高中数学选修2-1 抛物线导学案加课后作业及参考答案
高中数学人教版选修2-1课后训练2-4-1 抛物线及其标准方程 Word版含解析
课后课时精练一、选择题.若抛物线=(>)的焦点与椭圆+=的右焦点重合,则的值为( ).-..-.解析:因为抛物线的焦点坐标为(,),椭圆的右焦点坐标为(),依题意得=,得=,故选.答案:.若抛物线=上一点到其焦点的距离为,则点的坐标为( ) .() .(,-).(,±) .(-,±)解析:设(,),因为点到焦点的距离等于它到准线=-的距离,所以=,=±,故选.答案:.焦点在直线--=上的抛物线的标准方程为( ).=或=.=或=.=或=-.=或=-解析:直线--=与轴,轴的交点分别是(),(,-),所以抛物线的焦点为()或(,-),因此,所求抛物线的标准方程为=或=-.答案:.已知是抛物线=的焦点,是该抛物线上的动点,则线段的中点的轨迹方程是( ) . =- . =-. =-. =-解析:本题主要考查利用相关点法求轨迹方程.抛物线方程可化为:=,焦点(),设线段的中点的坐标为(,),(,),则=,=-,代入抛物线方程得:()=(-),即=-,故选.答案:. [·辽宁高考]已知点(-)在抛物线:=的准线上,记的焦点为,则直线的斜率为( ). -. -. -. -解析:本题考查抛物线方程、抛物线的简单几何性质、直线的斜率等基础知识,考查考生的运算求解能力.因为点在抛物线的准线上,所以-=-,所以该抛物线的焦点(),所以==-,选.答案:. [·河北省衡水中学期中考试]已知抛物线=-上一定点(-)和两个动点,,当⊥时,点的横坐标的取值范围是( ). (-∞,-)∪[,+∞). [-]. [,+∞). (-∞,-]∪[,+∞)解析:设(,-),(,-),∵⊥,∴·=-,即+(-)-+=,∵∈,,是抛物线上两个不同的点,∴必须有Δ=(-)+(-)≥,即+-≥,解得≤-或≥.∴点的横坐标的取值范围是(-∞,-]∪[,+∞),故选.答案:二、填空题。
高中北师大版数学选修2-1学案:3.2.2 抛物线的简单性质 含答案
解析:(1)由题意得,点 P 到准线的距离为 d1+1,设抛物线的焦点
为 F,则 d1+1=|PF|,∴ d1+d2=d1+1+d2-1=|PF|+d2-1,又焦点
52
52
到直线的距离为 d= ,∴ d1+d2=|PF|+d2-1≥ -1.
2
2
(2)本题可转化为在抛物线 y2=4x 上找一个点 P,使得点 P 到点
也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲
线.
(3)顶点:抛物线和它的轴的交点叫作抛物线的顶点.当抛物线的
方程为标准方程时,抛物线的顶点是坐标原点.
(4)离心率:抛物线上的点 M 到焦点的距离和它到准线的距离的比,
叫作抛物线的离心率.可见,抛物线的离心率为 e=1.
(5)通径:通过焦点而垂直于 x 轴的直线与抛物线 y2=2px(p>0)两交
若 y 轴是抛物线的轴,则设抛物线的标准方程为 x2=2py(p>0), ∵ 点(2,4)在抛物线上,∴ 22=8p,
1 ∴ p= ,∴ 抛物线方程为 x2=y.
2 ∴ 所求抛物线的标准方程为 y2=8x 或 x2=y.
1.抛物线的几何性质的几个注意点: (1)抛物线的几何性质和椭圆比较起来,差别较大,它的离心率等 于 1;它只有一个焦点、一个顶点、一条对称轴、一条准线;它没有中 心,通常称抛物线为无心圆锥曲线,而称椭圆为有心圆锥曲线. (2)给出各种标准形式的抛物线方程,能熟练说出开口方向、焦点 坐标、对称轴和准线方程;反过来,也能根据各种类型的抛物线的示 意图,说出抛物线的类型.
【思路探究】 由题中条件知抛物线的标准方程为 y2=2px(p>0), 将点 M(4,-8)的坐标代入即可得答案.
高中北师大版数学选修2-1学案:3.2.1 抛物线及其标准方程 含答案
72 .
4
1
72
( ) 故当点 P 的坐标为 ,-1 时,d 有最小值
.
2
4
方法 2:因为 Error!无实根,所以直线与抛物线没有公共点.
设与直线 x+y+4=0 平行的直线为 x+y+m=0.
Error! ①消去 x 得 y2+2y+2m=0,设此直线与抛物线相切,即
只有一个公共点.
1 所以 Δ =4-8m=0,所以 m= .
在抛物线 y2=2x 上求一点 P,使其到直线 l:x+y+4=0 的距离最
小,并求最小距离.
y20 解:方法 1:设 P(x0,y0)是抛物线上的点,则 x0= ,P 到直线 x+
2
y+4=0 的距离为 d=
|x0+y0+4|
= 2
y20
| | +y0+4 2
= 2
y0+1 2+7 ≥
22 2
7
= 2
【解】 将 x=12 代入 x2=4y 得 y=36>6,∴ 点 A 在抛物线外部, 抛物线焦点为 F(0,1),准线 l:y=-1,过 P 作 PB⊥l 于点 B,交 x 轴
于点 C,则|PA|+|PC|=|PA|+|PB|-1=|PA|+|PF|-1.由下图可知,当
Earlybird
晨鸟教育
【解】
能通过.理由如下:建立如图所示的平面直角坐标系.
设抛物线方程为 x2=-2py(p>0),
当 x=3 时,y=-3,即点(3,-3)在抛物线上.代入得 2p=3,故
抛物线方程为 x2=-3y.
已知集装箱的宽为 3 m,
3
3
当 x= 时,y=- ,而桥高为 5 m,
2
4
31
2018版高中数学北师大版选修2-1学案:第三章 圆锥曲线
2.1 抛物线及其标准方程[学习目标] 1.掌握抛物线的定义及其焦点、准线的概念.2.会求简单的抛物线方程.知识点一 抛物线的定义平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的集合叫作抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 知识点二 抛物线标准方程的几种形式思考 (1)2(2)平面内到一定点距离与到一定直线距离相等的点的轨迹是抛物线吗? 答案 (1)焦点到准线的距离.(2)不一定.当直线l 经过点F 时,点的轨迹是过定点F 且垂直于定直线l 的一条直线;l 不经过点F 时,点的轨迹是抛物线.题型一 求抛物线的标准方程例1 分别求满足下列条件的抛物线的标准方程. (1)焦点为(-2,0); (2)准线为y =-1; (3)过点A (2,3); (4)焦点到准线的距离为52.解 (1)由于焦点在x 轴的负半轴上,且p2=2,∴p =4,∴抛物线的标准方程为y 2=-8x .(2)∵焦点在y 轴正半轴上,且p2=1,∴p =2,∴抛物线的标准方程为x 2=4y .(3)由题意,抛物线方程可设为y 2=mx (m ≠0)或x 2=ny (n ≠0), 将点A (2,3)的坐标代入,得32=m ·2或22=n ·3, ∴m =92或n =43.∴所求抛物线的标准方程为y 2=92x 或x 2=43y .(4)由焦点到准线的距离为52,可知p =52.∴所求抛物线的标准方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .反思与感悟 求抛物线方程,通常用待定系数法,若能确定抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可.若抛物线的焦点位置不确定,则要分情况讨论.焦点在x 轴上的抛物线方程可设为y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可设为x 2=ay (a ≠0). 跟踪训练1 分别求满足下列条件的抛物线的标准方程. (1) 过点(3,-4);(2) 焦点在直线x +3y +15=0上.解 (1)方法一 ∵点(3,-4)在第四象限,∴设抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0).把点(3,-4)的坐标分别代入y 2=2px 和x 2=-2p 1y , 得(-4)2=2p ·3,32=-2p 1·(-4),即2p =163,2p 1=94.∴所求抛物线的标准方程为y 2=163x 或x 2=-94y .方法二 ∵点(3,-4)在第四象限,∴抛物线的方程可设为y 2=ax (a ≠0)或x 2=by (b ≠0). 把点(3,-4)分别代入,可得a =163,b =-94.∴所求抛物线的标准方程为y 2=163x 或x 2=-94y .(2)令x =0得y =-5;令y =0得x =-15. ∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为x 2=-20y 或y 2=-60x . 题型二 抛物线定义的应用例2 如图,已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求此时P 点坐标.解 如图,作PQ ⊥l 于Q ,由定义知,抛物线上点P 到焦点F 的距离等于点P 到准线l 的距离d ,由图可知,求|P A |+|PF |的最小值的问题可转化为求|P A |+d 的最小值的问题. 将x =3代入抛物线方程y 2=2x ,得y =±6. ∵6>2,∴A 在抛物线内部.设抛物线上动点P 到准线l :x =-12的距离为d ,由定义知|P A |+|PF |=|P A |+d .由图可知,当P A ⊥l时,|P A |+d 最小,最小值为72.即|P A |+|PF |的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x =2.∴点P 坐标为(2,2).反思与感悟 抛物线的定义在解题中的作用,就是灵活地对抛物线上的点到焦点的距离与到准线距离进行转化,另外要注意平面几何知识的应用,如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线垂线段最短等.跟踪训练2 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点A (0,2)的距离与P 到该抛物线的准线的距离之和的最小值为( ) A.172 B.2C.5D.92答案 A解析 如图,由抛物线定义知|P A |+|PQ |=|P A |+|PF |, 则所求距离之和的最小值转化为求|P A |+|PF |的最小值, 则当A 、P 、F 三点共线时,|P A |+|PF |取得最小值. 又A (0,2),F (12,0),∴(|P A |+|PF |)min =|AF | =(0-12)2+(2-0)2=172.题型三 抛物线的实际应用例3 如图所示,一辆卡车高3m ,宽1.6m ,欲通过断面为抛物线形的隧道,已知拱口AB 宽恰好是拱高CD 的4倍,若拱口宽为a m ,求能使卡车通过的a 的最小整数值.解 以拱顶为原点,拱高所在直线为y 轴,建立如图所示的平面直角坐标系. 则点B 的坐标为⎝⎛⎭⎫a 2,-a4, 设抛物线方程为x 2=-2py (p >0), ∵点B 在抛物线上,∴⎝⎛⎭⎫a 22=-2p ·⎝⎛⎭⎫-a 4,解得p =a 2, ∴抛物线方程为x 2=-ay .将点E (0.8,y )代入抛物线方程,得y =-0.64a .∴点E 到拱底AB 的距离为a 4-|y |=a 4-0.64a >3.解得a >12.21,∵a 取整数, ∴a 的最小整数值为13.反思与感悟 以抛物线为数学模型的实例很多,如拱桥、隧道、喷泉等,抛物线的应用主要解题步骤:(1)建立平面直角坐标系,求抛物线的方程;(2)利用方程求点的坐标.跟踪训练3 如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米.(1)以隧道的顶点为原点O ,其对称轴所在的直线为y 轴,建立平面直角坐标系(如图),求该抛物线的方程;(2)若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为多少米(精确到0.1米)? 解 (1)依题意,设该抛物线的方程为x 2=-2py (p >0),如图所示,因为点C (5,-5)在抛物线上,解得p =52,所以该抛物线的方程为x 2=-5y . (2)设车辆高h 米,则|DB |=h +0.5, 故D (3.5,h -6.5),代入方程x 2=-5y ,解得h =4.05, 所以车辆通过隧道的限制高度为4.0米.1.抛物线y =-18x 2的准线方程是( )A.x =132B.x =12C.y =2D.y =4答案 C解析 将y =-18x 2化为标准形式x 2=-8y ,由此可知准线方程为y =2.2.过抛物线y 2=8x 的焦点作倾斜角为45°的直线,则被抛物线截得的弦长为( ) A.8B.16C.32D.61 答案 B解析 由y 2=8x 得焦点坐标为(2,0), 由此直线方程为y =x -2,由⎩⎪⎨⎪⎧y 2=8x ,y =x -2联立得x 2-12x +4=0, 设交点为A (x 1,y 1),B (x 2,y 2), 由方程知x 1+x 2=12,∴弦长|AB |=x 1+x 2+p =12+4=16.3.已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24-y 22=1上,则抛物线的方程为( ) A.y 2=8x B.y 2=4x C.y 2=2x D.y 2=±8x答案 D解析 由题意知,抛物线的焦点为双曲线x 24-y 22=1的顶点,即为(-2,0)或(2,0),所以抛物线的方程为y 2=8x 或y 2=-8x .4.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A.2B.3C.115D.3716答案 A解析 易知直线l 2:x =-1恰为抛物线y 2=4x 的准线, 如图所示,动点P 到l 2:x =-1的距离可转化为PF 的长度, 其中F (1,0)为抛物线y 2=4x 的焦点. 由图可知,距离和的最小值, 即F 到直线l 1的距离 d =|4+6|(-3)2+42=2.5.若双曲线x 23-16y 2p 2=1(p >0)的左焦点在抛物线y 2=2px 的准线上,则p =________.答案 4解析 由双曲线x 23-16y 2p 2=1得标准形式为x 23-y 2p216=1,由此c 2=3+p 216,左焦点为(-3+p 216,0), 由y 2=2px 得准线为x =-p2,∴-3+p 216=-p 2, ∴p =4.1.抛物线的定义中不要忽略条件:点F 不在直线l 上.2.确定抛物线的标准方程,从形式上看,只需求一个参数p ,但由于标准方程有四种类型.因此,还应确定开口方向,当开口方向不确定时,应进行分类讨论,有时也可设标准方程的统一形式,避免讨论,如焦点在x 轴上的抛物线标准方程可设为y 2=2mx (m ≠0),焦点在y 轴上的抛物线标准方程可设为x 2=2my (m ≠0).。
选修2-1数学课后习题答案(全)
新课程标准数学选修2—1第一章课后习题解答第一章 常用逻辑用语1.1命题及其关系练习(P4)1、略.2、(1)真; (2)假; (3)真; (4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题.否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题.逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题.否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题.逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:若1a b -=,则22243a b a b -+-- ()()2()2322310a b a b a b b a b b a b =+-+---=++--=--=所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题.否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题.逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题.否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题.逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等. 逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不 相等.这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上.这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题1.1 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径. 原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习(P10)1、(1)⇒; (2)⇒; (3)⇒; (4)⇒.2、(1). 3(1).4、(1)真; (2)真; (3)假; (4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p 是q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是q 的必要条件.2、(1)p 是q 的必要条件; (2)p 是q 的充分条件;(3)p 是q 的充要条件; (4)p 是q 的充要条件.习题1.2 A 组(P12)1、略.2、(1)假; (2)真; (3)真.3、(1)充分条件,或充分不必要条件; (2)充要条件;(3)既不是充分条件,也不是必要条件; (4)充分条件,或充分不必要条件.4、充要条件是222a b r +=.习题1.2 B 组(P13)1、(1)充分条件; (2)必要条件; (3)充要条件.2、证明:(1)充分性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=. 所以222()()()0a b a c b c -+-+-=所以,0a b -=,0a c -=,0b c -=.即 a b c ==,所以,ABC ∆是等边三角形.(2)必要性:如果ABC ∆是等边三角形,那么a b c ==所以222()()()0a b a c b c -+-+-=所以2220a b c ab ac bc ++---=所以222a b c ab ac bc ++=++1.3简单的逻辑联结词练习(P18)1、(1)真; (2)假.2、(1)真; (2)假.3、(1)225+≠,真命题; (2)3不是方程290x -=的根,假命题;(31≠-,真命题.习题1.3 A 组(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假命题;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真命题; (2)真命题; (3)假命题.3、(1不是有理数,真命题; (2)5是15的约数,真命题;(3)23≥,假命题; (4)8715+=,真命题;(5)空集不是任何集合的真子集,真命题.习题1.3 B 组(P18)(1)真命题. 因为p 为真命题,q 为真命题,所以p q ∨为真命题;(2)真命题. 因为p 为真命题,q 为真命题,所以p q ∧为真命题;(3)假命题. 因为p 为假命题,q 为假命题,所以p q ∨为假命题;(4)假命题. 因为p 为假命题,q 为假命题,所以p q ∧为假命题.1.4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0; (3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直.习题1.4 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题; 逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n ∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x q q ∈是有理数}. 6、(1)32≠,真命题; (2)54≤,假命题; (3)00,0x R x ∃∈≤,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C ==.新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程2.1曲线与方程练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==. 3、解:设点,A M 的坐标分别为(,0)t ,(,)x y .(1)当2t ≠时,直线CA 斜率 20222CA k t t -==-- 所以,122CB CA t k k -=-= 由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -.由于点M 是线段AB 的中点,由中点坐标公式得4,22t t x y -==. 由2t x =得2t x =,代入42t y -=, 得422x y -=,即20x y +-=……① (2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2)此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线.习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0).由题意,得CM AB ⊥,则有1CM AB k k =-.所以,13y y x x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650x y x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,3x y == 所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形, 利用勾股定理,得2222(3)9x y x y ++-+=,即2230x y x +-=. 