的图象在点(1,(1))M f 处的切线方程是122y x =+,则()()11f f +'的值等于(A )1 (B )52 (C )3 (D )0 (3)已知函数52()ln 33f x x x =-,则0(1)(1)limx f f x x∆→-+∆=∆ (A )1 (B )1- (C )43- (D )53-(4)某班数学课代表给全班同学出了一道证明题.甲说:“丙会证明.”乙说:“我不会证明.”丙说:“丁会证明.”丁说:“我不会证明.”以上四人中只有一人说了真话,只有一人会证明此题.根据以上条件,可以判定会证明此题的人是 (A )甲 (B )乙 (C )丙 (D )丁 (5)已知,x y R ∈, i 为虚数单位,若()123xi y i +=--,则x yi +=(A )10 (B )3 (C )5 (D )2 (6)函数()()3e xf x x =-的单调递增区间是(A )()0,3 (B )()1,4 (C )()2,+∞ (D )(),2-∞(7)函数32()23f x x x a =-+的极大值为6,那么a 的值是(A )6 (B )5 (C )1 (D )0(8)以正弦曲线sin y x =上一点P 为切点得切线为直线l ,则直线l 的倾斜角的范围是(A )30,,424πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭ (B )[)0,π (C )3,44ππ⎡⎤⎢⎥⎣⎦(D )30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭(9)在复平面内,若2(1)(4)6z m i m i i =+-+-所对应的点位于第二象限,则实数m 的取值范围是(A )(0,3) (B )(,2)-∞- (C )(2,0)- (D )(3,4)(10)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,错误..的是(11)若函数()2(0)xf x a x a=>+在[)1,+∞上的最大值为33,则a = (A )31- (B )34 (C )43(D )31+ (12)已知()f x 是定义在区间(0)+∞,上的函数,其导函数为()f x ',且不等式()2()x f x f x '<恒成立,则(A )4(1)(2)f f < (B )4(1)(2)f f > (C )(1)4(2)f f < (D )(1)4(2)f f '<第II 卷二、填空题:本题共4小题,每小题5分. (13)若函数321()(1)3f x x f x x '=-⋅+,则(1)f '=__________. (14)由曲线xy e x =+与直线0,1,0x x y ===所围成图形的面积等于__________. (15)观察下列各式: 1a b +=, 223a b +=, 334a b +=, 447a b +=, 5511a b +=,…,则1010a b +=(16)若直线y kx b =+是曲线ln 1y x =+的切线,也是曲线ln(2)y x =+的切线,则k =_______.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)已知复数()()227656z a a a a i a R =-++--∈,求a 分别为何值时,(1)z 是实数; (2)z 是纯虚数; (3)当106za =-时,求z 的共轭复数.(18)(本小题满分10分) 已知数列{}n a 满足)(1,111++∈+==N n a a a a nnn (1)分别求234,,a a a 的值;(2)猜想{}n a 的通项公式n a ,并用数学归纳法证明.(19)(本小题满分12分)已知函数32()f x x ax bx =++在23x =-与1x =处都取得极值. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[2,2]-的最大值与最小值.(20)(本小题满分12分)已知函数f (x )=ln xx.(1)判断函数()f x 的单调性;(2)若y =xf (x )+1x的图象总在直线y =a 的上方,求实数a 的取值范围.(21)(本小题满分12分)某商场为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元),可增加的销售额为25t t -+(百万元)03t ≤≤(). (1)若该商场将当年的广告费控制在三百万元以内,则应投入多少广告费,才能使公司由广告费而产生的收益最大?(注:收益=销售额-投入费用)(2)现在该商场准备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x (百万元),可增加的销售额约为32133x x x -++(百万元),请设计一个资金分配方案,使该商场由这两项共同产生的收益最大.(22)(本小题满分12分) 已知函数()ln m f x x x=+(其中m R ∈),()161x g x e x +=-+(其中e 为自然对数的底数).(1)若曲线()y f x =在1x =处的切线与直线2450x y -+=垂直,求()f x 的单调区间和极值;(2)若对任意11,22x ⎡⎤∈⎢⎥⎣⎦,总存在[]22,3x ∈使得()()312120f x g x e -+-≥成立,求实数m 的取值范围.xx 第二学期第一次考试 高二年级理科数学试题参考答案一、 选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CCBBACADDDAB(1)【答案】C 【解析】由M ∩N ={4},知4∈M ,故z i =4,故z =4i =4i i 2=-4i.(2)【答案】C 【解析】由导数的几何意义得()()1151,112.222k f f ===⨯+=' 所以()()11f f +'=15+=322,故选C. (3)【答案】B(4)【答案】B 【解析】如果甲会证明,乙与丁都说了真话,与四人中只有一人说了真话相矛盾,不合题意;排除选项A ;如果丙会证明,甲乙丁都说了真话,与四人中只有一人说了真话相矛盾,不合题意,排除选项C ;如果丁会证明,丙乙都说了真话,与四人中只有一人说了真话相矛盾,不合题意,排除选项D ,故选B. (5)【答案】A 【解析】()123xi y i +=-- 21{3y x -=⇒=- 3{1x y =-⇒=,则10x yi +=. (6)【答案】C 【解析】()()()e 3e e2xxxf x x x '=+-=-,令()()e 20x f x x '=->,解得2x >,所以函数()f x 的单调增区间为()2,+∞.故选C . (7)【答案】A 【解析】()()322()23,6661f x x x a f x x x x x '=-+∴=-=-,令()0,f x '=可得0,1x =,容易判断极大值为()06f a ==.故选A. (8)【答案】D 【解析】由题得cos y x '=,设切线的倾斜角为α,则][3tan cos 1tan 10,,44k x ππαααπ⎡⎫==∴-≤≤∴∈⋃⎪⎢⎣⎭,故选D.(9)【答案】D 【解析】整理得22(4)(6)z m m m m i =-+--对应的点位于第二象限,则224060m m m m ⎧-<⎪⎨-->⎪⎩,解得34m <<. (10)【答案】D 【解析】经检验,A :若曲线为原函数图象,先减后增,则其导函数先负后正,正确;B :若一直上升的函数为原函数图象,单调递增,则其导函数始终为正,正确;C:若下方的图象为原函数图象,单调递增,则其导函数始终为正,正确;D :若下方的函数为原函数,则其导函数为正,可知原函数应单调递增,矛盾;若上方的函数图象为原函数图象,则由导函数可知原函数应先减后增,矛盾.故选D. (11)【答案】A②当1a ≤,即1a ≤时, ()f x 在[)1,+∞上单调递减,故()()max 111f x f a ==+. 