2014高考数学小题限时训练19

合集下载

2014高考数学小题限时训练12

2014高考数学小题限时训练12

2014高考数学(理科)小题限时训练1215小题共75分,时量:45分钟,考试时间:晚21:40—22:10 姓名 一、选择题:本大题共8小题,每小题5分,共40分.1.设全集U =R ,集合{|1}A x x =>-,{|2}B x x =>,则U A B = ð ( ) A .{|12}x x -≤< B .{|12}x x -<≤ C .{|1}x x <- D .{|2}x x >2.已知命题p :(,0),23xxx ∃∈-∞<;命题q :(0,),tan sin 2x x x π∀∈>,则下列命题为真命题的是 ( )A. p ∧qB. p ∨(﹁q)C. (﹁p)∧qD. p ∧(﹁q) 3.函数2()log f x x x π=+的零点所在区间为( )A .⎥⎦⎤⎢⎣⎡81,0B .⎥⎦⎤⎢⎣⎡41,81 C.⎥⎦⎤⎢⎣⎡21,41 D.⎥⎦⎤⎢⎣⎡1,214.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x的是( ) A .()f x =1xB. ()f x =2(1)x - C .()f x =xe D ()ln(1)f x x =+ 5.若函数y =()f x 的图象过点()0,1,则函数y=()4f x -的图象必过点( ) A . ()3,0 B .()1,4 C . ()4,1 D .()0,36.已知函数()f x 是定义在R 上的奇函数,且对任意x ∈R 有()(2)f x f x =-成立,则(2010)f 的值为 ( )A.0B. 1C.-1D. 2 7.函数在同一直角坐标系下的图象大致是 ( )8.设()f x 与()g x 是定义在同一区间[a ,b ]上的两个函数,若对任意x ∈[a ,b ],都有|()()|1f x g x -≤成立,则称()f x 和()g x 在[a ,b ]上是“密切函数”,区间[a ,b ]称为“密切区间”.若2()34f x x x =-+与()23g x x =-在[a ,b ]上是“密切函数”,则其“密切区间”可以是 ( )A. [1,4]B. [2,4]C. [3,4]D. [2,3] 二、填空题:本大题共7小题,每小题5分,共35分。

2014年全国各地高考数学试题及解答分类大全(不等式)

2014年全国各地高考数学试题及解答分类大全(不等式)

2014年全国各地高考数学试题及解答分类大全(不等式)一、选择题:1(2014安徽理)y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a 的值为()A,121-或 B.212或 C.2或1 D.12-或解析:数形结合求解。

考点:1.线性规划求参数的值.2.(2014福建文)要制作一个容积为34m ,高为1m 的无盖长方体容器,已知该溶器的底面造价是每平方米20元,侧面造价是是每平方米10元,则该容器的最低总造价是().80.120.160.240A B C D 元元元元3.(2014福建文)已知圆()()22:1C x a y b -+-=,设平面区域70,70,0x y x y y +-≤⎧⎪Ω=-+≥⎨⎪≥⎩,若圆心C =Ω,且圆C 与x 轴相切,则22a b +的最大值为().5.29.37.49A B C D 4.(2014北京理)若x 、y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为()A.2B.2-C.12D.12-【答案】D 【解析】可行域如图所示,当0>k 时,知x y z -=无最小值,当0<k 时,目标函数线过可行域内A点时z 有最小值,联立⎩⎨⎧=+-=020y kx y ,解之得⎪⎭⎫ ⎝⎛-0,2k A ,420min -=+=k z ,即21-=k .5、(2014广东文)若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于A.7B.8C .10 D.11答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10.选C.6.(2014广东理)若变量x 、y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≤-⎩,且2z x y =+的最大值和最小值分别为M和m ,则M m -=()A.8B.7C.6D.5截距最大,此时z 取最大值M ,即()2213M =⨯+-=;()336M m -=--=,故选C.7.(2014湖北文)若变量x ,y+y ≤4,-y ≤2,≥0,y ≥0,则2x +y 的最大值是()A .2B .4C .7D .84.C[解析]+y ≤4,-y ≤2,≥0,y ≥0表示的可行域如下图阴影部分所示.设z =2x +y ,平移直线2x +y =0,易知在直线x +y =4与直线x -y =2的交点A (3,1)处,z =2x2=-+y x 02=+-y kx A=-x y+y 取得最大值7.故选C.8.(2014湖北理)由不等式组x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.18B.14C.34D.787.D [解析]作出Ω1,Ω2表示的平面区域如图所示,S Ω1=S △AOB =12×2×2=2,S △BCE =12×1×12=14,则S 四边形AOEC =S Ω1-S △BCE =2-14=74.故由几何概型得,所求的概率P =S 四边形AOEC S Ω1=742=78.故选D.9.(2014江西理)(不等式选做题)对任意,x y R ∈,111x x y y -++-++的最小值为()A.1 B.2 C.3 D.4【答案】B【解析】()|1||||1||1|1||11|123x x y y x x y y -++-++≥--+--+=+=10.(2014全国大纲文)不等式组(2)0||1x x x +>⎧⎨<⎩的解集为()A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >11.(2014全国新课标Ⅰ文)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5(B )3(C )-5或3(D )5或-3【答案】:B 【解析】:画出不等式组对应的平面区域,如图所示.在平面区域内,平移直线0x ay +=,可知在点A 11,22a a -+⎛⎫⎪⎝⎭处,z 取得最值,故117,22a a a -++=解之得a = -5或a = 3.但a = -5时,z取得最大值,故舍去,答案为a = 3.选B.12.(2014全国新课标Ⅰ理)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3P B .1p ,4p C.1p ,2p D .1p ,3P 【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.13.(2014全国新课标Ⅱ文)设x ,y 满足约束条件0103310x y x y x y ≥⎧⎪--≤⎨⎪-+≥-⎩+,则z =2x +y 的最大值为()A.8B.7C.2D.1【答案解析】A.解析:作图即可.考点:考查二元一次不等式组的应用,中等题.14.(2014全国新课标Ⅱ理)设x ,y 满足约束条件03103507x y x x y y ≤⎧⎪-+≤⎨⎪--≥-⎩+,则z =2x -y 的最大值为()A.10B.8C.3D.2【答案解析】B.解析:作图即可.考点:考查二元一次不等式组的应用,中等题.15.(2014山东理)已知实数,x y 满足xya a <(01a <<),则下列关系式恒成立的是(A )221111x y >++(B )22ln(1)ln(1)x y +>+(C )sin sin x y >(D )22x y>15.【答案】D【解析】y x a a a yx>∴<<<10, 但不能判断22y x >(如1,0-==y x )∴排除A,B;x y sin = 是周期函数,∴排除C;3x y = 是单调递增函数,∴D 正确.16.(2014山东文)已知实数,x y 满足(01)x ya a a <<<,则下列关系式恒成立的是(A)33x y>(B)sin sin x y >(C)22ln(1)ln(1)x y +>+(D)221111x y >++16.【答案】A【解析】由)10(<<<a a a yx得,y x >,但是不可以确定2x 与2y 的大小关系,故C 、D 排除,而x y sin =本身是一个周期函数,故B 也不对,33y x >正确。