其他同解法一.习题2.1 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x y a b+=.因为直线l 经过点(3,4)P ,所以341a b+= 因此,430ab a b --= 由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=.2、解:如图,设动圆圆心M 的坐标为(,)x y . 由于动圆截直线30x y -=和30x y +=所得弦分别为 AB ,CD ,所以,8AB =,4CD =. 过点M 分别 作直线30x y -=和30x y +=的垂线,垂足分别为E ,F ,则4AE =,2CF =.ME =,MF =. 连接MA ,MC ,因为MA MC =, 则有,2222AE ME CF MF +=+ 所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF=. 2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=. 3、解:由已知,5a =,4b =,所以3c .(1)1AF B ∆的周长1212AF AF BF BF =+++. 由椭圆的定义,得122AF AF a +=,122BF BF a +=.所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值.4、解:设点M 的坐标为(,)x y ,由已知,得 直线AM 的斜率 1AM y k x =+(1)x ≠-; 直线BM 的斜率 1BMy k x =-(1)x ≠; 由题意,得2AM BM k k =,所以211y y x x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B)为圆心,以线段2OA (或1OA ) 为半径画圆,圆与x 轴的两个交点分别为12,F F .点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,22B F OA =所以,2OF c =. 同样有1OF c =.2、(1)焦点坐标为(8,0)-,(8,0);(2)焦点坐标为(0,2),(0,2)-. 3、(1)2213632x y +=; (2)2212516y x+=. 4、(1)22194x y += (2)22110064x y +=,或22110064y x +=. 5、(1)椭圆22936x y +=的离心率是3,椭圆2211612x y +=的离心率是12, 12>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁; (2)椭圆22936x y +=的离心率是3,椭圆221610x y +=的离心率是5, 因为35>,所以,椭圆221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--. 7、7. 习题2.2 A 组(P49) 1、解:由点(,)M x y10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆. 它的方程是2212516y x +=. 2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=. 3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分;(2)不等式x -≤≤101033y -≤≤表示的区域的公共部分. 图略. 4、(1)长轴长28a =,短轴长24b =,离心率2e =,焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率3e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=; (3)221259x y +=,或221259y x +=. 6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =. 代入椭圆的方程,得21154x +=,解得2x =±. 所以,点P的坐标是(1)2±±,共有4个. 7、解:如图,连接QA . 由已知,得QA QP =.所以,QO QA QO QP OP r +=+==.又因为点A 在圆内,所以OA OP <根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆.8、解:设这组平行线的方程为32y x m =+. 把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=. 这个方程根的判别式 223636(218)m m ∆=--(1)由0∆>,得m -<<当这组直线在y 轴上的截距的取值范围是(-时,直线与椭圆相交.(2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y . 则 1223x x m x +==-. 因为点M 在直线32y x m =+上,与3m x =-联立,消去m ,得320x y +=. 这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上. 9、222213.525 2.875x y +=. 10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km.习题2.2 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以22004x y += ……②.将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y += 所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--=配方,得 22(3)4x y ++=, 22(3)100x y -+=当P 与1O :22(3)4x y ++=外切时,有12O P R =+……① 当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……② ①②两式的两边分别相加,得1212O P O P +=12……③化简方程③.先移项,再两边分别平方,并整理,得 12x =+ ……④ 将④两边分别平方,并整理,得 22341080x y +-= ……⑤ 将常数项移至方程的右边,两边分别除以108,得 2213627x y += ……⑥ 由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,. 12= ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12, 所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆.并且这个椭圆的中心与坐标原点重合,焦点在x轴上,于是可求出它的标准方程. 因为 26c =,212a =,所以3c =,6a =所以236927b =-=. 于是,动圆圆心的轨迹方程为2213627x y +=. 3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF PM d ⎧⎫==⎨⎬⎩⎭由此得 12= 将上式两边平方,并化简,得 223448x y +=,即2211612x y += 所以,点M 的轨迹是长轴、短轴长分别为8,.4、解:如图,由已知,得(0,3)E -,(4,0)F 因为,,R S T 是线段OF 的四等分点,,,R S T '''是线段CF 的四等分点, 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''. 直线ER 的方程是33y x =-;直线GR '的方程是3316y x =-+. 联立这两个方程,解得 3245,1717x y ==. 所以,点L 的坐标是3245(,)1717.同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221x y m n+=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=. 把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=, 所以,点N 在221169x y +=上. 因此,点,,L M N 都在椭圆221169x y +=上. 2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=. (3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b-=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-= 又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a ==.所以,a = 又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=. 2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =,虚轴长24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率4e =. (2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-;焦点坐标为-;离心率e =(3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-;焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率e =2、(1)221169x y -=; (2)2213628y x -=. 3、22135x y -= 4、2211818x y -=,渐近线方程为y x =±. 5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -= 3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =;4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==,所以222c a =,因此2222222b c a a a a =-=-=. 设双曲线的标准方程为 22221x y a a -=,或22221y x a a-=.将(5,3)-代入上面的两个方程,得222591a a -=,或229251a a -=.解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=. 5、解:连接QA ,由已知,得QA QP =.所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=.习题2.3 B 组(P62)1、221169x y -= 2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy . 设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得 222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……①所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k-=-,解得 2k =. 当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =; 3、(1)a ,2pa -. (2),(6,- 提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±练习(P72)1、(1)2165y x =; (2)220x y =;(3)216y x =-; (4)232x y =-. 2、图形见右,x 的系数越大,抛物线的开口越大. 3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x=-⎧⎨=⎩解得1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y,则AB ===4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =±因为22AB y ==⨯== 所以,3a =因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-; (2)焦点坐标3(0,)16F -,准线方程316y =;(3)焦点坐标1(,0)8F -,准线方程18x =;(4)焦点坐标3(,0)2F ,准线方程32x =-.2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-. 根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p .设点M 的坐标为(,)x y ,则 22p x p +=,解得32px =. 将32p x =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p.4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan 60k =︒=. 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x =把113x =,23x =分别代入①得1y =,2y =由第5题图知1(,33-不合题意,所以点M 的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=,化简得 2640x x -+=,解得 3x=±则 321y ==±因为OB k ,OA k=所以15195OB OA k k -⋅===--所以 OA OB ⊥7、这条抛物线的方程是217.5x y = 8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =这时水面宽为 m.习题2.2 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p的抛物线. 2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则 2112y px =,2222y px =.又OA OB =,所以 22221122x y x y +=+即221212220x x px px -+-=,221212()2()0x x p x x -+-=因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x = 由此可得12y y =,即线段AB 关于x 轴对称. 因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan30y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-. 由题意,得2AM BM k k -=,所以,2(1)11y y x x x -=≠±+-,化简,得2(1)(1)x y x =--≠± 第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b a +=>>.则 22a c OA OF F A -=-=63714396810=+=,22a c OB OF F B +=+=637123848755=+=,解得 7782.5a =,8755c =所以b ===用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=. 2、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122c r r e a R r r -==++. 3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆. (3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线.(4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x 轴上.而当180α=︒时,方程表示等轴双曲线. 5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……① 222420(1)2016k k k ∆=+-=-令 0∆<,解得2k >,或2k <- 因为0∆<,方程①无解,即直线与双曲线没有公共点, 所以,k的取值范围为k >k <6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp - 设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为 )32py x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =,22)y p =把12)y p =代入)2p y x =-,得 17(2x p =+.把22)y p =代入)32p y x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-,27((,2))2B p p --所以,等边三角形的边长是112)A B p =,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265mx x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 3m =±所以,直线l 的方程为23y x =±9、解:设点A的坐标为11(,)x y,点B的坐标为22(,)x y,点M的坐标为(,)x y.并设经过点M的直线l的方程为1(2)y k x-=-,即12y kx k=+-.把12y kx k=+-代入双曲线的方程2212yx-=,得222(2)2(12)(12)20k x k k x k------=2(20)k-≠. ……①所以,122(12)22x x k kxk+-==-由题意,得2(12)22k kk-=-,解得4k=当4k=时,方程①成为21456510x x-+=根的判别式25656512800∆=-⨯=>,方程①有实数解.所以,直线l的方程为47y x=-.10、解:设点C的坐标为(,)x y.由已知,得直线AC的斜率(5)5ACyk xx=≠-+直线BC的斜率(5)5BCyk xx=≠-由题意,得AC BCk k m=. 所以,(5)55y ym xx x⨯=≠±+-化简得,221(5)2525x yxm-=≠±当0m<时,点C的轨迹是椭圆(1)m≠-,或者圆(1)m=-,并除去两点(5,0),(5,0)-;当0m>时,点C的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x=上的点P的坐标为(,)x y,则24y x=.点P到直线3y x=+的距离d===当2y=时,d. 此时1x=,点P的坐标是(1,2).12、解:如图,在隧道的横断面上,以拱顶为原点、拱高所在直线为y轴(向上),建立直角坐标系.设隧道顶部所在抛物线的方程为22x py=-因为点(4,4)C -在抛物线上 所以 242(4)p =-- 解得 24p =-所以,隧道顶部所在抛物线的方程 为24x y =-.设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12PF F S ∆=.2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a=±. 所以,点P 的坐标是2(,)b c a -直线OP 的斜率21b k ac =-. 直线AB 的斜率2bk a =-.由题意,得2b bac a =,所以,b c =,a =.由已知及1F A a c =+,得a c +=所以 (1c +=+ c =所以,a =,b =因此,椭圆的方程为221105x y +=. 3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=. 由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……②(第4题)12y y p +=-,125y y p =- ……③ 把③代入①,解得54p = 当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p = 4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p=+=, 所以,4584p =,29168p =.对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠-由题意,得2AM BM k k +=,所以2(1)11y y x x x +=≠±-+,化简,得21(1)xy x x =-≠± 所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=. 因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.新课程标准数学选修2—1第三章课后习题解答第三章 空间向量与立体几何 3.1空间向量及其运算 练习(P86)1、略.2、略.3、A C AB AD AA ''=+-,BD AB AD AA ''=-+,DB AA AB AD ''=--. 练习(P89)1、(1)AD ; (2)AG ; (3)MG .2、(1)1x =; (2)12x y ==; (3)12x y ==. 3.