2020届宁夏银川九中、石嘴山三中、平罗中学三校高三下学期联考数学(理)试题
宁夏银川九中、石嘴山三中、平罗中学三校2020届高考数学(理)联考试题(含答案)
2020年银川九中、石嘴山三中、平罗中学三校联考(理科)数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{1,1},A =-2{|20,}B x x x x Z =+-<∈,则U A B = A. {1}-B. {1,1}-C. {1,0,1}-D. {1,0,1,2}-2.若a 为实数,则复数()()1z a i ai =++在复平面内对应的点在 A .第一象限B .第二象限C .实轴上D .虚轴上3.已知a ,b 是两条不同的直线,α,β是两个不同的平面,且a β⊂,b αβ=I ,则“//a α”是“//a b ”的 A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知α为第二象限角,33cos sin =+αα,则α2cos 等于A .-错误!未找到引用源。
B .-错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
5.在Rt ABC ∆中,D 为BC 的中点,且AB 6AC 8==,,则BC AD ⋅的值为 A 、28- B 、28 C 、14- D 、146.如图所示,虚线部分是四个象限的角平分线,实线部分是函数)(x f y =的部分图象,则)(x f 可能是A .x x sinB .x x cosC .x x cos 2D .x x sin 27. 七巧板是中国古代劳动人民发明的一种传统智力玩具,它由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成.(清)陆以湉《冷庐杂识》卷中写道:近又有七巧图,其式五,其数七,其变化之式多至千余,体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为A .516 B .1132 C .716 D .13328.将函数)42sin(2)(π+=x x f 的图象向右平移ϕ(ϕ>0)个单位,再将图象上每一点横坐标缩短到原来的12倍,所得图象关于直线4π=x对称,则ϕ的最小正值为A .错误!未找到引用源。
2020届宁夏石嘴山市第三中学高三下学期第一次模拟考试数学(理)试题Word版含解析
2020届宁夏石嘴山市第三中学下学期第一次模拟考试高三数学(理)试题一、选择题1.已知集合{}21,0,1,2,3,4,{|16,}A B x x x N =-=<∈则A B ⋂等于A. {}1,0,1,2,3-B. {}0,1,2,3C. {}1,2,3D. {}0,1,2,3,4 【答案】B【解析】{}{}0,1,2,3,0,1,2,3B A B =⋂= ,故选B2.若复数z 满足()12i z i +=+,则复数z 的共轭复数z 在复平面内对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】A【解析】由题意得()()2i 1i 2i 3i 1i 222z +-+===-+ ,所以3i22z =+3.抛物线28y x =的焦点到双曲线2213y x -=的渐近线的距离是A. 1B. 122【答案】C【解析】28y x =的焦点为()2,0, 2213y x -=0y ±== ,选C.4.设向量()1,2a =r , ()2,1b =r 若向量a b λ-r r 与向量()5,2c =-r共线,则λ的值为A.43 B. 413 C. 49- D. 4 【答案】A【解析】因为()12,2a b λλλ-=--r r ,所以由题意得()()()412:2=5:23λλλ---⇒= ,选A.5.某几何体的三视图如图所示,则该几何体的体积为A. 2B. 4C. 6D. 12 【答案】A【解析】由已知中的三视图可得:该几何体是以俯视图为底面的四棱锥,其底面面积()112232S =+⨯=,高2h =,故体积123V sh ==,故选A. 6.已知等差数列{}n a 的前n 项和为n S ,且3634a a =+,若510S <,则2a 的取值范围是 A. ()2-∞, B. ()0-∞, C. ()1+∞, D. ()02, 【答案】A【解析】试题分析:设公差为d ,由3634a a =+得223344a d a d +=++,即224d a =-,则由510S <得()()()152425556810222a a a a a ++-==<,解得22a <.故选A.【考点】等差数列的性质.7.我们知道,可以用模拟的方法估计圆周率π的近似值,如图,在圆内随机撒一把豆子,统计落在其内接正方形中的豆子数目,若豆子总数为n ,落在正方形内的豆子数为m ,则圆周率π的估算值是A.n m B. 2n m C. 3n m D. 2m n【答案】B【解析】试题分析:设正方形的边长为2.242m n π=,即2nmπ=,故选B. 【考点】几何概型.【方法点睛】本题題主要考查“体积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与体积有关的几何概型问题关鍵是计算问题题的总体积(总空间) 以及事件的体积(事件空间);几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.8.从5名学生中选出4名分别参加A ,B ,C ,D 四科竞赛,其中甲不能参加C ,D 两科竞赛,则不同的参赛方案种数为A. 24B. 48C. 72D. 120 【答案】C【解析】试题分析:∵从5名学生中选出4名分别参加A ,B ,C ,D 四科竞赛,其中甲不能参加A ,B 两科竞赛,∴可分为以下几步:(1)先从5人中选出4人,分为两种情况:有甲参加和无甲参加. 有甲参加时,选法有: 34C =4种; 无甲参加时,选法有: 44C =1种. (2)安排科目有甲参加时,先排甲,再排其它人.排法有: 1323A A =12种. 无甲参加时,排法有44A =24种. 综上,4×12+1×24=72. ∴不同的参赛方案种数为72 【考点】排列组合题 9.若πtan 34α⎛⎫+=- ⎪⎝⎭,则2cos 2sin2αα+= A.95 B. 1 C. 35- D. 75- 【答案】A 【解析】π1tan tan 341tan ααα+⎛⎫+==- ⎪-⎝⎭,解得tan 2α=, 22222cos 4sin cos 14tan 9cos 2sin2sin cos tan 15ααααααααα+++===++,选A.10.执行如图所示的程序框图,若输出的,则输入的为A. 0B. 1C. 2D. 3 【答案】C【解析】第一次循环, 5,1n k =+ ;第二次循环, 16,2n k =+ ;第三次循环, 8,3n k =+ ;第四次循环, 4,4n k =+ ;第五次循环, 2,5n k =+ ;第六次循环, 1,6n k =+ ;结束循环输出68,2k k +== ,选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 11.将函数()π2sin (0)4f x x ωω⎛⎫=+> ⎪⎝⎭的图象向右平移π4ω个单位,得到函数()y g x =的图象,若()y g x =在ππ,63⎡⎤-⎢⎥⎣⎦上为增函数,则ω的最大值为A. 3B. 32C. 2D. 54【答案】B【解析】由题意得()()ππ2sin 2sin 44g x x x ωωω⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭ ,所以][ππππ,,6322ωω⎡⎤-⊂-⎢⎥⎣⎦ ,因此302ω<≤,即ω的最大值为32,选B. 点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数()()sin y A x x R ωϕ=+∈是奇函数()πk k Z ϕ⇔=∈;函数()()sin y A x x R ωϕ=+∈是偶函数()ππ+2k k Z ϕ⇔=∈;函数()()cos y A x x Rωϕ=+∈是奇函数()ππ+2k k Z ϕ⇔=∈;函数()()cos y A x x R ωϕ=+∈是偶函数()πk k Z ϕ⇔=∈.12.已知函数()y f x =与()y F x =的图象关于y 轴对称,当函数()y f x =和()y F x =在区间[],a b 同时递增或同时递减时,把区间[],a b 叫做函数()y f x =的“不动区间”,若区间[]1,2为函数2x y t =-的“不动区间”,则实数t 的取值范围是A. (]0.2 B. 1,2⎡⎫+∞⎪⎢⎣⎭ C. 1,22⎡⎤⎢⎥⎣⎦ D. ][1,24,2⎡⎫⋃+∞⎪⎢⎣⎭【答案】C【解析】试题分析:易知2xy t =-与12xy t ⎛⎫=- ⎪⎝⎭在[]1,2上单调性相同,当两个函数单调递增时,2xy t =-与12xy t ⎛⎫=- ⎪⎝⎭的图象如图1所示,易知22log 1{log 1t t ≤-≤,解得122t ≤≤;当两个函数单调递减时, 2xy t =-的图象如图2所示,此时2xy t =-关于y 轴对称的函数12xy t ⎛⎫=- ⎪⎝⎭不可能在[]1,2上为减函数.综上所述,122t ≤≤,故选C .【考点】1、新定义;2、函数的图象.二、填空题13.若变量,x y 满足约束条件2{1x y x y +≤≥≥,则2z x y =+的最大值为__________.【答案】4【解析】可行域为一个三角形ABC 及其内部,其中()()()1,1,2,0,1,0A B C ,当直线2z x y =+过点52时, 52最大, 52. 点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.14.二项式612x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为__________.【答案】52【解析】因为6621661122r r r rr r r T C x C x x --+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ ,所以由620,3r r -== 得常数项为33615.22C ⎛⎫= ⎪⎝⎭ 15.给出如下命题:① 已知随机变量()22,X N σ~,若()0.32P X a <=,则(4)0.68P X a >-= ②若动点P 到两定点()()124,0,4,0F F -的距离之和为8,则动点P 的轨迹为线段; ③设x R ∈,则“230x x ->”是“4x >”的必要不充分条件;④若实数1,,9m 成等比数列,则圆锥曲线221x y m+=;其中所有正确命题的序号是_________.【答案】②③【解析】①(4)?()0.32P X a P X a >-=<= ②1212PF PF F F +=Q ,所以动点P 的轨迹为线段③中由4x >可得230x x ->成立,所以“230x x ->”是“4x >”的必要不充分条件④实数1,,9m 成等比数列3m ∴=±,所以圆锥曲线221x y m+=可能为椭圆或双曲线,当3m =时,离心率3=,当3m =-2=, 综上正确命题的序号是②③16.《九章算术》中“两鼠穿墙题”是我国数学的古典名题:“今有恒厚若千尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,则m 的值为,问何日相逢,各穿几何?”题意是:有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进―尺,以后毎天加倍;小老鼠第一天也进―尺,以后每天减半,如果墙足够厚, n S 为前n 天两只老鼠打洞之和,则n S = 尺.【答案】11212n n n S -=-+ 【解析】试题分析:由题意知:大老鼠每天打洞的距离是以为首项,以为公比的等比数列,前天打洞之和为,同理,小老鼠每天打洞的距离为,所以,因此,本题正确答案是11212n n --+. 【考点】等比数列求和.【思路点晴】解答函数应用题的一般步骤为: 审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型; 建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型; 求模:求解数学模型,得出数学结论;④还原:将数学问题还原为实际问题的意义,求最值常用基本不等式或导数.三、解答题17.在ABC ∆中,角,,A B C 的对角分别为,,a b c 且cos cos 3cos b cC B B a a+=. (1)求sin B ;(2)若D 为AC 边的中点,且1BD =,求ABD ∆面积的最大值. 【答案】(1)23;(2)24. 【解析】试题分析:(1)利用正弦定理化简cos 3cos b c C B a a ⎛⎫=- ⎪⎝⎭得到2122cos ,sin 1cos 33B B B ==-=;(2)利用三角形的面积公式及(1)的结论可知,只需求得BA BC的最大值.对22BA BC BD +==u u u r u u u r u u u r 两边平方后得到22243BA BC BA BC +=-u u u r u u u r u uu r u u u r ,利用基本不等求得32BA BC ≤u u u r u u u r ,代入三角形面积公式,求得最大值为24. 试题解析: (1)cos 3cos ,cos cos 3cos b c b c C B C B B a a a a ⎛⎫=-∴+= ⎪⎝⎭Q,由正弦定理得()sin sin cos sin cos 3cos sin sin B C B C C B B A A++==,即2122cos ,sin 1cos 33B B B ==-=.(2)由1BD =,得2222,2?4BA BC BD BA BC BA BC +==∴++=u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,即222222cos 4,43BA BC BA BC B BA BC BA BC++=∴+=-u u u r u u u r u u u r u u u r u u u r u u u r u uu r u u u r ,2222,423BA BC BA BC BA BC BA BC +≥∴-≥u u u r u u u r u u u r u u u r u uu r u u u r Q u u u r u u u r (当且仅当BA BC =u u u r u u u r 时,等号成立),得 3,2BA BC ABD ≤∴∆u u u r u u u r面积11132sin 2242S BA BC B =⨯≤⨯=. 【考点】正弦定理,余弦定理,向量运算,基本不等式.根据表中信息解答以下问题:(1)从该单位任选两名职工,求这两人休年假次数之和为4的概率;(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ. 【答案】(1)68245(2)5149【解析】试题分析:(1)先确定从该单位任选两名职工选法种数250C ,再确定所选两人休年假次数之和为4的种数211201015C C C +,最后根据古典概型概率公式求概率,(2)先确定随机变量可能取法,再分别求对应概率,列表可得分布列,最后根据数学期望公式求期望.试题解析:(1)211201015125068245C C C P C +== (2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,则ξ的可能取值分别是0,1,2,3,于是()22225102015250207C C C C P C ξ+++===, ()1112115101020152025022149C C C C C C P C ξ++===, ()2111520101525010249C C C C P C ξ+===, ()115152503349C C P C ξ===. 从而ξ的分布列:ξ123P2722491049349ξ的数学期望: 222103510123749494949E ξ=⨯+⨯+⨯+⨯=. 点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义; 第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(),X B n p ~),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np =)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.19.