令1313a =+,解得31a =-,符合题意. 综上31a =-.(12)【答案】B 【解析】设函数2()()f x g x x=(0)x >, 则243()2()()2()()0x f x xf x xf x f x g x x x''--'==<, 所以函数()g x 在(0,)+∞上为减函数,所以(1)(2)g g >,即22(1)(2)12f f >, 所以4(1)(2)f f >,故选B. 二、填空题 (13)【答案】23【解析】∵f (x )=13x 3-f ′(1)·x 2+x ,∴f ′(x )=x 2-2f ′(1)·x +1, ∴f ′(1)=1-2f ′(1)+1,∴f′(1)=23. (14)【答案】e -12 【解析】由已知面积S =10⎰(e x+x )d x =⎝⎛⎭⎪⎫e x +12x 210|=e +12-1=e -12.(15)123(16)【答案】12【解析】设直线y kx b =+与曲线ln 1y x =+和ln(2)y x =+的切点分别为()11,x kx b +,()22,x kx b +.由导数的几何意义可得12112k x x ==+,得122x x =+,再由切点也在各自的曲线上,可得1122ln 1,(),ln 2kx b x kx b x +=++=+⎧⎨⎩联立上述式子解得12k =. 三、解答题(17)解:(1)Z 是实数, 2560a a --=,得61a a ==-或(2)Z 是纯虚数, 2760a a -+=,且2560a a --≠,得1a = (3)当106za =-时, ()()1110a a i -++=, 得()()221110a a -++=,得2a =± 当2a =时, 412z i =--,得412Z i =-+; 当2a =-时, 248z i =+,得248Z i =-(18) 解: (1)3111,2112121223112=+=+==+=a a a a a a ,41113131334=+=+=a a a (2)猜想)(1+∈=N n na n ①当n =1时命题显然成立②假设)(+∈=N k k n 命题成立,即ka k 1= 当11111111+=+=+=+=+k a a ,ak n kk k k k 时 1+=∴k n 时命题成立综合①②,当+∈N n 时命题成立(19)解:(1) 2()32f x x ax b '=++,由题意2()03(1)0f f ⎧'-=⎪⎨⎪'=⎩即44033320ab a b ⎧-+=⎪⎨⎪++=⎩ 解得122a b ⎧=-⎪⎨⎪=-⎩,经检验符合题意,321()22f x x x x ∴=--(2)由(1)知2()3()(1)3f x x x '∴=+-, 令()0f x '=,得122,13x x =-=, 当x 变化时,f ′(x ),f (x )的变化情况如下表:x -2⎝⎛⎭⎪⎫-2,-23 -23 ⎝ ⎛⎭⎪⎫-23,1 1 (1,2) 2f ′(x )+0 -0 +f (x ) -6极大值2227极小值-322由上表知f max (x )=f (2)=2,f min (x )=f (-2)=-6. (20)解:(I) 21ln ()xf x x-'=当0x e << 时,()0f x '>,()f x 为增函数; 当x e >时,()0f x '<,()f x 为减函数. (2)依题意得,不等式1ln a x x<+对于0x >恒成立.令1()ln g x x x =+,则22111()x g x x x x-'=-=. 当(1,)x ∈+∞时,21()0x g x x -'=>,则()g x 是(1,)+∞上的增函数; 当(0,1)x ∈时,()0g x '<,则()g x 是(0,1)上的减函数. 所以()g x 的最小值是(1)1g =, 从而a 的取值范围是(,1)-∞.(21)解:(1)设投入广告费t (百万元)后由此增加的收益为()f t (百万元),则()2254f t t t t t t =-+-=-+ ()224t =--+, 03t ≤≤.所以当2t =时, ()max 4f t =,即当商场投入两百万元广告费时,才能使商场由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告促销的费用为()3x -(百万元),则由此两项所增加的收益为()()23213[33g x x x x x =-+++-- ()3153]3433x x x +--=-++.()2'4g x x =-+,令()2'40g x x =-+=,得2x =或2x =-(舍去).当02x <<时, ()'0g x >,即()g x 在[)0,2上单调递增; 当23x <<时, ()'0g x <,即()g x 在(]2,3上单调递减, ∴当2x =时, ()()max 2523g x g ==. 故在三百万资金中,两百万元用于技术改造,一百万元用于广告促销,这样商场由此所增加的收益最大,最大收益为253百万元. (22)(2)由()161x g x ex +=-+, ()1'6x g x e +=-,当[]2,3x ∈时, ()'0g x >, ()g x 单调递增,故()g x 有最小值()3211g e =-,因为对任意11,22x ⎡⎤∈⎢⎥⎣⎦,总存在[]22,3x ∈使得()()312120f x g x e -+-≥,即()()31212f x e g x +-≥成立,所以对任意11,22x ⎡⎤∈⎢⎥⎣⎦,都有()3311211f x e e +-≥-,即()11f x ≥, 也即11ln 1m x x +>成立,从而对任意11,22x ⎡⎤∈⎢⎥⎣⎦,都有111ln m x x x ≥-成立, 构造函数()ln x x x x ϕ=- 1,22x ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,则()'ln x x ϕ=-,令()'0x ϕ=,得1x =,当1,12x ⎛⎫∈ ⎪⎝⎭时, ()'0x ϕ>, ()x ϕ单调递增;当()1,2x ∈时, ()'0x ϕ<, ()x ϕ单调递减,∴()x ϕ的最大值为()11ϕ=,∴1m ≥,综上,实数m 的取值范围为[)1,+∞.【感谢您的阅览,下载后可自由编辑和修改,关注我 每天更新】。
广东省珠海市2020-2021学年高二(下)期末数学试题
6.635
7.879
10.828
A.若K2的观测值k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病
B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能性患有肺病
C.从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得判断出现错误
【详解】
解:函数 中,
令 ,解得 ,
所以函数 的定义域为 .
故选: .
【点睛】
本题考查了根据函数解析式求定义域的问题,属于基础题.
3.A
【解析】
试题分析:根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成斜截式即可.
解:∵y=﹣x3+3x2∴y'=﹣3x2+6x,
∴y'|x=1=(﹣3x2+6x)|x=1=3,
∴曲线y=﹣x3+3x2在点(1,2)处的切线方程为y﹣2=3(x﹣1),
即y=3x﹣1,
故选A.
点评:本题主要考查了利用导数研究曲线上某点切线方程,属于基础题.
4.B
【分析】
根据正态分布的对称性即可得到答案.
【详解】
由于 ,故选B.
【点睛】
本题主要考查正态分布中概率的计算,难度不大.
参会人数 (万人)
11
9
8
10
12
所需环保车辆 (辆)
28
23
20
25
29
(1)根据统计表所给5组数据,求出 关于 的线性回归方程 .