练习(P92) 1、B .2、解:因为AC AB AD AA ''=++,所以22()AC AB AD AA ''=++2222222()4352(0107.5)85AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯++=(第7题)PRS B CAQ O(第3题)所以85AC '=3、解:因为AC α⊥所以AC BD ⊥,AC AB ⊥,又知BD AB ⊥.所以0AC BD ⋅=,0AC AB ⋅=,又知0BD AB ⋅=. 2CD CD CD =⋅222222()()CA AB BD CA AB BD CA AB BDa b c =++⋅++=++=++所以CD .练习(P94)1、向量c 与a b +,a b -一定构成空间的一个基底. 否则c 与a b +,a b -共面, 于是c 与a ,b 共面,这与已知矛盾.2、共面2、(1)解:OB OB BB OA AB BB OA OC OO a b c ''''=+=++=++=++;BA BA BB OC OO c b '''=+=-+=-CA CA AA OA OC OO a b c '''=+=-+=-+(2)1111()2222OG OC CG OC CB b a c a b c '=+=+=++=++. 练习(P97)1、(1)(2,7,4)-; (2)(10,1,16)-; (3)(18,12,30)-; (4)2.2、略.3、解:分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.则(0,0,0)D ,1(1,1,1)B ,1(1,,0)2M ,(0,1,0)C 所以,1(1,1,1)DB =,1(1,,0)2CM =-.所以,111110cos ,153DB CM DB CM DB CM-+⋅<>===⋅.习题3.1 A 组(P97)1、解:如图,(1)AB BC AC +=;(2)AB AD AA AC AA AC CC AC ''''++=+=+=;(3)设点M 是线段CC '的中点,则12AB AD CC AC CM AM '++=+=; (4)设点G 是线段AC '的三等分点,则11()33AB AD AA AC AG ''++==.向量,,,AC AC AM AG '如图所示. 2、A .3、解:22()AC AB AD AA ''=++2222222()15372(53573722298AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯⨯+⨯⨯+⨯⨯=+所以,13.3AC '≈.4、(1)21cos602AB AC AB AC a ⋅=⋅︒=; (2)21cos1202AD DB AD DB a ⋅=⋅︒=-;(3)21cos1802GF AC GF AC a ⋅=⋅︒=- 11()22GF AC a ==;(4)21cos604EF BC EF BC a ⋅=⋅︒= 11()22EF BD a ==;(5)21cos1204FG BA FG BA a ⋅=⋅︒=- 11()22FG AC a ==;(6)11()22GE GF GC CB BA CA ⋅=++⋅2111()222111424111cos120cos60cos6042414DC CB BA CA DC CA CB CA BA CA DC CA CB CA BA CA a =++⋅=⋅+⋅+⋅=⋅︒+⋅︒+⋅︒=5、(1)60︒; (2)略.6、向量a 的横坐标不为0,其余均为0;向量b 的纵坐标不为0,其余均为0;向量c 的竖坐标不为0,其余均为0.7、(1)9; (2)(14,3,3)-.8、解:因为a b ⊥,所以0a b ⋅=,即8230x --+=,解得103x =.9、解:(5,1,10)AB =--,(5,1,10)BA =-设AB 的中点为M ,119()(,,2)222OM OA OB =+=-, 所以,点M 的坐标为19(,,2)22-,(AB =-10、解:以1,,DA DC DD 分别作为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.则1,,,C M D N 的坐标分别为:(0,1,0)C ,1(1,0,)2M ,1(0,0,1)D ,1(1,1,)2N . 1(1,1,)2CM =-,11(1,1,)2D N =- 所以2312CM ==,21312D N == 111114cos ,994CM D N --<>==- 由于异面直线CM 和1D N 所成的角的范围是[0,]2π因此,CM 和1D N 所成的角的余弦值为19. 11、31(,,3)22- 习题3.1 B 组(P99)1、证明:由已知可知,OA BC ⊥,OB AC ⊥∴ 0OA BC ⋅=,0OB AC ⋅=,所以()0OA OC OB ⋅-=,()0OB OC OA ⋅-=. ∴ OA OC OA OB ⋅=⋅,OB OC OB OA ⋅=⋅.∴ 0OA OC OB OC ⋅-⋅=,()0OA OB OC -⋅=,0BA OC ⋅=. ∴ OC AB ⊥.2、证明:∵ 点,,,E F G H 分别是,,,OA OB BC CA 的中点.∴ 12EF AB =,12HG AB =,所以EF HG = ∴四边形EFGH 是平行四边形.1122EF EH AB OC ⋅=⋅11()()44OB OA OC OB OC OA OC =-⋅=⋅-⋅∵ OA OB =,CA CB =(已知),OC OC =. ∴ BOC ∆≌AOC ∆(SSS ) ∴ BOC AOC ∠=∠∴ OB OC OA OC ⋅=⋅∴ 0EF EH ⋅= ∴ EF EH ⊥∴ 平行四边形□EFGH 是矩形.3、已知:如图,直线OA ⊥平面α,直线BD ⊥平面α,,O B 为垂足. 求证:OA ∥BD证明:以点O 为原点,以射线OA 方向为z 轴正方向,建立空间直角坐标系O xyz -,,,i j k 分别为沿x 轴、y 轴、z 轴的坐标向量,且设(,,)BD x y z =.∵ BD α⊥.∴ BD i ⊥,BD j ⊥.∴ (,,)(1,0,0)0BD i x y z x ⋅=⋅==,(,,)(0,1,0)0BD j x y z y ⋅=⋅==. ∴ (0,0,)BD z =. ∴ BD zk =.∴ BD ∥k ,又知,O B 为两个不同的点.∴ BD ∥OA .3.2立体几何中的向量方法 练习(P104)1、(1)3b a =,1l ∥2l ; (2)0a b ⋅=,1l ⊥2l ; (3)3b a =-,1l ∥2l .2、(1)0u v ⋅=,αβ⊥; (2)2v u =-,α∥β; (3)292247u v u v⋅=-,α与β相交,交角的余弦等于292247.练习(P107)1、证明:设正方形的棱长为1.11D F DF DD =-,AE BE BA =-.因为11()000D F AD DF DD AD ⋅=-⋅=-=,所以1D F AD ⊥. 因为1111()()00022D F AE DF DD BE BA ⋅=-⋅-=+-+=,所以1D F AE ⊥. 因此1D F ⊥平面ADE .2、解:22()CD CD CA AB BD ==++(第3题)222222361664268cos(18060)68CA AB BD CA AB CA BD AB BD =+++⋅+⋅+⋅=+++⨯⨯⨯︒-︒=∴CD =练习(P111)1、证明:1()()2MN AB MB BC CN AB MB BC CD AB ⋅=++⋅=++⋅ 222211()22111cos120cos60cos600222MB BC AD AC AB a a a a =++-⋅=+︒+︒-︒=∴ MN AB ⊥. 同理可证MN CD ⊥.2、解:222222()2cos l EF EA A A AF m d n mn θ''==++=+++(或2cos()mn πθ-)22222cos d l m n mn θ=--,所以 22cos AA d mn θ'=.3、证明:以点D 为原点,,,DA DC DD '的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)D ,(0,1,0)C ,(1,1,0)B ,(0,1,1)C ',11(,1,)22O . ∵ 11(,1,)(1,0,1)022DO BC '⋅=---⋅-= ∴DO BC '⊥ 习题3.2 A 组(P111)1、解:设正方形的棱长为1(1)1()()2MN CD MB B N CC C D ''''''⋅=+⋅+=,212MN CD '⋅== 112cos 12θ==,60θ=︒.(2)1()2MN AD MB B N AD ''⋅=+⋅=,212MN AD ⋅==1cos 2θ==,45θ=︒.2、证明:设正方体的棱长为1因为11()000DB AC DB BB AC ⋅=+⋅=+=,所以1DB AC ⊥.因为111111()000DB AD DA AB AD ⋅=+⋅=+=,所以11DB AD ⊥. 因此,1DB ⊥平面1ACD .3、证明:∵()cos cos 0OA BC OC OB OA OC OA OB OA θθ⋅=-⋅=-=,∴OA BC ⊥.4、证明:(1)因为11()000AC LE A A AC LE ⋅=+⋅=+=,所以1AC LE ⊥. 因为11()000AC EF A B BC EF ⋅=+⋅=+=,所以1AC EF ⊥. 因此,1AC ⊥平面EFGHLK . (2)设正方体的棱长为1因为1111()()1AC DB A A AC DB DB ⋅=+⋅+=-,211(3)3AC DB ⋅== 所以 1cos 3θ=-. 因此1DB 与平面EFGHLK 的所成角α的余弦cos 3α=. 5、解:(1)222211111()()22222DE DE DE DE DA AB AC AB OA AC AB ==⋅=++-=++11(111111)42=++-+-= 所以,2DE =(2)11111()()22222AE AO AC AB AO ⋅=+⋅=+=,32AE AO ⋅=1cos 2θ===sin θ=点O 到平面ABC 的距离sin 1OH OA θ===. 6、解:(1)设1AB =,作AO BC ⊥于点O ,连接DO .以点O 为原点,,,OD OC OA 的方向分别为x 轴、y 轴、z 轴正方向, 建立坐标系,得下列坐标:(0,0,0)O,D ,1(0,,0)2B,3(0,,0)2C,A . ∴3((4DO DA ⋅=-⋅=,184DO DA ⋅=,cos 2θ=. ∴ AD 与平面BCD 所成角等于45︒. (2)(0,1,0)(0BC DA ⋅=⋅=. 所以,AD 与BC 所成角等于90︒.(3)设平面ABD 的法向量为(,,1)x y ,则1(,,1)(,,1)(0,,02x y AB x y ⋅=⋅=,(,,1)(,,1)0x y AD x y ⋅=⋅=. 解得 1x =,y =显然(0,0,1)为平面BCD 的法向量.(0,0,1)1⋅=,cos θ==因此,二面角A BD C --的余弦cos cos()απθ=-=7、解:设点B 的坐标为(,,)x y z ,则(1,2,)AB x y z =-+.因为AB ∥α,所以123412x y z-+==-. 因为226AB α==26=.解得5x =-,6y =,24z =,或7x =,10y =-,24z =-.8、解:以点O 为原点建立坐标系,得下列坐标:(,,0)A a a -,(,,0)B a a ,(,,0)C a a -,(,,0)D a a --,(0,0,)V h ,(,,)222a a hE -.(1)222233(,,)(,,)6222222cos ,10a a h a a h h a BE DE h a BE DE--⋅-<>==+.(2)223(,,)(,,)02222a a h h VC BE a a h a ⋅=--⋅--=-=,222h a = 222222641cos ,10123h a a BE DE h a a --<>===-+9、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,1,0)B ,111(,,)222O -,1(0,0,1)A ,1(1,0,1)D -,1(0,0,)2M .因为10OM AA ⋅=,10OM BD ⋅=,所以1OM AA ⊥,1OM BD ⊥,2OM ==. 10、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,7,0)B ,(0,0,24)C ,(,,)D x y z .因为(,7,)(0,7,0)0BD AB x y z ⋅=-⋅=,所以7y =.由24BD ==,25CD ==解得12z =,x =1cos 2BD AC BD ACθ⋅==⋅,60θ=︒ 因此,线段BD 与平面α所成的角等于9030θ︒-=︒.11、解:以点O 为原点建立坐标系,得下列坐标:(0,0,0)O ,(4,0,0)A ,(0,3,0)B ,(0,0,4)O ',(4,0,4)A ',(0,3,4)B ',3(2,,4)2D ,(0,3,)P z .由3(0,3,)(2,,4)02OP BD z ⋅=⋅-=,解得98z =. 所以,938tan 38PB OB θ===.12、解:不妨设这条线段MN 长为2,则点M 到二面角的棱的距离1MP =,点N 到二面角的棱的距离1NQ =,QM PN ==PQ =22cos 2PQ MNPQ PQ MNθ⋅====⋅, 45θ=︒. 习题3.2 B 组(P113) 1、解:12222ABC S ∆=⨯⨯=, ()224502AD BE AB BD BE ⋅=+⋅=︒+=,202cos AD BE AD AD θ⋅==,20AD =,204BD ==. 184233ABCD V =⨯⨯=2、解:(1)以点B 为原点建立坐标系,得下列坐标:(0,0,0)B ,(1,0,0)A ,(0,0,1)C ,(1,1,0)F,,0,1)M -,,0)N .。
高中数学 选修2-1 北师大版 抛物线及其标准方程 作业(含答案)
1.明确抛物线方程有四种形式,记住并理解:“一次项定轴,正负定方向”. 2.重视抛物线定义的灵活应用,并重视抛物线解题时“数形结合”的作用. 3.在采用待定系数法求抛物线标准方程时,如果不知道开口方向,可将抛物线方程设成y 2=2mx (或x 2=2my ),m ∈R ,m ≠0,此时焦点到准线的距离为|m |.4.根据抛物线方程求其焦点坐标和准线方程时,一定要先化为标准形式,找出2p ,进而求出p 和p2的值,然后借助抛物线的开口方向即可求出焦点坐标和准线方程.————————————————————————————————————— —————————————————————————————————————[A 级 基础夯实]1.抛物线y 2=-8x 的焦点坐标( ) A .(2,0) B .(-2,0) C .(4,0)D .(-4,0)解析:抛物线的开口向左,焦点在x 轴的负半轴上,2p =8,得p2=2,故焦点坐标为(-2,0).答案:B2.抛物线x 2=4y 上一点P 的纵坐标为4,则点P 到抛物线焦点的距离为( ) A .2 B .3 C .4D .5解析:∵x 2=4y ,设P (x p,4), 故|PF |=4+1=5. 答案:D3.抛物线y 2=2x 的准线方程为( ) A .x =1 B .x =-1 C .x =12D .x =-12解析:由y 2=2x ,知p 2=12,所以准线方程x =-p 2=-12,故选D.答案:D4.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,则|AB |的值为________.解析:∵y 2=4x ,∴p =2.∴|AB |=|AF |+|BF |=x 1+x 2+p =6+2=8. 答案:85.已知抛物线顶点为坐标原点,焦点在y 轴上,抛物线上的点M (m ,-2)到焦点的距离为4,则m =________.解析:由已知,可设抛物线方程为x 2=-2py .由抛物线定义有2+p2=4,∴p =4,∴x 2=-8y .将(m ,-2)代入上式,得m 2=16.∴m =±4.答案:±46.根据下列条件求抛物线的标准方程: (1)已知抛物线的焦点坐标是F (0,-2); (2)准线方程为y =23;(3)焦点在x 轴负半轴上,焦点到准线的距离是5; (4)过点P (-2,-4).解析:(1)因为抛物线的焦点在y 轴的负半轴上,且-p2=-2,则p =4,所以,所求抛物线的标准方程为x 2=-8y .(2)因为抛物线的准线在y 轴正半轴上,且p 2=23,则p =43,所以,所求抛物线的标准方程为x 2=-83y .(3)由焦点到准线的距离为5,知p =5,又焦点在x 轴负半轴上,所以,所求抛物线的标准方程为y 2=-10x .(4)如图所示,因为点P 在第三象限,所以满足条件的抛物线的标准方程为y 2=-2p 1x (p 1>0)或x 2=-2p 2y (p 2>0).分别将点P 的坐标代入上述方程,解得p 1=4,p 2=12.因此,满足条件的抛物线有两条,它们的方程分别为y 2=-8x 和x 2=-y .[B 级 能力提升]7.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.答案:C8.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.解析:由已知得B 点的纵坐标为1,横坐标为p 4,即B ⎝⎛⎭⎫p 4,1,将其代入y 2=2px 得1=2p ×p 4,解得p =2,则B 点到准线的距离为p 2+p 4=34p =342.答案:3429.已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,点A (72,4),求|P A |+d 的最小值.解析:设抛物线y 2=2x 的焦点为F ,则F (12,0).又点A (72,4)在抛物线的外侧,且点P到准线的距离为d ,所以d =|PF |,则|P A |+d =|P A |+|PF |≥|AF |=5.∴|P A |+d 的最小值是5.10.河上有一座抛物线形拱桥,当水面距拱顶5 m 时,水面宽为8 m ,一条小船宽4 m ,高2 m ,载货后船露出水面的部分高34 m ,问水面上涨到与抛物线拱顶相距多高时,小船不能通航?解析:如图,建立直角坐标系,设拱桥抛物线方程为x 2=-2py (p >0). 由题意,将B (4,-5)代入方程得p =85.∴x 2=-165y .。
高中数学选修2-1北师大版 抛物线及其标准方程 学案3(含答案)
§2 抛物线2.1 抛物线及其标准方程自主整理1.平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的集合叫作__________.这个定点F叫作抛物线的__________,这条定直线l叫作抛物线的__________.2.方程y2=±2px,x2=±2py(p>0)叫作抛物线的__________方程.3.抛物线y2=2px(p>0)的焦点坐标是__________,它的准线方程是__________,开口方向是__________.4.抛物线y2=-2px(p>0)的焦点坐标是__________,它的准线方程是__________,开口方向是__________.5.抛物线x2=2py(p>0)的焦点坐标是__________,它的准线方程是__________,开口方向是__________.6.抛物线x2=-2py(p>0)的焦点坐标是__________,它的准线方程是__________,开口方向是__________.高手笔记次项系数为负时,不要出现错误.3.只有顶点在坐标原点,焦点在坐标轴上的抛物线方程才有标准形式.4.抛物线的开口方向取决于一次项变量(x或y)的取值范围.如抛物线x2=-2y,一次项变量y≤0,所以抛物线开口向下.名师解惑1.对抛物线的四种类型的标准方程的理解与认识剖析:一条抛物线由于建立坐标系的形式不同,得到标准方程的形式也不同,其中标准方程中p 的大小,确定了抛物线的形状.标准方程有四种形式:y 2=2px,y 2=-2px,x 2=2py,x 2=-2py(p >0).在求抛物线方程时,由于标准方程有四种形式,易混淆,可先根据题目的条件作出草图,确定方程的形式,再求参数p,若不能确定是哪一种形式的标准方程,应写出四种形式的标准方程来,不要遗漏某一种情况.2.对标准方程中的参数p 的理解剖析:标准方程中的参数p 的几何意义是指焦点到准线的距离,p >0恰恰说明定义中的焦点F 不在准线l 上这一隐含条件.参数p 的几何意义在解题时常常用到,特别是具体的标准方程中应找到相当于p 的值,才易于确定焦点坐标和准线方程. 讲练互动【例1】求满足下列条件的抛物线的标准方程: (1)过点(-3,2);(2)焦点在直线x-2y-4=0上.解析:要求抛物线的标准方程,需根据条件确定其类型,设出方程的形式,然后求出参数p. 答案:(1)当抛物线的焦点在x 轴上时,设抛物线方程为y 2=-2px(p >0). 由抛物线过(-3,2)知,22=-2p×(-3),p=32. 所以所求的抛物线方程为y 2=34-x. 当抛物线的焦点在y 轴上时,设抛物线方程为x 2=2py(p >0). 由抛物线过(-3,2)知,(-3)2=4p,p=49. 所以所求的抛物线方程为x 2=29y. (2)直线x-2y-4=0与x 轴的交点为(4,0),与y 轴的交点为(0,-2),故抛物线的焦点为(4,0)或(0,-2). 当焦点为(4,0)时,设抛物线方程为y 2=2px(p >0),2p=4,p=8. 所以抛物线方程为y 2=16x.当焦点为(0,-2)时,设抛物线方程为x 2=-2py(p >0),2p-=-2,p=4. 所以抛物线方程为x 2=-8y. 绿色通道在求抛物线标准方程时,焦点的位置不易确定,可作出草图,结合图形,设出方程,利用待定系数法分情况求解.在(2)中,根据抛物线标准方程的要求,可知直线x-2y-4=0与坐标轴的交点一定是抛物线的焦点,依此便求出焦点坐标,进而分类求解. 变式训练1.求顶点在原点,焦点在x 轴上的抛物线且截直线2x-y+1=0所得弦长为15的抛物线方程. 答案:设所求抛物线方程为y 2=ax(a≠0),① 直线方程变形为y=2x+1.② 设抛物线截直线所得弦为AB,②代入①,整理得4x 2+(4-a)x+1=0,则 |AB|=15]414)44)[(21(22=⨯--+a .解得a=12,或a=-4.所以所求抛物线方程为y 2=12x,或y 2=-4x.