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60BAD ∠=︒,Q 为AD 的中点.(1)若PA PD =,求证:PQB PAD ⊥平面平面;(2)若PAD ABCD ⊥平面平面,且2PA PD AD ===,点M 在线段PC 上,试确定点M 的位置,使二面角M BQ C --大小为60︒,并求出PMPC的值.【答案】(1)证明见解析;(2)13PM PC =. 【解析】试题分析:(1)由PA PD =,Q 为AD 的中点,得PQ AD ⊥,又由底面ABCD 为菱形,根据菱形的性质,证得BQ D ⊥,进而证得AD PQB ⊥平面,即可证明PQB PAD ⊥平面平面;(2)以Q 为坐标原点,分别以QA 、QB 、QP 为x 轴、y 轴、z 轴建立空间直角坐标系,得平面CBQ 和平面MQB 的一个法向量,根据二面角M BQ C --大小为60︒,利用向量的运算,即可求解求出PMPC的值. 试题解析:⑴∵PA PD =,Q 为AD 的中点,∴PQ AD ⊥,又∵底面ABCD 为菱形,60BAD ∠=︒,∴BQ D ⊥,又PQ BQ Q =I ,∴AD PQB ⊥平面,又∵AD PAD ⊂平面,∴PQB PAD ⊥平面; ⑵∵PAD ABCD ⊥平面平面,PAD ABCD AD =I 平面平面,PQ AD ⊥,∴PQ ABCD ⊥平面,∴以Q 为坐标原点,分别以QA 、QB 、QP 为x 轴、y 轴、z 轴建立空间直角坐标系如图.则()000Q ,,,(003P ,,,()030B ,,()230C -,,设()01PM PC λλ=<<u u u u r u u u r,所以)()2331M λλλ--,,,平面CBQ 的一个法向量是()1001n =,,, 设平面MQB 的一个法向量为()2n x y z =,,,所以2200QM n QB n ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r ,∴23310,30x y z λλλ⎧-+-=⎪=∴031y z x λ=⎧⎪⎨-=⎪⎩.取233032n λλ-⎛= ⎝,,,由二面角M BQ C --大小为60︒,可得:121212n n n n ⋅=⋅,解得13λ=,此时13PM PC =. 【考点】平面与平面垂直的判定与证明;空间向量的应用.20.已知椭圆22221(0)x y a b a b +=>>的离心率2e =,以上顶点和右焦点为直径端点的圆与直线20x y +-=相切.(1)求椭圆的标准方程;(2)对于直线:l y x m =+和点()0,3Q ,椭圆C 上是否存在不同的两点A 与B 关于直线l 对称,且332QA QB ⋅=u u u r u u u r,若存在实数m 的值,若不存在,说明理由.【答案】(Ⅰ) 2212x y +=;(Ⅱ)存在, 13. 【解析】试题分析:(Ⅰ)由22e =得b c =,圆的方程为22222222b b a b x y ⎛⎫⎛⎫⎛⎫-+-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由圆心到直线的距离等于半径可得1b c ==,故可得椭圆方程;(Ⅱ) 设()11,A x y , ()22,B x y ,直线AB 方程为:y x n =-+,联立方程组结合韦达定理, 1243n x x +=, 212223n x x -=,n <<P 在直线AB 上,点P 在直线l上得3n m ⎛=-∈ ⎝⎭,由332QA QB ⋅=得m 的值为13. 试题解析:(Ⅰ)由椭圆的离心率2e =得2222212c c a b c ==+,得b c =………………1分 上顶点为()0,b ,右焦点为(),0b , 以上顶点和右焦点为直径端点的圆的方程为22222222b b a b x y ⎛⎫⎛⎫⎛⎫-+-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2=, 2b b -=, 1b c ==,a =3分 椭圆的标准方程为2212x y +=………………4分 (Ⅱ)由题意设()11,A x y , ()22,B x y ,直线AB 方程为: y x n =-+. 联立22{12y x nx y =-++=消y 整理可得: 2234220x nx n -+-=,………………5分 由()()222412222480n n n ∆=---=->,解得n <<6分1243n x x +=, 212223n x x -=, 设直线AB 之中点为()00,P x y ,则120223x x n x +==,………………7分 由点P 在直线AB 上得: 0233n n y n =-+=, 又点P 在直线l 上,233n n m =+,所以,333n m ⎛⎫=-∈- ⎪ ⎪⎝⎭……①………………9分 又()11,3QA x y =-u u u r , ()22,3QB x y =-u u u r , ()()11223232,3,333QA QB x y x y ∴⋅-=-⋅--u u u r u u u r ()()()()221212323323963331102x x y y n n m m m m =+---=--=+-=-+= 解得: 13m =或1m =-……②………………11分综合①②,m 的值为13.………………12分 【考点】椭圆的标准方程;直线与圆锥曲线的综合.21.已知函数()()1ln 2.f x x x ax =+-+(1)当1a =时,求函数()f x 在1x =处的切线方程;(2)若函数()f x 在定义域上具有单调性,求实数a 的取值范围;(3)求证: ()*11111ln 1,.357212n n N n ++++<+∈+L 【答案】(1)y x = (2)a ≤2.(3)详见解析【解析】试题分析:(1)由导数几何意义得切线斜率等于该点处导数值,再利用点斜式求切线方程,(2)先按单调递增与单调递减分类讨论,再将函数单调性转化为函数导数值恒非负或非正,利用变量分离转化为求对应函数最值,进而确定实数a 的取值范围;(3)利用导数证明数列求和不等式,一般方法为先构造目标函数(利用前面小题的结论),再代入数列,利用裂项相消法放缩求和,进而得证不等式.试题解析:(1)当a=1时,f (x )=(x+1)lnx ﹣x+2,(x >0),f ′(x )=lnx+1x,f ′(1)=1,f (1)=1, 所以求在x=1处的切线方程为:y=x(2)f ′(x )=lnx+1x+1﹣a ,(x >0). (i )函数f (x )在定义域上单调递减时,即a ≥lnx+1x x +时,令g (x )=lnx+1x x+, 当x >e a 时,g ′(x )>0,不成立;(ii )函数f (x )在定义域上单调递增时,a ≤lnx+1x x+; 令g (x )=lnx+1x x+, 则g ′(x )=21x x-,x >0; 则函数g (x )在(0,1)上单调递减,在(1,+∞)上单调递增;所以g (x )≥2,故a ≤2.(3)由(ii )得当a=2时f (x )在(1,+∞)上单调递增,由f (x )>f (1),x >1得(x+1)lnx ﹣2x+2>0,即lnx >()211x x -+在(1,+∞)上总成立,令x=1n n +得ln 1n n +>12111n n n n +⎛⎫- ⎪⎝⎭++, 化简得:ln (n+1)﹣lnn >221n +, 所以ln2﹣ln1>221+, ln3﹣ln2>251+,…, ln (n+1)﹣lnn >221n +, 累加得ln (n+1)﹣ln1>222235721n +++++L , 即()*11111ln 1,.357212n n N n ++++<+∈+L 命题得证. 22.选修4-4:坐标系与参数方程在极坐标系中,已知三点()0,0,2,,22,24O A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭。
2020届宁夏石嘴山三中高考理科数学三模试题
2020届宁夏石嘴山三中高考理科数学三模试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,2}B.{1,4}C.{1,2,3,4}D.{2,3}2.(5分)=()A.i B.﹣i C.1D.﹣13.(5分)已知,且,则tanθ=()A.2B.C.3D.4.(5分)在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P 为CD的中点,则的值为()A.﹣5B.﹣4C.4D.55.(5分)《算数书》竹筒与上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长L与高h,计算器体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3,那么近似公式相当于圆锥体积公式中的圆周率近似取为()A.B.C.D.6.(5分)已知等差数列{a n}的公差为3,前n项和为S n,且a1,a2,a6成等比数列,则S6=()A.51B.54C.68D.967.(5分)下列说法正确的是()A.命题“∃x0≤0,2x0≤sin x0”的否定形式是“∀x>0,2x>sin x”B.若平面α,β,γ满足α⊥γ,β⊥γ,则α∥βC.随机变量ξ服从正态分布N(1,σ2)(σ>0),若P(0<ξ<1)=0.4,则P(ξ>0)=0.8D.设x是实数,“x<0”是“”的充分不必要条件8.(5分)甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是()A.甲B.乙C.丙D.丁9.(5分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,给出下列四个结论:①f(x)的最小正周期为;②f(x)的最小值为﹣4;③(π,0)是f(x)的一个对称中心;④函数f(x)在区间(﹣π,﹣π)上单调递增.其中正确结论的个数是()A.4B.3C.2D.110.(5分)函数f(x)=的图象大致是()A.B.C.D.11.(5分)已知P为双曲线C:左支上一点,F1,F2分别为C的左、右焦点,M为虚轴的一个端点,若|MP|+|PF2|的最小值为|F1F2|,则C的离心率为()A.B.C.D.12.(5分)已知函数满足对于任意,存在,使得成立,则实数a的取值范围为()A.B.C.D.二、填空题:本大题共4小题,每小题5分.13.(5分)已知(2x﹣1)7=a0+a1x+a2x2+…+a7x7,则a2=.14.(5分)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为.15.(5分)已知椭圆C:的左、右焦点分别为F1,F2,如图AB是过F1且垂直于长轴的弦,则△ABF2的内切圆半径是.16.(5分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知a cos B=b cos A,,边BC上的中线长为4.则c=;=.三、解答题:(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(12分)已知等比数列{a n}(其中n∈N*),前n项和记为S n,满足:,log2a n+1=﹣1+log2a n.(1)求数列{a n}的通项公式;(2)求数列{a n•log2a n}(n∈N*)的前n项和T n.18.(12分)如图,在四棱锥P﹣ABCD中,P A⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求BE的长;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.19.(12分)十八大以来,党中央提出要在2020年实现全面脱贫,为了实现这一目标,国家对“新农合”(新型农村合作医疗)推出了新政,各级财政提高了对“新农合”的补助标准.提高了各项报销的比例,其中门诊报销比例如下:表1:新农合门诊报销比例医院类别村卫生室镇卫生院二甲医院三甲医院门诊报销比例60%40%30%20%根据以往的数据统计,李村一个结算年度门诊就诊人次情况如下:表2:李村一个结算年度门诊就诊情况统计表医院类别村卫生室镇卫生院二甲医院三甲医院一个结算年度内70%10%15%5%各门诊就诊人次占李村总就诊人次的比例如果一个结算年度每人次到村卫生室、镇卫生院、二甲医院、三甲医院门诊平均费用分别为50元、100元、200元、500元.若李村一个结算年度内去门诊就诊人次为2000人次.(Ⅰ)李村在这个结算年度内去三甲医院门诊就诊的人次中,60岁以上的人次占了80%,从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的概率是多少?(Ⅱ)如果将李村这个结算年度内门诊就诊人次占全村总就诊人次的比例视为概率,求李村这个结算年度每人次用于门诊实付费用(报销后个人应承担部分)X的分布列与期望.20.(12分)在直角坐标系xOy中,已知点P(1,0),若以线段PQ为直径的圆与y轴相切.(Ⅰ)求点Q的轨迹C的方程;(Ⅱ)若C上存在两动点A,B(A,B在x 轴异侧)满足•=32,且△P AB的周长为2|AB|+2,求|AB|的值.21.(12分)已知函数是f(x)的导数.(1)当a=1时,令h(x)=f'(x)﹣x+lnx,h'(x)为h(x)的导数,证明:h'(x)在区间存在唯一的极小值点;(2)已知函数在上单调递减,求a的取值范围.请考生在22,23,题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.(本小题满分10分)[选修4-4:坐标系与参数方程]22.(10分)已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(t是参数).(Ⅰ)若直线l与曲线C相交于A、B两点,且|AB|=,试求实数m值.(Ⅱ)设M(x,y)为曲线C上任意一点,求x+y的取值范围.[选修4-5;不等式选讲].(本题满分0分)23.已知函数f(x)=|2x﹣1|+|2x+1|,记不等式f(x)<4的解集为M.(1)求M;(2)设a,b∈M,证明:|ab|﹣|a|﹣|b|+1>0.。
2020届宁夏石嘴山市第三中学高三第三次模拟考试理科数学试卷