(2)已知租用的环保车平均每辆的费用 (元)与数量 (辆)的关系为
2020-2021学年广东省珠海市高二上学期期末数学试题(解析版)
2020-2021学年广东省珠海市高二上学期期末数学试题一、单选题1.命题“00x ∃>,200230x x -+<”的否定是( ) A .00x ∃≤,200230x x -+<B .0x ∀≤,2230x x -+<C .00x ∃>,200230-+≥x xD .0x ∀>,2230x x -+≥【答案】D【分析】直接利用特称命题的否定是全称命题求解即可.【详解】因为特称命题的否定是全称命题,否定特称命题时既要改变量词又要否定结论,所以命题“00x ∃>,200230x x -+<”的否定是0x ∀>,2230x x -+≥,故选:D.2.某公司将180个产品,按编号为001,002,003,…,180从小到大的顺序均匀的分成若干组,采用系统抽样方法抽取一个样本进行检测,若第一组抽取的编号是003,第二组抽取的编号是018,则样本中最大的编号应该是( ) A .168 B .167C .153D .135【答案】A【分析】先求样本间隔,然后根据抽查样本容量,结合系统抽样的定义进行求解即可. 【详解】样本间隔为18﹣3=15, 即抽取样本数为180÷15=12, 则最大的样本编号为3+15×11=168, 故选:A .3.在空间直角坐标系中,点(4,1,9)A ---与点(10,1,6)B --的距离是( ) A .5 B .6C .7D .8【答案】C【分析】由A ,B 的坐标求出AB 的坐标,求其模可得A 与B 的距离. 【详解】点(4,1,9)A ---,点(10,1,6)B --,∴(6,2,3)AB =-,则||||(7AB AB ==-=. 故选:C .4.命题“[1,2]x ∀∈,2x a ≤”成立的一个充分不必要条件是( ) A .1a > B .1a ≥C .4a ≥D .4a >【答案】D【分析】先找出命题为真命题的充要条件{}4a a ≥,从集合的角度充分不必要条件应为{}4a a ≥的真子集,由选项得出答案.【详解】[]1,2x ∀∈,214x ≤≤,∴要使2x a ≤恒成立,即4a ≥, 本题求的是充分不必要条件,结合选项,只有D 符合. 故选:D.【点睛】结论点睛:充分不必要条件一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等; (4)p 是q 的既不充分又不必要条件,q 对的集合与p 对应集合互不包含.5.方程211(1)x y -=--表示的曲线是( ) A .一个圆 B .一个椭圆C .两个圆D .半圆【答案】D【分析】原方程两边平方,等价于22(1)(1)1(1)x y x -+-=,从而可得出结论. 【详解】方程211(1)x y -=--等价于22(1)(1)1(1)x y x -+-=,∴表示的曲线是半个圆.故选:D .6.如图所示茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.4,则x 、y 的值分别为A .7、8B .5、7C .8、5D .7、7【答案】D【分析】根据中位数和平均数的公式分别进行计算即可.【详解】组数据的中位数为17,x 7∴=,乙组数据的平均数为17.4,()19161610y 2917.45∴+++++=, 得80y 87+=, 则y 7=, 故选D .【点睛】本题主要考查茎叶图的应用,根据中位数和平均数的公式是解决本题的关键.中位数即最中间的数据,平均数即将所有数据加到一起,除以数据个数. 7.根据如表数据,得到的回归方程为y b x 9=+,则b (= )A .2B .1C .0D .1-【答案】D【分析】由题意可得样本中心点,代入回归直线可得b 值,即可得答案. 【详解】由题意可得()14567865x =++++=,()15432135y =++++=, 回归方程为9y b x =+且回归直线过点()6,3,369b ∴=+,解得1b =-,故选D .【点睛】本题考查线性回归方程,涉及平均值的计算和回归方程的性质,属基础题.在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y 之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值.8.若样本数据1x ,2x ,…,10x 的标准差为4,则数据112x -,212x -,…,1012x -的标准差为( ) A .4 B .8C .16D .8-【答案】B【分析】首先设原数据的平均数为x ,则新数据的平均数为12x -,然后结合原数据的方差,利用方差的公式计算得出新数据的方差,再求出标准差即可. 【详解】设原数据的平均数为x ,则新数据的平均数为12x -, 则原数据的方差为22211021[()()()]1610x x x x x x -+-+⋯+-=, 则新数据的方差为:11[(121210x --+22)(1212x x +--+102)(1212x x +⋯+--+2)]x 222121014[()()()10]x x x x x x =⨯-+-+⋯+- 41664=⨯=.故数据112x -,212x -,…,1012x -的标准差为:8. 故选:B .9.从[0]2,中任取一个数x ,从[0]3,中任取一个数y ,则使224x y ≤+的概率为( )A .12B .π9C .π3D .π6【答案】D【分析】在平面直角坐标系中作出图形,则x ∈[0,2],y ∈[0,3]的平面区域为矩形,符合条件x 2+y 2≤4的区域为以原点为圆心,2为半径的扇形内部,则扇形面积与矩形面积的比为概率【详解】在平面直角坐标系中作出图形,如图所示, 则x ∈[0,2],y ∈[0,3]的平面区域为矩形OABC , 符合条件x 2+y 2≤4的区域为以原点为圆心, 2为半径的扇形OAD 内部, ∴P (x 2+y 2≤4)2124236S S ππ⨯===⨯扇形矩形;故选D .【点睛】本题考查了几何概型的概率计算,正确作出几何图形是解题的关键.10.过椭圆()2222:10x y C a b a b+=>>的左焦点F 的直线过C 的上端点B ,且与椭圆相交于点A ,若3BF FA =,则C 的离心率为( ) A .13B .33C 3D .22【答案】D【分析】首先设出点的坐标,然后利用点在椭圆上即可求得椭圆的离心率. 【详解】由题意可得()()0,,,0B b F c -,由3BF FA =, 得4,33b A c ⎛⎫-- ⎪⎝⎭,点A 在椭圆上,则:22224331b c a b ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=,整理可得:2222216812,,9922c c e e a a ⋅=∴===. 故选D.【点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).11.