【例2】已知抛物线y 2=2x 的焦点是F,点P 是抛物线上的动点,又有点A(3,2),求|PA |+|PF |的最小值,并求出取最小值时P 点坐标.解析:由定义知,抛物线上点P 到焦点F 的距离等于点P 到准线l 的距离d,由图可知,求|PA|+|PF|的问题可转化为求|PA|+d 的问题.答案:将x=3代入抛物线方程y 2=2x,得y=±6. 因为6>2,所以A 在抛物线内部.设抛物线上点P 到准线l:x=21的距离为d,由定义知|PA |+|PF |=|PA |+d.由图可知, 当PA ⊥l 时,|PA |+d 最小,最小值为27,即|PA|+|PF|的最小值为27.此时P 点纵坐标为2,代入y 2=2x,得x=2.所以点P 的坐标为(2,2). 绿色通道本题涉及到抛物线上的点P 到焦点的距离,即|PF|,常考虑用定义转化,定义是解决问题的基础和灵魂,要善于考虑定义和应用定义解题. 变式训练2.已知点M(-2,4)及焦点为F 的抛物线y=81x 2,在此抛物线上求一点P,使|PM|+|PF|的值最小. 答案:如右图所示,设抛物线上的点P 到准线的距离为|PQ|. 由抛物线的定义,知|PF|=|PQ|, ∴|PF|+|PM|=|PQ|+|PM|.当P,Q,M 三点共线时,|PM|+|PF|最小. 由M(-2,4),可设P(-2,y 0),代入y=81x 2,得y 0=21,故P 点的坐标为(-2,21). 【例3】一辆卡车高3 m,宽1.6 m,欲通过断面为抛物线形的隧道,如图所示,已知拱口AB 宽恰好是拱高CD 的4倍,若拱宽为a m,求能使卡车通过的a 的最小整数值.解析:要求拱宽a 的最小值,需建立适当的坐标系,写出抛物线的方程,然后利用方程求解.答案:以拱顶为原点,拱高所在直线为y 轴,建立直角坐标系,如图,设抛物线方程为x 2=-2py(p >0),则点B 的坐标为(2a ,4a-),由点B 在抛物线上, 所以(2a )2=-2p·(4a -),p=2a ,所以抛物线方程为x 2=-ay.将点E(0.8,y)代入抛物线方程,得y= a64.0-. 所以点E 到拱底AB 的距离为4a -|y|=4a -a64.0>3.解得a >12.21,因为a 取整数,所以a 的最小值为13. 绿色通道解决实际应用问题的关键是转化为数学问题,首先应考虑建立恰当的直角坐标系,得出抛物线方程,利用抛物线的知识解决问题. 变式训练3.汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线焦点处(如图),已知灯口的直径是24 cm,灯深10 cm,那么灯泡与反射镜的顶点(即截得抛物线的顶点)距离是多少?答案:取反射镜的轴即抛物线的轴为x 轴,抛物线的顶点为坐标原点,建立直角坐标系xOy,如题图所示.因灯口直径|AB|=24,灯深|OP|=10, 所以点A 的坐标是(10,12).设抛物线的方程为y 2=2px(p >0). 由点A(10,12)在抛物线上,得122=2p×10, 所以p=7.2.抛物线的焦点F 的坐标为(3.6,0).因此灯泡与反射镜顶点的距离是3.6 cm. 教材链接 【思考交流】1.观察下图,你能用数学语言来描述吗?请与同学交流.答:动圆圆心到定点(动圆恒过的定律)的距离与它到定直线(动圆的公共切线)的距离相等,它的集合是抛物线.2.一条抛物线,由于它在坐标平面内的位置不同,方程也不同,你能否归纳出开口向左,向上,向下,顶点在原点,焦点在坐标轴上的抛物线标准方程?并分别写出它们的准线方程.答:顶点在原点,焦点在坐标轴上的抛物线,开口向左,向上,向下的标准方程分别是y 2=-2px,x 2=2py,x 2=-2py(p >0),顶点在原点,焦点在坐标轴上的抛物线,开口向左,向上,向下的准线方程分别是x=2p ,y=2p ,y=2p .。
2020秋高中数学人教A版选修2-1学案:2.4.1 抛物线及其标准方程 Word版含解析
姓名,年级:时间:2.4。
1 抛物线及其标准方程自主预习·探新知情景引入如图,我们在黑板上画一条直线EF,然后取一个三角板,将一条拉链AB 固定在三角板的一条直角边上,并将拉链下边一半的一端固定在C点,将三角板的另一条直角边贴在直线EF上,在拉锁D处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线.这是一条什么曲线,由画图过程你能给出此曲线的定义吗?新知导学1.抛物线定义平面内与一个定点F和一条定直线l(定点不在定直线上)__距离相等__的点的轨迹叫做抛物线,__定点F__叫做抛物线的焦点,__定直线l__叫做抛物线的准线.2.抛物线的标准方程的几种形式同一条抛物线在坐标平面内的位置不同,方程也不同,顶点在原点,以坐标轴为对称轴的抛物线有四种形式.请依据这四种抛物线的图形写出标准方程、焦点坐标及准线方程图形焦点准线方程__F(错误!,0)____x=-错误!____y2=2px(p〉0)____F(-错误!,0)____x=错误!____y2=-2px(p>0)____F(0,错误!)____y=-p2____x2=2py(p>0)____F(0,-p2)____y=错误!____x2=-2py(p〉0)__过抛物线焦点的直线与抛物线相交,被抛物线所截得的线段,称为抛物线的__焦点弦__。
4.通径通过抛物线的焦点作垂直于坐标轴的直线交抛物线于A、B两点,线段AB 称为抛物线的通径,通径|AB|的长等于__2p__.预习自测1.抛物线y=-4x2的准线方程为( D )A.x=1 B.y=1C.x=错误!D.y=错误![解析]抛物线y=-4x2的方程可化为x2=-错误!y,可得p=错误!,∴准线方程为y=错误!.故选D.2.(2020·福州市八县(市)协作校期末)y=2x2的焦点坐标是( D ) A.(1,0)B.(错误!,0)C.(0,错误!)D.(0,错误!)[解析]∵由题意知,p=错误!,错误!=错误!,∴焦点坐标是(0,错误!).故选D.3.已知抛物线y2=mx的焦点坐标为(2,0),则m的值为( D )A.12B.2C.4 D.8[解析] ∵抛物线y2=mx的焦点坐标为(2,0),∴m〉0,且2p=m.又错误!=2,∴p=4,∴m=8.4.(2019-2020学年内蒙古赤峰市宁城县期末测试)顶点在原点,焦点是(0,2)的抛物线的方程是( B )A.y2=8x B.x2=8yC.x=8y2D.y=8x2[解析] 由题意,抛物线的顶点在原点,焦点为F(0,2),则设抛物线方程为x2=2py,p>0,所以,错误!=2,即p=4,故抛物线方程为:x2=8y。
高中数学选修2-1课时作业 抛物线的标准方程附解析
1.抛物线y=4x2的准线方程为()A.x=-1B.y=-1 C.x=-116D.y=-1162.抛物线y2=4x的焦点坐标是()A.(0,2) B.(0,1) C.(2,0) D.(1,0)3.经过点(2,4)的抛物线的标准方程为()A.y2=8x B.x2=y C.y2=8x或x2=y D.无法确定4.过点F(0,3)且和直线y+3=0相切的动圆圆心的轨迹方程为()A.y2=12x B.y2=-12x C.x2=12y D.x2=-12y5.已知M是抛物线y2=2px(p>0)上的点,若M到此抛物线的准线和对称轴的距离分别为5和4,则点M的横坐标为()A.1 B.1或4 C.1或5 D.4或56.以双曲线x216-y29=1的右顶点为焦点的抛物线的标准方程为()A.y2=16x B.y2=-16x C.y2=8x D.y2=-8x7.已知抛物线的焦点在直线x-2y-4=0上,则抛物线的标准方程为________.8.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为________.9.若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是________.10.抛物线y=-14x2上的动点M到两定点F(0,-1),E(1,-3)的距离之和的最小值为________.11.已知动圆M经过点A(3,0),且与直线l:x=-3相切,求动圆圆心M的轨迹方程.1.抛物线y =4x 2的准线方程为( )A .x =-1B .y =-1C .x =-116 D .y =-116答案:D2.抛物线y 2=4x 的焦点坐标是( )A .(0,2)B .(0,1)C .(2,0)D .(1,0) 解析:由题意,y 2=4x 的焦点坐标为(1,0).答案:D3.经过点(2,4)的抛物线的标准方程为( )A .y 2=8xB .x 2=yC .y 2=8x 或x 2=yD .无法确定解析:由题设知抛物线开口向右或开口向上,设其方程为y 2=2px (p >0)或x 2=2p ′y (p ′>0),将点(2,4)代入可得p =4或p ′=12,所以所求抛物线的标准方程为y 2=8x 或x 2=y . 答案:C4.过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹方程为( )A .y 2=12xB .y 2=-12xC .x 2=12yD .x 2=-12y解析:由题意,知动圆圆心到点F (0,3)的距离等于到定直线y =-3的距离,故动圆圆心的轨迹是以F 为焦点,直线y =-3为准线的抛物线,所以所求的抛物线方程为x 2=12y .答案:C5.已知M 是抛物线y 2=2px (p >0)上的点,若M 到此抛物线的准线和对称轴的距离分别为5和4,则点M 的横坐标为( )A .1B .1或4C .1或5D .4或5解析:因为点M 到对称轴的距离为4,所以点M 的坐标可设为(x ,4)或(x ,-4),又因为M 到准线的距离为5,所以⎩⎪⎨⎪⎧42=2px ,x +p 2=5,解得⎩⎨⎧x =4,p =2,或⎩⎨⎧x =1,p =8. 答案:B6.以双曲线x 216-y 29=1的右顶点为焦点的抛物线的标准方程为( ) A .y 2=16x B .y 2=-16x C .y 2=8x D .y 2=-8x答案:A7.已知抛物线的焦点在直线x -2y -4=0上,则抛物线的标准方程为________.答案:y 2=16x 或x 2=-8y8.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为________.解析:因为|AF|+|BF|=x A+x B+12=3,所以x A+x B=52.所以线段AB的中点到y轴的距离为x A+x B2=54.答案:549.若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是________.解析:x M+1=10⇒x M=9.答案:910.抛物线y=-14x2上的动点M到两定点F(0,-1),E(1,-3)的距离之和的最小值为________.解析:将抛物线方程化成标准方程为x2=-4y,可知焦点坐标为(0,-1),因为-3<-1 4,所以点E(1,-3)在抛物线的内部,如图所示,设抛物线的准线为l,过M点作MP⊥l于点P,过点E作EQ⊥l于点Q,由抛物线的定义可知,|MF|+|ME|=|MP|+|ME|≥|EQ|,当且仅当点M在EQ上时取等号,又|EQ|=1-(-3)=4,故距离之和的最小值为4.答案:411.已知动圆M经过点A(3,0),且与直线l:x=-3相切,求动圆圆心M的轨迹方程.解:法一:设动点M(x,y),设⊙M与直线l:x=-3的切点为N,则|MA|=|MN|,所以点M的轨迹是抛物线,且以A(3,0)为焦点,以直线l:x=-3为准线,所以p2=3,所以p=6.所以圆心M的轨迹方程是y2=12x.法二:设动点M(x,y),则点M的轨迹是集合P={M||MA|=|MN|},即(x-3)2+y2=|x+3|,化简得y2=12x.所以圆心M的轨迹方程为y2=12x.。
最新人教版高中数学选修2-1第二章《抛物线及其标准方程》知识导学
2.4 抛物线2.4.1 抛物线及其标准方程第一课时课标解读1.了解抛物线的实际背景,感受抛物线在刻画现实世界和解决实际问题中的作用.2.经历从具体情境中抽象出抛物线模型的过程,掌握其定义、标准方程及几何图形. 学会思考1.把一根直尺固定在图板上直线l 的位置,把一块三角尺的一条直角边紧靠着直尺的边缘,再把一条细绳的一端固定在三角尺的另一条直角边的一点A ,取绳长等于点A 到直角顶点C 的长(即点A 到直线l 的距离),并且把绳子的另一端固定在图板上的一点F .用铅笔尖扣着绳子,使点A 到笔尖的一段绳子紧靠着三角尺,然后将三角尺沿着直尺上下滑动,笔尖就在图板上描出了一条曲线.请问此曲线上任意一点到定点F 的距离与到l 的距离有何关系?此曲线为何曲线?2.抛物线的标准方程y 2=2px (p >0)中,p 具有一定的几何意义,它表示__________________. 答案:1.相等,抛物线.2.抛物线的焦点到准线的距离自学导引1.平面内与一个定点F 和一条定直线l 的距离_________的点的轨迹叫做抛物线点F 叫做抛物线的_________,直线l 叫做抛物线的_________.2.方程y 2=±2px ,x 2=±2py (p >0)叫做抛物线的_________方程.3.抛物线y 2=2px (p >0)的焦点坐标是_________,它的准线方程是_________,它的开口方向_________.4.抛物线y 2=-2px (p >0)的焦点坐标是_________,它的准线方程是________,它的开口方向 ________.5.抛物线x 2=2py (p >0)的焦点坐标是_________,它的准线方程是_________,它的开口方向_________.6.抛物线x 2=-2py (p >0)的焦点坐标是_________,它的准线方程是_________,它的开口方向_________.答案:1.相等 焦点 准线2.标准3.(2p ,0) 2p x -= 向右 4.(2p -,0) 2p x = 向左 5.(0,2p ) 2p y -= 向上 6.(0,2p -) 2p y = 向下典例启示知识点1求抛物线的标准方程【例1】 分别求满足下列条件的抛物线的标准方程.(1)过点(3,-4);(2)焦点在直线x +3y +15=0上.解:(1)∵点(3,-4)在第四象限,∴抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0).把点(3,-4)的坐标分别代入y 2=2px 和x 2=-2p 1y ,得(-4)2=2p ·3,32=-2p 1·(-4), 即3162=p ,4219=p . ∴所求抛物线的方程为x y 3162=或y x 492-=. (2)令x=0,得y=-5;令y=0,得x=-15.∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为y 2=-60x 或x 2=-20y .启示:求抛物线的标准方程需要:(1)求p ;(2)判断焦点所在坐标轴的位置.【例2】 分别求适合下列条件的抛物线方程.(1)顶点在原点,以坐标轴为对称轴,且过点A (2,3);(2)顶点在原点,以坐标轴为对称轴,焦点到准线的距离为25. 解:(1)由题意,方程可设为y 2=mx 或x 2=ny ,将点A (2,3)的坐标代入,得32=m •2或22=n •3,∴29=m 或34=n . ∴所求的抛物线方程为x y 292=或y x 342=. (2)由焦点到准线的距离为25,可知25=p , ∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .启示:(1)抛物线的标准方程有四种形式,主要看其焦点位置或开口方向.(2)抛物线的标准方程只有一个参数p ,即焦点到准线的距离,常称为焦参数.知识点2抛物线定义及标准方程的应用【例3】 已知抛物线的焦点为(3,3),准线为x 轴,求抛物线的方程解:设M (x ,y )为抛物线上的任意一点, 则由抛物线的定义,得||)3()3(22y y x =-+-. 平方整理,得3612+-=x x y 为所求抛物线的方程. 启示:当抛物线不在标准位置时,只有利用其定义来求方程.【例4】 平面上动点P 到定点F (1,0)的距离比P 到y 轴的距离大1,求动点P 的轨迹方程.解法一:设P 点的坐标为(x ,y ),则有1||)1(22+=+-x y x ,两边平方并化简得y 2=2x +2|x |.∴⎩⎨⎧<≥=,0,0,0,42x x x y 即点P 的轨迹方程为y 2=4x (x ≥0)或y=0(x <0).解法二:由题意,动点P 到定点F (1,0)的距离比到y 轴的距离大1,由于点F (1,0)到y 轴的距离为1,故当x <0时,直线y=0上的点适合条件;当x ≥0时,原命题等价于点P 到点F (1,0)与到直线x=-1的距离相等,故点P 在以F 为焦点,x=-1为准线的抛物线上,其轨迹方程为y 2=4x .故所求动点P 的轨迹方程为y 2=4x (x ≥0)或y=0(x <0).启示:求动点的轨迹方程时,可用定义法列等量关系,化简求解;也可判断后,用类似于公式法的待定系数法求解,但要判断准确,注意挖掘题目中的隐含条件,防止重、漏解.随堂训练1.已知抛物线过点(-11,13),则抛物线的标准方程是( ) A.x y 221692= B.x y 111692-= C.x y 111692-=或y x 131212= D.y x 131212-= 解析:∵点(-11,13)在第二象限,∴抛物线的张口向左或向上.当抛物线的张口向左时,设抛物线的方程为y 2=-2px ,把点 (-11,13)的坐标代入方程得 132=-2p ·(-11),∴111692=p . ∴抛物线的标准方程为x y 111692-=. 当抛物线的张口向上时,设抛物线的方程为x 2=2p 1y ,把点(-11,13)的坐标代入得(-11)2=2p ·13, ∴131212=p . ∴抛物线的方程为y x 131212=. 答案:C2.已知抛物线的准线方程是x=-7,则抛物线的标准方程是( )A.x 2=-28yB.y 2=28xC.y 2=-28xD.x 2=28y解析:∵72=p , ∴p =14.∵抛物线的焦点在x 轴上,∴抛物线的方程是y 2=28x .答案:B3.已知抛物线的焦点在直线3x -y +36=0上,则抛物线的标准方程是( )A.x 2=72yB.x 2=144yC.y 2=-48xD.x 2=144y 或y 2=-48x解析:令x =0得y =36,令y =0得x =-12,∴抛物线的焦点为(0,36)或(-12,0).答案:D4.抛物线y 2=-4px (p >0)的焦点为F ,准线为l ,则p 表示( )A.F 到l 的距离B.F 到y 轴的距离C.F 点的横坐标D.F 到l 的距离的41 解析:在抛物线的标准方程y 2=-2px (p >0)中,p 是焦点到准线的距离,2p 是焦点到y 轴的距离或y 轴与准线间的距离,所以在抛物线方程y 2=-4px (p >0)中,p 为焦点到y 轴或y 轴与准线间的距离.答案:B5.已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p 的值为( )A.4B.3C.2D.1解析:抛物线的焦点为(2p ,0), 由5)03()22(22=-+--p ,得p =4. 答案:A6.若点P 到定点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是( )A.y 2=-16xB.y 2=-32xC.y 2=16xD.y 2=16x 或y=0(x <0)解析:∵点F (4,0)在直线x +5=0的右侧,且P 点到点F (4,0)的距离比它到直线x +5=0的距离小1,∴点P 到F (4,0)的距离与到直线x +4=0的距离相等,故点P 的轨迹为抛物线,且顶点在原点,开口向右,p =8,故P 点的轨迹方程为y 2=16x .答案:C。
高中数学选修2-1北师大版 抛物线及其标准方程 学案2(含答案)