绝密★启用前石嘴山三中2020届高三年级第三次模拟考试数学(理科)试卷注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4}A =,{}2,B x x n n A ==∈,则A B =()A .{1,2}B .{1,4}C .{1,2,3,4}D .{2,3}2.91i 1i +=-()A .iB .i -C .1D .1-3.已知,42ππθ⎛⎫∈ ⎪⎝⎭,且sin 410πθ⎛⎫+= ⎪⎝⎭,则tan θ=() A .2B .43 C .3 D .1254.在直角梯形ABCD 中,已知BC ∥AD ,AB AD ⊥,4AB =,2BC =,4=AD ,若P 为CD 的中点,则PA PB ⋅的值为() A .5-B .4-C .4D .55.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积2136V L h ≈的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为 3.那么近似公式23112V L h ≈相当于将圆锥体积公式中的圆周率近似取为() A .227B .15750C .289D .3371156.已知等差数列{}n a 的公差为3,前n 项和为n S ,且1a ,2a ,6a 成等比数列,则6S =() A .51B .54C .68D .967、下列说法正确的是()A .命题“00x ∃≤,002sin x x ≤”的否定形式是“0x ∀>,2sin x x >”B .若平面α,β,γ,满足αγ⊥,βγ⊥则//αβC .随机变量ξ服从正态分布()21,N σ(0σ>),若(01)0.4P ξ<<=,则(0)0.8P ξ>=D .设x 是实数,“0x <”是“11x<”的充分不必要条件 8、甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是() A .甲B .乙C .丙D .丁9、已知函数()()()sin 0,0,0f x A x A ωω=+ϕ>><ϕ<π的部分图像如图所示,给出下列四个结论:①()f x 的最小正周期为2π; ②()f x 的最小值为4-;③(),0π是()f x 的一个对称中心;④函数()f x 在区间25,312⎛⎫-π-π ⎪⎝⎭上单调递增.其中正确结论的个数是() A .4B .3C .2D .110、函数cos 1ln(),1,(),1x x x f x x ex π⎧->⎪=⎨⎪≤⎩的图象大致是() A .B .C .D .11、已知P 为双曲线C :22221x y a b-=(0a >,0b >)左支上一点,1F ,2F 分别为C 的左、右焦点,M 为虚轴的一个端点,若2||MP PF +的最小值为12F F ,则C 的离心率为() A .26+ B .26+ C .46+ D .46+12、已知函数()ln(f x x =满足对于任意11[,2]2x ∈,存在21[,2]2x ∈,使得22112ln (2)()x f x x a f x ++≤成立,则实数a 的取值范围为() A .ln 2[8,)2-+∞ B .ln 25[8,2ln 2]24--- C .ln 2(,8]2-∞- D .5(,2ln 2]4-∞--二、填空题:本大题共4小题,每小题5分.()_______,121327722107=++++=-a x a x a x a a x 则、已知14、已知f(x)是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为________.15、已知椭圆C :22162x y +=的左、右焦点分别为1F ,2F ,如图AB 是过1F 且垂直于长轴的弦,则2ABF ∆的内切圆半径是________.16、在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知acosB =bcosA ,6A π∠=,边BC上的中线长为4.则边c =_____;AB BC ⋅=_____.三、解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知等比数列{a n }(其中n ∈N *),前n 项和记为S n , 满足:3716S =,且n n a a 212log 1log +-=+(1)求数列{a n }的通项公式;(){}n n n T n N n a a 项和的前,求数列∈⋅log 218、(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点(1)证明:BE DC ⊥;(2)若F 为棱PC 上一点,满足BF AC ⊥,求锐二面角F AB P --的余弦值.19.(本小题满分12分)十八大以来,党中央提出要在2020年实现全面脱贫,为了实现这一目标,国家对“新农合”(新型农村合作医疗)推出了新政,各级财政提高了对“新农合”的补助标准.提高了各项报销的比例,其中门诊报销比例如下: 表1:新农合门诊报销比例根据以往的数据统计,李村一个结算年度门诊就诊人次情况如下: 表2:李村一个结算年度门诊就诊情况统计表如果一个结算年度每人次到村卫生室、镇卫生院、二甲医院、三甲医院门诊平均费用分别为50元、100元、200元、500元.若李村一个结算年度内去门诊就诊人次为2000人次.(Ⅰ)李村在这个结算年度内去三甲医院门诊就诊的人次中,60岁以上的人次占了80%,从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的概率是多少?(Ⅱ)如果将李村这个结算年度内门诊就诊人次占全村总就诊人次的比例视为概率,求李村这个结算年度每人次用于门诊实付费用(报销后个人应承担部分)X 的分布列与期望.20.(本小题满分12分)在直角坐标系xOy 中,已知点()1,0P 、Q(x,y),若以线段PQ 为直径的圆与y 轴相切.(1)求点Q 的轨迹C 的方程;(2)若C 上存在两动点A B ,(A ,B 在x 轴异侧)满足32⋅=OA OB ,且PAB △的周长为22AB +,求AB 的值.21、(本小题满分12分)已知函数2()cos 2a f x x x =+(a ∈R ),()f x '是()f x 的导数. (1)当1a =时,令()()ln h x f x x x '=-+,()h x '为()h x 的导数.证明:()h x '在区间0,2π⎛⎫⎪⎝⎭存在唯一的极小值点;(2)已知函数42(2)3y f x x =-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围 请考生在22,23,题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22、(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是4cos ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是:2{x m y =+=(t是参数).(Ⅰ)若直线l 与曲线C 相交于A 、B 两点,且AB =试求实数m 值. (Ⅱ)设M(x,y)为曲线C 上任意一点,求x y +的取值范围. 23.(本题满分10分)选修4—5;不等式选讲.已知函数()2121f x x x =-++,记不等式()4f x <的解集为M . (1)求M ;(2)设,a b M ∈,证明:10ab a b --+>.石嘴山三中三模 数学(理科)试卷答案一、选择题:二.填空题 13.-8414.715.3216.7218,-796三、解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.已知等比数列{a n }(其中n ∈N *),前n 项和记为S n ,满足:3716S =,log 2a n+1=﹣1+log 2a n . (1)求数列{a n }的通项公式;(2)求数列{a n •log 2a n }(n ∈N *)的前n 项和T n . 解(1)由题意,设等比数列{a n }的公比为q , ∵log 2a n+1=﹣1+log 2a n , ∴121221n n n n a log a log a log a ++-==-,∴112n n a q a +==.由3716S =,得311[1)7211612a ⎛⎤- ⎥⎝⎦=-,解得114a =. ∴数列{a n }的通项公式为112n n a +=. (2)由题意,设b n =a n •log 2a n ,则112n n n b ++=-. ∴T n =b 1+b 2+…+b n 231231222n n ++⎛⎫=-+++⎪⎝⎭故231231222n n n T ++-=+++,312212222n n n T n n +++-=+++ 两式相减,可得31221111332222242n n n n T n n +++++-=+++-=-.∴13322n n n T ++=-.18、如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点 (1)证明:BE DC ⊥;(2)若F 为棱PC 上一点,满足BF AC ⊥,求锐二面角F AB P --的余弦值.证明:(1)∵在四棱锥P −ABCD 中,PA ⊥底面ABCD ,AD ⊥AB , AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系, B (1,0,0),P (0,0,2),C (2,2,0),E (1,1,1),D (0,2,0),(0,1,1)BE =,(2,0,0)DC =,0BE DC ∴⋅=,∴BE DC ⊥;(2)∵F 为棱PC 上一点,满足BF AC ⊥,∴设(,,)F a b c ,,[0,1]PF PC λλ=∈,则(,,2)(2,2,2),(2,2,22)a b c F λλλλλλ-=-∴-, (21,2,22),(2,2,0)BF AC λλλ∴=--=, ∵BF AC ⊥,2(21)220BF AC λλ∴⋅=-+⋅=,解得1113,,,4222F λ⎛⎫=∴ ⎪⎝⎭, 113(1,0,0),,,222AB AF ⎛⎫== ⎪⎝⎭,设平面ABF 的法向量(,,)n x y z =,则0113222n AB x n AF x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,取1z =,得(0,3,1)n =-,平面ABP 的一个法向量(0,1,0)m =,设二面角F AB P --的平面角为θ, 则||cos 10||||10m n m n θ⋅===⋅,∴二面角F AB P --19.十八大以来,党中央提出要在2020年实现全面脱贫,为了实现这一目标,国家对“新农合”(新型农村合作医疗)推出了新政,各级财政提高了对“新农合”的补助标准.提高了各项报销的比例,其中门诊报销比例如下:表1:新农合门诊报销比例根据以往的数据统计,李村一个结算年度门诊就诊人次情况如下: 表2:李村一个结算年度门诊就诊情况统计表如果一个结算年度每人次到村卫生室、镇卫生院、二甲医院、三甲医院门诊平均费用分别为50元、100元、200元、500元.若李村一个结算年度内去门诊就诊人次为2000人次.(Ⅰ)李村在这个结算年度内去三甲医院门诊就诊的人次中,60岁以上的人次占了80%,从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的概率是多少?(Ⅱ)如果将李村这个结算年度内门诊就诊人次占全村总就诊人次的比例视为概率,求李村这个结算年度每人次用于门诊实付费用(报销后个人应承担部分)X 的分布列与期望.解:(Ⅰ)由表2可得李村一个结算年度内去门诊就诊人次为2000人次,分别去村卫生室、镇卫生院、二甲医院、三甲医院人数为200070%1400⨯=,200010%200⨯=,200015%300⨯=,20005%100⨯=, 而三甲医院门诊就诊的人次中,60岁以上的人次占了80%,所以去三甲医院门诊就诊的人次中,60岁以上的人数为:10080%80⨯=人,设从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的事件记为A ,则()2802100316495C P A C ==;(Ⅱ)由题意可得随机变量X 的可能取值为:50500.620-⨯=,1001000.460-⨯=,2002000.3140-⨯=,5005000.2400-⨯=,(20)0.7p X ==,(60)0.1P X ==,(140)0.15P X ==,(400)0.05P X ==,所以X 的发分布列为:所以可得期望200.7600.11400.154000.0561EX =⨯+⨯+⨯+⨯=.20.在直角坐标系xOy 中,已知点()1,0P ,若以线段PQ 为直径的圆与y 轴相切. (1)求点Q 的轨迹C 的方程;(2)若C 上存在两动点A B ,(A,B 在x 轴异侧)满足32⋅=OA OB ,且PAB △的周长为22AB +,求AB 的值.答案:(1)24y x =;(2)48AB =(1)设(),Q x y 122+=⨯x ,化简后可得轨迹C 的方程. (2)设直线:AB x my n =+,联立直线方程和抛物线方程后利用韦达定理化简32⋅=OA OB 并求得8n =,结合焦半径公式及弦长公式可求m 的值及AB 的长. 解:(1)设(),Q x y ,则圆心的坐标为1,22x y +⎛⎫⎪⎝⎭,因为以线段PQ 为直径的圆与y 轴相切,122+=⨯x , 化简得C 的方程为24y x =.(2)由题意0AB k ≠,设直线:AB x my n =+,联立24y x =得2440y my n --=, 设()()1122,,A B x y x y ,(其中120y y <) 所以124y y m +=,124y y n ⋅=-,且0n >,因为32⋅=OA OB ,所以22121212123216⋅=+=+=y y OA OB x x y y y y ,2432n n -=,所以()()840n n -+=,故8n =或4n =-(舍), 直线:8AB x my =+, 因为PAB ∆的周长为22AB + 所以22PA PB AB AB ++=+. 即2PA PB AB +=+,因为()21212218418PA PB x x m y y m +=++=++=+.又12AB y y =-==所以24182m +=,解得m =±所以48AB ===.点评:本题考查曲线方程以及抛物线中的弦长计算,还涉及到向量的数量积.一般地,抛物线中的弦长问题,一般可通过联立方程组并消元得到关于x 或y 的一元二次方程,再把已知等式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x +或1212,y y y y +,最后利用韦达定理把关系式转化为某一个变量的方程.本题属于中档题. 21、已知函数2()cos 2a f x x x =+(a ∈R ),()f x '是()f x 的导数. (1)当1a =时,令()()ln h x f x x x '=-+,()h x '为()h x 的导数.证明:()h x '在区间0,2π⎛⎫⎪⎝⎭存在唯一的极小值点;(2)已知函数42(2)3y f x x =-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围解(1)由已知,'()sin f x x x =-,所以()ln sin h x x x =-, 设'1()()cos g x h x x x ==-,'21()sin g x x x-=+, 当0,2x π⎛⎫∈ ⎪⎝⎭时,'()g x 单调递增,而(1)0g '<,'02g π⎛⎫>⎪⎝⎭,且'()g x 在0,2π⎛⎫ ⎪⎝⎭上图象连续 不断.所以'()g x 在0,2π⎛⎫⎪⎝⎭上有唯一零点α,当(0,)x α∈时,'()0g x <;当,2x α⎛π⎫∈ ⎪⎝⎭时,'()0g x >; ∴()g x 在(0,)α单调递减,在,2απ⎛⎫ ⎪⎝⎭单调递增,故()g x 在区间0,2π⎛⎫⎪⎝⎭上存在唯一的极小值点,即()h x '在区间0,2π⎛⎫⎪⎝⎭上存在唯一的极小值点; (2)设()sin k x x x =-,[)0,x ∈+∞,()1cos 0k x x '=-≥, ∴()k x 在[)0,+∞单调递增,()(0)0k x k ≥=, 即sin x x ≥,从而sin 22x x ≤, 因为函数42(2)3y f x x =-在0,2π⎡⎤⎢⎥⎣⎦上单调递减, ∴34()2sin 203m x ax x x =--≤在0,2π⎡⎤⎢⎥⎣⎦上恒成立,令'2()22cos24()m x a x x p x =--=, ∵sin 22x x ≤,∴'()4sin 280p x x x =-≤,'()m x 在0,2π⎡⎤⎢⎥⎣⎦上单调递减,''max ()(0)22m x m a ==-,当1a ≤时,'()0m x ≤,则()m x 在0,2π⎡⎤⎢⎥⎣⎦上单调递减,()(0)0m x m ≤=,符合题意. 当1a >时,'()m x 在0,2π⎡⎤⎢⎥⎣⎦上单调递减,'(0)220m a =->所以一定存在00,2x π⎛⎫∈ ⎪⎝⎭, 当00x x ≤<时,()0m x '>,()m x 在[)00,x 上单调递增,()0(0)0m x m >=与题意不符,舍去.综上,a 的取值范围是1a ≤请考生在22,23,题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22、(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是4cos ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是:2{22x m t y t =+=(t 是参数).(Ⅰ)若直线l 与曲线C 相交于A 、B 两点,且14AB =,试求实数m 值. (Ⅱ)设为曲线上任意一点,求x y +的取值范围.试题解析:(1)曲线C 的极坐标方程是4cos ρθ=化为直角坐标方程为:直线的直角坐标方程为:圆心到直线l 的距离(弦心距)圆心()2,0到直线的距离为: 或(2)曲线的方程可化为222)4x y -+=(,其参数方程为:22{ 2x cos y sin θθ=+=(θ为参数)(),M x y 为曲线上任意一点,()2225sin x y θα+=++x y ∴+的取值范围是225,225⎡⎤-+⎣⎦23. (本题满分10分)选修4—5;不等式选讲.已知函数()2121f x x x =-++,记不等式()4f x <的解集为M .(1)求M ;(2)设,a b M ∈,证明:10ab a b --+>.答案:(1){}|11x x -<<;(2)证明见解析【分析】(1)利用零点分段法将()f x 表示为分段函数的形式,由此解不等式求得不等式的解集M .(2)将不等式坐标因式分解,结合(1)的结论证得不等式成立.解:(1)解:()14,2112,2214,2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩, 由()4f x <,解得11x -<<,故{}|11M x x =-<<.(2)证明:因为,a b M ∈,所以1a <,1b <, 所以()()()1110ab a b a b -++=-->, 所以10ab a b --+>.点评:本小题主要考查绝对值不等式的解法,考查不等式的证明,属于基础题.。