已知椭圆:22142x y +=,过点()1,1M 的直线与椭圆相交于,A B 两点,且弦AB 被点M 平分,则直线AB 的方程为( ) A .230x y +-= B .230x y +-=C .20x y +-=D .210x y -+=【答案】B【详解】设()11A x y ,,()22B x y ,则22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ ()()()()12121212042x x x x y y y y +-+-∴+=则()()121212122142x x y y x x y y -+-==--+ 即直线AB 的斜率为12-则直线AB 的方程为()1112y x -=-- 即230x y +-= 故选B12.给出下列命题:①命题“若220a b +=,则a ,b 全为0”的否命题是“若220a b +≠,则a ,b 全不为0”; ②命题“已知,x y ∈R ,若3x y +≠,则2x ≠或1y ≠”的逆否命题是真命题; ③设,x y ∈R ,则“1x ≠或2y ≠”是“2xy ≠”的充分不必要条件;④已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线经过点(1,2),则该双曲线的离心率其中是真命题的有( ) A .①② B .②④C .①③D .②③④【答案】B【分析】根据否命题的定义判断①;求出逆否命题判断②命;根据充分条件与必要条件的定义判断③;求出双曲线的离心率判断④.【详解】①命题“若220a b +=,则a ,b 全为0”的否命题应该是“若220a b +≠,则a ,b 不全为0”,故①错误;②命题“已知,x y ∈R ,若3x y +≠,则2x ≠或1y ≠”的逆否命题是“已知,x y ∈R ,若2x =且1y =,则3x y +=”,故②正确; ③取112x =≠,42y =≠,但是2xy =,即“1x ≠或2y ≠”不能推出“2xy ≠”,所以“1x ≠或2y ≠”不是“2xy ≠”的充分不必要条件,故③错误;④双曲线22221(0,0)x y a b a b -=>>的一条渐近线经过点(1,2),则有2b a=,则离心率2215c b e a a==+=,故④正确故选:B .二、填空题13.某社会爱心组织面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3组抽取__________名志愿者.【答案】3【分析】先分别求出这3组的人数,再利用分层抽样的方法即可得出答案. 【详解】第3组的人数为10050.0630⨯⨯=, 第4组的人数为10050.0420⨯⨯=, 第5组的人数为1000.02510⨯⨯=, 所以这三组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,第三组应抽取306360⨯=名, 故答案为:3.【点睛】关键点点睛:该题考查的是有关频率分布直方图的识别以及分层抽样某层抽取个数的问题,正确解题的关键是掌握在抽取过程中每个个题被抽到的机会均等. 14.在平面直角坐标系xOy 中,抛物线22x y =的焦点到准线的距离为__________. 【答案】1【分析】求出抛物线22x y =的焦点坐标与准线方程,从而可得答案. 【详解】由22x y =可得1p =,抛物线22x y =的焦点坐标为10,2⎛⎫ ⎪⎝⎭,准线方程为12y, 所以抛物线22x y =的焦点到准线的距离为11122⎛⎫--= ⎪⎝⎭, 故答案为:1.15.某学校羽毛球校队进行扩招,共2个名额,现有2名男生和3名女生报名,从报名学生中任选2名学生,则恰好选中2名女生的概率为__________. 【答案】310【分析】从2名男同学和3名女同学中任选2人,共有2510C =种,其中全是女生的有233C =种,根据概率公式计算即可【详解】从2名男同学和3名女同学中任选2人,共有2510C =种,其中全是女生的有233C =种,故选中的2人都是女同学的概率310P =, 故答案为:310.16.若双曲线的渐近线方程为3y x =±,它的一个焦点的坐标为,则该双曲线的标准方程为____________________.【答案】2219y x -=.【解析】解:由双曲线渐近线方程可知b /a =3 ①因为它的一个的焦点为(10,0),所以c=10 ② 又c2=a 2+b 2③联立①②③,解得a 2=1,b 2=9, 所以双曲线的方程为x 2- y 2/9 =1. 故答案为为x 2- y 2/9 =1.17.正方体1111ABCD A B C D -的棱长为2,点M 和N 分别是11B D 和11B C 的中点,则异面直线AM 和CN 所成角的余弦值为__________.【答案】3010【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,求出(1,1,2)AM =-,(1,0,2)CN =,利用空间向量夹角余弦公式可得答案.【详解】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 则(2,0,0)A ,(1,1,2)M ,(0,2,0)C ,(1,2,2)N ,(1,1,2)AM =-,(1,0,2)CN =,设异面直线AM 和CN 所成角为θ, 则||30cos ||||65AM CN AM CN θ⋅===⋅⨯.∴异面直线AM 和CN 30.30.18.一个动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,则这个动圆圆心的轨迹方程为:______.【答案】2212516x y += 【分析】设动圆的圆心为(),Q x y ,半径为R ,根据动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,得到121,9QQ R QQ R =+=-,两式相加得到1212106QQ QQ QQ +=>=,再根据椭圆的定义求解.【详解】设动圆的圆心为(),Q x y ,半径为R ,因为动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,所以121,9QQ R QQ R =+=-, 所以1212106QQ QQ QQ +=>=,所以动圆圆心的轨迹为以12,Q Q 为焦点的椭圆, 所以2210,5,3,16a a c b ====,所以动圆圆心的轨迹方程为2212516x y +=, 故答案为:2212516x y += 【点睛】本题主要考查圆与圆的位置关系以及椭圆的定义,还考查了运算求解的能力,属于中档题.19.如图所示,在长方体1111ABCD A B C D -中11AD AA ==,3AB =,点E 是棱AB 的中点,则点E 到平面1ACD 的距离为__________.【答案】319【分析】以D为坐标原点,直线DA ,DC ,1DD 分别为x ,y ,z 轴,建立空间直角坐标系,求出平面1ACD 的法向量,利用向量法能求出点E 到平面1ACD 的距离. 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,31,,02E ⎛⎫⎪⎝⎭,(1,0,0)A ,(0,3,0)C ,1(0,0,1)D , (1,3,0)AC =-,1(1,0,1)AD =-,30,,02AE ⎫⎛= ⎪⎝⎭,设平面1ACD 的法向量(,,)n x y z =,则1300n AC x y n AD x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取1y =,得(3,1,3)n =, ∴点E 到面1ACD 的距离:||319||38AE n d n ⋅==, 故答案为:31938.