2014高考数学全国卷模拟试题19

2014高考数学全国卷模拟试题19

高考(文科)数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合U ={1,2,3,4,5,6,7},A ={1,2,4},B ={1,3,5},则A ∩cUB =( )A. {2,4,6}B. {1,3,5}C. {3,5}D. {2,4} 2. 直线1l :kx -y -3=0和2l :x +(2k +3)y -2=0互相垂直,则k = ( )A. -3B. -2C. -12或-1 D.12或13. 复数55i12i+的虚部是( )A. -1B. 1C. iD. -i4. 若a >b >0,则下列不等式不.成立的是( )A. a b +<B. 1122a b > C. ln a >ln b D. 0.30.3a b <5. 某程序的框图如图所示,则运行该程序后输出的B 的值是( )A. 5B. 11C. 23D. 476. 已知α为锐角,cos α=55,则tan π24α⎛⎫+ ⎪⎝⎭=( )A. -3B. -17C. - 43D. -77. 若实数x ,y 满足条件 ,目标函数z =x +y ,则( )A. z max =0B. z max =52C. z min =52D. z max =38. 已知直线βα平面直线平面⊂⊥m ,l ,有下面四个命题:(1)ml ⊥⇒βα//;(2)ml //⇒⊥βα;(3)βα⊥⇒m l //;(4)βα//⇒⊥m l.其中正确的命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)9. 已知函数f (x )= ,若0x 是y =()f x 的 零点,且0<t <0x ,则f(t) ( )A. 恒小于0B. 恒大于0C. 等于0D. 不大于0 10. 在数列{a n }中,a 1=1,a n +1-a n =n (n ∈N *),则a 100的值为( ) A .5050 B .5051 C .4950 D .495132x x -21log (0)3x x x ⎛⎫-> ⎪⎝⎭(x ≤0)x +2y -5≤02x +y -4≤0 x ≥0y ≥111. 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如下图所示,左视图是一个矩形,则这个矩形的面积是( ) A .4 B .2 3 C .2 D.3 12. 曲线y =e-2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D .1第Ⅱ卷(非选择题 共90分)二、 填空题:本大题共4个小题,每小题5分,共20分.13. 在△ABC 中,sin 2C A sin B +sin 2B ,a b ,则角C = 14. 在等比数列{a n }中,a n >0(n ∈N ﹡),且a 6-a 4=24,a 3a 5=64,则{a n }的前6项和是 15. 过双曲线22221(0,0)x y a b ab-=>>的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原点)的垂直平 分线上,则双曲线的离心率为 16. 观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49 ……照此规律,第n 个等式为 .三、 解答题:本大题共6个小题.共70分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知等差数列{a n }的前n 项和为S n ,S 5=35,a 5和a 7的等差中项为13.(Ⅰ) 求a n 及S n ; (Ⅱ) 令241n nb a =-(n ∈N ﹡),求数列{b n }的前n 项和T n .18. (本小题满分12分)已知向量m =(2co s ωx ,-1),n =(si n ωx -co s ωx ,2),函数f (x )= m ·n+3的周期为π. (Ⅰ) 求正数ω;(Ⅱ) 若函数f (x )的图像向左平移π8g (x )的图像,求函数g (x )的单调增区间.19. (本小题满分12分) 《体育高考方案》于2012年2月份公布,方案要求以学校为 单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试 ,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段 的人数为2人. (Ⅰ) 请估计一下这组数据的平均数M ;(Ⅱ) 现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20, 则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.20. (本小题满分12分)如图,在正三棱柱ABC -A 1B 1C 1中,底面ABC 为正三角形,M 、N 、G 分别是棱CC 1、AB 、BC 的中点.且CC 1= .(Ⅰ) 求证:CN //平面 AMB 1; (Ⅱ) 求证:B 1M ⊥平面AMG .第19题图21. (本小题满分12分)已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.22. (本小题满分12分)已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2, 2),且抛物线y2= 的焦点为F1.(Ⅰ) 求椭圆E的方程;(Ⅱ) 垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.2012年3月济南市高考模拟考试数学(文史类)参考答案一、 选择题1. D2. A3. B4. A5. C6. B7. D8. C9. B 10. A 11. A 12. D 二、 填空题 13.π614. 6315. 16. n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2三、 解答题17. 解:(Ⅰ) 设等差数列{a n }的公差为d ,因为S 5=5a 3=35,a 5+a 7=26,所以有112721026a d a d +=⎧⎨+=⎩,…………………………………………………………………2分解得a 1=3,d =2,…………………………………………………………………4分 所以a n =3+2(n -1)=2n +1;S n =3n +(1)2n n -×2=n 2+2n.………………………6分 (Ⅱ) 由(Ⅰ)知a n =2n +1,所以b n =241n a -= 1(1)n n +…………………………8分= 111nn -+,……………………………………………………………… 10分所以T n = 11111111223111n n n n n ⎛⎫⎛⎫⎛⎫-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭….……12分 18. 解:(Ⅰ)f (x )=(2cos ωx ,-1)·(sin ωx -cos ωx ,2)+3……………………………………………1分=2cos ωx (sin ωx -cos ωx )+1………………………………………………………2分 =2sin ωx cos ωx -2cos 2ωx +1………………………………………………………3分 =sin2ωx -cos2ωx ……………………………………………………………… 4分=sin 24x πω⎛⎫-⎪⎝⎭………………………………………………………… 5分 ∵T =π,且ω>0,∴ω=1.……………………………………………………… 6分 ( Ⅱ) 由(Ⅰ)知:f (x)=π24x ⎛⎫- ⎪⎝⎭…………………………………… 7分g (x)=ππ284x ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦=2sin2x …………………………………9分∴2k π-π2≤2x ≤2k π+π2,k ∈Z ;……………………………………………10分∴k π-π4≤x ≤k π+π4,k ∈Z ;…………………………………………… 11分∴函数g(x)的单调增区间为πππ,π+44k k⎡⎤-⎢⎥⎣⎦,k∈Z.……………………12分19. 解:(Ⅰ)由频率分布直方图可知:50~60分的频率为0.1,60~70分的频率为0.25,70~80分的频率为0.45,80~90分的频率为0.15,90~100分的频率为0.05;……………………………………………………………………2分∴这组数据的平均数M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)…………………………………………………………………………………4分(Ⅱ)∵90~100分数段的人数为2人,频率为0.05;∴参加测试的总人数为20.05=40人, (5)分∴50~60分数段的人数为40×0.1=4人,…………………………………6分设第一组50~60分数段的同学为A1,A2,A3,A4;第五组90~100分数段的同学为B1,B2……………………………………………………………………7分则从中选出两人的选法有:(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15种;………………………………………………………………………………………9分其中两人成绩差大于20的选法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8种………………………………………11分则选出的两人为“帮扶组”的概率为P=815………………………………12分20. 解:(Ⅰ)设AB1的中点为P,连结NP、MP……………… 1分∵CM 12AA1,NP12AA1,∴CM NP,…2分∴CNPM是平行四边形,∴CN∥MP……………3分∵CN⊄平面AMB1,MP⊂平面AMB1,∴CN∥平面AMB1……………………………………………4分(Ⅱ)∵CC1⊥平面ABC,∴平面CC1B1B⊥平面ABC,∵AG⊥BC,∴AG⊥平面CC1B1B,∴B1M⊥AG.…………………………………………………………6分∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1C,第20题图设:AC=2a,则CC1在Rt△MCA中,AM=……………………………8分同理,B1M a……………………………………………………………9分∵BB 1∥CC 1,∴BB 1⊥平面ABC ,∴BB 1⊥AB ,∴AB 1==,∴AM 2+B 1M 2=21A B ,∴B 1M ⊥AM ,………………………………………10分 又AG ∩AM =A ,∴B 1M ⊥平面AMG ..………………………………………12分21. 解:(Ⅰ) 设点C 受A 污染源污染指数为ka x,点C 受B 污染源污染指数为36kb x-,其中k 为比例系数,且k >0. ………………………………………………2分 从而点C 处污染指数(036)36ka kb y x x x=+<<-………………………4分(Ⅱ) 因为a =1,所以,36k kb y xx=+-,……………………………………… 5分y ′=221(36)bk xx ⎡⎤-+⎢⎥-⎣⎦,…………………………………………………7分 令y ′=0,得x =,……………………………………………………9分当x ∈⎛ ⎝时,函数单调递减;当x ∈⎛⎫+∞ ⎪⎝⎭时,函数单调递增.∴当36x =时,函数取得最小值…………………………………… 11分又此时x =6,解得b =25,经验证符合题意.所以,污染源B 的污染强度b 的值为25…………………………………12分22. 解:(Ⅰ) 设椭圆E 的方程为22221(0)x y a b ab+=>>,…………………………… 1分则22441ab+=,①………………………………………………………… 2分∵抛物线2y =-的焦点为F 1∴c = ②………………………………………………………………3分又a 2=b 2+c 2 ③由①、②、③得a 2=12,b 2=6……………………………………………… 5分 所以椭圆E 的方程为221126xy+=………………………………………… 6分(Ⅱ) 依题意,直线OC 斜率为1,由此设直线l 的方程为y =-x +m ,………… 7分代入椭圆E 方程,得3x 2-4mx +2m 2-12=0. ………………………………… 8分由Δ=16m 2-12(2m 2-12)=8(18-m 2),得m 2<18. ………………………………9分HLLYBQ 整理 供“高中试卷网( )”·8·记A (x 1,y 1)、B (x 2,y 2),则x 1+x 2=43m ,x 1x 2=22123m -………………10分圆P 的圆心为1212,22x x y y ++⎛⎫⎪⎝⎭,半径12||2r x x =-=1分当圆P 与y 轴相切时,122x x r +=,则2x 1x 2=212()4x x +,即222(212)439m m -=,m 2=9<18,m =±3………………………………12分当m =3时,直线l 方程为y =-x +3,此时,x 1+x 2=4,圆心为(2,1),半径为2,圆P 的方程为(x -2)2+(y -1)2=4;……………………………………………13分 同理,当m =-3时,直线l 方程为y =-x -3,圆P 的方程为(x +2)2+(y +1)2=4…………………………………………… 14 分。