宁夏银川市三校2020届高三下学期第一次大联考数学(理科)试题Word版含答案
宁夏银川市三校2020届高三下学期第一次大联考数学(理科)试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知21()1i a R ai -∈+是纯虚数,则a =( ) A .12 B .12- C .2 D .-22.已知集合U R =,函数1y x =-的定义域为M ,集合{}2|0N x x x =-≤,则下列结论正确的是( )A .M N N =IB .()MC N ⋃=∅I C .M N U =UD .()M C N ⋃⊆4.已知,a b R ∈,则“11a b ->-”是“log 1a b <”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.已知tan()24x π+=,则sin 2x =( ) A .110 B .15 C .35 D .9106.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .8π+B .82π+C .83π+D .84π+7.执行如图所示的程序框图,则该程序运行后输出的i 值为( )A .8B .9C .10D .118.已知ABC ∆是边长为1的等边三角形,则(2)(34)AB BC BC CA -+=u u u v u u u v u u u v u u u v g( ) A .132- B .112- C .362--D .362-+ 9.已知1()nx x -的展开式中第3项与第6项的二项式系数相等,则展开式中系数最大的项为第( )项.A .5B .4C .4或5D .5或610.已知抛物线2:8C x y =,过点(0,)(0)M t t <可作抛物线C 的两条切线,切点分别为,A B ,若直线AB 恰好过抛物线C 的焦点,则MAB ∆的面积为( )A .2B .3C .6D .1611.函数()3sin ln(1)f x x x =+g 的部分图象大致为( ) A .B .C .D .12.若函数()f x 在定义域内满足:(1)对于任意不相等的12,x x ,有12211122()()()()x f x x f x x f x x f x +>+;(2)存在正数M ,使得()f x M ≤,则称函数()f x 为“单通道函数”,给出以下4个函数:①()sin()cos()44f x x x ππ=+++,(0,)x π∈;②()ln x g x x e =+,[]1,2x ∈; ③[]32()3,1,2h x x x x =-∈;④122,10()log (1)1,01x x x x x ϕ⎧--≤<⎪=⎨+-<≤⎪⎩,其中,“单通道函数”有( )A .①③④B .①②④C .①③D .②③第Ⅱ卷二、填空题:本大题共4小题,每小题5分,满分20分.13.已知直线:320l x y b +-=过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F ,则双曲线的渐近线方程为________.14.已知实数,x y 满足不等式组24024000x y x y x y +-≤⎧⎪--≤⎪⎨≥⎪⎪≥⎩,则92z x y =+的最大值为________. 15.已知,,a b c 是ABC ∆的三边,若满足222a b c +=,即22()()1a b c c+=,ABC ∆为直角三角形,类比此结论:若满足(,3)n n n a b c n N n +=∈≥时,ABC ∆的形状为________.(填“锐角三角形”,“直角三角形”或“钝角三角形”).16.关于x 的方程320x x x m --+=,至少有两个不相等的实数根,则m 的最小值为________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 满足:1112,92n n n a a a -+=+=⨯.(1)记132n n n b a -=-⨯,求证:数列{}n b 为等比数列; (2)求数列{}n na 的前n 项和n S .18.(本小题满分12分)自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.19.(本小题满分12分)如图,空间几何体ABCDE 中,平面ABC ⊥平面BCD ,AE ⊥平面ABC .(1)证明://AE 平面BCD ;(2)若ABC ∆是边长为2的正三角形,//DE 平面ABC ,且AD 与BD ,CD 所成角的余弦值均为24,试问在CA 上是否存在一点P ,使得二面角P BE A --的余弦值为10.若存在,请确定点P 的位置;若不存在,请说明理由.20.(本小题满分12分)已知抛物线2:2(0)E y px p =>,过点(1,1)M -作抛物线E 的两条切线,切点分别为,A B ,直线AB 的斜率为2.(1)求抛物线的标准方程;(2)与圆22(1)1x y -+=相切的直线l ,与抛物线交于,P Q 两点,若在抛物线上存在点C ,使()(0)OC OP OQ λλ=+>u u u v u u u v u u u v ,求λ的取值范围.21.(本小题满分12分)已知函数2()ln (1)2a f x x x a x =+-+. (1)若曲线()y f x =在1x =处的切线方程为2y =-,求()f x 的单调区间;(2)若0x >时,()()2f x f x x '<恒成立,求实数a 的取值范围. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)在直角坐标系xOy 中,曲线C 的参数方程为244x t y t ⎧=⎨=⎩(其中t 为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为(4cos 3sin )0m ρθθ+-=(其中m 为常数).(1)若直线l 与曲线C 恰好有一个公共点,求实数m 的值;(2)若4m =,求直线l 被曲线C 截得的弦长.23.(本小题满分10分)已知定义在R 上的连续函数()f x 满足(0)(1)f f =.(1)若2()f x ax x =+,解不等式3()4f x ax <+; (2)若任意[]12,0,1x x ∈且12x x ≠时,有1212()()f x f x x x -<-,求证:121()()2f x f x -<.宁夏银川市三校2020届高三下学期第一次大联考数学(理科)试题参考答案1.A 2.A 3.C 4.A 5.C 6.B 7.A 8.B 9.A 10.D 11.B 12.A13.0x ±= 14.6 15.锐角三角形 16.527-所以132(1)n n n na n n -=⨯+⨯-,.....................................................6分设01221122232(1)22n n n T n n --=⨯+⨯+⨯++-⨯+⨯L ,①12312122232(1)22n n n T n n -=⨯+⨯+⨯++-⨯+⨯L ,②① –②得012122222212n n n n n T n n --=++++-⨯=--⨯L ,所以1(1)2n n T n =+-⨯,...............................................................8分设123(1)n n Q n =-+-++-L ,即1,2,2n n n Q n n +⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数,...........................10分 所以53(1)2,2363(1)2,2n n n n n n n n S T Q n n n -⎧-⨯-⎪⎪=+=⎨+⎪-⨯+⎪⎩为奇数为偶数, ..................................12分18.(1)由表中信息可知,当产假为14周时某家庭有生育意愿的概率为14120050P ==; 当产假为16周时某家庭有生育意愿的概率为216220025P == ..........................2分 (2)①设“两种安排方案休假周数和不低于32周”为事件A ,由已知从5种不同安排方案中,随机地抽取2种方案选 法共有2510C =(种),其和不低于32周的选法有14、18、15、17、15、18、16、17、16、18、17、18,共6种, 由古典概型概率计算公式得63()105P A ==. ...................................6分 ②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.1(29)0.110P ξ===,12(30)0.1,(31)0.21010P P ξξ======, 2211(32)0.2,(33)0.2,(34)0.1,(35)0.110101010P P P P ξξξξ============, 因而ξ的公布列为所以()290.1300.1310.2320.2330.2340.1350.132E ξ=⨯+⨯+⨯+⨯+⨯+⨯+⨯=,.........12分19.(1)证明:如图,过点D 作直线DO BC ⊥交BC 于点O ,连接DO .因为平面ABC ⊥平面BCD ,DO ⊂平面BCD ,DO BC ⊥,且平面ABC I 平面BCD BC =,所以DO ⊥平面ABC . ...............................................1分因为直线AE ⊥平面ABC ,所以//AE DO ,....................................................2分因为DO ⊂平面BCD ,AE ⊄平面BCD ,所以直线//AE 平面BCD . ........................................4分(2)连接AO ,因为//DE 平面ABC ,所以AODE 是矩形,所以DE ⊥平面BCD .因为直线AD 与直线,BD CD ,所以BD CD =,所以O 为BC 的中点,所以AO BC ⊥,且cos 4ADC ∠=.设DO a =,因为2BC =,所以1,OB OC AO ===所以CD AD ==在ACD ∆中,2AC =.所以2222cos AC AD CD AD CD ADC =+-∠gg ,即224312a a =+++-,2=.解得21,1a a ==. ...................................6分以O 为坐标原点,,,OA OB OD 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.则(0,1,0),(0,1,0),3,0,0),3,0,1)C B A E -.假设存在点P ,连接,EP BP ,设AP AC λ=u u u v u u u v ,则33,,0)P λλ-.设平面ABE 的法向量为{},,m x y z =, 则030m AE z m BA x y ⎧==⎪⎨=-=⎪⎩u u u v g u u u v g ,取1x =,则平面ABE 的一个法向量为3,0)m =. 设平面PBE 的法向量为{},,n x y z =, 则(33)(1)030n PB x y n BE x y z λλ⎧=++=⎪⎨=-+=⎪⎩u u u v g u u u v g , 取1x λ=+,则平面PBE 的一个法向量为(133,3)n λλλ=+-,......................9分 设二面角P BE A --的平面角的大小为θ,由图知θ为锐角, 则22213310cos 42(1)3(1)12m nm nλλθλλλ++-===⨯++-+g g , 化简得2610λλ+-=,解得12λ=-(舍去),.........................11分 所以在CA 上存在一点P ,使得二面角P BE A --的余弦值为104.其为线段AC 的三等分点(靠近点A ) ..............................................12分20.(1)设{}1122,,(,)A x y B x y ,则点A 处抛物线的切线为{}11y y p x x =+,过点(1,1)M -,因而11(1)y p x =-;同理,点B 处抛物线的切线为22()y y p x x =+,过点(1,1)M -,因而22(1)y p x =-.两式结合,说明直线(1)y p x =-过,A B 两点,也就是直线AB 的方程为(1)y p x =-.由已知直线AB 的斜率为2,知2p =,故所求抛物线的方程为24y x =................................................5分(2)显然当直线l 的斜率不存在与斜率为0时不合题意.(6分)故可设直线l 的方程为y kx m =+.又直线l 与圆22(1)1x y -+=相切,1=,即221(1)2m km m -=≠...........................................7分 与抛物线方程联立,即24y kx m y x =+⎧⎨=⎩, 化简消y 得2222(2)0k x km x m +-+=,22224(2)41616880km k m km m ∆=--=-=+>设3344(,),(,)P x y Q x y ,则3422(2)km x x k-+=,......................................9分 34344()2y y k x x m k+=++=. 由()(0)OC OP OQ λλ=+>u u u v u u u v u u u v ,则22(2)4(,)km OC k k λλ-=u u u v ,.................................10分 又点C 在抛物线上,则222168(2)km k k λλ-=. 即2233244km m λ-+==>,由于0km ≠,因而1λ≠. 所以λ的取值范围为3|14λλλ⎧⎫>≠⎨⎬⎩⎭且,...........................12分 21.(1) 由已知得1()(1)f x ax a x'=+-+,则(1)0f '=, 而(1)ln1(1)122a a f a =+-+=--,所以函数()f x 在1x =处的切线方程为12a y =--. 则122a --=-,解得2a =,..............................2分 那么21()ln 3,()23f x x x x f x x x'=+-=+-,由21231()230x x f x x x x -+'=+-=>,得102x <<或1x >, 因则()f x 的单调递增区间为1(0,)2与(1,)+∞;...................................4分 由1()230f x x x '=+-<,得112x <<, 因而()f x 的单调递减区间为1(,1)2....................................6分 (2)若()()2f x f x x '<,得ln 11(1)2222x a ax a x a x x ++-+<+-, 即ln 1122x a x x +-<在区间(0,)+∞上恒成立. ...................................8分 设ln 1()2x h x x x =-,则2221ln 132ln ()22x x h x x x x --'=+=, 由()0h x '>,得120x e <<,因而()h x 在12(0,)e 上单调递增,由()0h x '<,得12x e >,因而()h x 在12(,)e +∞上单调递减 . .................10分 所以()h x 的最大值为1122()h e e -=,因而1212a e -+>, 从而实数a 的取值范围为12|21a a e -⎧⎫>-⎨⎬⎩⎭..........................................12分22.