【点睛】方法点睛:利用法向量求解空间角与距离的关键在于“四破”: 第一,破“建系关”,构建恰当的空间直角坐标系; 第二,破“求坐标关”,准确求解相关点的坐标; 第三,破“求法向量关”,求出平面的法向量; 第四,破“应用公式关”.20.如图,在一个直二面角AB αβ--的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于AB 的线段,且4AB =,6AC =,8BD =,则CD =__________.【答案】229【分析】求CD 的长转为求||CD ,而CD CA AB BD =++,按照向量的模长求法,即可求解.【详解】由已知,可得AC AB ⊥,BD AB ⊥,AC BD ⊥,CD CA AB BD AB AC BD =++=-+,22()CD AB AC BD ∴=-+22222AB AC BD AB AC AB BD =++-⋅+⋅2163664116AC BD -⋅=++=, ||229CD ∴=.故答案为229.三、解答题21.已知命题p :“关于x 的方程2x 2x m 0-+=有实数根”,命题q :“23m -<<”,命题r :“1t m t <<+”.(1)若p q ∧是真命题,求m 的取值范围; (2)若r 是q 的充分不必要条件,求t 的取值范围. 【答案】(1)21m -<≤;(2)22t -≤≤. 【分析】(1)由p 为真可得1m ,从而123m m ≤⎧⎨-<<⎩,进而可得答案;(2)由r 是q 的充分不必要条件,可得213t t ≥-⎧⎨+≤⎩(等号不同时成立),进而可得答案.【详解】(1)若p 为真:440m ∆=-≥,解得1m 若“p q ∧”是真命题,则p ,q 均为真命题即123m m ≤⎧⎨-<<⎩,解得21m -<≤.m ∴的取值范围21m -<≤(2)由r 是q 的充分不必要条件, 可得(,1)t t +是(2,3)-的真子集,即213t t ≥-⎧⎨+≤⎩(等号不同时成立),解得22t -≤≤. t ∴的取值范围22t -≤≤22.某校为了解学生对安全知识的重视程度,进行了一次安全知识答题比赛.随机抽取的100名学生的笔试成绩(满分200分),分成[160,165),[165,170),……,[180,185)共五组后,得到的频率分布表如下所示:(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示);(2)为能更好了解学生的知识掌握情况,学校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面答,最终从6位学生中随机抽取2位参加市安全知识答题决赛,求抽到的2位学生不同组的概率.【答案】(1)答案见解析;(2)11 15.【分析】(1)依据频数与频率公式求得相应数据,再根据数据完成频率分布直方图;(2)利用分层抽样求得第3、4、5组中的人数,再用列举法求得相应概率.【详解】(1)第2组的频数为1000.30030⨯=人,所以①处应填的数为10人,②处应填的数为0.300,频率分布直方图如图所示,(2)因为第3、4、5组共有60名选手,所以利用分层抽样在60名选手中抽取6名选手进入第二轮面试,每组抽取的人数分别为:第3组:306360⨯=人,第4组:206260⨯=人,第5组:106160⨯=人,所以第3、4、5组分别抽取3人、2人、1人进入第二轮面答.设第3组的3位学生为1A,2A,3A,第4组的2位学生为1B,2B,第5组的1位学生为1C,则从这6位学生中抽取2位学生有:()12,A A ,()13,A A ,()11,A B ,()12,AB ,()11,AC ,()23,A A ,()21,A B ,()22,A B ,()21,A C ,()31,A B ,()32,A B ,()31,A C ,()12,B B ,()11,B C ,()21,B C ,共15种情况.抽到的2位学生不同组的有:()11,A B ,()12,A B ,()11,A C ,()21,A B ,()22,A B ,()21,A C ,()31,A B ,()32,A B ,()31,A C ,()11,B C ,()21,B C ,共11种情况.所以抽到的2位学生不同组的概率为1115. 【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏.23.(1)已知等轴双曲线22221(0,0)y x a b a b-=>>的上顶点到一条渐近线的距离为1,求此双曲线的方程;(2)已知抛物线24y x =的焦点为F ,设过焦点F 且倾斜角为45︒的直线l 交抛物线于A ,B 两点,求线段AB 的长.【答案】(1)22122y x -=;(2)8. 【分析】(1)由等轴双曲线的一条渐近线方程为0y x +=,再由点到直线距离公式求解即可;(2)求得直线方程代入抛物线,结合焦点弦长求解即可.【详解】(1)由等轴双曲线的一条渐近线方程为0y x +=,且顶点(0,)a 到渐近线的距离为1,可得1a b=⎧=,解得a b ⎧=⎪⎨=⎪⎩22122y x -=(2)抛物线24y x =的焦点为(1,0)F直线l 的方程为0tan 45(1)y x -=︒⋅-,即1y x =-.与抛物线方程联立,得214y x y x=-⎧⎨=⎩,消y ,整理得2610x x -+=,设其两根为1x ,2x ,且126x x +=. 由抛物线的定义可知,12||628AB x x p =++=+=. 所以,线段AB 的长是8.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. 24.如图①所示,在直角梯形EFCD 中,//CF DE ,EF DE ⊥,BA DE ⊥,224AE AD EF BC ====.现以AB 为折痕将四边形AEFB 折起,使点E 在平面ABCD 的投影恰好为点A ,如图②.(1)求证://CF 平面ADE ;(2)求平面CDF 与平面AEFB 所成锐二面角的余弦值. 【答案】(1)证明见解析;(2)23. 【分析】(1)取线段AD 的中点M ,连结CM ,EM ,由平面几何证得四边形CMEF 为平行四边形,再由线面平行的判定可得证;(2)由已知以A 为坐标原点,建立空间直角坐标系A xyz -,运用二面角的向量求解方法可求得平面CDF 与平面AEFB 所成锐二面角的余弦值. 【详解】(1)取线段AD 的中点M ,连结CM ,EM ,则//AM BC=,∴四边形ABCM 为平行四边形,//AB MC∴=,四边形ABEF 为矩形//AB EF ∴=,//MC EF∴=, ∴四边形CMEF 为平行四边形,//CF EM∴=, 又CF ⊂/平面ADE ,ME ⊂平面ADE ,//CF ∴平面ADE ;(2)点E 在平面ABCD 的投影恰好为点A .EA ∴⊥平面ABCD ,如图,以A 为坐标原点,建立空间直角坐标系A xyz -,则(2,2,0)C ,(0,4,0)D ,(2,0,4)F ,(0,4,0)AD ∴=,(2,2,0)CD =-,(0,2,4)CF =-设(,,)n x y z =是平面CDF 的一个法向量,则00n CD n CF ⎧⋅=⎨⋅=⎩即020x y y z -=⎧⎨-=⎩,令2y =,解得21x z =⎧⎨=⎩,(2,2,1)n ∴=, 又AD 是平面AEFB 的一个法向量,2cos ,3||||n AD n AD n AD ⋅∴〈〉==⋅,∴平面CDF 与平面AEFB 所成锐二面角的余弦值为23.