2.1 抛物线及其标准方程1.抛物线的定义平面内与__________和____________________的距离______的点的集合叫作抛物线.这个定点F 叫作抛物线的______,这条定直线l 叫作抛物线的______.预习交流1想一想:在定义中,隐含着定点F 不在定直线l 上.平面内到定点A (2,3)和定直线3x -4y +6=0距离相等的点的轨迹是抛物线吗?为什么?2.抛物线的标准方程焦点在x 轴正半轴上,坐标为⎝⎛⎭⎫p 2,0,准线方程为________的抛物线的标准方程是:____________.预习交流2议一议:抛物线的标准方程共有几种形式?其每种形式表示的意义有什么不同?答案:1.一个定点F 一条定直线l (不过F ) 相等 焦点 准线 预习交流1:提示:不是抛物线,而是过点A 且与定直线垂直的一条直线,因为点A (2,3)在定直线3x -4y +6=0上.2.x =-p2y 2=2px (p >0)预习交流2:提示:抛物线的标准方程有4种形式:y 2=2px ,y 2=-2px ,x 2=2py ,x 2=-2py ,(p >0)y 2=2px 表示焦点在x 轴的正半轴上,坐标为⎝⎛⎭⎫p 2,0,准线方程为x =-p2,p >0的抛物线.y 2=-2px 表示焦点在x 轴的负半轴上,坐标为⎝⎛⎭⎫-p 2,0,准线方程为x =p2,p >0的抛物线.x 2=2py 表示焦点在y 轴的正半轴上,坐标为⎝⎛⎭⎫0,p 2,准线方程为y =-p2,p >0的抛物线.x 2=-2py 表示焦点在y 轴的负半轴上,坐标为⎝⎛⎭⎫0,-p 2,准线方程为y =p2,p >0的抛物线.1.抛物线的定义的应用点M 与点F (4,0)的距离比它到直线l :x +5=0的距离小1.求点M 的轨迹方程. 思路分析:可用直接法列出等量关系求解,也可以转化后用抛物线的定义求解.1.动点M 到点(3,0)的距离比它到直线x =-2的距离大1,则动点M 的轨迹是( ). A .椭圆 B .双曲线 C .圆 D .抛物线2.若抛物线y 2=-2px (p >0)上有一点M ,其横坐标为-9,它到焦点的距离为10,求抛物线方程和M 点的坐标.凡是能转化为到一个定点F 的距离等于到一条定直线l (l 不过F )的距离的动点的轨迹,就是以F 为焦点,以l 为准线的抛物线.2.求抛物线的标准方程分别求满足下列条件的抛物线的标准方程.(1)焦点为(-2,0);(2)准线为y =-1;(3)焦点在直线x -2y -4=0上. 思路分析:求抛物线方程的主要方法是待定系数法,但要根据所给条件选择恰当的方程形式.指出下列抛物线的焦点坐标和准线方程.(1)y =14x 2;(2)x =ay 2(a ≠0).标准方程中等式右边一次项系数的正负决定抛物线的开口方向,若为正号,抛物线开口朝对称轴的正方向,否则朝负方向;当且仅当抛物线的顶点在原点,焦点在坐标轴上时,抛物线才具有标准形式.3.抛物线方程的实际应用一辆卡车高3米,宽1.6米,欲通过横断面为抛物线形的隧道.已知隧道口的宽恰好是高的4倍,若宽为a 米,求使卡车通过的a 的最小整数值.汽车前灯的反光曲面与轴截面的交线为抛物线,灯口直径为197 mm ,反光曲面的顶点到灯口的距离是69 mm.由抛物线的性质可知,当灯泡安装在抛物线的焦点处时,经反光曲面反射后的光线是平行光线.为了获得平行光线,应怎样安装灯泡?(精确到1 mm)把实际问题转化为数学问题,利用数学模型,通过数学语言(文字、符号、图形、字母等)分析解决问题,再还原到实际问题,是解决应用题的关键,注意坐标和距离的联系及区别.答案:活动与探究1:解:(方法1)设M 点坐标为(x ,y ),则有(x -4)2+y 2=(x +5)-1, 两边平方化简得y 2=16x .即点M 的轨迹方程为y 2=16x .(方法2)如图,设点M 的坐标为(x ,y ).由已知条件“点M 与点F 的距离比它到直线l :x +5=0的距离小1”,就是“点M 与点F 的距离等于它到直线x +4=0的距离”.根据抛物线的定义,点M 的轨迹是以F (4,0)为焦点的抛物线.∵p2=4,∴p =8. 因为焦点在x 轴的正半轴,所以点M 的轨迹方程为y 2=16x .迁移与应用1:1.D 解析:由题意知动点M 到(3,0)点的距离比它到直线x =-2的距离大1,即它到(3,0)点的距离等于它到直线x =-3的距离.根据抛物线的定义,动点M 的轨迹是抛物线.2.解:由抛物线的定义,设M 点坐标为(-9,y ),焦点F ⎝⎛⎭⎫-p 2,0,则准线为x =p 2,点M 到准线的距离为|MN |.则|MN |=|MF |=10,即p2-(-9)=10,∴p =2.因此抛物线方程为y 2=-4x .将M (-9,y )代入抛物线方程得y =±6,∴M 点坐标为(-9,6)或(-9,-6).活动与探究2:解:(1)焦点在x 轴的负半轴上,p2=2,即p =4,∴抛物线方程为y 2=-8x .(2)焦点在y 轴的正半轴上,p2=1,即p =2,∴抛物线方程为x 2=4y .(3)直线方程x -2y -4=0中令x =0得y =-2,令y =0得x =4. ∴抛物线的焦点为(0,-2)或(4,0).∴抛物线的标准方程是x 2=-8y 或y 2=16x .迁移与应用2:解:(1)抛物线y =14x 2的标准形式为x 2=4y ,∴p =2,∴焦点坐标为(0,1),准线方程为y =-1.(2)抛物线的标准方程为y 2=1a x ,∴2p =1|a |.①当a >0时,p 2=14a ,抛物线开口向右.∴焦点坐标是⎝⎛⎭⎫14a ,0,准线方程为x =-14a . ②当a <0时,p 2=-14a ,抛物线开口向左.∴焦点坐标是⎝⎛⎭⎫14a ,0,准线方程为x =-14a. 综上所述,当a ≠0时,抛物线x =ay 2的焦点坐标是⎝⎛⎭⎫14a ,0,准线方程为x =-14a. 活动与探究3:解:以隧道顶点为原点,高所在直线为y 轴,建立直角坐标系,则B 点的坐标为⎝⎛⎭⎫a 2,-a 4,设隧道所在的抛物线的标准方程为x 2=my ,则⎝⎛⎭⎫a 22=m ·⎝⎛⎭⎫-a 4,∴m =-a .即抛物线方程为x 2=-ay .将(0.8,y )代入抛物线方程得,0.82=-ay ,即y =-0.82a .欲使卡车通过隧道,应有y -⎝⎛⎭⎫-a 4>3,即a 4-0.82a>3.由于a >0,解得上述不等式的解集为{a |a >12.2}. ∴a 的最小整数值为13.迁移与应用3:解:如图,在车灯的一个轴截面上建立直角坐标系xOy ,设抛物线方程为y 2=2px (p >0),灯应安装在其焦点F 处.在x 轴上取一点C ,使OC =69,过点C 作x 轴的垂线,交抛物线于A ,B 两点,AB 就是灯口的直径,即AB =197,所以A 点坐标为⎝⎛⎭⎫69,1972. 将A 点坐标代入方程y 2=2px ,解得p ≈70.3. 它的焦点坐标约为F (35,0).因此,灯泡应该安装在距顶点约35 mm 处.1.抛物线x 2=ay 的准线方程是y =2,则实数a 的值为( ). A .8 B .-8 C.18 D .-182.动圆过点(0,1)且与直线y =-1相切,则动圆圆心的轨迹方程为( ). A .y =0 B .x 2+y 2=1 C .x 2=4y D .y 2=4x3.抛物线x 2=4y 上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( ). A .2 B .3 C .4 D .54.抛物线y 2=8x 的准线方程为________,焦点坐标为________.5.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,求|AB |的值.答案:1.B 解析:∵抛物线准线为y =2,∴-a4=2,∴a =-8.2.C 解析:根据抛物线的定义知,圆心的轨迹是以(0,1)为焦点,y =-1为准线的抛物线,其抛物线的标准方程是x 2=4y .3.D 解析:∵x 2=4y ,当y =4时,A 点坐标为(4,4)或(-4,4),焦点为(0,1), ∴点A 与抛物线的焦点距离为5. 4.x =-2 (2,0) 解析:∵y 2=8x , ∴2p =8,p =4,∴准线为x =-p2=-2,焦点为(2,0).5.解:∵y 2=4x ,∴准线为x =-1,焦点为F (1,0), ∴|AB |=|AF |+|BF |=x 1+1+x 2+1=2+(x 1+x 2). 又∵x 1+x 2=6,∴|AB |=2+6=8.。
高中数学选修2-1自主学习导学案:2.4.2 抛物线的简单几何性质
§2.4.2 抛物线的简单几何性质1.抛物线的图形性质22(0)y px p => ,焦点(,0)2p F ,准线2p x =-(1)顶点:(0,0)O(2)取值范围:0x ≥;(3)对称性:关于x 轴对称; (4)离心率1e =;(5)通径:过焦点而垂直于对称轴的弦AB ,称为抛物线的通径,2AB p =,2p 越大,抛物线张口越大.2.抛物线的焦半径与焦点弦(1)连接抛物线上任意一点与焦点的线段叫做抛物线的焦半径,如图所示AF ,BF . 由抛物线的定义,A 点到焦点的距离等于到准线的距离,设00(,)A x y ,则02p AF x =+(2)过抛物线的焦点的弦叫做焦点弦,设11(,)A x y ,22(,)B x y ,则:1212()()22p p AB x x x x p =+++=++. 以上结论可以推广到其他形式的抛物线:20202020122222322422==+=-=+==+=-=+(),||;(),||-(),||(),||-py px PF x py px PF x px py PF y px py PF y 21221221221212223242==++=-=--==++=-=--(),||;(),||(),||(),||y px AB x x p y px AB p x x x py AB y y p x py AB p y y3.关于抛物线的若干结论已知过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于11(,)A x y ,22(,)B x y 两点.则有: (1)若l 的倾斜角为θ,则22sin pAB θ=. (2) 所有焦点弦中,通径最短. (3)求证:2212124⋅=⋅=-,p x x y y p .(4)以AB 为直径的圆与准线相切.(5)112+=FA FB p.4.直线与抛物线的综合问题直线与抛物线的位置关系有三种:(1)相离;(2)相切;(3)相交.判断它们的位置关系,可以将直线的方程与抛物线的方程联立,22Ax By C y px++=⎧⎨=⎩,消元,再根据消元后的方程进行判断.※ 典型例题考点1.抛物线定义的直接应用【例1】(1)已知点A (-2,3)与抛物线22(0)y px p =>的焦点的距离是5,则p =________.(2)抛物线24y x =的弦AB 垂直x 轴,若|AB|= AB =,则焦点到AB 的距离为 . 变式1.已知(3,2)M ,P 为抛物线22y x =上一点,F 为抛物线的焦点,(1)若P 到焦点的距离为2,则P 点坐标为____________;(2)PM PF +的最小值为______,此时P 点的坐标为_________. 考点2.直线与抛物线的位置关系【例2】已知直线 l :1y kx =- 和抛物线C :24y x =,试判断当 k 为何值时,l 与C 有:(1)一个公共点;(2)两个不同公共点;(3)没有公共点.【方法归纳】直线与抛物线位置关系的判断方法:(1)把直线方程代入抛物线方程;(2)得到一元一次方程,则直线与抛物线的对称轴平行,相交(一个交点)(3)得到一元二次方程,计算判别式,0∆>,相交;0∆=,相切;0∆<,相离 变式1.过点(0,1)M 且和抛物线C: 24y x =仅有一个公共点的直线的方程是________________.考点3.焦点弦与弦长【例3】斜率为1的直线过抛物线24y x =的焦点,与抛物线交于A ,B 两点,求线段AB 的长.【方法归纳】(1)直线被曲线截得的弦 |AB|=1+k 2 |x 1-x 2|;(2)过抛物线的焦点的弦 |AB|= x 1+x 2+p变式1.已知直线l :y =- x +1和抛物线C :y 2=4x 交点为A 、B ,求AB 的长.变式2.斜率为1的直线l 被抛物线C: 24y x =截得的弦长|AB|=8,则直线的l 的方程是________.考点4.中点弦有关的问题【例4】已知抛物线C 的顶点为坐标原点,焦点在x 轴上,直线y=x 与抛物线C 交于A,B 两点.若P(2,2)为AB 的中点,则抛物线C 的方程为 .变式1.直线l 和抛物线C: 24y x =交于A ,B 两点,且线段AB 的中点为M (2,1),则直线的l 的方程是_______.变式2.若直线2x y -=与抛物线24y x =交于A,B 两点,则线段AB 的中点坐标是 .变式3.已知A,B 为抛物线E 上不同的两点,若抛物线E 的焦点为(1,0),线段AB 恰被M(2,1)所平分.(1)求抛物线E 的方程;(2)求直线AB 的方程.考点5.与抛物线有关的最值问题【例5】能否在抛物线C :24y x =上求一点,使得点 P 到直线3y x =+的距离最短.考点6.与抛物线有关的定点(定值)问题【例6】已知点A,B 是抛物线y 2=2px(p>0)上的两点,且OA ⊥OB .(1)求两点的横坐标之积和纵坐标之积;(2)求证:直线AB 过定点.考点7.与抛物线有关的对称问题【例7】如图,在平面直角坐标系xOy 中,已知直线l :x-y-2=0,抛物线C :y 2=2px(p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程.(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q .①求证:线段PQ 的中点坐标为(2-p ,-p);②求p 的取值范围.变式1.若抛物线y 2=x 上两点A(x 1,y 1),B(x 2,y 2)关于直线y=x+b 对称,且y 1y 2=-1,则实数b 的值为 ( )A .-3B .3C .2D .-22.已知抛物线y 2=x 上存在两点关于直线l :y=k(x-1)+1对称,则实数k 的取值范围为 .1.已知点P (6,y )在抛物线y 2=2px (p >0)上,若点P 到抛物线焦点F 的距离等于8,则焦点F 到抛物线准线的距离等于( )A .2B .1C .4D .82.抛物线y 2=4x 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,其面积为( )A .2 3B .4C .6D .4 33.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-24.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A .303B .6C .12D .7 3 5.过点(1,0)作斜率为-2的直线,与抛物线y 2=8x 交于A,B 两点,则弦AB 的长为 ( )A .2B .2C .2D .26.已知抛物线x 2=2py (p >0)的焦点为F ,过F 作倾斜角为30°的直线与抛物线交于A ,B 两点,若|AF ||BF |∈(0,1),则|AF ||BF |=( ) A .15 B .14 C .13 D .127.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点,若MA →·MB →=0,则k =( )A .12B .22C . 2D .28.过点(-1,0)且与抛物线y 2=x 有且仅有一个公共点的直线有 ( )A .1条B .2条C .3条D .4条9.设抛物线C :y 2=4x 的焦点为F,直线l 过点F 且与C 交于A,B 两点.若|AF|=3|BF|,则l 的方程为 ( )A .y=x-1或y=-x+1B .y=(x-1)或y=-(x-1)C .y=(x-1)或y=-(x-1) D .y=(x-1)或y=-(x-1)10.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为________. 11.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =________.12.平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.13.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.14.在抛物线y=4x 2上求一点,使该点到直线y=4x-5的距离最短,则该点的坐标是 .15.若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与y 轴的交点,A 为抛物线上一点,且|AM |=17,|AF |=3,求此抛物线的标准方程.16.已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A ,B 两点.(1)若直线l 的倾斜角为60°,求|AB |的值;(2)若|AB |=9,求线段AB 的中点M 到准线的距离.17.已知抛物线x=-y2与过点(-1,0)且斜率为k的直线相交于A,B两点,O为坐标原点,当△OAB的面积等于10时,求k的值.18.已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA 相切的圆,必与直线GB相切.§2.4.2 抛物线的简单几何性质(教师版)1.抛物线的图形性质22(0)y px p => ,焦点(,0)2p F ,准线2p x =-(1)顶点:(0,0)O(2)取值范围:0x ≥;(3)对称性:关于x 轴对称; (4)离心率1e =;(5)通径:过焦点而垂直于对称轴的弦AB ,称为抛物线的通径,2AB p =,2p 越大,抛物线张口越大.2.抛物线的焦半径与焦点弦(1)连接抛物线上任意一点与焦点的线段叫做抛物线的焦半径,如图所示AF ,BF . 由抛物线的定义,A 点到焦点的距离等于到准线的距离,设00(,)A x y ,则02p AF x =+(2)过抛物线的焦点的弦叫做焦点弦,设11(,)A x y ,22(,)B x y ,则:1212()()22p p AB x x x x p =+++=++. 以上结论可以推广到其他形式的抛物线:20202020122222322422==+=-=+==+=-=+(),||;(),||-(),||(),||-py px PF x py px PF x px py PF y px py PF y 21221221221212223242==++=-=--==++=-=--(),||;(),||(),||(),||y px AB x x p y px AB p x x x py AB y y p x py AB p y y3.关于抛物线的若干结论已知过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于11(,)A x y ,22(,)B x y 两点.则有: (1)若l 的倾斜角为θ,则22sin pAB θ=.222121212222222212021221πθπθθθθθθθ==∴≠=-=+-⋅-=∴=-+=∴=-=+=:,,,:()tan ,,tan :,tan ,,tan ()tan sin AB p AB p y p l y x x y py p py y p y y pAB y y p 解若则此时为抛物线的通径结论得证若设直线的方程为即代入抛物线方程得(2) 所有焦点弦中,通径最短.()()()2222221221223θθθ=≤∴≥∴:sin sin ,sin ,:;,:;.p AB pp AB p p 解由问题知:的最小值为即通径最短.通径的长度通径越大抛物线开口越大通径是抛物线的所有焦点弦中通径的性最短的质(3)求证:2212124⋅=⋅=-,p x x y y p .212221212221212222244⋅=-==∴==:,,,()y y p y y x x p p y y P x x P 解由问题的解法知:(4)以AB 为直径的圆与准线相切. (5)112+=FA FB p. 4.直线与抛物线的综合问题直线与抛物线的位置关系有三种:(1)相离;(2)相切;(3)相交.判断它们的位置关系,可以将直线的方程与抛物线的方程联立,22Ax By C y px++=⎧⎨=⎩,消元,再根据消元后的方程进行判断.※ 典型例题考点1.抛物线定义的直接应用【例1】(1)已知点A (-2,3)与抛物线22(0)y px p =>的焦点的距离是5,则p =_____4____ (2)抛物线24y x =的弦AB 垂直x 轴,若|AB|= AB =AB 的距离为 2 . 【答案】(1)4;(2)2;变式1.已知(3,2)M ,P 为抛物线22y x =上一点,F 为抛物线的焦点,(1)若P 到焦点的距离为2,则P 点坐标为____3(,2________; (2)PM PF +的最小值为____72__,此时P 点的坐标为_____(2,2)____.考点2.直线与抛物线的位置关系【例2】已知直线 l :y =kx-1 和抛物线C :y 2=4x ,试判断当 k 为何值时,l 与C 有:(1)个公共点;(2)两个不同公共点;(3)没有公共点.解:(1)01k k ==-或;(2)10k k >-≠且;(3)1k <- 【方法归纳】直线与抛物线位置关系的判断方法:(1)把直线方程代入抛物线方程;(2)得到一元一次方程,则直线与抛物线的对称轴平行,相交(一个交点)(3)得到一元二次方程,计算判别式,0∆>,相交;0∆=,相切;0∆<,相离 变式1.过点(0,1)M 且和抛物线C:24y x =仅有一个公共点的直线的方程是________________. 答案:101或或y x y x ===+.解析:(1)若直线与x 轴垂直,则0x =,满足题意. (2)若直线的斜率存在,设直线方程为:1y kx =+,联立214y kx y x=+⎧⎨=⎩,消去x ,得到2440ky y -+=,①若0k =,则1y =,满足题意②若0k ≠,令0∆=,解得1k =,所以1y x =+ 综上所述,所求直线方程为101或或y x y x ===+考点3.焦点弦与弦长【例3】斜率为1的直线过抛物线24y x =的焦点,与抛物线交于A ,B 两点,求线段AB 的长. 解法1:直线AB 的方程为1y x =+,代入抛物线方程得:2610x x -+=,设11(,)A x y ,22(,)B x y ,则126x x +=,121x x =,所以8AB ==.解法2:1212()()62822p pAB x x x x p =+++=++=+= 【方法归纳】(1)直线被曲线截得的弦 |AB|=1+k 2 |x 1-x 2|;(2)过抛物线的焦点的弦 |AB|= x 1+x 2+p变式1.已知直线l :y =- x +1和抛物线C :y 2=4x 交点为A 、B ,求AB 的长.【解析】︱AB ︱=8变式2.斜率为1的直线l 被抛物线C:24y x =截得的弦长|AB|=8,则直线的l 的方程是________.【答案】y =x -1考点4.中点弦有关的问题【例4】已知抛物线C 的顶点为坐标原点,焦点在x 轴上,直线y=x 与抛物线C 交于A,B 两点.若P(2,2)为AB 的中点,则抛物线C 的方程为 .【解析】设抛物线的方程为y 2=2px(p≠0),与y=x 联立方程组,消去y,得x 2-2px=0.设A(x 1,y 1),B(x 2,y 2),所以x 1+x 2=2p ,又因为P(2,2)为AB 的中点,所以2p=4,所以y 2=4x .变式1.直线l 和抛物线C:24y x =交于A ,B 两点,且线段AB 的中点为M (2,1),则直线的l 的方程是_______. 【答案】y =2x -3变式2.若直线x-y=2与抛物线y 2=4x 交于A,B 两点,则线段AB 的中点坐标是 .【解析】设A(x 1,y 1),B(x 2,y 2),联立直线方程与抛物线方程得方程组整理得x 2-8x+4=0,所以x 1+x 2=8,y 1+y 2=x 1+x 2-4=4,所以线段AB 的中点坐标为(4,2).变式3.已知A,B 为抛物线E 上不同的两点,若抛物线E 的焦点为(1,0),线段AB 恰被M(2,1)所平分.(1)求抛物线E 的方程;(2)求直线AB 的方程. 【解析】(1)由于抛物线的焦点为(1,0),所以12p=,2p =,所求抛物线的方程为y 2=4x . (2)方法一:设A(x 1,y 1),B(x 2,y 2),则2114y x = ①, 2224y x =②,且x 1+x 2=4,y 1+y 2=2,由②-①得(y 1+y 2)(y 2-y 1)=4(x 2-x 1), 所以21212y y x x -=-,所以所求直线AB 的方程为y-1=2(x-2),即2x-y-3=0.方法二:显然AB 不垂直于x 轴,故可设弦AB 所在的直线方程为y-1=k(x-2),k≠0, 设A(x 1,y 1),B(x 2,y 2),由21(2)4y k x y x-=-⎧⎨=⎩,消去x 整理得ky 2-4y-8k+4=0,所以y 1+y 2=4k, 又M 点是AB 的中点,所以y 1+y 2=2,所以k=2,故直线AB 的方程为y-1=2(x-2),即2x-y-3=0.