2014高考数学(理科)小题限时训练33

2014高考数学(理科)小题限时训练33

2014高考数学(理科)小题限时训练3315小题共75分,时量:45分钟,考试时间:晚21:40—22:10 姓名 一、选择题(8小题,每小题5分共40分)1.设全集{}1,2,3,4,5U =,集合{1,2,4}A =,{4,5}B =,则图中的阴影部分表示的集合为( )A .{}1,2B .{}3,5C .{}4D . {}5 2. 对任意实数,若不等式恒成则的取值范围是( ) A .B .C .D .3.用若干个棱长为1cm 的小正方体叠成一个几何体,图1为其正视图,图2为其俯视图,若这个几何体的体积为7cm 3,则其侧视图为 ( )4.若二项式6)1(xx a -的展开式中的常数项为320p -,则⎰=axdx 0sin ( )A .-2B .0C .1D .25.在区间[—1,1]上随机取一个数k ,使直线y=k (x+2)与圆221x y +=相交的概率为( )A .12B .13C.3D.26.已知向量y x b a ,,,满足1||||==b a ,0=⋅b a ,且⎩⎨⎧-=+-=y x b yx a 2,则|y ||x |+等于( )A .32+B .52+C .53+D .7 7.方程94321=+++x x x x 的正整数解的组数为( )A. 28B. 36C. 42D. 568.已知31,0()3,0x x f x xx x ⎧+>⎪=⎨⎪+≤⎩,则2(2)f x x a +=(2a >)的根的个数不可能为 ( ) A .3 B. 4 C. 5 D. 6二、填空题(本大题共7小题,每小题5分,共35分.)(一)选做题(请在第9,10,11三题中任选两题作答,如果全做,则按前两题记分) 9.某品牌槟榔在制作时需添加某种香料,添加范围是[]90,10,为了找到最优效果,准备用分数法进行4次优选试验 ,则第二次试点可以是 _____ 10.在极坐标系中,点⎪⎭⎫⎝⎛2,1πP 到曲线2234cos :=⎪⎭⎫ ⎝⎛+πθρl 上的点的最短距离是_____ 11. .如图,半径为2的⊙O 中,90AOB ∠=︒,D 为OB 的中点,AD 的延长线交⊙O 于点E ,则线段DE 的长为 (二)必做题( 12-16题)12.若奇函数()y f x =的定义域为[4,4]-,其部分图像如右图所示, 则 不等式()ln(21)0xf x -<的解集是13. 已知等差数列}{n a 的前n 项和为n S ,若1)1(5)1(232=-+-a a ,()()3201120111511aa -+-=-,则2012S =14. 在ABC ∆中,已知三角形的面积4222c b a S -+=,则角C=____________15. 已知点A (-2,0),B (2,0),动点P 满足∠APB=2θ,且2sin 2=∙∙θPB PA .则动点P 的轨迹方程 为 . 16.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横纵坐标分别对应数列{}*()n a n N ∈的前12项,如下表所示:按如此规律下去,则200920102011a a a ++= .9. 10. 11. 12 13. 14 15 16答案:一.DBCA CBDA二.9. 40或60(只写出其中一个也正确) 10. 22 11. 12. (1,2 ) 13. 2012 14. 4π15. 222x y -= 16. 1005。