【点睛】方法点睛:向量法求二面角的步骤:建、设、求、算、取.1、建:建立空间直角坐标系.以三条互相垂直的垂线的交点为原点,没有三垂线时需做辅助线;建立右手直角坐标系,让尽量多的点落在坐标轴上.2、设:设所需点的坐标,并得出所需向量的坐标.3、求:求出两个面的法向量.4、算:运用向量的数量积运算,求两个法向量的夹角的余弦值;5、取:根据二面角的范围()0π,和图示得出的二面角是锐角还是钝角,再取值.25.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,右焦点为F ,右顶点为A ,以椭圆四个顶点为顶点的四边形面积为122.(1)求椭圆C的方程;(2)过点F的直线l(不与x轴重合)交椭圆C于点M、N,直线MA、NA分别与直线9x=交于点P、Q,且P、Q中点为G,求证:1||||2FG PQ=.【答案】(1)22198x y;(2)证明见解析.【分析】(1)根据离心率及菱形的面积联立方程求出,a b,即可求解;(2)设直线方程为1x ty=+,表示出,P Q点的坐标,利用向量可证明FP FQ⊥,根据直角三角形斜边中线的性质得证.【详解】(1)由题意得132122caab⎧=⎪⎨⎪=⎩,解得3a=,1c=,22b =,所以椭圆C 的方程为22198x y;(2)如图,设直线l的方程为1x ty=+,设点()11,M x y、()22,N x y,联立221198x tyx y=+⎧⎪⎨+=⎪⎩,消去x得()228916640t y ty++-=,则0∆>恒成立,由韦达定理得1221689ty yt+=-+,1226489y yt=-+,设点(9,)P m,(3,0)A,则()()11113,2,AM x y ty y=-=-,(6,)AP m=,由AM//AP→得()1162y m ty=-,可得1162y m ty =-,即点1169,2y P ty ⎫⎛⎪ -⎝⎭,同理可得点2269,2y Q ty ⎫⎛⎪ -⎝⎭,1168,2y FP ty ⎫⎛∴=⎪ -⎝⎭,2268,2y FQ ty ⎫⎛=⎪ -⎝⎭, ()()1212366422y y FP FQ ty ty ∴⋅=+--()1221212366424y y t y y t y y =+-++2222236648964643248989t t t t t ⨯+=+-++++()222366464646406432489t t t -⨯=+=-=-+++ 因此,FP FQ ⊥.又因为P 、Q 中点为G ,所以1||||2FG PQ =. 【点睛】关键点点睛:设点()11,M x y 、()22,N x y ,点(9,)P m ,根据向量AM //AP →,转化出点1169,2y P ty ⎫⎛⎪ -⎝⎭,2269,2y Q ty ⎫⎛⎪-⎝⎭,利用向量0FP FQ ⋅=,证明FP FQ ⊥是证明结论的关键所在,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省珠海市2020-2021学年高二下学期期末学业质量监测数学理试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知z C ∈,()2zi bi b R =-∈,z 的实部与虚部相等,则b =() A .-2B .12C .2D .12- 2.函数121x y x -=+在()1,0处的切线与直线l :y ax =垂直,则a =() A .-3 B .3 C .13 D .13- 3.若随机变量X 满足(),X B n p ,且3EX =,94DX =,则p =() A .14 B .34 C .12 D .234.若函数()y f x =的图像如下图所示,则函数()'y f x =的图像有可能是()A .B .C .D . 5.如图所示阴影部分是由函数x y e =、sin y x =、0x =和2x π=围成的封闭图形,则其面积是()A .22e π+ B .22e π- C .2e πD .22e π- 6.某机构需掌握55岁人群的睡眠情况,通过随机抽查110名性别不同的55岁的人的睡眠质量情况,得到如下列联表由()()()()()22n ad bc K a b c d a c b d -=++++得,27.8K ≈. 根据2K 表得到下列结论,正确的是()A .有99%以下的把握认为“睡眠质量与性别有关”B .有99%以上的把握认为“睡眠质量与性别无关”C .在犯错误的概率不超过0.01的前提下,认为“睡眠质量与性别有关”D .在犯错误的概率不超过0.01的前提下,认为“睡眠质量与性别无关”7.已知在正三角形ABC 中,若D 是BC 边的中点,G 是三角形ABC 的重心,则2AG GD=.若把该结论推广到空间,则有:在棱长都相等的四面体ABCD 中,若三角形BCD 的重心为M ,四面体内部一点O 到四面体各面的距离都相等,则AO OM等于( ) A .4 B .3 C .2 D .18.从10名男生6名女生中任选3人参加竞赛,要求参赛的3人中既有男生又有女生,则不同的选法有()种A .1190B .420C .560D .3360 9.从1、2、3、4、5、6中任取两个数,事件A :取到两数之和为偶数,事件B :取到两数均为偶数,则()|P B A =()A .15B .14C .13D .1210.已知13个村庄中,有6个村庄道路在维修,用X 表示从13个村庄中每次取出9个村庄中道路在维修的村庄数,则下列概率中等于2567913C C C 的是( ) A .()2P X ≥ B .()2P X = C .()4P X ≤D .4P X 11.直线l :0mx ny +=,{},1,2,3,4,5,6m n ∈,所得到的不同直线条数是() A .22 B .23 C .24 D .2512.凸10边形内对角线最多有( )个交点A .210AB .210C C .410AD .410C二、填空题13.若()'1f a =,则()()0121limx f x f x ∆→+∆-=∆____ 14.()()2221z m m i m R =-+-∈,其共轭复数z 对应复平面内的点在第二象限,则实数m 的范围是____.15.若()80a x a x ⎛⎫+< ⎪⎝⎭的展开式中,常数项为5670,则展开式中各项系数的和为____. 16.若()sin 2cos2f x x x =+,则'6f π⎛⎫=⎪⎝⎭____ 17.正态分布()2,X N μσ三个特殊区间的概率值()0.6826P X μσμσ-≤<+=,()220.9544P X μσμσ-≤<+=,()330.9974P X μσμσ-≤<+=,若随机变量X 满足()21,2X N ,则()35P X ≤<=____.18.已知,a b ∈R ,且()22120a a i a bi +++++=,则a bi +=____.19.观察下列等式:11=,3211=123+=,332123+=1236++=,33321236++=……可以推测3333123n +++⋅⋅⋅+=____(*n N ∈,用含有n 的代数式表示).20.若()f x 是定义在()(),00,D =-∞+∞上的可导函数,且()()'xf x f x >,对x D ∈恒成立.