(1)直线l 的极坐标方程可化为直线坐标方程:430x y m +-=,曲线C 的参数方程可化为普通方程:24y x =,由24304x y m y x +-=⎧⎨=⎩,可得230y y m +-=,...............................2分 因为直线l 和曲线C 恰好有一个公共点, 所以940m ∆=+=,所以94m =-. ............................................5分 (2)当4m =时,直线:4340l x y +-=恰好过抛物线的焦点(1,0)F ,由243404x y y x +-=⎧⎨=⎩,可得241740x x -+=,..................................8分 设直线l 与抛物线C 的两个交点分别为1122(,),(,)A x y B x y , 则12174x x +=,故直线l 被抛物线C 所截得的弦长为1217252244AB x x =++=+=,.................................10分 23.(1)(0)(1)f f =,即10a +=,得1a =-, 所以不等式化为234x x x -+≤-+.① 当0x <时,不等式化为234x x x -<-+,所以0x <<;.......................2分 ② 当01x ≤≤时,不等式化为234x x x --<-+,所以102x ≤<;.....................3分 ③ 当1x >时,不等式化为234x x x -<-+,所以x ∈∅.........................4分综上所述,不等式的解集为1|2x x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭,................................5分 (2)由已知任意[]12,0,1x x ∈且12x x ≠,则不妨设21x x >, 则当2112x x -≤时,12121()()2f x f x x x -<-≤,...................................7分 当2112x x ->时,则112x <,且 2112x -<,..........................................8分 那么1212211()(0)(1)()011()2f x f f f x x x x x -+-<-+-=--<. ......................10分。
宁夏银川2020届高三下学期第一次摸拟试数学理科试题 含解析
2020年普通高等学校招生全国统一考试理科数学试题卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,0,1A =-的子集中,含有元素0的子集共有 A. 2个 B. 4个C. 6个D. 8个【答案】B 【解析】 试题分析:中含有元素的子集有:,共四个,故选B.考点:集合的子集. 2.复数()231i i +=( ) A. 2 B. -2 C. 2i D. -2i【答案】A 【解析】 【分析】利用21i =-即可得解.【详解】()()()23122i i i i +=-=故选A.【点睛】本题考查了复数的乘法及乘方运算,属于基础题.3.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A.12B. 2C.2D.22【答案】D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q =,又因为等比数列{}n a 的公比为正数,所以2q =故21222a a q ===,故选D.4.已知m ∈R ,“函数21x y m =+-有零点”是“函数log m y x =在(0,)+∞上是减函数”的( ). A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 即不充分也不必要条件 【答案】B 【解析】试题分析:由题意得,由函数有零点可得,,而由函数在上为减函数可得,因此是必要不充分条件,故选B .考点:1.指数函数的单调性;2.对数函数的单调性;3.充分必要条件. 5.若函数f x cosx ax 为增函数,则实数a 的取值范围为( )A.1,? B. [1,+∞)C.1,?D. ()1,-+∞【答案】B 【解析】 【分析】 求得函数的导数sin fxx a ,把函数()f x 为增函数,转化为sin ax 恒成立,结合三角函数的性质,即可求解. 【详解】由题意,函数f x cosx ax ,则sin fx x a , 因为函数f x cosx ax 为增函数,所以sin 0fxx a 恒成立,即sin ax 恒成立,又由sin [1,1]x ,所以1a ≥,即实数a 的取值范围是[1,)+∞. 故选:B .【点睛】本题主要考查了利用函数单调性求解参数问题,其中解答熟记函数的导数与原函数的关系,合理转化是解答的关键.着重考查了推理与计算能力,属于基础题. 6.一个空间几何体的三视图如图,则该几何体的体积为( )A. 23B. 25C.43D.533【答案】D 【解析】 【分析】由三视图可得该几何体是一个棱长和底面边长都是2的直三棱柱截去一个三棱锥得到的几何体,结合锥体和柱体的体积公式,即可求解.【详解】由三视图可得,该几何体是一个棱长和底面边长都是2的直三棱柱截去一个三棱锥得到的几何体,如图所示,所以该几何体的体积为:11111111223135322214343PB C ABC A B C ABC P A B C V V V ---=-=⨯⨯-⨯⨯⨯=. 故选:D .【点睛】本题考查了几何体的三视图及体积的计算,其中解答中熟记三视图的规则,还原得到几何体的形状是关键,再由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.7.我国古代名著《庄子天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A.17?,,+1i s s i ii≤=-= B.1128?,,2i s s i ii≤=-=C17?,,+12i s s i ii≤=-= D.1128?,,22i s s i ii≤=-=【答案】B【解析】【分析】分析程序中各变量的作用,再根据流程图所示的顺序,可得该程序的作用是累加并输出S的值,由此可得到结论.【详解】由题意,执行程序框图,可得:第1次循环:11,42S i=-=;第2次循环:111,824S i=--=;第3次循环:1111,16248S i=--==;依次类推,第7次循环:11111,256241288S i=----==,此时不满足条件,推出循环,其中判断框①应填入的条件为:128?i≤,执行框②应填入:1S Si=-,③应填入:2i i=.故选:B.【点睛】本题主要考查了循环结构的程序框图的应用,其中解答中正确理解程序框图的含义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 8.若231()nx x+展开式的各项系数之和为32,则其展开式中的常数项为( ) A. 1 B. 5C. 10D. 20【答案】C 【解析】 【分析】 由二项式231()nx x+展开式的各项系数之和为32,求得5n =,再结合展开式的通项,即可求解常数项.【详解】由题意,二项式231()nx x +展开式的各项系数之和为32, 令1x =,可得232n =,解得5n =, 则二项式2531()x x+展开式的通项为2551515531()()r r rr r r T C x C x x --+==, 令3r =,可得常数项为3510C =. 故选:C .【点睛】本题主要考查了二项式定理的应用,其中解答中熟记二项展开式的系数的求法,以及二项展开式的通项是解答的关键.着重考查了计算能力,属于基础题.9.在平面区域(),02y x M x y x x y ⎧≥⎧⎫⎪⎪⎪=≥⎨⎨⎬⎪⎪⎪+≤⎩⎭⎩内随机取一点P ,则点P 在圆222x y +=内部的概率( ) A.8πB.4π C.2π D.34π 【答案】B 【解析】分析:画出不等式组对应的平面区域,其与圆面222x y +<的公共部分的面积为18个圆面,故其面积与平面区域的面积之比为所求概率. 详解:不等式对应的平面区域如图所示:其中满足222x y +<的点为阴影部分对应的点,其面积为4π,不等组对应的平面区域的面积为1,故所求概率为4π,故选B . 点睛:几何概型的概率计算关键在于测度的选取,测度通常是线段的长度、平面区域的面积、几何体的体积等.10.已知直线l ,m ,平面α、β、γ,给出下列命题:①//l α,//l β,m αβ=,则//l m ;② //αβ,//βγ,m α⊥,则m γ⊥;③αβ⊥,βγ⊥,则αβ⊥;④l m ⊥,l α⊥,m β⊥,αβ⊥.其中正确的命题有( )A. 1 个B. 2个C. 3个D. 4个【答案】C 【解析】 【分析】利用线面位置关系判定定理和性质定理,逐项判定,即可求解,得到答案. 【详解】对于①中,由//,//,l l m αβαβ=,根据线面平行的性质,可得//l m ,所以是正确的;对于②中, 由//,//αββγ,可得//αγ,又由m α⊥,所以m γ⊥,所以是正确的; 对于③中,由αβ⊥,βγ⊥,则α与β平行或相交,所以不正确;对于④中,由l m ⊥,l α⊥,m β⊥,利用面面垂直的判定,可得αβ⊥,所以是正确的, 综上可得①②④是正确的.故选:C .【点睛】本题主要考查了线面位置关系的判定与性质的应用,其中解答中熟记空间中的线面位置关系的判定与性质,逐项判定是解答的关键.着重考查了推理与论证能力,属于中档试题.11.设1F ,2F 分别为双曲线22221x y a b -=(0,0)a b >>的左,右焦点.若在双曲线右支上存在一点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的离心率为【 】. A.B.C.D.【答案】B 【解析】试题分析:利用题设条件和双曲线性质在三角形中寻找等量关系,得出a 与b 之间的等量关系,进而求出离心率.解:依题意|PF 2|=|F 1F 2|,可知三角形PF 2F 1是一个等腰三角形,F 2在直线PF 1的投影是其中点,由勾股定理知,可知|PF 1|=4b ,根据双曲定义可知4b-2c=2a ,整理得c=2b-a ,代入c 2=a 2+b 2整理得3b 2-4ab=0,求得43b a =,故可知双曲线的离心率为,选B. 考点:双曲线的性质点评:解决的关键是根据双曲线于直线的位置关系,以及双曲线的几何性质来求解,属于中档题. 12.已知以4T=为周期的函数21,(1,1](){12,(1,3]m x x f x x x -∈-=--∈,其中0m >.若方程3()f x x =恰有5个实数解,则实数m 的取值范围为( ) A. 158()33B. 15(7)3C. 48(,)33D. 4(7)3【答案】B 【解析】【详解】因为当(1,1]x ∈-时,将函数化为方程2221(y 0)y x m+=≥,实质上为一个半椭圆,其图像如图所示,同时在坐标系中作出当(1,3]x ∈得图像,再根据周期性作出函数其它部分的图像,由图易知直线3x y =与第二个椭圆222(4)1(y 0)y x m -+=≥相交,而与第三个半椭圆222(8)1(y 0)y x m-+=≥无公共点时,方程恰有5个实数解,将3x y =代入222(4)1(y 0)y x m-+=≥得2222(91)721350,m x m x m +-+=令29(t 0)t m =>,则有2(t 1)8150x tx t +-+=由22(8)415(1)0,15,915,03t t t t m m m ∆=-⨯+>>>>>得由且得同样由3x y =与第三个半椭圆222(8)1(y 0)y x m-+=≥无交点,由∆<0可计算得m <综上知m ∈.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知2tan θ=,则 2cos 的值为__________. 【答案】35【解析】 【分析】由三角函数的基本关系式和余弦的倍角公式,化简得221tan 21tan cos ,代入即可求解.【详解】由题意知:2tan θ=, 又由2222222222cos sin 1tan 123 2cossincos sin 1tan 125cos . 故答案为:35. 【点睛】本题主要考查了三角函数的化简求值,其中解答中利用三角函数的基本关系式和余弦的倍角公式,化简为齐次式求解是解答的关键.着重考查了化简与运算能力,属于基础题.14.若D 点在三角形ABC 的边BC 上,且4CD DB r AB sAC ,则3r s +的值为__________. 【答案】85【解析】 【分析】根据4CD DB =得到4455CDAB AC ,再由CD r AB sAC =+,根据平面向量的基本定理,求得,r s 的值,代入即可求解.【详解】如图所示,由4CD DB =,可得444555CD CB AB AC ==-, 又由CD r AB sAC =+,所以44,55r s ==-,所以44833555r s +=⨯-=,故答案为:85. 【点睛】本题主要考查了平面向量的基本定理的应用,其中解答中熟记向量的运算法则,以及平面向量的基本定理是解答的关键.着重考查了推理与计算能力,属于基础题.15.已知A ,B 两点均在焦点为F 的抛物线22(0)y px p =>上,若||||4AF BF ,线段AB 的中点到直线2px =的距离为1,则P 的值为__________. 【答案】1或3 【解析】 【分析】分别过A 、B 作直线2px =的垂线,设AB 的中点M 在准线上的射影为N ,根据抛物线的定义,可得4AF BF AC BD +=+=,梯形ACDB 中,中位线1()2MN AC BD =+,由线段AB 的中点到2px =的距离为1,可得012p x -=,进而即可求解. 【详解】分别过A 、B 作直线2px =的垂线,垂足为C 、D , 设AB 的中点M 在准线上的射影为N ,连接MN , 设112200(,),(,),(,)A x y B x y M x y ,根据抛物线的定义,可得4AF BF AC BD +=+=,所以梯形ACDB 中,中位线1()22MN AC BD =+=, 可得022p x +=,即022p x =-, 因为线段AB 的中点到2px =的距离为1,可得012p x -=, 所以21p -=,解得1p =或3p =. 故答案为:1或3.【点睛】本题主要考查了抛物线的定义,以及直线与抛物线的位置关系的应用.着重考查了转化与化归思想,函数与方程思想的应用,以及计算能力,属于中档试题. 16.观察下列算式:311=3235=+ 337911=++ 3413151719=+++……若某数3n 按上述规律展开后,发现等式右边含有“2021”这个数,则n =__________. 【答案】45 【解析】 【分析】由题意,可得第n 行的左边是3n ,右边是n 个计数的和,设第n 行的第一个数为n a ,利用累加法,求得21n a n n =-+,即可求解等式右边含有“2021”这个数时,实数n 的值.【详解】由题意,可得第n 行的左边是3n ,右边是n 个计数的和, 设第n 行的第一个数为n a ,则有21312a a -=-=,32734,a a -=-=1,2(1)n n a a n --=-,以上1n -个式子相加可得21(1)[22(1)](1)2n n n a a n n n n -+--==-=-,所以21n a n n =-+, 可得45461981,2071a a ==,所以等式右边含有“2021”这个数,则45n =. 故答案为:45.【点睛】本题主要考查了归纳推理,以及利用累加法求解数列的通项公式及应用,着重考查了分析问题和解答问题的能力,属于基础题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分)17.在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且()sin 2sin 0b A a A C -+=. (1)求角A ;(2)若3a =,ABC 的面积为2,求11b c +的值.【答案】(1)3π;(2【解析】 【分析】(1)可通过化简()sin2sin 0b A a A C -+=计算出cos A 的值,然后解出A 的值. ( 2)可通过计算b c +和bc 的值来计算11b c+的值. 【详解】(1)由()bsin 2sin 0A a A C -+=得bsin 2sin sin A a B b A ==, 又0A π<<,所以sin 0A ≠,得2cos 1A =,所以A 3π=.