2014高考数学终极冲刺押题卷函数、导数、不等式的综合问题

2014高考数学终极冲刺押题卷函数、导数、不等式的综合问题

2014高考数学终极冲刺押题卷:函数、导数、不等式的综合问题一、选择题(每小题5分,共25分)1.下面四个图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)等于( ).A.13 B .-13C.73D .-13或532.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( ).A .1 B.12 C.52 D.223.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( ).A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝ ⎛⎭⎪⎫32,+∞C.⎝⎛⎦⎥⎤-∞,32D.⎝⎛⎭⎪⎫-∞,324.已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值等于( ). A .1 B .2 C .0 D. 25.设a ∈R ,若函数y =e ax+3x ,x ∈R 有大于零的极值点,则( ).A .a >-3B . a <-3C .a >-13D .a <-13二、填空题(每小题5分,共15分)6.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于________.7.函数f (x )=13x 3-x 2+ax -5在区间[-1,2]上不单调,则实数a 的范围是________.8.关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是________. 三、解答题(本题共3小题,共35分)9.(11分)已知函数f (x )=13x 3-a +12x 2+bx +a .(a ,b ∈R )的导函数f ′(x )的图象过原点.(1)当a =1时,求函数f (x )的图象在x =3处的切线方程; (2)若存在x <0,使得f ′(x )=-9,求a 的最大值.10.(12分)已知a ,b 为常数,且a ≠0,函数f (x )=-ax +b +ax ln x ,f (e)=2(e =2.718 28…是自然对数的底数). (1)求实数b 的值;(2)求函数f (x )的单调区间;(3)当a =1时,是否同时存在实数m 和M (m <M ),使得对每一个t ∈[m , M ],直线y =t与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点?若存在,求出最小的实数m 和最大的实数M ;若不存在,说明理由.11.(12分)已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)对一切的x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围; (3)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x.参考答案1.D [∵f ′(x )=x 2+2ax +a 2-1,∴f ′(x )的图象开口向上,若图象不过原点,则a =0时,f (-1)=53,若图象过原点,则a 2-1=0,又对称轴x =-a >0,∴a =-1,∴f (-1)=-13.] 2.D [|MN |的最小值,即函数h (x )=x 2-ln x 的最小值,h ′(x )=2x -1x =2x 2-1x,显然x=22是函数h (x )在其定义域内唯一的极小值点,也是最小值点,故t =22.] 3.A [因为函数f (x )=12x 4-2x 3+3m ,所以f ′(x )=2x 3-6x 2,令f ′(x )=0,得x =0或x=3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272,不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32.]4.B [∵函数f (x )=x 2-ax +3在(0,1)上为减函数,∴a 2≥1,得a ≥2.又∵g ′(x )=2x -ax ,依题意g ′(x )≥0在x ∈(1,2)上恒成立,得2x 2≥a 在x ∈(1, 2)上恒成立,有a ≤2,∴a =2.]5.B [令f (x )=e ax+3x ,可求得f ′(x )=3+a e ax ,若函数在x ∈R 上有大于零的极值点,即f ′(x )=3+a e ax =0有正根.当f ′(x )=3+a e ax=0成立时,显然有a <0,此时x =1a ln ⎝ ⎛⎭⎪⎫-3a .由x >0,解得a <-3,∴a 的取值范围为(-∞,-3).]6.解析 由题得f ′ (x )=12x 2-2ax -2b =0,∴f ′(1)=12-2a -2b =0,∴a +b =6.∴a +b ≥2ab ,∴6≥2ab ,∴ab ≤9,当且仅当a =b =3时取到最大值. 答案 97.解析 ∵f (x )=13x 3-x 2+ax -5,∴ f ′(x )=x 2-2x +a =(x -1)2+a -1,如果函数f (x )=13x 3-x 2+ax -5在区间[-1,2]上单调,那么a -1≥0或f ′(-1)=3+a ≤0且f ′(2)=a ≤0,∴a ≥1或a ≤-3.于是满足条件的a ∈(-3,1). 答案 (-3,1)8.解析 由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可,又f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0得,x 1=0,x 2=2,当x <0时,f ′(x )>0;当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,所以当x =0时,f (x )取得极大值,即f (x )极大值=f (0)=-a ;当x =2时,f (x )取得极小值,即f (x )极小值=f (2)=-4-a ,所以⎩⎪⎨⎪⎧-a >0-4-a <0,解得-4<a <0.答案 (-4,0)9.解 由已知,得f ′(x )=x 2-(a +1)x +b .由f ′(0)=0,得b =0,f ′(x )=x (x -a -1).(1)当a =1时,f (x )=13x 3-x 2+1,f ′(x )=x (x -2),f (3)=1,f ′(3)=3.所以函数f (x )的图象在x =3处的切线方程为y -1=3(x -3), 即3x -y -8=0.(2)存在x <0,使得f ′(x )=x (x -a -1)=-9, -a -1=-x -9x=(-x )+⎝ ⎛⎭⎪⎫-9x ≥2-x⎝ ⎛⎭⎪⎫-9x =6,a ≤-7,当且仅当x =-3时,a =-7.所以a 的最大值为-7. 10.解 (1)由f (e)=2,得b =2.(2)由 (1)可得f (x )=-ax +2+ax ln x . 从而f ′(x )=a ln x . 因为a ≠0,故①当a >0时,由f ′(x )>0,得x >1,由f ′(x )<0得, 0<x <1; ②当a <0时,由f ′(x )>0,得0<x <1,由f ′(x )<0得,x >1.综上,当a >0时,函数f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1);当a <0时,函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)当a =1时,f (x )=-x +2+x ln x ,f ′(x )=ln x .由(2)可得,当x 在区间⎣⎢⎡⎦⎥⎤1e ,e 内变化时,f ′(x ),f (x )的变化情况如下表:又2-e<2,所以函数f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 的值域为[1,2].据此可得,若⎩⎪⎨⎪⎧m =1,M =2.则对每一个t ∈[m ,M ],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点;并且对每一个t ∈(-∞,m )∪(M ,+∞),直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都没有公共点.综上,当a =1时,存在最小的实数m =1,最大的实数M =2,使得对每一个t ∈[m ,M ],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点. 11.(1)解 f ′(x )=ln x +1.当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增. 则①当0<t <t +2<1e 时,t 无解;②当0<t <1e <t +2,即0<t <1e 时,[f (x )]min =f ⎝ ⎛⎭⎪⎫1e =-1e ;③当1e ≤t <t +2,即t ≥1e时,f (x )在[t ,t +2]上单调递增.所以[f (x )]min =f (t )=t ln t .所以[f (x )]min=⎩⎪⎨⎪⎧-1e ⎝ ⎛⎭⎪⎫0<t <1e ,t ln t ⎝ ⎛⎭⎪⎫t ≥1e .(2)解 2f (x )≥g (x ),即2x ln x ≥-x 2+ax -3, 则a ≤2ln x +x +3x.设h (x )=2ln x +x +3x(x >0),h ′(x )=x +x -x 2.当x ∈(0,1)时,h ′(x )<0,h (x )单调递减; 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增.所以[h (x )]min =h (1)=4.因为对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤[h (x )] min =4.故实数a 的取值范围是(-∞,4].(3)证明 问题等价于证明x ln x >x e x -2e,x ∈(0,+∞).由(1)可知f (x )=x ln x ,x ∈(0,+∞)的最小值为-1e ,当且仅当x =1e时取得.设m (x )=x e x -2e ,x ∈(0,+∞),则m ′(x )=1-xex ,易得[m (x )]max =m (1)=-1e.从而对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.。