当0b a <<时,有如下结论:①()()bf a af b >,②()()bf a af b <,③()()af a bf b >,④()()af a bf b <, 其中一定成立的是____.三、解答题21.已知函数()()32103f x x x mx m =++>. (1)1m =时,求在点()()1,1P f 处的函数()f x 切线l 方程;(2)8m =时,讨论函数()f x 的单调区间和极值点. 22.已知()*310,,23n x n N n x ⎫≠∈≥⎪⎭的展开式中第三项与第四项二项式系数之比为34. (1)求n ;(2)请答出展开式中第几项是有理项,并写出推演步骤(有理项就是x 的指数为整数的项).23.袋子中装有大小形状完全相同的5个小球,其中红球3个白球2个,现每次从中不放回的取出一球,直到取到白球停止.(1)求取球次数X 的分布列;(2)求取球次数X 的期望和方差.24.某育种基地对某个品种的种子进行试种观察,经过一个生长期培养后,随机抽取n 株作为样本进行研究.株高在35cm 及以下为不良,株高在35cm 到75cm 之间为正常,株高在75cm 及以上为优等.下面是这n 个样本株高指标的茎叶图和频率分布直方图,但是由于数据递送过程出现差错,造成图表损毁.请根据可见部分,解答下面的问题:(1)求n 的值并在答题卡的附图中补全频率分布直方图;(2)通过频率分布直方图估计这n 株株高的中位数(结果保留整数);(3)从育种基地内这种品种的种株中随机抽取2株,记X 表示抽到优等的株数,由样本的频率作为总体的概率,求随机变量X 的分布列(用最简分数表示).25.函数()()1ln 0, 2.71828x f x x a e ax-=+>≈. (1)若函数()f x 在[)1,+∞上为增函数,求实数a 的取值范围;(2)求证:n N ∈,2n ≥时,1111234n n e +++⋅⋅⋅+>.参考答案1.C【分析】利用待定系数法设复数z ,再运用复数的相等求得b .【详解】设z a ai =+ (R a ∈),则()2,a ai i bi +=- 即2a ai bi -+=- 22,2a a ab b -==-⎧⎧∴∴⎨⎨=-=⎩⎩ .故选C. 【点睛】本题考查用待定系数法,借助复数相等建立等量关系,是基础题.2.A【分析】先利用求导运算得切线的斜率,再由互相垂直的两直线的关系,求得a 的值.【详解】''213()21(21)x y x x -==++ 11,3x y =∴='∴ 函数在(1,0)处的切线的斜率是13, 所以,与此切线垂直的直线的斜率是3,-3.a ∴=- 故选A.【点睛】本题考查了求导的运算法则和互相垂直的直线的关系,属于基础题. 3.A【分析】根据二项分布的数学期望和方差求解.【详解】由题意得:39(1)4np np p =⎧⎪⎨-=⎪⎩ 解得:1214n p =⎧⎪⎨=⎪⎩, 故选A.【点睛】本题考查二项分布的数学期望和方差求解,属于基础题.4.A【解析】【分析】根据函数图象的增减性与其导函数的正负之间的关系求解。
【详解】由()f x 的图象可知:在(,0)-∞ ,()f x 单调递减,所以当(,0)x ∈-∞时,'()f x 0;<在(0,)+∞ ,()f x 单调递增,所以当(0,)x ∈+∞时,'()f x 0;>故选A.【点睛】本题考查函数图象的增减性与其导函数的正负之间的关系,属于基础题. 5.B【解析】【分析】根据定积分的几何意义得到阴影部分的面积。
【详解】由定积分的几何意义可知: 阴影部分面积2022200(sin )(cos )(cos )(cos0) 2.2x x s e x dx e x e e e πππππ=-=+=+-+=-⎰ 故选B.【点睛】本题考查定积分的几何意义和积分运算,属于基础题.6.C【解析】【分析】根据独立性检验的基本思想判断得解.【详解】因为7.8 6.635> ,根据2K 表可知;选C.【点睛】本题考查独立性检验的基本思想,属于基础题.7.B【分析】利用类比推理把平面几何的结论推广到空间中.【详解】因为O 到四面体各面的距离都相等,所以O 为四面体内切球的球心, 设四面体的内切球半径为r ,则43V Sr =,其中V 表示四面体的体积,S 表示一个面的面积; 所以1433V S AM Sr =⋅=,即14r AM =, 所以34314AM AO OM AM ==.故选B. 【点睛】本题主要考查类比推理,平面性质类比到空间时注意度量关系的变化. 8.B【分析】根据分类计数原理和组合的应用即可得解.【详解】要求参赛的3人中既有男生又有女生,分为两种情况:第一种情况:1名男生2名女生,有12106C C 种选法;第二种情况:2名男生1名女生,有21106C C 种选法,由分类计算原理可得1221106106420C C C C +=.故选B. 【点睛】本题考查分类计数原理和组合的应用,属于基础题.9.D【分析】根据条件概率公式可得解.【详解】事件A 分为两种情况:两个均为奇数和两个数均为偶数,所以()22332625C C P A C +==,23261()5C P AB C ==, 由条件概率可得:()()1|()2P AB P B A P A ==, 故选D.【点睛】本题考查条件概率,属于基础题.10.D【解析】【分析】根据古典概型的概率公式可得解.【详解】由2466C C = 可知选D. 【点睛】本题考查古典概型的概率公式,容易误选B ,属于基础题. 11.B【分析】根据排列知识求解,关键要减去重复的直线.【详解】当m,n 相等时,有1种情况;当m,n 不相等时,有266530A =⨯= 种情况,但123,246== 246,123==24,36=12,36=重复了8条直线, 因此共有130823+-=条直线.故选B.【点睛】本题考查排列问题,关键在于减去斜率相同的直线,属于中档题.12.D【解析】【分析】根据凸n 边形内对角线最多有个交点的公式求得.【详解】凸n 边形内对角线最多有4n nC - 个交点,又10441010C C -= ,故选D. 【点睛】本题考查凸边形内对角线最多有个交点的公式,属于中档题.13.2a【分析】根据导数的概念将已知式配凑成定义式可得答案.【详解】()()()()()00121121lim 2lim 2'12.2x x f x f f x f f a x x∆→∆→+∆-+∆-===∆∆ 故答案为2a .【点睛】本题考查导数的概念,属于基础题.14.12⎛⎫ ⎪⎝⎭【分析】根据共轭复数对应的点所在的象限,列出不等式组求解.【详解】 由已知得:()2221z m m i =---,且在第二象限, 所以:220210m m ⎧-<⎨-⎩< ,解得:12m m ⎧<<⎪⎨⎪⎩< ,所以1.2m <<故答案为 12⎛⎫ ⎪⎝⎭.【点睛】本题考查共轭复数的概念和其对应的点所在的象限,属于基础题.15.256【分析】根据二项式展开式的通项公式求得a ,再用赋值法求出各项系数的和.【详解】 由二项式的展开式的通项公式得882188rr r r r r r a T C x C a x x --+⎛⎫== ⎪⎝⎭, 则820,4r r -== 所以4485670,C a = 所以481,0, 3.a a a =<∴=- 所以883,a x x x x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭再令1,x = 得展开式中各项系数的和()88312256.1⎛⎫-=-= ⎪⎝⎭ 故答案为256.