(2)由ABC 的面积为33及A 3π=得133bcsin 23π=,即bc 6= ,又3a =,从而由余弦定理得222cos 9b c bc A +-=,所以b c 33+=, 所以113b c b c bc ++==. 【点睛】本题考察的是对解三角函数的综合运用,需要对相关的公式有着足够的了解.18.如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[)[)[)[)[]50,60,60,70,70,80,80,90,90,100,据此解答如下问题.(Ⅰ)求全班人数及分数在[]80,100之间的频率; (Ⅱ)现从分数在[]80,100之间的试卷中任取 3份分析学生情况,设抽取的试卷分数在[]90,100的份数为X ,求X 的分布列和数学望期. 【答案】(Ⅰ)516(Ⅱ)()6E x 5=,分布列见解析 【解析】试题分析:(Ⅰ)先根据频率分布直方图求出区间[)50,60上的概率,再由茎叶图确定分数在[)50,60的人数,最后根据频率、频数、总数关系求全部人数.同样先确定分数在[)80,100人数,再根据频率、频数、总数关系求分数在[]80,100之间的频率;(Ⅱ)先确定随机变量取法可能情况,再分别求对应概率,列表可得分布列,根据数学期望公式可求期望.其中概率的求法为:利用组合数,根据古典概型概率计算公式求解. 试题解析:(Ⅰ)由茎叶图知分数在[)50,60人数为4人;[)60,70的人数为8人;[)70,80的人数为10人.总人数为432 0.012510=⨯∴分数在[)80,100人数为32481010---=人∴频率为1053216=(Ⅱ)[)80,90的人数为6人;分数在[)90,100的人数为4人X的取值可能为0,1,2,3()363102011206CP XC====,()216431060111202C CP XC====()1264310363212010C CP XC====,()3431041312030CP XC====∴分布列为X 0 1 2 3P1612310130()6E x5=19.如图所示,在矩形ABCD中,4AB=,2AD=,E是CD的中点,O为AE的中点,以AE为折痕将ADE∆向上折起,使D点折到P点,且PC PB=.(1)求证: PO⊥面ABCE;(2)求AC与面PAB所成角θ的正弦值.【答案】(1)证明见解析;(230【解析】【分析】(1)利用线面垂直的判定定理,证得BC⊥平面POF,进而得到BC PO⊥,进而证得PO⊥面ABCE ;(2)分别以OG 、OF 、OP 为,,x y z 轴,建立如图所示的空间直角坐标系O xyz -,求得平面PAB 的一个法向量为()2,0,1n =,利用向量的夹角公式,即可求解.【详解】(1)由题意,可得 PA PE ,OA OE =,则PO AE ⊥,取BC 的中点F ,连OF ,F ,可得//OF AB ,所以OF BC ⊥, 因为 PBPC ,BC PF ,且PF OF F =,所以BC ⊥平面POF ,又因为PO ⊂平面POF ,所以BC PO ⊥.又由BC 与AE 为相交直线,所以PO ⊥平面ABCE .(2)作//OG BC 交AB 于G ,可知OG OF ⊥,分别以,,OG OF OP 为,,x y z 轴,建立如图所示的空间直角坐标系O xyz -, 则(1,1,0)A -,(1,3,0)B , 1.3,0C ,()0,0,2P ,可得(2,4,0)AC,(1,1,2)AP ,(0,4,0)AB,设平面PAB 的法向量为(),,n x y z =,则2040n AP x y z n AB y ⎧⋅=-++=⎪⎨⋅==⎪⎩,令1z =,可得平面PAB 的一个法向量为()2,0,1n =,又由22222230sin cos ,15(2)4(2)1n AC n AC n ACθ⋅-⨯=<>===⋅-+⋅+, 所以AC 与面PAB 所成角θ的正弦值为3015.【点睛】本题考查了线面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.已知椭圆22221(0)x y a b a b +=>>过点()0,1,且离心率为3.直线l 与x 轴正半轴和y 轴分别交于点Q 、P ,与椭圆分别交于点M 、N ,各点均不重合且满足1PMMQ ,2PNNQ .(1)求椭圆的标准方程; (2)若123,试证明:直线l 过定点并求此定点【答案】(1)2213x y +=;(2)证明见解析,()1,0. 【解析】 【分析】(1)设椭圆方程为()222210x y a b a b+=>>,根据题意列出方程,求得,a b 的值,即可得到椭圆的方程; (2)设l 方程为xt y m ,利用向量的坐标运算,求得111my ,221my ,得到12120y y m y y ,联立方程组,结合根与系数的关系,代入求得直线l 的方程,即可得出结论.【详解】(1)设椭圆方程为()222210x y a b a b+=>>,由题意知1b =,且离心率221613c b eaa,解得23a =, 所以椭圆的方程为2213x y +=.(2)设0, P m ,0, 0Q x ,()11,M x y ,()22,N x y , 设l 方程为xt y m ,由1PM MQ ,得111011,,x y mx x y ,所以111y my ,由题意知10,所以111my , 同理由2PNNQ ,可得221my , 123,12120y y m y y联立()2233x y x t y m ⎧+=⎪⎨=-⎪⎩,整理得222223230t y mt y t m ,则2422244330m ttt m,且有212223mt y y t ,2212233t m y y t ,代入12120y y m y y ,得222320t m m mt ,解得21mt,由0mt,所以1mt ,可得l 的方程为1x ty =+,此时直线过定点()1,0,即P 为定点.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与椭圆方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等. 21.已知函数()21ln 12f x x ax bx =-++的图象在1x =处的切线l 过点11,22⎛⎫ ⎪⎝⎭. (1)若函数10g xf xa x a ,求()g x 的最大值(用a 表示);(2)若()()1212124,32a f x f x x x x x =-++++=,证明:1212x x . 【答案】(1) 1ln 2a a-;(2)证明见解析. 【解析】 试题分析:(1)由题意可得:0b =.结合导函数研究函数的单调性可得()max 1ln 2g x a a=-. (2)由题意结合(1)的结论有()()()()2121212*********ln 222f x f x x x x x x x x x x x x x ++++=++++-+=,构造函数()ln m m m ϕ=-,结合函数的特征即可证得题中的结论.试题解析: (1)由()1f x ax b x-'=+,得()11f a b ='-+, l 的方程为()()11112y a b a b x ⎛⎫--++=-+- ⎪⎝⎭,又l 过点11,22⎛⎫ ⎪⎝⎭, ∴()111111222a b a b ⎛⎫⎛⎫--++=-+- ⎪ ⎪⎝⎭⎝⎭,解得0b =. ∵()()()()211ln 112g x f x a x x ax a x =--=-+-+, ∴()()()2111111(0)a x x ax a x a g x ax a a x x x⎛⎫--+ ⎪-+-+⎝⎭=-+-==>', 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增; 当1,x a ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减. 故()()2max111111ln 11ln 22g x g a a a a a a a a ⎛⎫⎛⎫==-+-+=- ⎪ ⎪⎝⎭⎝⎭.(2)证明:∵4a =-,∴()()22121212112212123ln 21ln 213f x f x x x x x x x x x x x x x ++++=++++++++,()()212121212ln 222x x x x x x x x =++++-+=,∴()()2121212122ln x x x x x x x x +++=-令12(0)x x m m =>,()ln m m m ϕ=-,()1m m mϕ'-=,令()0m ϕ'<得01m <<;令()0m ϕ'>得1m >.∴()m ϕ在()0,1上递减,在()1,+∞上递增,∴()()11m ϕϕ≥=,∴()2121221x x x x +++≥,120x x +>,解得:1212x x +≥. (二)选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22.在直角坐标系xOy 中,曲线1C 的参数方程为11cos :sin x C y αα=+⎧⎨=⎩ (α为参数),曲线222:12x C y .(1)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求1C ,2C 的极坐标方程; (2)若射线((0)6πθρ=≥与1C 的异于极点的交点为A ,与2C 的交点为B ,求AB .【答案】(1)2cos ρθ=,()222cos 2sin 2ρθθ+=;(22105. 【解析】 【分析】(1)由曲线1C :1cos sin x y αα=+⎧⎨=⎩(α为参数)化为普通方程,再结合极坐标与直角坐标的互化公式,即可求得1C ,2C 的极坐标方程; (2)分别求得点,A B 对应的的极径21253,10p ,根据极经的几何意义,即可求解. 【详解】(1)曲线1C :1cos sin x y αα=+⎧⎨=⎩(α为参数)可化为普通方程:()2211x y -+=, 由cos sin x y ρθρθ=⎧⎨=⎩可得曲线1C 的极坐标方程为2cos ρθ=,曲线222:12x C y 的极坐标方程为()222cos 2sin 2ρθθ+=.(2)射线(0)6πθρ=≥与曲线1C 的交点A 的极径为1236cos, 射线(0)6πθρ=≥与曲线2C 的交点B 的极径满足22126sin ,解得22105, 所以1221035AB.【点睛】本题主要考查了参数方程与普通方程的互化,直角坐标方程与极坐标方程的互化,以及极坐标方程的应用,着重考查了推理与运算能力,属于基础题.选修4-5:不等式选讲23.已知关于x 的不等式231x x m --+≥+有解,记实数m 的最大值为M . (1)求M的值;(2)正数 a b c ,,满足2a b c M ++=,求证:111a b b c+≥++. 【答案】(1)4M =;(2)证明见解析. 【解析】试题分析:(1)利用绝对值不等式可求得235x x --+≤,所以15m +≤,解这个不等式可求得4M =.(2)由(1)得214a b c++=,将此式乘以要证明不等式的左边,化简后利用基本不等式可求得最小值为1.试题解析:(1)()()23235x x x x --+≤--+=, 若不等式231x x m --+≥+有解, 则满足15m +≤,解得64m -≤≤, ∴4M =.(2)由(1)知正数a b c ,,满足24a b c ++=,∴()()111114a b b c a b b c a b b c ⎛⎫⎡⎤+=++++ ⎪⎣⎦++++⎝⎭124b c a b a b b c ++⎛⎫=++ ⎪++⎝⎭124⎛≥+ ⎝ 1=.当且仅当a c =,2a b +=时,取等号.。
宁夏石嘴山市第三中学2020届高三第三次模拟考试理科数学试题
石嘴山三中2020届高三年级第三次模拟考试数学(理科)试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4}A =,{}2,B x x n n A ==∈,则A B =( )A. {1,2}B. {1,4}C. {1,2,3,4}D. {2,3}【答案】B 【解析】 【分析】先求出集合B ,由此能求出A B .【详解】集合{1A =,2,3,4},2{|B x x n ==,}{1n A ∈=,4,9,16}, {1AB ∴=,4}.故选:B .点睛】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.91i 1i+=- ( ) A. 1- B. i -C. 1D. i【答案】D 【解析】 【分析】按照复数的运算规则进行运算即可.【详解】921i 1(1)1i 12i i i i +++===--.故选:D【点睛】本题考查复数的基本运算,属于基础题. 3.已知,42ππθ⎛⎫∈ ⎪⎝⎭,且sin 410πθ⎛⎫+= ⎪⎝⎭,则tan θ=( ) A. 2 B.43C. 3D.125【答案】A 【解析】 【分析】由同角三角函数的基本关系计算可得cos 4πθ⎛⎫+ ⎪⎝⎭、tan 4πθ⎛⎫+⎪⎝⎭,再根据两角差的正切公式计算可得.【详解】解:因为,42ππθ⎛⎫∈⎪⎝⎭,所以3,424πππθ⎛⎫+∈ ⎪⎝⎭,又sin 4πθ⎛⎫+= ⎪⎝⎭,所以cos 410πθ⎛⎫+=- ⎪⎝⎭,则tan 34πθ⎛⎫+=- ⎪⎝⎭, 所以tan tan3144tan tan 244131tan tan44ππθππθθππθ⎛⎫+- ⎪--⎛⎫⎝⎭=+-=== ⎪-⎛⎫⎝⎭++ ⎪⎝⎭. 故选:A【点睛】本题考查三角恒等变换,考查运算求解能力,属于基础题.4.在直角梯形ABCD 中,已知//BC AD ,AB AD ⊥,4AB =,2BC =,4=AD ,若P 为CD 的中点,则PA PB ⋅的值为( )A. 5-B. 4-C. 4D. 5【答案】D 【解析】 分析】由题意可知5cos PDA ∠=,由()()2PA PB PD BC PD CB ⋅=-⋅-+,再利用两个向量的数量积的定义,运算求解即可.【详解】解:由题意可知,2DA CB =,PD PC =-,2214252PD PC ==+=. ∴tan 2PDA ∠=,5cos 5PDA ∠=. //BC AD ,∴BCD PDA π∠=-∠,∴()()()()2PA PB PD DA PC CB PD CB PD CB ⋅=+⋅+=+⋅-+()222525cos 24PD PD CB CB PDA π=--⋅+=--⨯⨯-∠+⨯5525855⎛⎫=--⨯⨯-+= ⎪ ⎪⎝⎭.故选:D.【点睛】本题考查两个向量的加减法法则,以及几何意义,两个向量的数量积的定义,属于中档题. 5.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积2136V L h ≈的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式23112V L h ≈相当于将圆锥体积公式中的圆周率近似取为( ) A.227B.15750C.289D.337115【答案】C 【解析】 【分析】将圆锥的体积用两种方式表达,即213V r h π==23(2)112r h π,解出π即可. 【详解】设圆锥底面圆的半径为r ,则213V r h π=,又2233(2)112112V L h r h π≈=, 故23(2)112r h π213r h π≈,所以,11228369π≈=. 故选:C.【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.6.已知等差数列{}n a 的公差为3,前n 项和为n S ,且1a ,2a ,6a 成等比数列,则6S =( ) A. 51 B. 54 C. 68 D. 96【答案】A 【解析】 【分析】根据1a ,2a ,6a 成等比数列,列出方程解出1a ,再利用等差数列求和公式,即求出6S . 【详解】因为1a ,2a ,6a 成等比数列,所以2216a a a =,即2111(3)(53)a a a +=+⨯,解得11a =所以665613512S ⨯=⨯+⨯=. 故选:A.【点睛】本题主要考查等比中项及等差数列前n 项和公式,属于基础题. 7.下列说法正确的是( )A. 命题“00x ∃≤,002sin x x ≤”的否定形式是“0x ∀>,2sin x x >”B. 若平面α,β,γ,满足αγ⊥,βγ⊥则//αβC. 随机变量ξ服从正态分布()21,N σ(0σ>),若(01)0.4P ξ<<=,则(0)0.8P ξ>= D. 