考点5.与抛物线有关的最值问题【例5】能否在抛物线C :y 2=4x 上求一点,使得点 P 到直线 y =x+3 的距离最短. 【解析】00(.)P x y 解:直线与抛物线无交点,设抛物线上一点,2004y x =则,d ==2004y x =将代入得:d=20)y R =∈,0min 2,y d ∴==当时(1,2)P 此时方法2:0x y m -+=设直线与抛物线相切,2244400y xy y m x y m ⎧=⇒-+=⎨-+=⎩,0:1m ∆==由得,(1,2)P 此时.考点6.与抛物线有关的定点(定值)问题【例6】已知点A,B 是抛物线y 2=2px(p>0)上的两点,且OA ⊥OB .(1)求两点的横坐标之积和纵坐标之积;(2)求证:直线AB 过定点.【解析】(1)设点A,B 的坐标分别为(x 1,y 1),(x 2,y 2),则有k OA= 11y x ,k OB=22y x . 因为OA ⊥OB,所以k OA ·k OB =-1,所以x 1x 2+y 1y 2=0.因为21y=2px 1,21y=2px 2,所以2212y y2p 2p+y 1y 2=0.因为y 1≠0,y 2≠0,所以y 1y 2=-4p 2,所以x 1x 2=4p 2. (2)因为221122y 2px y 2px =,=,所以(y 1-y 2)(y 1+y 2)=2p(x 1-x 2),所以12AB 121212y y 2p 2p,k x x y y y y -=-++所以=,故直线AB 的方程为y-y 1=122p y y + (x-x 1),所以1112122px 2pxy y ,y y y y +-++=即211121212y 2px y y 2pxy .y y y y -+=+++ 因为21y=2px 1,y 1y 2=-4p 2,所以212122px 4p y ,y y y y -=+++所以y=122p y y + (x-2p),即直线AB 过定点(2p,0).考点7.与抛物线有关的对称问题【例7】如图,在平面直角坐标系xOy 中,已知直线l :x-y-2=0,抛物线C :y 2=2px(p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程.(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q .①求证:线段PQ 的中点坐标为(2-p ,-p);②求p 的取值范围.【解析】(1)因为l :x -y -2=0,所以l 与x 轴的交点坐标为(2,0),即抛物线的焦点为(2,0),所以p22=,,所以y 2=8x . (2)① 设点P(x 1,y 1),Q(x 2,y 2),则211211222222y x y 2px 2p y 2px y x 2p ⎧=⎪⎧=⎪⎪⇒⎨⎨=⎪⎪⎩=⎪⎩,, 则12PQ221212y y 2p k y y y y 2p 2p==+-,-又因为P,Q 关于直线l 对称, 所以k PQ =-1,即y 1+y 2=-2p,所以12y y p,2+=-又因为P,Q 的中点一定在直线l 上, 所以1212x x y y 22p,22++=+=- 所以线段PQ 的中点坐标为(2-p,-p).②因为中点坐标为(2-p ,-p),121222222121212y y 2p y y 2p y y x x 42p y y 8p 4p 2p +=⎧+=⎧⎪+⎨⎨+==+=⎩⎪⎩-,-,即--, 所以12212y y 2p y y 4p 4p +=⎧⎨=⎩-,-,即方程y 2+2py+4p 2-4p=0有两个不等实根.所以Δ>0,(2p)2-4(4p 2-4p)>0⇒ 4p (0,).3∈ 【方法技巧】应用抛物线性质解题的常用技巧 (1)抛物线的中点弦问题用点差法较简便.(2)轴对称问题,一是抓住对称两点的中点在对称轴上,二是抓住两点连线的斜率与对称轴所在直线斜率的关系.(3)在直线和抛物线的综合题中,经常遇到求定值、过定点问题.解决这类问题的方法很多,如斜率法、方程法、向量法、参数法等.解决这些问题的关键是代换和转化.(4)圆锥曲线中的定点、定值问题,常选择一参数来表示要研究问题中的几何量,通过运算找到定点、定值,说明与参数无关,也常用特值探路法找定点、定值.变式1.若抛物线y 2=x 上两点A(x 1,y 1),B(x 2,y 2)关于直线y=x+b 对称,且y 1y 2=-1,则实数b 的值为 ( )A .-3B .3C .2D .-2【解析】选D .因为抛物线y 2=x 上两点A(x 1,y 1),B(x 2,y 2)关于直线y=x+b 对称,所以=-1,所以=-1,所以y 1+y 2=-1.因为y 1y 2=-1,所以x 1+x 2=+=(y 1+y 2)2-2y 1y 2=3,所以两点A(x 1,y 1),B(x 2,y 2)中点坐标为.代入y=x+b,可得b=-2.2.已知抛物线y 2=x 上存在两点关于直线l :y=k(x-1)+1对称,则实数k 的取值范围为 .【解析】设抛物线上的点A(y12,y1),B(y22,y2)关于直线l对称.则122212221212y yk1y yy y y yk(1)1 22-⎧-⎪-⎪⎨++⎪=-+⎪⎩=,,,得12212y y kk11y y2k2+-⎧⎪⎨+-⎪⎩=,=,所以y1,y2是方程22k11y ky02k2-+++=的两个不同根.所以Δ=k2-42k11()2k2-+>0,解得-2<k<0.故实数k的取值范围是-2<k<0.答案:-2<k<01.已知点P(6,y)在抛物线y2=2px(p>0)上,若点P到抛物线焦点F的距离等于8,则焦点F到抛物线准线的距离等于()A.2 B.1 C.4 D.8【解析】抛物线y2=2px(p>0)的准线为x=-p2,因为P(6,y)为抛物线上的点,所以点P到焦点F 的距离等于它到准线的距离,所以6+p2=8,所以p=4,即焦点F到抛物线的距离等于4,故选C.【答案】 C2.(2014·成都高二检测)抛物线y2=4x的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,当△FPM为等边三角形时,其面积为()A.2 3 B.4 C.6 D.4 3【解析】据题意知,△FPM为等边三角形,|PF|=|PM|=|FM|,∴PM⊥抛物线的准线.设P⎝⎛⎭⎫m24,m,则M (-1,m ),等边三角形边长为1+m 24,又由F (1,0),|PM |=|FM |,得1+m 24=+2+m 2,得m =23,∴等边三角形的边长为4,其面积为43,故选D .【答案】 D3.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2【解析】 设A (x 1,y 1),B (x 2,y 2),代入抛物线方程得:⎩⎪⎨⎪⎧y 21=2px 1, ①y 22=2px 2, ②①-②得,(y 1+y 2)(y 1-y 2)=2p (x 1-x 2).又∵y 1+y 2=4,∴y 1-y 2x 1-x 2=2p 4=p2=k =1,∴p =2.∴所求抛物线的准线方程为x =-1. 【答案】 B4.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A .303B .6C .12D .7 3 【解析】 焦点F 的坐标为⎝⎛⎭⎫34,0,直线AB 的斜率为33,所以直线AB 的方程为y =33⎝⎛⎭⎫x -34,即y =33x -34,代入y 2=3x ,得13x 2-72x +316=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=212, 所以|AB |=x 1+x 2+32=212+32=12,故选C .5.过点(1,0)作斜率为-2的直线,与抛物线y 2=8x 交于A,B 两点,则弦AB 的长为 ( )A .2B .2C .2D .2【解析】选B .设A(x 1,y 1),B(x 2,y 2).由题意知AB 的方程为y=-2(x-1),即y=-2x+2.由得x 2-4x+1=0,所以x 1+x 2=4,x 1x 2=1.所以|AB|====2.6.(2014·湖南省长沙一中期中考试)已知抛物线x 2=2py (p >0)的焦点为F ,过F 作倾斜角为30°的直线与抛物线交于A ,B 两点,若|AF ||BF |∈(0,1),则|AF ||BF |=( )A .15B .14C .13D .12【解析】 因为抛物线的焦点为F ⎝⎛⎭⎫0,p 2,故过点F 且倾斜角为30°的直线的方程为y =33x +p2,与抛物线方程联立得x 2-233px -p 2=0,解方程得x A =-33p ,x B =3p ,所以|AF ||BF |=|x A ||x B |=13,故选C .【答案】 C7.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点,若MA →·MB →=0,则k =( )A .12B .22C . 2D .2【解析】 由题意可知抛物线的焦点坐标为(2,0),则过焦点且斜率为k 的直线的方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0,设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k 2,x 1x 2=4,所以y 1+y 2=k (x 1+x 2)-4k =8k ,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16,因为MA →·MB →=0,所以(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0(*),将上面各个量代入(*),化简得k 2-4k +4=0,所以k =2,故选D .【答案】 D8.(2016·郑州高二检测)过点(-1,0)且与抛物线y 2=x 有且仅有一个公共点的直线有 ( )A .1条B .2条C .3条D .4条【解析】选C .点(-1,0)在抛物线y 2=x 的外部,故过(-1,0)且与抛物线有且仅有一个公共点的直线有三条,其中两条为切线,一条为x 轴.9.(2016·西安高二检测)设抛物线C:y 2=4x 的焦点为F,直线l 过点F 且与C 交于A,B 两点.若|AF|=3|BF|,则l 的方程为 ( )A .y=x-1或y=-x+1B .y=(x-1)或y=-(x-1)C .y=(x-1)或y=-(x-1) D .y=(x-1)或y=-(x-1)【解析】选C .由题意,可设|BF|=x,则|AF|=3x,设直线l 与抛物线的准线相交于点M,则由抛物线的定义可知:=,所以|MB|=2x,所以直线l 的倾斜角为60°或120°,即直线l 的斜率为±.【误区警示】本题容易将倾斜角当作45°而错选A .10.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为________.【解析】 设抛物线上点的坐标为(x ,±x ),此点到准线的距离为x +14,到顶点的距离为x 2+x2,由题意有x +14=x 2+x2,∴x =18,∴y =±24,∴此点坐标为⎝⎛⎭⎫18,±24.【答案】 ⎝⎛⎭⎫18,±2411.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =________.【解析】 当k =0时,直线与抛物线有唯一交点,当k ≠0时,联立方程消y 得k 2x 2+4(k -2)x +4=0,由题意Δ=16(k -2)2-16k 2=0,∴k =1.【答案】 0或112.平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.【解析】 设机器人为A (x ,y ),依题意得点A 在以F (1,0)为焦点,x =-1为准线的抛物线上,该抛物线的标准方程为y 2=4x .过点P (-1,0),斜率为k 的直线为y =k (x +1).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +k ,得ky 2-4y +4k =0. 当k =0时,显然不符合题意;当k ≠0时,依题意得Δ=(-4)2-4k ·4k <0,化简得k 2-1>0,解得k >1或k <-1,因此k 的取值范围为(-∞,-1)∪(1,+∞). 【答案】 (-∞,-1)∪(1,+∞)13.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.【解析】 由于x 2=2py (p >0)的准线为y =-p 2,由⎩⎪⎨⎪⎧y =-p 2,x 2-y 2=3,解得准线与双曲线x 2-y 2=3的交点为 A ⎝⎛⎭⎫-3+14p 2,-p 2,B ⎝⎛⎭⎫3+14p 2,-p 2,所以AB =2 3+14p 2. 由△ABF 为等边三角形,得32AB =p ,解得p =6. 【答案】 614.直线y=kx+2与抛物线y 2=8x 有且只有一个公共点,则k= .【解析】当k=0时,直线与抛物线有唯一交点,当k≠0时,联立方程消y 得:k 2x 2+4(k-2)x+4=0,由题意Δ=16(k -2)2-16k 2=0,解得k=1.答案:0或115.在抛物线y=4x 2上求一点,使该点到直线y=4x-5的距离最短,则该点的坐标是 . 【解析】设与直线y=4x-5平行的直线为y=4x-b,代入y=4x 2得4x 2-4x+b=0.令Δ=16-16b=0,解得b=1,所以与直线y=4x-5平行的直线为y=4x-1,所以直线y=4x-1与抛物线相切,切点到y=4x-5的距离最短.由4x 2-4x+1=0,解得x=,所以y=1,所求点为.答案:16.若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与y 轴的交点,A 为抛物线上一点,且|AM |=17,|AF |=3,求此抛物线的标准方程.【解】设所求抛物线的标准方程为x 2=2py (p >0),设A (x 0,y 0),由题知M ⎝⎛⎭⎫0,-p 2. ∵|AF |=3,∴y 0+p 2=3,∵|AM |=17,∴x 20+⎝⎛⎭⎫y 0+p 22=17,∴x 20=8,代入方程x 20=2py 0得, 8=2p ⎝⎛⎭⎫3-p2,解得p =2或p =4. ∴所求抛物线的标准方程为x 2=4y 或x 2=8y .17.已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A ,B 两点.(1)若直线l 的倾斜角为60°,求|AB |的值;(2)若|AB |=9,求线段AB 的中点M 到准线的距离.【解】 (1)因为直线l 的倾斜角为60°,所以其斜率k =tan 60°=3. 又F ⎝⎛⎭⎫32,0,所以直线l 的方程为y =3⎝⎛⎭⎫x -32. 联立⎩⎪⎨⎪⎧y 2=6x ,y =3⎝⎛⎭⎫x -32,消去y 得x 2-5x +94=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=5, 而|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p ,所以|AB |=5+3=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义知|AB |=|AF |+|BF |=x 1+x 2+p =x 1+x 2+3,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3. 又准线方程是x =-32,所以M 到准线的距离为3+32=92.18.已知抛物线x =-y 2与过点(-1,0)且斜率为k 的直线相交于A ,B 两点,O 为坐标原点,当△OAB 的面积等于10时,求k 的值.【解】 过点(-1,0)且斜率为k 的直线方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧x =-y 2,y =k x +,消去x ,整理得ky 2+y -k =0,设A (x 1,y 1),B (x 2,y 2),由根与系数之间的关系得y 1+y 2=-1k ,y 1y 2=-1.设直线与x 轴交于点N ,显然N 点的坐标为(-1,0). ∵S △OAB =S △OAN +S △OBN =12|ON ||y 1|+12|ON ||y 2|=12|ON ||y 1-y 2|,∴S △OAB =12y 1+y 22-4y 1y 2=121k 2+4=10, 解得k =-16或16.19.(2015·福建高考)已知点F 为抛物线E:y 2=2px(p>0)的焦点,点A(2,m)在抛物线E 上,且|AF|=3.(1)求抛物线E 的方程.(2)已知点G(-1,0),延长AF 交抛物线E 于点B,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切. 【解析】方法一:(1)由抛物线的定义得=2+,因为=3,即2+=3,解得p=2,所以抛物线E 的方程为y 2=4x . (2)因为点A(2,m)在抛物线E:y 2=4x 上, 所以m=±2,由抛物线的对称性, 不妨设A(2,2), 由A(2,2),F(1,0)可得直线AF 的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),所以k GA==,k GB==-,所以k GA+k GB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.方法二:(1)同方法一.(2)设以点F为圆心且与直线GA相切的圆的半径为r.因为点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2),由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),故直线GA的方程为2x-3y+2=0,从而r==.又直线GB的方程为2x+3y+2=0,所以点F到直线GB的距离d===r.这表明以点F为圆心且与直线GA相切的圆必与直线GB相切.。
高中数学选修2-1
高中数学选修2-1.抛物线导学案加课后作业及参考答案研究要求:1.掌握抛物线的定义以及焦点、准线的概念。
2.能够求解简单的抛物线方程。
学法指导:通过观察抛物线的形成过程,得出抛物线定义,建系得出抛物线标准方程。
通过抛物线及其标准方程的应用,体会抛物线在刻画现实世界和解决实际问题中的作用。
问题1:画出的曲线是什么形状?问题2:|DA|是点D到直线EF的距离吗?为什么?问题3:点D在移动过程中,满足什么条件?问题4:在抛物线定义中,条件“l不经过点F”去掉是否可以?例1:方程2(x+3)²+(y-1)²=|x-y+3|表示的曲线是()。
A.圆B.椭圆C.双曲线D.抛物线跟踪训练1:1)若动点P与定点F(1,1)和直线l:3x+y-4=0的距离相等,则动点P的轨迹是()。
A.椭圆B.双曲线C.抛物线D.直线2)若动圆与圆(x-2)²+y²=1相外切,又与直线x+1=0相切,则动圆圆心的轨迹是()。
A.椭圆B.双曲线C.双曲线的一支D.抛物线探究点二:抛物线的标准方程问题1:结合求曲线方程的步骤,如何求抛物线的标准方程?问题2:抛物线方程中p有何意义?标准方程有几种类型?问题3:根据抛物线方程,如何求焦点坐标和准线方程?例2:已知抛物线的方程如下,求其焦点坐标和准线方程。
1)y²=-6x;(2)3x²+5y=0;3)y=4x²;(4)y²=a²x(a≠0)。
知识要点:1.抛物线的定义:平面内与一个定点F和一条定直线l(l不经过点F)的点的轨迹叫做抛物线。
点F叫做抛物线的焦点,直线l叫做抛物线的准线。
2.抛物线标准方程的几种形式:图形标准方程焦点坐标准线方程1)开口向右的抛物线 y²=4px (p,0) x=-p2)开口向左的抛物线 y²=-4px (-p,0) x=p3)开口向上的抛物线 x²=4py (0,p) y=-p4)开口向下的抛物线 x²=-4py (0,-p) y=p问题探究:探究点一:抛物线定义在黑板上画一条直线EF,然后取一个三角板,将一条拉链AB固定在三角板的一条直角边上,并将拉链下边一半的一端固定在C点,将三角板的另一条直角边贴在直线EF上,在拉锁D处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线。
选修2-1椭圆、双曲线、抛物线经典解析(含详细答案)