江苏2014最新高考数学小练及参考答案19

江苏2014最新高考数学小练及参考答案19

Q班级 学号 姓名1.已知2z mi =+,m R ∈,若11zi-+对应点在第二象限,则m 的取值范围为 . 2.已知集合A ={2k x |x sin,k Z π=∈},B ={11x ||x |-≤},则A B = .3.若17sin(,cos(12312ππαα+=+则的值为 . 4.某校共有400名学生参加了一次数学竞赛,竞赛成绩的频率分布直方图如图所示,则在本次竞赛中,得分不低于80分以上的人数为 .5.已知点O 是边长为1的等边△ABC 的中心,则()()OA OB OA OC +⋅+等于 .6.已知函数()f x 的导函数为()'f x ,且满足()()2'1ln f x xf x =+,则()f x 在点()(1,1)M f 处的切线方程为 . 7.底面半径为1R ,内接圆柱的体积最大时R 值为 .8.已知椭圆的标准方程为()221632n x y n N n *+=∈-,若椭圆的焦距为n 的取值集合为 .9.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 . 10.定义在R 上的函数()y f x =是减函数,且函数(1)y f x =-的图象关于(1,0)成中心对称,若s ,t 满足不等式22(2)(2)f s s f t t ---≤,则当14s ≤≤时,ts的取值范围是- .11.如图,正△ABC 的边长为15,1235AP AB AC =+,1255BQ AB AC =+. (1)求证:四边形APQB 为梯形; (2)求梯形APQB 的面积.12.已知数列{a n }中,a 1 =1,S n 为其前n 项的和,且13(23)3(0)n n tS t S t t --+=>. (1)求证:{a n }为等比数列;(2)设{a n }的公比为()f t ,数列{b n }中,b 1 =1,11()(2)n n b f n b -=≥,求b n ; (3)求12233445212221n n n n bb b b b b b b b b b b -+-+-++-.(21)1.(1,1)-;2.{0,1}; 3.13-; 4.160 5.;6.10x y ++=;7.; 8.{2,4,5}; 9.-10; 10.1,12⎡⎤-⎢⎥⎣⎦. 11.解 (1)因PQ PA AB BQ =++=1235AB AC --1255AB AB AC +++=1315AB ,故PQ ∥AB ,且|PQ |=13,|AB |=15,|PQ |≠|AB |,于是四边形APQB 为梯形.(2)设直线PQ 交AC 于点M ,则25AM AC =,故梯形APQB 的高h 为正△ABC 的AB 边上高的25,即2155h == 从而,梯形APQB的面积为1(1315)2+⨯=12.解 (1)∵13(23)3n n tS t S t --+=,∴123(23)3n n tS t S t ---+=,两式相减得13(23)0nn ta t a --+=.又∵0t >,∴1233n n a t a t-+=,∴{A N }是以1为首项,233t t +为公比的等比数列.(2)由(1)得()f t 232133t tt+==+,∴1112()3n n n b f b b --==+, ∴{BN }是以1为首项,23为公差的等差数列,∴2211(1)333n b n n =+-=+.(3))由(2)得2462,,,,n b b b b 是以53为首项,43为公差的等差数列,∴12233445212221n n n n bb b b b b b b b b b b -+-+-++-21343522121()()()n n n b b b b b b b b b -+=-+-++-242225142()2[(1)]33323n b b b n n n =-⨯+++=-⨯⨯⨯+⨯-⨯22193n n =--.。