设x 是实数,“0x <”是“11x<”的充分不必要条件 【答案】D 【解析】 【分析】由特称命题的否定是全称命题可判断选项A ;,αβ可能相交,可判断B 选项;利用正态分布的性质可判断选项C ;11x<⇒0x <或1x >,利用集合间的包含关系可判断选项D. 【详解】命题“00x ∃≤,002sin x x ≤”的否定形式是“0x ∀≤,2sin x x >”,故A 错误;αγ⊥,βγ⊥,则,αβ可能相交,故B 错误;若(01)0.4P ξ<<=,则(12)0.4P ξ<<=,所以10.40.4(0)0.12P ξ--<==,故(0)0.9P ξ>=,所以C 错误;由11x <,得0x <或1x >,故“0x <”是“11x <”的充分不必要条件,D 正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.8.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是( ) A. 甲 B. 乙C. 丙D. 丁【答案】D 【解析】 【分析】根据演绎推理进行判断.【详解】由①②④可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁. 故选:D .【点睛】本题考查演绎推理,掌握演绎推理的定义是解题基础.9.已知函数()()()sin 0,0,0f x A x A ωω=+ϕ>><ϕ<π的部分图像如图所示,给出下列四个结论:①()f x 的最小正周期为2π; ②()f x 的最小值为4-; ③(),0π是()f x 的一个对称中心;④函数()f x 在区间25,312⎛⎫-π-π ⎪⎝⎭上单调递增.其中正确结论的个数是( ) A. 4 B. 3C. 2D. 1【答案】B 【解析】 【分析】通过图像可得函数的周期,过点,12A π⎛⎫⎪⎝⎭,()0,2列方程可得解析式为()4sin 46f x x π⎛⎫=+ ⎪⎝⎭,再根据正弦函数的图像和性质逐一判断.【详解】由图象知函数()f x 的最小正周期为23122T πππ⎛⎫=⨯-= ⎪⎝⎭,则4ω=, 即()()sin 4f x A x =+ϕ,又由12f A π⎛⎫= ⎪⎝⎭,得sin 13πϕ⎛⎫+= ⎪⎝⎭, 由0ϕπ<<可知6π=ϕ,从而()sin 46f x A x π⎛⎫=+ ⎪⎝⎭,又(0)2f =,可得sin 26A π=, 所以4A =,从而()4sin 46f x x π⎛⎫=+⎪⎝⎭,易判断①②正确, 而()0f π≠,所以③错误, 又由242,262k x k k Z ππππ-≤+≤π+∈, 得()f x 的增区间为,,26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, 可知当1k =-时,25,312⎛⎫-π- ⎪π⎝⎭是()f x 的一个增区间,④正确. 故选:B.【点睛】本题主要考查利用三角函数部分图象求解析式和三角函数的基本性质,考查运算求解能力,是基础题.10.函数cos 1ln(),1,(),1x x x f x xex π⎧->⎪=⎨⎪≤⎩的图象大致是( ) A. B.C. D.【答案】A 【解析】 【分析】根据复合函数的单调性,同增异减以及采用排除法,可得结果. 【详解】当1x >时,()1ln()f x x x=-,由1,y y x x =-=在()1,+∞递增, 所以1t x x=-在()1,+∞递增又ln y t =是增函数,所以()1ln()f x x x=-在()1,+∞递增,故排除B 、C 当1x ≤时()cos xf x eπ=,若()0,1x ∈,则()0,x ππ∈所以cos t x π=在()0,1递减,而t y e =是增函数 所以()cos xf x e π=在()0,1递减,所以A 正确,D 错误故选:A【点睛】本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.11.已知P 为双曲线C :22221x y a b-=(0a >,0b >)左支上一点,1F ,2F 分别为C 的左、右焦点,M 为虚轴的一个端点,若2||MP PF +的最小值为12F F ,则C 的离心率为( )A.B. 2+C.D. 4+【答案】C 【解析】 【分析】根据双曲线的定义可得21||||2MP PF MP PF a +=++,又11||MP PF MF +≥ 即可得到关于e 的方程,解得.【详解】解:21||||2MP PF MP PF a +=++1222MF a a c +==,22a c +=,化简得222850c ac a -+=,即22850e e -+=,解得e =e =,所以e =故选:C【点睛】本题考查双曲线的离心率,考查化归与转化的数学思想. 12.已知函数()ln(f x x =满足对于任意11[,2]2x ∈,存在21[,2]2x ∈,使得22112ln (2)()x f x x a f x ++≤成立,则实数a 的取值范围为( ) A. ln 2[8,)2-+∞ B. ln 25[8,2ln 2]24--- C. ln 2(,8]2-∞-D. 5(,2ln 2]4-∞--【答案】C 【解析】 【分析】由函数()ln(f x x =+在定义域单调递增,原不等式成立可转化为()2211max2maxln 2x xx a x ⎛⎫++≤ ⎪⎝⎭,通过研究函数的最值建立不等式求解即可得a 的取值范围.【详解】由函数()ln(f x x =+在定义域单调递增,对于任意11[,2]2x ∈,存在21[,2]2x ∈,使得22112ln (2)()x f x x a f x ++≤成立, 即任意11[,2]2x ∈,存在21[,2]2x ∈,使得22112ln 2x x x a x ++≤成立, 即满足()2211max2maxln 2x x x a x ⎛⎫++≤ ⎪⎝⎭,令2111()2g x x x a =++,对称轴方程为11x =-,在11[,2]2x ∈可得1max ()(2)=8g x g a =+ 令222ln ()x h x x =, 求导可得22221ln ()x h x x -'=, 2()0h x '=,可得2x e =,在()20,x e ∈,2()0h x '>,2()h x 单调递增,所以在21[,2]2x ∈,2max ln 2()(2)2h x h ==, 即ln 282a +≤,解得ln 282a ≤-, 故选C .【点睛】本题为函数与导数的综合应用题,考查函数的单调性、导数的应用等知识点,解题的关键是将含有量词的不等式转化为求函数最值问题,再借助导数和函数的性质求解最值建立不等式即可,属于中等题.二、填空题:本大题共4小题,每小题5分.13.已知(2x -1)7=a o +a 1x + a 2x 2+…+a 7x 7,则a 2=____. 【答案】84- 【解析】 【分析】根据二项展开式的通项公式即可得结果.【详解】解:(2x -1)7的展开式通式为:()()71721rrrr T C x -+=-当=5r 时,()()2552672184T C x x =-=-,则284a =-. 故答案为:84-【点睛】本题考查求二项展开式指定项的系数,是基础题. 14.已知f (x )是R 上最小正周期为2周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为________.【答案】7 【解析】当02x ≤<时,3()00,1f x x x x =-=⇒=,所以函数()y f x =的图象在区间[0,6]上与x轴的交点横坐标为0,1,2,3,4,5,6 共7个 点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.15.已知椭圆C :22162x y +=的左、右焦点分别为1F ,2F ,如图AB 是过1F 且垂直于长轴的弦,则2ABF 的内切圆半径是________.【答案】23【解析】 【分析】设2ABF 内切圆的半径为r ,由椭圆方程分析可得a ,b ,c 的值,由勾股定理分析可得222116AF AF -=,12226AF AF a +==解可得1AF 和2AF 的值,计算可得2ABF 的面积与周长,由内切圆的性质计算可得内切圆半径.【详解】解:设2ABF 内切圆的半径为r ,由椭圆的方程22162x y +=,其中6a =2b =222c a b =-,1224F F c ==.因为AB 是过1F 且垂直于长轴的弦,则有222116AF AF -=,12226AF AF a +== 解得163AF =,263AF =. 2ABF 的周长22106264633l AF BF AB =++=+=.面积12112646422S AB F F =⨯⨯==,由内切圆的性质可知,有12r ⨯=,解得23r =. 故2ABF 内切圆的半径为23. 故答案为:23. 【点睛】本题考查椭圆的几何性质,利用三角形面积公式进行转化是解题关键,属于中档题. 16.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知acosB =bcosA ,6A π∠=,边BC 上的中线长为4.则c =_____;AB BC ⋅=_____.【答案】 (1). 7(2). 967-【解析】 【分析】由正弦定理得sinAcosB =sinBcosA ,计算可得B =A 6π=,由正弦定理可得c =,再结合余弦定理,可求解c ,a ,从而可求解.AB BC ⋅【详解】由acosB =bcosA ,及正弦定理得sinAcosB =sinBcosA , 所以sin (A ﹣B )=0, 故B =A 6π=,所以由正弦定理可得c =, 由余弦定理得16=c 2+(2a )2﹣2c •2a •cos 6π,解得c =;可得a =,可得AB BC ⋅=-accosB 967727=-=-.故答案为:7,967-.【点睛】本题考查了正弦、余弦定理的综合应用,考查了学生综合分析,转化化归,数学运算的能力,属于中档题.三、解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知等比数列{}n a (其中n *∈N ),前n 项和记为n S ,满足:3716S =,且212log 1log n n a a +=-+()1求数列{}n a 的通项公式;()2求数列{}log n n a a ⋅,n *∈N 的前n 项和nT.【答案】()1112n n a +=;()213322nn n T ++=-. 【解析】 【分析】()1设等比数列{}n a 的公比为q ,然后根据对数的运算可得q 的值,再根据等比数列求和公式可得首项1a 的值,即可得到数列{}n a 的通项公式;()2设2log n n n b a a =⋅,然后根据()1题的结果可得{}n b 的通项公式,然后根据通项公式的特点可用错位相减法求出前n 项和n T .【详解】解:()1由题意,设等比数列{}n a 的公比为q ,212log 1log n n a a +=-+,∴12122log log log 1n n n na a a a ++-==-,∴112n n a q a +==.由3716S =,得31127116121a ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣=-⎦,解得114a =. ∴数列{}n a 的通项公式为112n n a +=. ()2由题意,设2log n n n b a a =⋅,则112n n n b ++=-. ∴ 12231231222n n n n b b T b ++⎛⎫++=-+++⎪⎝+⎭=,故231231222n n n T ++-=+++,312212222n n n T n n +++-=+++. 两式相减,可得31221111332222242n n n n T n n +++++-=+++-=-.∴13322n n n T ++=-.【点睛】本题考查等比数列的性质应用,错位相减法求和的方法,考查转化思想,数学运算能力,属于中档题.18.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点(1)证明:BE DC ⊥;(2)若F 为棱PC 上一点,满足BF AC ⊥,求锐二面角F AB P --的余弦值. 【答案】(1)证明见详解;(2310【解析】 【分析】(1)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法证明BE DC ⊥;(2)设(,,)F a b c ,由BF AC ⊥,求出113,,222F ⎛⎫⎪⎭⎝,求出平面ABF 的法向量和平面ABP 的法向量,利用向量法能求出二面角F AB P --的余弦值.【详解】证明:(1)∵在四棱锥P −ABCD 中,P A ⊥底面ABCD ,AD ⊥AB , AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系, B (1,0,0),P (0,0,2),C (2,2,0),E (1,1,1),D (0,2,0),(0,1,1)BE =,(2,0,0)DC =,0BE DC ∴⋅=,∴BE DC ⊥;(2)∵F 为棱PC 上一点,满足BF AC ⊥, ∴设(,,)F a b c ,,[0,1]PF PC λλ=∈,则(,,2)(2,2,2),(2,2,22)a b c F λλλλλλ-=-∴-, (21,2,22),(2,2,0)BF AC λλλ∴=--=, ∵BF AC ⊥,2(21)220BF AC λλ∴⋅=-+⋅=, 解得1113,,,4222F λ⎛⎫=∴ ⎪⎝⎭, 113(1,0,0),,,222AB AF ⎛⎫== ⎪⎝⎭,设平面ABF 的法向量(,,)n x y z =,则0113222n AB x n AF x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,取1z =,得(0,3,1)n =-,平面ABP 的一个法向量(0,1,0)m =, 设二面角F AB P --的平面角为θ, 则||cos 10||||10m n m n θ⋅===⋅,∴二面角F AB P --. 【点睛】本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.十八大以来,党中央提出要在2020年实现全面脱贫,为了实现这一目标,国家对“新农合”(新型农村合作医疗)推出了新政,各级财政提高了对“新农合”的补助标准.提高了各项报销的比例,其中门诊报销比例如下: 表1:新农合门诊报销比例根据以往的数据统计,李村一个结算年度门诊就诊人次情况如下: 表2:李村一个结算年度门诊就诊情况统计表如果一个结算年度每人次到村卫生室、镇卫生院、二甲医院、三甲医院门诊平均费用分别为50元、100元、200元、500元.若李村一个结算年度内去门诊就诊人次为2000人次. (Ⅰ)李村在这个结算年度内去三甲医院门诊就诊的人次中,60岁以上的人次占了80%,从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的概率是多少? (Ⅱ)如果将李村这个结算年度内门诊就诊人次占全村总就诊人次的比例视为概率,求李村这个结算年度每人次用于门诊实付费用(报销后个人应承担部分)X 的分布列与期望. 【答案】(Ⅰ)316495; (Ⅱ)X 的发分布列为:期望61EX . 【解析】 【分析】(Ⅰ)由表2可得去各个门诊的人次比例可得2000人中各个门诊的人数,即可知道去三甲医院的总人数,又有60岁所占的百分比可得60岁以上的人数,进而求出任选2人60岁以上的概率;(Ⅱ)由去各门诊结算的平均费用及表1所报的百分比可得随机变量的可能取值,再由概率可得X 的分布列,进而求出概率.【详解】解:(Ⅰ)由表2可得李村一个结算年度内去门诊就诊人次为2000人次,分别去村卫生室、镇卫生院、二甲医院、三甲医院人数为200070%1400⨯=,200010%200⨯=,200015%300⨯=,20005%100⨯=,而三甲医院门诊就诊的人次中,60岁以上的人次占了80%,所以去三甲医院门诊就诊的人次中,60岁以上的人数为:10080%80⨯=人,设从去三甲医院门诊就诊的人次中任选2人次,恰好2人次都是60岁以上人次的事件记为A ,则()2802100316495C P A C ==;(Ⅱ)由题意可得随机变量X 的可能取值为:50500.620-⨯=,1001000.460-⨯=,2002000.3140-⨯=,5005000.2400-⨯=,(20)0.7p X ==,(60)0.1P X ==,(140)0.15P X ==,(400)0.05P X ==,所以X 的发分布列为:所以可得期望200.7600.11400.154000.0561EX =⨯+⨯+⨯+⨯=.