选修2-1椭圆、双曲线、抛物线经典解析知识点一 定义和性质的应用设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 为椭圆上的一点,已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.解 由题意知,a =3,b =2,则c 2=a 2-b 2=5,即c = 5. 由椭圆定义,知|PF 1|+|PF 2|=6,|F 1F 2|=2 5. (1)若∠PF 2F 1为直角,则|PF 1|2=|F 1F 2|2+|PF 2|2, |PF 1|2-|PF 2|2=20.即⎩⎪⎨⎪⎧|PF 1|-|PF 2|=103,|PF 1|+|PF 2|=6,解得|PF 1|=143,|PF 2|=43. 所以|PF 1||PF 2|=72.(2)若∠F 1PF 2为直角,则|F 1F 2|2=|PF 1|2+|PF 2|2. 即20=|PF 1|2+(6-|PF 1|)2,解得|PF 1|=4,|PF 2|=2或|PF 1|=2,|PF 2|=4(舍去).所以|PF 1||PF 2|=2.二 圆锥曲线的最值问题已知A (4,0),B (2,2)是椭圆x 225+y 29=1内的两定点,点M 是椭圆上的动点,求|MA |+|MB |的最值.解 因为A(4,0)是椭圆的右焦点,设A ′为椭圆的左焦点,则A ′(-4,0),由椭圆定义知|MA|+|MA ′|=10.如图所示,则|MA|+|MB|=|MA|+|MA ′|+|MB|-|MA ′|=10+|MB|-|MA ′|≤10+|A ′B|. 当点M 在BA ′的延长线上时取等号.所以当M 为射线BA ′与椭圆的交点时,(|MA|+|MB|)max=10+|A ′B|=10+210.又如图所示,|MA|+|MB|=|MA|+|MA ′|-|MA ′|+|MB|=10- (|MA ′|-|MB|)≥10-|A ′B|,当M 在A ′B 的延长线上时取等号.所以当M 为射线A ′B 与椭圆的交点时,(|MA|+|MB|)min=10-|A ′B|=10- 210.三 轨迹问题抛物线x 2=4y 的焦点为F ,过点(0,-1)作直线交抛物线于不同两点A 、B ,以AF ,BF 为邻边作平行四边形F ARB ,求顶点R 的轨迹方程.解 设直线AB :y =kx -1,A (x 1,y 1),B (x 2,y 2),R (x ,y ),由题意F (0,1),由⎩⎪⎨⎪⎧y =kx -1x 2=4y ,可得x 2-4kx +4=0,∴x 1+x 2=4k .又AB 和RF 是平行四边形的对角线, ∴x 1+x 2=x ,y 1+y 2=y +1.而y 1+y 2=k (x 1+x 2)-2=4k 2-2, ∴⎩⎪⎨⎪⎧x =4k y =4k 2-3,消去k 得x 2=4(y +3). 由于直线和抛物线交于不同两点,∴Δ=16k 2-16>0, ∴k >1或k <-1,∴x >4或x <-4.∴顶点R 的轨迹方程为x 2=4(y +3),且|x |>4.四 直线与圆锥曲线的位置关系已知直线l :y =kx +b 与椭圆x 22+y 2=1相交于A 、B 两点,O 为坐标原点.(1)当k =0,0<b <1时,求△AOB 的面积S 的最大值;(2)⊥OB →,求证直线l 与以原点为圆心的定圆相切,并求该圆的方程.解 (1)把y =b 代入x 22+y 2=1,得x =±2-2b 2.∴∴S △AOB=21× b22·22122b b +-= ,当且仅当b 2 =21,即b =2 时取等号.∴△AOB 的面积S 的最大值为2.(2)设A(x 1,y 1),B(x 2,y 2),由 得(1+2k 2)x 2+4kbx+2b 2-2=0,∴x 1+x 2=-241kbk+,x 1·x 2= 222212b k -+. 又∵OA ⊥OB ,∴(x 1,y 1)·(x 2,y 2)=0, 即x 1x 2+y 1y 2=0.又x 1x 2+ y 1y 2= x 1x 2 +( k x 1+b)(k x 2+b) =(k 2+1)·x 1x 2+kb(x 1 + x 2) +b 2=(k 2+1) 222212b k -+-kb 241kbk ++b 2 =222322012b k k--=+, ∴3b 2 = 2k 2+2.又设原点O 到直线l 的距离为d ,则d ===.∴l与以原点为圆心,以3为半径的定圆相切, 该圆的方程为x 2 + y 2 =32 高考分析1.如图所示,椭圆C :x 2a 2+y 2b2=1 (a >b >0)的一个焦点为F (1,0),且过点(2,0).(1)求椭圆C 的方程;(2)若AB 为垂直于x 轴的动弦,直线l :x=4与x 轴交于点N ,直线AF 与BN 交于点M , (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.解 方法一 (1)由题设a=2,c=1,从而b 2=a 2-c 2=3,所以椭圆C 的方程为22143x y += (2)(ⅰ)由题意得F(1,0)、N(4,0).设A(m ,n),则B(m ,-n)(n ≠0),22143m n +=.① AF 与BN 的方程分别为:n (x -1)-(m -1)y =0,n (x -4)+(m -4)y =0.设M (x 0,y 0),则有⎩⎪⎨⎪⎧n (x 0-1)-(m -1)y 0=0, ②n (x 0-4)+(m -4)y 0=0, ③由②③得x 0=5m -82m -5,y 0=3n2m -5.由于x 204+y 203=(5m -8)24(2m -5)2+3n 2(2m -5)2=(5m -8)2+12n 24(2m -5)2=(5m -8)2+36-9m 24(2m -5)2=1.所以点M 恒在椭圆C 上.(ⅱ)设AM 的方程为x =ty +1,代入x 24+y 23=1,得(3t 2+4)y 2+6ty -9=0.设A (x 1,y 1)、M (x 2,y 2),则有y 1+y 2=-6t3t 2+4,y 1y 2=-93t 2+4,|y 1-y 2|=(y 1+y 2)2-4y 1y 2=43·3t 2+33t 2+4.令3t 2+4=λ (λ≥4),则|y 1-y 2|=43·λ-1λ=4 3 -⎝⎛⎭⎫1λ2+1λ =4 3 -⎝⎛⎭⎫1λ-122+14,因为λ≥4,0<1λ≤14,所以当1λ=14,即λ=4,t =0时,|y 1-y 2|有最大值3,此时AM 过点F .△AMN 的面积S △AMN =12|NF |·|y 1-y 2|有最大值92.方法二 同方法一.(2)(ⅰ)由题意得F (1,0)、N (4,0),设A (m ,n ),则B (m ,-n ) (n ≠0),m 24+n 23=1.①AF 与BN 的方程分别为n (x -1)-(m -1)y =0,② n (x -4)+(m -4)y =0.③由②③得:当x ≠52时,m =5x -82x -5,n =3y2x -5.④把④代入①,得x 24+y 23=1 (y ≠0).当x =52时,由②③得⎩⎨⎧32n -(m -1)y =0,-32n +(m +4)y =0,解得⎩⎪⎨⎪⎧n =0,y =0,与n ≠0矛盾.所以点M 的轨迹方程为x 24+y 23=1 (y ≠0),即点M 恒在椭圆C上.随堂练习一、选择题(本大题共12小题,每小题5分,共60分)1.双曲线3mx 2-my 2=3的一个焦点是(0,2),则m 的值是( ) A .-1 B .1C .-1020 D.102答案 A解析 化双曲线的方程为x 21m -y 23m=1,由焦点坐标(0,2)知:-3m -1m =4,即-4m =4,∴m =-1.2.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点P (k ,-2)与点F 的距离为4,则k 等于( )A .4B .4或-4C .-2D .-2或2 答案 B解析 由题意可设抛物线的方程为x 2=-2py (p >0).则抛物线的准线方程为y =p2,由抛物线的定义知|PF |=p 2-(-2)=p2+2=4,所以p =4,抛物线方程为x 2=-8y ,将y =-2代入,得x 2=16,∴k =x =±4.3.已知中心在原点,焦点在y 轴上的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为( )A.52 B. 5 C.52D .5 答案 B解析 由已知可设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),∴±a b =±12,∴b =2a ,∴b 2=4a 2,∴c 2-a 2=4a 2, ∴c 2=5a 2, ∴c 2a 2=5.∴e =ca= 5. 4.已知椭圆的方程是x 2+2y 2-4=0,则以M (1,1)为中点的弦所在直线方程是( ) A .x +2y -3=0 B .2x +y -3=0 C .x -2y +3=0 D .2x -y +3=0 答案 A解析 设弦的端点为A (x 1,y 1)、B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=2.由x 21+2y 21=4,x 22+2y 22=4相减得(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0, ∴(x 1-x 2)+2(y 1-y 2)=0,∴k AB =-12.∴弦所在的方程为y -1=-12(x -1)即x +2y -3=0.5.以x 24-y212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 答案 D解析 方程可化为y 212-x 24=1,该方程对应的焦点为(0,±4),顶点为(0,±23).由题意知椭圆方程可设为x 2b 2+y 2a2=1(a >b >0),则a =4,c 2=a 2-b 2=12,∴b 2=a 2-12=16-12=4.∴所求方程为x 24+y 216=1.6.θ是任意实数,则方程x 2+y 2cos θ=4的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线 D .圆 答案 C解析 由于没有x 或y 的一次项,方程不可能是抛物线,故选C.7.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( )A .(-∞,0)B .(-12,0)C .(-3,0)D .(-60,-12) 答案 B解析 由题意a 2=4,b 2=-k ,c 2=4-k ,∴e 2=c 2a 2=4-k 4.又∵e ∈(1,2),∴1<4-k4<4,解得-12<k <0.8.双曲线x 2a 2-y 2b2=1 (a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A .(1,3)B .(1,3]C .(3,+∞)D .[3,+∞) 答案 B解析 由题意知在双曲线上存在一点P , 使得|PF 1|=2|PF 2|,如图所示.又∵|PF 1|-|PF 2|=2a ,∴|PF 2|=2a ,即在双曲线右支上恒存在点P 使得|PF 2|=2a , 即|AF 2|≤2a .∴|OF 2|-|OA |=c -a ≤2a , ∴c ≤3a .又∵c >a ,∴a <c ≤3a ,∴1<ca≤3,即1<e ≤3.9.已知A 为椭圆x 216+y 212=1的右顶点,P 为椭圆上的点,若∠POA =π3,则P 点坐标为( )A .(2,3) B.⎝⎛⎭⎫455,±4155 C.⎝⎛⎭⎫12,±32 D .(4,±83)答案 B解析 由y =±3x 及x 216+y 212=1 (x >0)得解.10.等轴双曲线x 2-y 2=a 2截直线4x +5y =0所得弦长为41,则双曲线的实轴长是( )A.65B.125C.32 D .3 答案 D解析 注意到直线4x +5y =0过原点,可设弦的一端为(x 1,y 1),则有 ⎝⎛⎭⎫1+1625x 21=412.可得x 21=254,取x 1=52,y 1=-2. ∴a 2=254-4=94,|a |=32.11.过椭圆x 2a 2+y2b2=1(0<b <a )中心的直线与椭圆交于A 、B 两点,右焦点为F 2(c,0),则△ABF 2的最大面积是( )A .abB .acC .bcD .b 2 答案 C解析 S △ABF 2=S △OAF 2+S △OBF 2 =12c ·|y 1|+12c ·|y 2|(y 1、y 2分别为A 、B 两点的纵坐标),∴S △ABF 2=12c |y 1-y 2|≤12c ·2b =bc . 12.抛物线x 2=ay (a <0)的准线l 与y 轴交于点P ,若l 绕点P 以每秒π12弧度的角速度按逆时针方向旋转t 秒后,恰与抛物线第一次相切,则t 等于( )A .1B .2C .3D .4 答案 C解析 由已知得准线方程为y =-a4,∴P 点坐标为(0,-a4).设抛物线的切线l 1的方程为y =kx -a 4,由⎩⎪⎨⎪⎧y =kx -a 4x 2=ay,得x 2-akx +a 24=0,由题意得Δ=a 2k 2-4×a 24=0,解得k 2=1,∴y =x -a4,∴∠MPN =π4,∴π4π12=3,∴t =3.二、填空题(本大题共4小题,每小题4分,共16分)13.斜率为1的直线经过抛物线y 2=4x 的焦点,与抛物线相交于A 、B 两点,则AB 的长为________.答案 8解析 设A (x 1,y 1),B (x 2,y 2),抛物线y 2=4x 的焦点为F (1,0).则直线方程为y =x -1,由⎩⎪⎨⎪⎧y 2=4x ,y =x -1.得x 2-6x +1=0,∴x 1+x 2=6,x 1·x 2=1, |AB |=(1+1)[(x 1+x 2)2-4x 1x 2]=2(36-4)=8.14.已知圆x 2+y 2=1,从这个圆上任意一点P 向x 轴作垂线段PP ′,则线段PP ′的中点M 的轨迹方程是________.答案 x 2+4y 2=1解析 设M (x ,y ),P (x 0,y 0)由题意知 x 0=x ,y 0=2y ,∵P (x 0,y 0)在圆上,有x 20+y 20=1,∴x 2+4y 2=1.即为所求的轨迹方程.15.F 为抛物线y 2=2px (p >0)的焦点,P 为抛物线上任意一点,以PF 为直径作圆,则该圆与y 轴的位置关系是__________.答案 相切解析 设P (x 0,y 0),PF 中点为M ,则M 到y 轴距离d =x 0+p 22=12|PF |.16.椭圆x 225+y29=1上一点P 到两焦点的距离积为m ,则当m 最大时,点P 的坐标是________.答案 (0,3)或(0,-3)解析 设椭圆的两焦点分别为F 1、F 2由椭圆定义知: |PF 1|+|PF 2|=2×5=10. 由基本不等式知:m =|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=25.当且仅当|PF 1|=|PF 2|时取等号. 即|PF 1|=|PF 2|=5,m 取最大值. 所以P 点为椭圆短轴的端点.三、解答题(本大题共6小题,共74分) 17.(12分)如图所示,线段AB 与CD 互相垂直平分于点O ,|AB|=2a (a>0),|CD|=2b (b>0),动点P 满足|PA|·|PB|=|PC|·|PD|,求动点P 的轨迹方程.解 以O 为坐标原点,直线AB 、CD 分别为x 轴、y 轴建立坐标系,设P(x ,y)是曲线上的任意一点,则A(-a,0),B(a,0),C(0,- b),D(0,b). 由题意知:|PA|·|PB|=|PC|·|PD|,化简得:x 2-y 2= 222a b -即动点P 的轨迹方程为x 2-y 2=222a b - .18.(12分)k 代表实数,讨论方程kx 2+2y 2-8=0所表示的曲线.解 当k <0时,曲线y 24-x 2-8k=1为焦点在y 轴的双曲线;当k =0时,曲线2y 2-8=0为两条平行于x 轴的直线y =2或y =-2;当0<k <2时,曲线x 28k+y 24=1为焦点在x 轴的椭圆;当k =2时,曲线x 2+y 2=4为一个圆;当k >2时,曲线y 24+x 28k=1为焦点在y 轴的椭圆.19.(12分)已知椭圆x 29+y 24=1及点D (2,1),过点D 任意引直线交椭圆于A ,B 两点,求线段AB 中点M 的轨迹方程.解 设M (x ,y ),A (x 1,y 1),B (x 2,y 2),由题意得⎩⎪⎨⎪⎧4x 21+9y 21=36, ①4x 22+9y 22=36. ② ①-②,得4(x 1-x 2)(x 1+x 2)+9(y 1-y 2)(y 1+y 2)=0,因为M (x ,y )为AB 中点,所以x 1+x 2=2x ,y 1+y 2=2y .所以4×2x (x 1-x 2)+9×2y (y 1-y 2)=0.当x 1≠x 2时,y 1-y 2x 1-x 2=-4x9y .又y 1-y 2x 1-x 2=y -1x -2,所以y -1x -2=-4x9y .化简得4x 2+9y 2-8x -9y =0.因为当x 1=x 2时,中点M (2,0)满足上述方程,所以点M 的轨迹方程为4x 2+9y 2-8x -9y =0.20.(12分)一辆卡车高3米,宽1.6米,欲通过断面为抛物线的隧道,已知拱口AB 的宽恰好为拱高CD 的4倍,若|AB |=a 米,求能使卡车通过的a 的最小整数的值.解以拱顶为原点,拱高所在的直线为y 轴建立坐标系,如图,点B 的坐标为(,)24a a -,设抛物线方程为x 2=-2py (p>0),将点B 的坐标代入得2()2a =-2p ·()4a-,解得p = 2a ,所以抛物线方程为x 2=-ay.将点E(-0.8,y)代入抛物线方程得y=-0.64a,依题意点E 到拱底AB 的距离为4a -|y| =4a -0.64a≥3,解得a ≥12.21. 所以能使卡车通过的a 的最小整数值为13.。
高中数学选修2-1北师大版 抛物线的简单性质2 学案(含答案)
2.2 抛物线的简单性质自主整理抛物线y2=2px(p>0)的简单性质1.范围抛物线y2=2px(p>0)在y轴的_____________,它的开口_____________,这条抛物线上的任意一点M的坐标(x,y)满足不等式_____________;当x的值增大时,|y|也增大,这说明抛物线向_____________和_____________无限延伸.抛物线是_____________曲线.2.对称性抛物线y2=2px(p>0)关于对称,我们把抛物线的对称轴叫作抛物线的_____________.抛物线只有对称轴_____________.3.顶点抛物线y2=2px(p>0)和它的轴的交点叫作抛物线的.抛物线的顶点坐标是.4.离心率抛物线y2=2px(p>0)上的点M到焦点的距离和它到准线的距离的_____________,叫作抛物线的离心率.用_____________表示,e=_____________.5.通过抛物线y2=2px(p>0)的焦点而垂直于x轴的直线与抛物线两交点的坐标分别为_____________,.连结这两点的线段叫作抛物线的_____________,它的长为_____________.这就是抛物线标准方程中2p的一种意义.高手笔记1.要掌握抛物线的简单几何性质,如范围,对称性,顶点,开口方向等.学生利用抛物线方程研究抛物线的几何性质的方法,也就是坐标法.以抛物线y2=2px(p>0)为例,由于p>0,所以x≥0,即抛物线在y轴右侧,同时x增大时,|y|也无限增大,说明抛物线向右上方和右下方无限延展.以-y 代替y方程不变,故抛物线关于x轴对称.2.顶点就是坐标原点,即抛物线与坐标轴的交点,抛物线与椭圆比较,它只有一个焦点,一个顶点,一条对称轴.名师解惑1.重视抛物线的简单性质在解题中的作用剖析:掌握抛物线的简单性质,会运用这些性质解决与抛物线有关的问题,进一步体会数形结合思想的运用,做题时尽可能画出草图来分析问题.由抛物线的范围可得抛物线顶点坐标的取值范围,在涉及求有关最值问题时,也就给出了函数的定义域的要求.2.利用抛物线的方程与性质解决实际问题剖析:解决实际应用问题应先建立恰当的直角坐标系,然后构造出抛物线的标准方程,写出已知点的坐标,确定焦点坐标与位置,画出草图,分析,解决问题.讲练互动【例1】求顶点在原点,以x 轴为对称轴,且通径长为8的抛物线方程,并指出它的焦点坐标和准线方程.解析:抛物线的通径长为2p,焦点在x 轴的哪一个半轴上未确定.故可设抛物线方程为y 2=2px(p≠0),但此时通径长应为|2p|,若不按此设法,需讨论. 解:设抛物线方程为y 2=2px(p≠0), 因为抛物线通径长为8, 所以|2p|=8. 所以p=±4.故所求抛物线方程为y 2=8x 或y 2=-8x.若抛物线方程为y 2=8x,则焦点坐标为(2,0),准线方程为x=-2;若抛物线方程为y 2=-8x,则焦点坐标为(-2,0),准线方程为x=2. 绿色通道求抛物线方程一般要用待定系数法.需先设出方程,若只知道焦点在x 轴上,但不能确定开口方向时,把两种情况统一设为y 2=2px(p≠0)较方便.只要写出方程,就可顺利求出焦点坐标与准线方程. 变式训练1.一抛物线的顶点在原点,以x 轴为对称轴,经过焦点且倾斜角为135°的直线,被抛物线所截得的弦长为8,试求此抛物线方程.解:如图,依题意设抛物线方程为y 2=2px(p >0),则直线方程为y=-x+21p. 设直线交抛物线于A(x 1,y 1),B(x 2,y 2),则由抛物线定义得|AB|=|AF|+|FB|=|AC|+|BD|=x 1+2p +x 2+2p,即x 1+2p +x 2+2p=8.① 又A(x 1,y 1),B(x 2,y 2)是抛物线和直线的交点,由⎪⎩⎪⎨⎧=+-=,2,212px y p x y 消去y 得x 2-3px+42p =0,所以x 1+x 2=3p.将其代入①得p=2. 所以所求抛物线方程为y 2=4x.当抛物线方程设为y 2=-2px 时,同理可求得抛物线方程为y 2=-4x.【例2】给定抛物线y 2=2x,设A(a,0)(a >0),P 是抛物线上的一点,且|PA|=d,试求d 的最小值. 解析:要求d 的最小值,首先应构造d 的目标函数d=f(x),此函数定含参数a,对参数a 的取值加以讨论,f(x)的定义域由抛物线范围确定. 解:设P(x,y),则x≥0,y 2=2x,所以d=f(x)=|PA|=1)]1([2)()(2222---=+-=+-a x x a x y a x .因为a >0,x≥0,故有(1)当0<a <1时,a-1<0,此时,x=0时,d 最小值为d min =a. (2)当a≥1时,a-1≥0,此时,x=a-1时,d 最小值为d min =12-a .绿色通道求抛物线上的动点到定点距离的最值时,除了要构造出目标函数之外,要注意抛物线是有范围的,从而确定目标函数的定义域;含有参数的,还要对参数进行讨论,否则极有可能出现错误.变式训练2.求抛物线y 2=64x 上的点到直线4x+3y+46=0的距离的最小值,并求取得最小值时的抛物线上点的坐标.分析:本题可应用点到直线的距离公式转化为求二次函数的最小值;也可以转化为求与已知直线平行并且与抛物线只有一个公共点(相切)的直线与已知直线的距离.解:设P(x 0,y 0)是抛物线上的点,则x 0=6420y,P 到直线4x+3y+46=0的距离d=5|643644|020++∙y y=80160)24(80|73648|20020++=++y y y . 所以当y 0=-24,x 0=9时,d 有最小值2.所以抛物线上的点到直线的最小距离等于2,这时抛物线上的点的坐标为(9,-24).。
高中数学 选修2-1 北师大版 抛物线及其标准方程 课后作业(含答案)