(完整word版)2014年高考数学理科(高考真题+模拟新题)分类汇编:D单元数列,推荐文档

(完整word版)2014年高考数学理科(高考真题+模拟新题)分类汇编:D单元数列,推荐文档

数学D单元数列D1数列的概念与简单表示法17. 、[2014江西卷]已知首项都是1的两个数列{a n}, {b n}(b n M 0, n€ N*)满足a n b n+1 一a n+ 1b n+ 2b n+ 1b n= 0.(1) 令C n= ”,求数列{C n}的通项公式;b n⑵若b n= 3厂,求数列{a n}的前n项和S n.* a n+1 a n17 .解:(1)因为a n b n+ 1 —a n+ 1b n+ 2b n + 1b n = 0, b n M 0( n€ N ),所以 b + 1 —b = 2, 即卩C n一C n = 2 ,+ 1所以数列{ C n}是以C1 = 1为首项,d = 2为公差的等差数列,故C n= 2n— 1.(2) 由b n= 3n—1,知a n = (2n—1)3n—1,于是数列{a n}的前n 项和S n= 1 x 30+ 3X 31+ 5X 32 + •••+ (2n—1)x 3n —1, 35= 1 x 31+ 3x 32+ •••+ (2n—3)x 3n—1+ (2n —1)x 3n,将两式相减得—2S n= 1 + 2x (31+ 32+…+ 3n—1) —(2n—1) x 3n=—2 —(2n —2) x 3n,所以S n= (n—1)3n+ 1.17. [2014新课标全国卷I ]已知数列{a n}的前n项和为S n, a1= 1, a n^ 0, a n a n+1=入n —1,其中入为常数.(1) 证明:a n+2—a n=入⑵是否存在入使得{a n}为等差数列?并说明理由.17. 解:(1)证明:由题设,a n a n+1 =入n —1, a n+1a n+2 =入S1 —1,两式相减得a n + 1(a n+2 —a n)=入a 1.因为a n+ 1工0,所以a n + 2 —a n=入(2) 由题设,a1 = 1, a1a2=入1—1,可得a2= 一1,由(1)知,a3= + 1.若{a n}为等差数列,则2a2= a1 + a3,解得=4,故a n+ 2—a n= 4.由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n—1= 4n—3;{a2n}是首项为3,公差为4的等差数列,a2n= 4n — 1.所以a n= 2n—1, a n+1 —a n= 2.因此存在入=4,使得数列{a n}为等差数列.17. 、[2014新课标全国卷n ]已知数列{a n}满足a1= 1, a n+1 = 3a n+ 1.1(1) 证明a n + 2是等比数列,并求{a n}的通项公式;1 1 1 3(2) 证明匸+丁+…+.a1 a2 a n 21 117.解:(1)由a n+1= 3a n + 1 得a n+1 + ? = 3 a n + -.又a1 +1 = 3,所以a n+ 2是首项为§公比为3的等比数列,所以a n+1 f,因此数n— 13列{ a n}的通项公式为a n= ~2~ .1 2(2)证明:由⑴知丛=3n—1.因为当n > 1 时,3n— 1 > 2 x 3n —1,1 1 12 1 所以3^ w 2x 3n_1,即a n=3nT i w 厂. 于是丄+丄+…十丄w 1+3+-+ =31 -3 <2.a1 a2 a n 3 3 2 3 21 , 1 3所以—I ------- --- ----- v二a1 a2 a n 2'22., , [2014 重庆卷]设a1 = 1, a n+1=<a§—2a n+ 2 + b(n € N*).(1)若b = 1,求a2, a3及数列{a n}的通项公式.⑵若b =—1,问:是否存在实数c使得a2n<c<a2n+1对所有n€ N*成立?证明你的结论.22.解:(1)方法一:a2= 2, a3= ,2+ 1.再由题设条件知(a n+ 1—1)2= (a n—1)2+ 1.从而{(a n —1)2}是首项为0,公差为1的等差数列,故(a n—1)2= n—1,即卩a n= n— 1 + 1(n€ N*).方法二:a2= 2, a3= 2 + 1.