【点睛】本题主要考查互斥事件、随机事件的概率计算公式、分布列及其数学期望、组合计算公式,考查了推理能力与计算能力,属于中档题.20.在直角坐标系xOy 中,已知点()1,0P 、Q (x ,y ),若以线段PQ 为直径的圆与y 轴相切. (1)求点Q 的轨迹C 的方程;(2)若C 上存在两动点A B ,(A ,B 在x 轴异侧)满足32⋅=OA OB ,且PAB △的周长为22AB +,求AB 的值.【答案】(1)24y x =;(2)48AB =【解析】 【分析】(1)设(),Q x y 122+=⨯x ,化简后可得轨迹C 的方程.(2)设直线:AB x my n =+,联立直线方程和抛物线方程后利用韦达定理化简32⋅=OA OB 并求得8n =,结合焦半径公式及弦长公式可求m 的值及AB 的长. 【详解】(1)设(),Q x y ,则圆心的坐标为1,22x y +⎛⎫⎪⎝⎭, 因为以线段PQ 为直径的圆与y 轴相切,122+=⨯x , 化简得C 的方程为24y x =.(2)由题意0AB k ≠,设直线:AB x my n =+, 联立24y x =得2440y my n --=, 设()()1122,,A B x y x y , (其中120y y <) 所以124y y m +=,124y y n ⋅=-,且0n >,因为32⋅=OA OB ,所以22121212123216⋅=+=+=y y OA OB x x y y y y ,2432n n -=,所以()()840n n -+=,故8n =或4n =- (舍), 直线:8AB x my =+, 因为PAB ∆的周长为22AB + 所以22PA PB AB AB ++=+ 即2PA PB AB +=+,因为()21212218418PA PB x x m y y m +=++=++=+.又12AB y =-==所以24182m +=,解得m =±所以48AB ===.【点睛】本题考查曲线方程以及抛物线中的弦长计算,还涉及到向量的数量积.一般地,抛物线中的弦长问题,一般可通过联立方程组并消元得到关于x 或y 的一元二次方程,再把已知等式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x +或1212,y y y y +,最后利用韦达定理把关系式转化为某一个变量的方程.本题属于中档题. 21.已知函数2()cos 2a f x x x =+(a ∈R ),()f x '是()f x 的导数. (1)当1a =时,令()()ln h x f x x x '=-+,()h x '为()h x 的导数.证明:()h x '在区间0,2π⎛⎫⎪⎝⎭存在唯一的极小值点; (2)已知函数42(2)3y f x x =-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围. 【答案】(1)见解析;(2)1a ≤ 【解析】 【分析】(1)设1()()cos g x h x x x '==-,'21()sin g x x x -=+,注意到'()g x 在0,2π⎛⎫⎪⎝⎭上单增,再利用零点存在性定理即可解决;(2)函数42(2)3y f x x =-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则'0y ≤在0,2π⎡⎤⎢⎥⎣⎦恒成立,即342sin 203ax x x --≤在0,2π⎡⎤⎢⎥⎣⎦上恒成立,构造函数34()2sin 23m x ax x x =--,求导讨论()m x 的最值即可.【详解】(1)由已知,'()sin f x x x =-,所以()ln sin h x x x =-, 设'1()()cos g x h x x x ==-,'21()sin g x x x-=+, 当0,2x π⎛⎫∈ ⎪⎝⎭时,'()g x 单调递增,而(1)0g '<,'02g π⎛⎫>⎪⎝⎭,且'()g x 在0,2π⎛⎫ ⎪⎝⎭上图象连续不断.所以'()g x 在0,2π⎛⎫⎪⎝⎭上有唯一零点α, 当(0,)x α∈时,'()0g x <;当,2x α⎛π⎫∈ ⎪⎝⎭时,'()0g x >; ∴()g x 在(0,)α单调递减,在,2απ⎛⎫ ⎪⎝⎭单调递增,故()g x 在区间0,2π⎛⎫⎪⎝⎭上存在唯一的极小值点,即()h x '在区间0,2π⎛⎫⎪⎝⎭上存在唯一的极小值点; (2)设()sin k x x x =-,[)0,x ∈+∞,()1cos 0k x x '=-≥, ∴()k x 在[)0,+∞单调递增,()(0)0k x k ≥=, 即sin x x ≥,从而sin 22x x ≤, 因为函数42(2)3y f x x =-在0,2π⎡⎤⎢⎥⎣⎦上单调递减, ∴34()2sin 203m x ax x x =--≤0,2π⎡⎤⎢⎥⎣⎦上恒成立, 令'2()22cos24()m x a x x p x =--=, ∵sin 22x x ≤,∴'()4sin 280p x x x =-≤,'()m x 在0,2π⎡⎤⎢⎥⎣⎦上单调递减,''max ()(0)22m x m a ==-,当1a ≤时,'()0m x ≤,则()m x 在0,2π⎡⎤⎢⎥⎣⎦上单调递减,()(0)0m x m ≤=,符合题意.当1a >时,'()m x 在0,2π⎡⎤⎢⎥⎣⎦上单调递减,'(0)220m a =->所以一定存在00,2x π⎛⎫∈ ⎪⎝⎭,当00x x ≤<时,()0m x '>,()m x 在[)00,x 上单调递增,()0(0)0m x m >=与题意不符,舍去.综上,a 的取值范围是1a ≤【点睛】本题考查利用导数研究函数的极值点、不等式恒成立问题,在处理恒成立问题时,通常是构造函数,转化成函数的最值来处理,本题是一道较难的题.请考生在22,23,题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.选修4-4:坐标系与参数方程22.已知曲线C 的极坐标方程是4cos ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是: x m y ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数). ()1若直线l 与曲线C 相交于A 、B两点,且AB =m 值.()2设(),M x y 为曲线C 上任意一点,求x y +的取值范围.【答案】()11m =或3m =;()22⎡-+⎣.【解析】【分析】()1把曲线C 的极坐标方程化为直角坐标方程,利用圆心到直线的距离求出m 值; ()2把曲线C 的普通方程化为参数方程,利用三角恒等变换求出x y +的取值范围.【详解】解:()1曲线C 的极坐标方程是4cos ρθ=化为直角坐标方程为:2240x y x +-=,直线l 的直角坐标方程为:y x m =-.∴圆心到直线l的距离(弦心距)2d ==, 圆心()2,0到直线y x m =-的距离为2=, ∴21m -=∴1m =或3m =.()2曲线C 的方程可化为()2224x y -+=,其参数方程为: 22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)(),M x y 为曲线C 上任意一点,24x y πθ⎛⎫+=++ ⎪⎝⎭ x y ∴+的取值范围是2⎡-+⎣. 【点睛】本题考查参数方程与极坐标的应用,属于中档题.选修4—5;不等式选讲.23.已知函数()2121f x x x =-++,记不等式()4f x <的解集为M .(1)求M ;(2)设,a b M ∈,证明:10ab a b --+>.【答案】(1){}|11x x -<<;(2)证明见解析【解析】【分析】(1)利用零点分段法将()f x 表示为分段函数的形式,由此解不等式求得不等式的解集M . (2)将不等式坐标因式分解,结合(1)的结论证得不等式成立.【详解】(1)解:()14,2112,2214,2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩, 由()4f x <,解得11x -<<,故{}|11M x x =-<<.(2)证明:因为,a b M ∈,所以1a <,1b <, 所以()()()1110ab a b a b -++=-->, 所以10ab a b --+>.【点睛】本小题主要考查绝对值不等式的解法,考查不等式的证明,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2020年银川九中、石嘴山三中、平罗中学三校联考
(理科)数学试卷
注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{1,1},A =-2{|20,}B x x x x Z =+-<∈,则U A B =
A. {1}-
B. {1,1}-
C. {1,0,1}-
D. {1,0,1,2}-
2.若a 为实数,则复数()()1z a i ai =++在复平面内对应的点在
A .第一象限
B .第二象限
C .实轴上
D .虚轴上
3.已知a ,b 是两条不同的直线,α,β是两个不同的平面,且a β⊂,b αβ=I ,则“//a α”是“//a b ”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.已知α为第二象限角,33cos sin =+αα,则α2cos 等于 A .-5 B .-5C .5 D .5
5.在Rt ABC ∆中,D 为BC 的中点,且AB 6AC 8==,,则BC AD ⋅的值为
A 、28-
B 、28
C 、14-
D 、14
6.如图所示,虚线部分是四个象限的角平分线,实线部分是函数)(x f y =的部分图象,则)(x f 可能是
A .x x sin
B .x x cos
C .x x cos 2
D .x x sin 2
7. 七巧板是中国古代劳动人民发明的一种传统智力玩具,它由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成.(清)陆以湉《冷庐杂识》卷中写道:近又有七巧图,其式五,其数七,其变化之式多至千余,体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为
A .516
B .1132
C .716
D .1332 8.将函数)42sin(2)(π+
=x x f 的图象向右平移ϕ(ϕ>0)个单位,再将图象上每一点横坐标缩短到原来的1
2倍,所得图象关于直线4π
=x 对称,则ϕ的最
小正值为 A .π8 B .3π8 C .3π4 D .π2
9.设n S 是数列{}n b 的前n 项和,若2n n n a S +=,()*2122N n b n n a a n ++=-∈,则数列1n nb ⎧⎫⎨⎬⎩⎭
的前99项和为
A .9798
B .9899
C .99100
D .100101 10.已知函数()|ln |f x x =,若0a b <<.且()()f a f b =,则2a b +的取值范围是
A .(22,)+∞
B .)22,⎡+∞⎣
C .(3,)+∞
D .[
)3,+∞ 11.F 是双曲线()22
22:10,0x y C a b a b
-=>>的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于点B ,若2AF FB =u u u r u u u r
,则C 的离心率是 A .233B .143
C .2
D .2 12.设函数)(x f (x ∈R)满足)()(x f x f =-,)2()(x f x f -=,且当x ∈[0,1]时,3)(x x f =.又函数
|)cos(|)(x x x g π=,则函数)()()(x f x g x h -=在[-12,32
]上的零点个数为 A .5 B .6 C .7 D .8
二、填空题(本题共4小题,每小题5分,共20分) 13.71()7x x -的展开式的第3项为 14.《周髀算经》中一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立
夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为
15.已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC ∆满6BA BC ==
,2ABC π∠=,
若该三棱锥体积的最大值为3.则其外接球的体积为
16.如图所示,已知椭圆E 经过点A(2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e=12.直线l 是∠F 1AF 2的平分线,则椭圆E 的方程是 ,l 所在的的直线方程是
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答。
17. (本小题满分12分)
如图,CM ,CN 为某公园景观湖胖的两条木栈道,∠MCN =120°,现拟在两条木栈道的A ,B 处设置观景台,
记BC =a ,AC =b ,AB =c (单位:百米)
(1)若a ,b ,c 成等差数列,且公差为4,求b 的值;
(2)已知AB =12,记∠ABC =θ,试用θ表示观景路线A -C -B 的长,
并求观景路线A -C -B 长的最大值.
18. (本小题满分12分)
如图,在三棱柱111ABC A B C AB -⊥中,侧面111,BCC B AC AB =. (1)求证:平面1ABC ⊥平面1AB C ;
(2)若12,60AB BC BCC ==∠=o ,求二面角11B AC B --的余弦值.
19.(本小题满分12分)
绿水青山就是金山银山.某山村为做好水土保持,退耕还林,在本村的山坡上种植水果,并推出山村游等旅游项目.为预估今年7月份游客购买水果的情况,随机抽样统计了去年7月份100名游客的购买金
额.分组如下:[0,20),[20,40),L [100,120],得到如图所示的频率分布直方图:
(1)请用抽样的数据估计今年7月份游客人均购买水果的金额(同一组中的数据用该组区间中点作代表).
(2)若把去年7月份购买水果不低于80元的游客,称为
“水果达人”.填写下面列联表,并根据列联表判断是否
有95%的把握认为“水果达人”与性别有关系?
(3)为吸引顾客,商家特推出两种促销方案.方案一:每
满80元可立减10元;方案二:金额超过80元可抽奖三次,每次中奖的概率为12,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.若每斤水
果10元,你打算购买12斤水果,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.
附:参考公式和数据:2
2
()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.临界值表: 0k
2.072 2.706
3.841 6.635 7.879 20()P K k ≥ 0.150 0.100 0.050 0.010 0.005
20.(本小题满分12分)
已知抛物线:
上一点到其焦点的距离为10.
(1)求抛物线的方程;
(2)设过焦点的直线与抛物线交于,两点,且抛物线在,两点处的切线分别交轴于,两
点,求的取值范围. 21.(本小题满分12分)
已知函数2
()x f x e ax =-,其中常数a R ∈. (1)当(0,)x ∈+∞时,不等式()0f x >恒成立,求实数a 的取值范围;
(2)若1a =,且[0,)x ∈+∞时,求证:2
()414f x x x >+-. 水果达人 非水果达人 合计
男 10 女 30 合计
请考生在第22、23题中任选一题作答,如果多选,则按所做的第一题计分。
22.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy 中,曲线C
的参数方程是cos x y ϕϕ
=⎧⎪⎨=⎪⎩(ϕ为参数)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,A ,B 为曲线C 上两点,且OA OB ⊥,设射线OA :02πθαα⎛⎫=<< ⎪⎝
⎭. (1)求曲线C 的极坐标方程;
(2)求OA OB ⋅的最小值.
23.(本小题满分10分)选修4-5:不等式选讲
已知函数|1|||)(++=x x x f .
(1)若|1|)(-≥m x f 恒成立,求实数m 的最大值M ;
(2)在(1)成立的条件下,正数b a ,满足M b a =+22,证明:ab b a 2≥+.。