2.1 抛物线及其标准方程1.抛物线y2=4x的焦点坐标为( )A.(0,1)B.(1,0)C.(0,2)D.(2,0)解析:(直接计算法)因为p=2,所以抛物线y2=4x的焦点坐标为(1,0),应选B.答案:B2.某河上有抛物线形拱桥,当水面距拱顶6 m时,水面宽10 m,则抛物线的方程可能是( )A.x2=-yB.x2=-yC.x2=-yD.x2=-y答案:A3.抛物线x2=y上的一点M到焦点的距离为1,则点M到x轴的距离是( )A. B. C.1 D.解析:由准线方程为y=-,可知M到准线的距离为1,∴点M到x轴的距离等于1-.答案:D4.抛物线y2=24ax(a>0)上有一点M,它的横坐标是3,它到焦点的距离是5,则抛物线的方程为( )A.y2=8xB.y2=12xC.y2=16xD.y2=20x解析:由题意知,3+6a=5,∴a=,∴抛物线方程为y2=8x.答案:A5.抛物线y2=2px(p>0)上有A(x1,y1),B(x2,y2),C(x3,y3)三点,F是焦点,|AF|,|BF|,|CF|成等差数列,则( )A.x1,x2,x3成等差数列B.x1,x3,x2成等差数列C.y1,y2,y3成等差数列D.y1,y3,y2成等差数列解析:由定义,知|AF|=x1+,|BF|=x2+,|CF|=x3+.∵|AF|,|BF|,|CF|成等差数列,∴2,即2x2=x1+x3.故选A.答案:A6.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( )A.y2=±4xB.y2=±8xC.y2=4xD.y2=8x解析:由已知可得抛物线y2=ax的焦点F的坐标为.过焦点且斜率为2的直线方程为y=2,令x=0得y=-,故点A的坐标为.由题意可得=4,∴a2=64,∴a=±8.答案:B7.已知过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,|AF|=2,则|BF|=.解析:设点A的坐标为(x,y).因为|AF|=2,所以x-(-1)=2,所以x=1.所以A(1,±2).又点F的坐标为(1,0),所以|BF|=|AF|=2.答案:28.在平面直角坐标系xOy中,有一定点A(2,1).若线段OA的垂直平分线过抛物线y2=2px(p>0)的焦点,则该抛物线的准线方程是.解析:OA的垂直平分线交x轴于点,此为抛物线的焦点,故准线方程为x=-.答案:x=-9.若点P到点(1,0)的距离比到直线x+2=0的距离小1,则点P的轨迹方程是.解析:(方法1)设点P的坐标为(x,y),由题意得+1=|x+2|,∴=|x+2|-1=x+1.两边平方得(x-1)2+y2=(x+1)2,∴x2-2x+1+y2=x2+2x+1,∴y2=4x,∴点P的轨迹方程为y2=4x.(方法2)由题意可知,点P到点(1,0)的距离比到直线x+2=0的距离小1,∴点P到点(1,0)与到x+1=0的距离相等.故点P的轨迹是以(1,0)为焦点,x+1=0为准线的抛物线,其方程为y2=4x.答案:y2=4x10.如图,AB为抛物线y=x2上的动弦,且|AB|=a(a为常数,且a≥1),求弦AB的中点M与x轴的最近距离. 解:设点A,M,B的纵坐标分别为y1,y2,y3.A,M,B三点在抛物线准线上的射影分别为A',M',B'(如图).由抛物线的定义,得|AF|=|AA'|=y1+=y1+,|BF|=|BB'|=y3+=y3+,∴y1=|AF|-,y3=|BF|-.又M是线段AB的中点,∴y2=(y1+y3)=.等号在AB过焦点F时成立,即当定长为a的弦AB过焦点F时,M点与x轴的距离最小,最小值为.11.求满足下列条件的抛物线的标准方程.(1)焦点在直线3x+4y-12=0上;(2)焦点是(-2,0);(3)准线是y=-;(4)焦点到准线的距离是2;(5)焦点到直线x=-5的距离是8.解:(1)直线与坐标轴的交点为(4,0)和(0,3),故抛物线有两种情况:焦点为(4,0)时,=4,∴p=8,∴方程为y2=16x;焦点为(0,3)时,=3,∴p=6,∴方程为x2=12y.故所求方程为y2=16x或x2=12y.(2)焦点为(-2,0),∴=2,∴p=4,∴方程为y2=-8x.(3)准线为y=-,∴,∴p=3,开口向上,∴方程为x2=6y.(4)由于p=2,开口方向不确定,故有四种情况.∴方程为y2=4x或y2=-4x或x2=4y或x2=-4y.(5)焦点在x轴上,设为(x0,0),∴|x0+5|=8,∴x0=3或x0=-13,∴焦点为(3,0)或(-13,0),∴=3或-13,∴p=6或-26.∴方程为y2=12x或y2=-52x.12.某河上有座抛物线形拱桥,当水面距拱顶5 m时,水面宽8 m,一木船宽4 m,高2 m,载货后此船露在水面上的部分高为m,问水面上涨到与拱顶相距多少时,木船开始不能通航?解:以拱桥的拱顶为坐标原点,建立如图所示的平面直角坐标系,设抛物线方程为x2=-2py(p>0),由题意知,点A(4,-5)在抛物线上(设AA'为水面宽,且AA'=8 m),所以16=-2p×(-5),2p=,所以抛物线方程为x2=-y(-4≤x≤4),设水面上涨到船面两侧与拱桥接触于B,B'(B'与B关于y轴对称)时,船开始不能通航,设B点坐标为(2,y),由22=-y,得y=-,此时水面与抛物线拱顶相距|y|+=2(m).故水面上涨到与拱顶相距2 m时,船开始不能通航.备选习题1.抛物线y2=8x的准线方程是( )A.x=-2B.x=-4C.y=-2D.y=-4解析:由2p=8,得p=4,故准线方程为x=-2,故选A.答案:A2.设抛物线y2=mx(m≠0)的准线与直线x=1的距离为3,则抛物线的方程是.解析:当m>0时,由2p=m,得.这时抛物线的准线方程是x=-.∵抛物线的准线与直线x=1的距离为3,∴1-=3,解得m=8.这时抛物线的方程是y2=8x.同理,当m<0时,抛物线的方程是y2=-16x.答案:y2=8x或y2=-16x3.已知点M(-2,4)及焦点为F的抛物线y=x2,在此抛物线上求一点P,使|PM|+|PF|的值最小.解:如图所示,设抛物线上的点P到准线的距离为|PQ|.由抛物线的定义,知|PF|=|PQ|,∴|PF|+|PM|=|PQ|+|PM|.∴当P,Q,M三点共线时,|PM|+|PF|的值最小.由M(-2,4),可设P(-2,y0),代入y=x2,得y0=,故P点的坐标为.4.过抛物线y2=2px(p>0)的焦点F任作一条直线,交抛物线于P1,P2两点,求证:以P1P2为直径的圆和该抛物线的准线相切.证明:设线段P1P2的中点为P0,过P1,P2,P0分别向准线l引垂线,垂足分别为Q1,Q2,Q0,如图所示.根据抛物线的定义,得|P1F|=|P1Q1|,|P2F|=|P2Q2|.∴|P1P2|=|P1F|+|P2F|=|P1Q1|+|P2Q2|.∵P1Q1∥P0Q0∥P2Q2,|P1P0|=|P0P2|,∴|P0Q0|=(|P1Q1|+|P2Q2|)=|P1P2|.由此可知,P0Q0是以P1P2为直径的圆的半径,且P0Q0⊥l,因此,该圆与准线相切.5.已知直线l:y=kx+1,抛物线C:y2=4x,求当k为何值时,l与C有:(1)一个公共点;(2)两个公共点;(3)没有公共点?解:将l和C的方程联立,得消去y,得k2x2+(2k-4)x+1=0.(*)。
数学人教B版选修2-1学案:课前导引2.4.1抛物线的标准方程含解析
2.4 抛物线2.4.1 抛物线的标准方程课前导引问题导入求下列各抛物线的方程:(1)顶点在坐标原点,对称轴为坐标轴,且经过点M (—2,-4);(2)顶点在坐标原点,焦点在y 轴上,抛物线上一点Q(m,-3)到焦点的距离等于5 。
思路分析:(1)设抛物线为y 2=mx 或x 2=ny ,则(—4)2=m (—2)⇒m=-8.或(—2)2=n (-4)⇒n=—1.∴所求的抛物线方程为y 2=—8x 或x 2=—y 。
(2)依题意,抛物线开口向下。
故设其方程为x 2=—2py 。
则准线方程为y=2p ,又设焦点为F, 则|QF|=2p -y Q ,即2p —(-3)=5⇒p=4。
故抛物线方程为x 2=—8y.知识预览1。
平面内与一个定点F 和一条定直线l 的距离_______________的点的轨迹叫做抛物线。
点F 叫做抛物线的___________________—,直线l 叫做抛物线的________________。
答案:相等 焦点 准线2.方程y 2=±2px,x 2=±2py(p>0)叫做抛物线的__________________方程。
答案:标准3。
抛物线y 2=2px(p >0)的焦点坐标是______________,它的准线方程是_________________,它的开口方向______________。
答案:(2p `,0) x=—2p 向右 4。
抛物线y 2=-2px (p >0)的焦点坐标是_______________,它的准线方程是________________,它的开口方向______________.答案:(-2p ,0) x=2p 向左 5.抛物线x 2=2py (p >0)的焦点坐标是________________,它的准线方程是_______________,它的开口方向____________________. 答案:(0,2p ) y=—2p 向上 6.抛物线x 2=—2py (p >0)的焦点坐标是______________,它的准线方程是___________________,它的开口方向____________________。
人教版选修2-1:抛物线的概念与性质--课后习题(精编含解析)
4.4.已知抛物线关于 轴对称,它的顶点在坐标原点 ,并且经过点
的距离为 ,则
(
)
A.
B.
【答案】B
【解析】
C.
D.
.若点 到该抛物线焦点
试题分析:由题意,抛物线关于 x 轴对称,开口向右,设方程为
(p>0)
∵点 M(2,y0)到该抛物线焦点的距离为 3,∴ ∵M(2,y0)∴ ∴ 考点:抛物线方程及性质
A.
B.
C.
D.
【答案】D
【解析】
据题意知,△PMF 为等边三角形,PF=PM,
∴PM⊥抛物线的准线,
为等
设 P( ,m),则 M( 1,m),
等边三角形边长为 1+ ,F(1,0)
所以由 PM=FM,得 1+ =
,解得 m=2 ,
∴等边三角形边长为 4,其面积为 4
故答案选 D.
11.11.抛物线
,所以焦点坐标为
准线方程为
因为过点
和
,且与准线相切,所以设圆心坐标为
所以圆的方程为
将
和
带入得
联立化简得
该方程判别式 所以必然有两个交点 所以选 C 【点睛】本题考查了直线方程、圆方程、抛物线方程的关系,最后得到的一元二次方程不容易得到具体的 解,但是通过判断 即可得到焦点个数,属于中档题。
14.14.已知点
,解得 p=5,此时 y2=10x, 所以②④能使抛物线方程为 y2=10x.故答案为:②④ 考点:本题主要考查抛物线的标准方程及几何性质。 点评:应用题,注意抛物线标准方程及其几何性质。
21.21.已知抛物线 的一个交点为 .若 【答案】 【解析】
的准线为 ,过
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线及其标准方程导学案【学习要求】1.掌握抛物线的定义及焦点、准线的概念.2.会求简单的抛物线的方程.【学法指导】通过观察抛物线的形成过程,得出抛物线定义,建系得出抛物线标准方程.通过抛物线及其标准方程的应用,体会抛物线在刻画现实世界和解决实际问题中的作用.【知识要点】1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F) 的点的轨迹叫做抛物线.点F叫做抛物线的,直线l叫做抛物线的2.抛物线标准方程的几种形式图形标准方程焦点坐标准线方程探究点一抛物线定义如图,我们在黑板上画一条直线EF,然后取一个三角板,将一条拉链AB固定在三角板的一条直角边上,并将拉链下边一半的一端固定在C点,将三角板的另一条直角边贴在直线EF上,在拉锁D处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线.问题1画出的曲线是什么形状?问题2|DA|是点D到直线EF的距离吗?为什么?问题3点D在移动过程中,满足什么条件?问题 4在抛物线定义中,条件“l不经过点F”去掉是否可以?例1方程[]22)1()3(2-++yx=|x-y+3|表示的曲线是()A.圆B.椭圆C.双曲线D.抛物线跟踪训练1(1)若动点P与定点F(1,1)和直线l:3x+y-4=0的距离相等,则动点P的轨迹是() A.椭圆B.双曲线C.抛物线D.直线(2)若动圆与圆(x-2)2+y2=1相外切,又与直线x+1=0相切,则动圆圆心的轨迹是()A.椭圆B.双曲线C.双曲线的一支D.抛物线探究点二抛物线的标准方程问题 1结合求曲线方程的步骤,怎样求抛物线的标准方程?问题2抛物线方程中p有何意义?标准方程有几种类型?问题3根据抛物线方程如何求焦点坐标、准线方程?例2已知抛物线的方程如下,求其焦点坐标和准线方程.(1)y2=-6x;(2)3x2+5y=0;(3)y=4x2;(4)y2=a2x (a≠0).跟踪训练2(1)抛物线方程为7x+4y2=0,则焦点坐标为()A.⎝⎛⎭⎫716,0B.⎝⎛⎭⎫-74,0C.⎝⎛⎭⎫-716,0D.⎝⎛⎭⎫0,-74(2)抛物线y=-14x2的准线方程是()A.x=116B.x=1 C.y=1 D.y=2例3分别求满足下列条件的抛物线的标准方程.(1)准线方程为2y+4=0;(2)过点(3,-4);(3)焦点在直线x+3y+15=0上.跟踪训练3(1)经过点P(4,-2)的抛物线的标准方程为()A.y2=x或x2=y B.y2=x或x2=8yC.x2=-8y或y2=x D.x2=y或y2=-8x(2)已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点M(m,-3)到焦点F的距离为5,求m的值、抛物线方程及其准线方程.探究点三 抛物线定义的应用例4 已知点A (3,2),点M 到F ⎝⎛⎭⎫12,0的距离比它到y 轴的距离大12. (1)求点M 的轨迹方程;(2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由. 跟踪训练4 (1)抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( ) A .1716B .1516C .78D .0(2)已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值是( ) A .172B .3C . 5D .92【当堂检测】1.已知抛物线的准线方程为x =-7,则抛物线的标准方程为 ( ) A .x 2=-28y B .y 2=28x C .y 2=-28x D .x 2=28y2.抛物线y 2=2px (p >0)上一点M 到焦点的距离是a (a >p2),则点M 的横坐标是 ( )A .a +p2B .a -p2C .a +pD .a -p3.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是 ( ) A .2B .3C .115D .37164.焦点在y 轴上,且过点A (1,-4)的抛物线的标准方程是__________【课堂小结】1.抛物线的定义中不要忽略条件:点F 不在直线l 上.2.确定抛物线的标准方程,从形式上看,只需求一个参数p ,但由于标准方程有四种类型,因此,还应确定开口方向,当开口方向不确定时,应进行分类讨论.有时也可设标准方程的统一形式,避免讨论,如焦点在x 轴上的抛物线标准方程可设为y 2=2mx (m ≠0),焦点在y 轴上的抛物线标准方程可设为x 2=2my (m ≠0).【拓展提高】1.若点P 到点(4,0)F 的距离比它到直线50x +=的距离小1,则P 点的轨迹方程是( ) A .216y x =- B .232y x =- C .216y x = D .232y x =2.过抛物线x y 42=的焦点作直线交抛物线于),(),,(2211y x B y x A 两点,如果621=+x x ,那么AB =( )A .10B .8C .6D .43.过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( )A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x4.抛物线x y 42=上的两点A 、B 到焦点的距离之和为10,则线段AB 中点到y 轴的距离为【课后作业】一、基础过关1.抛物线y 2=-8x 的焦点坐标是( )A .(2,0)B .(-2,0)C .(4,0)D .(-4,0)2.已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24-y 22=1上,则抛物线方程为 ( )A .y 2=8xB .y 2=4xC .y 2=2xD .y 2=±8x3.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A .12B .1C .2D .44.与y 轴相切并和圆x 2+y 2-10x =0外切的动圆的圆心的轨迹为( )A .圆B .抛物线和一条射线C .椭圆D .抛物线 5.以双曲线x 216-y 29=1的右顶点为焦点的抛物线的标准方程为__________.6.抛物线x 2+12y =0的准线方程是__________.7.求经过A (-2,-4)的抛物线的标准方程及其对应的准线、焦点坐标. 二、能力提升8.定长为3的线段AB 的两个端点在抛物线y 2=2x 上移动,M 为AB 的中点,则M 点到y 轴的最短距离为 ( )A .12B .1C .32D .29.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心,|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)10.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=________.11.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且与y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,求抛物线的方程.12.喷灌的喷头装在直立管柱OA的顶点A处,喷出水流的最高点B高5 m,且与OA所在的直线相距4 m,水流落在以O为圆心,半径为9 m的圆上,则管柱OA的长是多少?三、探究与拓展13.已知抛物线C的顶点在原点,焦点F在x轴的正半轴上,设A,B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的垂直平分线恒经过点Q(6,0),求抛物线的方程.抛物线的简单几何性质(一)导学案【学习要求】1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.2.会利用抛物线的性质解决一些简单的抛物线问题.【学法指导】结合椭圆和双曲线的几何性质,类比抛物线的性质,通过对抛物线的标准方程的讨论,进一步理解用代数方法研究几何性质的优越性,感受坐标法和数形结合的基本思想.【知识要点】1.抛物线的几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形性质范围对称轴x轴x轴y轴y轴顶点(0,0)离心率e=2直线过抛物线y2=2px(p>0)的焦点F,与抛物线交于A(x1,y1)、B(x2,y2)两点,由抛物线的定义知,|AF|=x1+p2,|BF|=x2+p2,故|AB|=3.直线与抛物线的位置关系直线y=kx+b与抛物线y2=2px(p>0)的交点个数决定于关于x的方程的解的个数.当k≠0时,若Δ>0,则直线与抛物线有个不同的公共点;当Δ=0时,直线与抛物线有个公共点;当Δ<0时,直线与抛物线公共点.当k=0时,直线与抛物线的轴,此时直线与抛物线有个公共点.【问题探究】探究点一抛物线的几何性质问题1类比椭圆、双曲线的几何性质,结合图象,说出抛物线y2=2px(p>0)的范围、对称性、顶点、离心率.怎样用方程验证?问题 2通过抛物线的几何性质,怎样探求抛物线的标准方程?例1若抛物线y2=x上一点P到准线的距离等于它到顶点的距离,则点P的坐标为()A.⎝⎛⎭⎫14,±24B.⎝⎛⎭⎫18,±24C.⎝⎛⎭⎫14,24D.⎝⎛⎭⎫18,24跟踪训练1抛物线y2=2px (p>0)上一点M的纵坐标为-42,这点到准线的距离为6,则抛物线方程为________探究点二抛物线的焦点弦问题例2已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A、B两点.(1)若直线l的倾斜角为60°,求|AB|的值;(2)若|AB|=9,求线段AB的中点M到准线的距离.跟踪训练2已知过抛物线y2=4x的焦点F的弦长为36,求弦所在的直线方程.探究点三直线与抛物线的位置关系问题结合直线与椭圆、直线与双曲线的位置关系,请你思考一下怎样讨论直线与抛物线的位置关系?例3已知抛物线的方程为y2=4x,直线l过定点P(-2,1),斜率为k,k为何值时,直线l与抛物线y2=4x:只有一个公共点;有两个公共点;没有公共点?跟踪训练3过点(-3,2)的直线与抛物线y2=4x只有一个公共点,求此直线方程.【当堂检测】1.设AB为过抛物线y2=2px (p>0)的焦点的弦,则|AB|的最小值为()A .p 2B .pC .2pD .无法确定2.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ) A .⎣⎡⎦⎤-12,12B .[-2,2]C .[-1,1]D .[-4,4]3.抛物线y =4x 2上一点到直线y =4x -5的距离最短,则该点坐标为 ( )A .(1,2)B .(0,0)C .⎝⎛⎭⎫12,1D .(1,4)4.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=_______【课堂小结】1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以根据待定系数法求抛物线的方程.2.直线与抛物线有一个交点,是直线与抛物线相切的必要不充分条件.3.直线与抛物线的相交弦问题共有两类,一类是过焦点的弦,一类是不过焦点的弦.解决弦的问题,大多涉及到抛物线的弦长、弦的中点、弦的斜率.常用的办法是将直线与抛物线联立,转化为关于x 或y 的一元二次方程,然后利用根与系数的关系,这样避免求交点.尤其是弦的中点问题,还应注意“点差法”的运用.【拓展提高】1.若双曲线2221613x y p -=的左焦点在抛物线22y px =的准线上,则p 的值为( )A .2B .3C .4D .422.设O 为坐标原点,F 为抛物线x y 42=的焦点,A 为抛物线上的一点,若4OA AF •=-,则点A 的坐标为( )A .)22,2(±B .)2,1(±C .)2,1(D .)22,2(3.已知直线l :y =-x +1和抛物线C :x y 42=,设直线与抛物线的交点为B A 、,求AB 的长。