【点睛】本题考查二项式展开式中的特定项和各项系数和,属于中档题.16.1【分析】利用导数的运算法则即可求解.【详解】由求导运算法则得:()'2cos22sin 2fx x x =- ,所以'2cos 22sin 21666f πππ⎛⎫⎛⎫⎛⎫=⨯⨯-⨯⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为1【点睛】本题考查导数的运算法则,关键复合函数求导,属于中档题.17.0.1359【分析】根据正态分布,得出其均值和方差的值,根据3σ的原则和正态曲线的对称性可得.【详解】由题意可知,=1μ,=2σ,()()()()11351221221121120.95440.68260.1359.22P X P X P X ∴≤≤=-⨯≤<+⨯--⨯≤<+⨯=-=⎡⎤⎣⎦故答案为0.1359.【点睛】本题考查正态分布曲线的对称性和3σ的原则,属于基础题.18【分析】利用复数相等的条件和复数的模运算可以求得.【详解】由复数相等得:2210,20a a a b ⎧++=⎨++=⎩解得:1,1a b =-⎧⎨=-⎩a bi +==【点睛】 本题考查复数相等和复数的模,属于基础题.19.()212n n +⎡⎤⎢⎥⎣⎦或()2214n n +或()2123n +++⋅⋅⋅+ 【解析】【分析】观察找到规律由等差数列求和可得.【详解】由观察找到规律可得:()223333(1)123123,2n n n n +⎡⎤+++⋅⋅⋅+=+++⋅⋅⋅+=⎢⎥⎣⎦ 故可得解.【点睛】本题考查观察能力和等差数列求和,属于中档题.20.①【分析】构造函数,并且由其导函数的正负判断函数的单调性即可得解.【详解】由()()'xf x f x >得()()'0,xf x f x ->即()()2'0,xf x f x x ->所以()'0,f x x ⎛⎫> ⎪⎝⎭所以()f x x在(),0-∞和()0,∞+单调递增, 因为0b a <<,所以()(),f a f b a b>因为0,ab >所以在不等式两边同时乘以ab , 得①正确,②、③、④错误.【点睛】本题考查构造函数、由导函数的正负判断函数的单调性,属于难度题.21.(1)6310x y --=(2)()f x 的减区间是(),2-∞-和()4,+∞,增区间是()2,4-;2x =-为()f x 的极小值点,4x =为()f x 的极大值点【分析】(1)根据函数求导法则求出()'1f 得切线的斜率,得切线的方程;(2)对函数求导研究导函数的正负,得到函数的单调区间和极值.【详解】解:(1)∵1m =时,()3213f x x x x =-++, ∴()2'21f x x x =-++, ∴()513f =,()'12f =, ∴在点()()1,1P f 处的切线l :()5213y x -=-, 即l :6310x y --=.(未化成一般式扣1分)(2)∵8m =时,()32183f x x x x =-++, ∴()2'28f x x x =-++, ∴其360∆=>,由()'0f x =解得12x =-,24x =,当2x <-或4x >时()'0f x <,当24x -<<时()'0f x >,∴()f x 在(),2-∞-和()4,+∞上单减,在()2,4-上单增,2x =-为()f x 的极小值点,4x =为()f x 的极大值点.综上,()f x 的减区间是(),2-∞-和()4,+∞,增区间是()2,4-;2x =-为()f x 的极小值点,4x =为()f x 的极大值点.【点睛】本题考查导函数的几何意义求切线方程,求导得单调性及极值,属于中档题. 22.(1)6n =(2)有理项是展开式的第1,3,5,7项,详见解析【分析】根据二项式展开式的通项公式中的二项式系数求出n ,再由通项求出有理项.【详解】解:(1)由题设知()()()2312112321n nn n C n n n C-⨯=--⨯⨯ 3324n ==-, 解得6n =.(2)∵6n =,∴展开式通项76362163133rr r r rr r C T C x x --+⎛⎫== ⎪⎝⎭, ∵06r ≤≤且r N ∈,∴只有0,2,4,6r =时,1r T +为有理项,∴有理项是展开式的第1,3,5,7项.【点睛】本题考查二项式的展开式的特定项系数和特定项,属于中档题.23.(1)见解析(2)2EX =,1DX =【分析】根据相互独立事件概率求出离散型随机变量的分布列、期望和方差.【详解】解:(1)由题设知,1,2,3,4X =,()215P X == ()32325410P X ==⋅= ()322135435P X ==⋅⋅= ()3211454310P X ==⋅⋅= 则X 的分布列为(2)则取球次数X 的期望231112342510510EX =⨯+⨯+⨯+⨯=, X 的方差()()()2222311222325105DX =-⨯+-⨯+-⨯()2142110+-⨯=. 【点睛】本题考查离散型随机变量的分布列、期望和方差,属于中档题.24.(1)20n =,补图见解析(2)估计这n 株株高的中位数为82(3)见解析【分析】根据茎叶图和频率直方图,求出中位数,得离散型随机变量的分布列.【详解】解:(1)由第一组知10.002520n=,得20n =, 补全后的频率分布直方图如图(2)设中位数为0x ,前三组的频率之和为0.050.10.20.350.5++=<,前四组的频率之和为0.050.10.20.450.80.5+++=>,∴[)075,95x ∈,∴()0750.02250.15x -⨯=, 得0245823x =≈, ∴估计这n 株株高的中位数为82.(3)由题设知132,20X B ⎛⎫ ⎪⎝⎭, 则()202749020400P X C ⎛⎫==⋅= ⎪⎝⎭ ()127139112020200P X C ==⋅⋅= ()222131********P X C ⎛⎫==⋅= ⎪⎝⎭ X 的分布列为【点睛】本题考查频率直方图及中位数,离散型随机变量的分布列,属于中档题.25.(1)[)1,+∞(2)见解析【分析】(1)利用函数在区间单调递增,则其导函数在此区间大于等于零恒成立可得;(2)由第(1)问的结论,取1a = 时构造函数,得其单调性,从而不等式左右累加可得.【详解】(1)解:∵()1ln x f x x ax-=+,0x >,∴()21'x a f x x -=,∵()f x 在[)1,+∞上为增函数, ∴()21'0x a f x x -=≥在[)1,+∞上恒成立, 即1a x≥在[)1,+∞上恒成立, ∵101x <≤, ∴1a ≥,∴a 的取值范围是[)1,+∞.(2)证明:由(1)知1a =时,()1ln x f x x x -=+在[)1,+∞上为增函数, ∴令1n x n =-,其中n N ∈,2n ≥, 则1x >,则()()11n f x f f n ⎛⎫=> ⎪-⎝⎭, 即111ln ln 0111nn n n n n n n n --+=-+>---, 即()1ln ln 1n n n-->, ∴1ln 2ln12-> 1ln 3ln 23-> 1ln 4ln 34-> ……()1 ln ln1n nn-->,∴累加得1111ln234nn>+++⋅⋅⋅+,∴1111ln234n nn e e+++⋅⋅⋅+=>.【点睛】本题关键在于构造出所需函数,得其单调性,累加可得,属于难度题.。