可写为a1= 1—1 + 1, a2= 2— 1 + 1, a3= 3—1 + 1•因此猜想a n= n—1 + 1.下面用数学归纳法证明上式.当n = 1时,结论显然成立.假设n= k时结论成立,即a k= ''k—1+ 1,贝Va k+1= , (a k —1) 2+1 + + 1,这就是说,当n= k+ 1时结论成立.所以a n=甘n — 1 + 1(n € N ).⑵方法一:设f(x) = . (x—1) 2+1 —1,贝y a n+1= f(a n).令 c = f(c), 即卩c= ( c—1) 2+ 1 —1,解得c=下面用数学归纳法证明命题a2n<c<a2n +1<1.1当n = 1 时,a2= f(1) = 0, a3= f(0) = 2 —1,所以a2<4<a3<1,结论成立.假设n= k时结论成立,即a2k<c<a2k +1<1.易知f(x)在(—g, 1]上为减函数,从而c= f(c)> f(a2k +1)>f(1) = a2, 即卩1>C>a2k + 2> a2.再由f(x)在(—m, 1]上为减函数,得c= f(c)<f(a2k+2)<f(a2)= a3<1,故c<a2k+ 3<1,因此a2(k+ 1)<c<a2(k +1)+1<1,这就是说,当n = k+ 1时结论成立.1综上,存在c=;使a2n<C<a2a +1对所有n€ N*成立.4方法二:设f(x) =g ( X — 1 ) 2+ 1 —1,则a n+ 1= f(a n).先证:0w a n w 1(n€ N*). ①当n = 1时,结论明显成立.假设n= k时结论成立,即0 w a k w 1.易知f(x)在(—g, 1]上为减函数,从而0= f(1)w f(ak)w f(0) = ■,2—1<1.即0 w a k+1 w 1.这就是说,当n= k+ 1时结论成立.故①成立.再证:a2n<a2n +1(n€ N*). ②当n = 1 时,a2= f(1) = 0, a3= f(a2) = f(0)= . 2 —1,所以a2<a3,即n= 1 时②成立. 假设n= k时,结论成立,即a2k<a2k+1.由①及f(x)在( —g, 1]上为减函数,得a2k +1 = f(a2k)>f(a2k+ 1)= a2k+2,a2(k+ 1)= f(a2k+ 1)<f(a2k+2)= a2(k + 1) + 1.这就是说,当n= k+ 1时②成立•所以②对一切n€ N*成立.由②得a2n< a2n —2a2n+ 2— 1 , 即(a2n+ 1)2<a2n —2a2n+ 2,1因此a2n<4*③又由①②及f(x)在(一8, 1]上为减函数,得f(a2n)> f(a2n+ 1),即a2n + 1>a2n+2. 所以a2n + 1> a2n+ 1 —2a2n + 1+ 2—1,解得a2n+ 1>4・④1综上,由②③④知存在c=4使a2n<c<a2n+1对一切n € N*成立.D2等差数列及等差数列前n项和12. _____________ 、[2014安徽卷]数列{ a n}是等差数列,若a1 + 1, a3+ 3, a5+ 5构成公比为q的等比数列,贝U q = .12. 1 [解析]因为数列{a n}是等差数列,所以a1+ 1, a3 + 3, a5 + 5也成等差数列•又a1+ 1,a3+ 3, a5+ 5构为公比为q的等比数列,所以a1 +1, a3+ 3, a5 + 5为常数列,故q =1.12. [2014北京卷]若等差数列{a n}满足a7+ a8+ a9>0, a7 + a10<0,则当n = ___________ 时,{a n}的前n项和最大.12. 8 [解析]■/ a7+ a8 + a9= 3a8>0, a7 + a10= a8+ a9<0,,. a8>0, a9<0,「. n= 8 时,数列{a n}的前n项和最大.3. [2014福建卷]等差数列{a n}的前n项和为S n,若a1 = 2, S3= 12,则a6等于()A. 8B. 10C. 12D. 143. C [解析]设等差数列{a n}的公差为d,由等差数列的前n项和公式,得S3= 3X 23 X 2+ 〒d= 12,解得 d = 2,贝V a6= a1+ (6 —1)d = 2 + 5X 2= 12.18. 、[2014湖北卷]已知等差数列{a n}满足:a1 = 2,且a1, a2, a5成等比数列.(1) 求数列{a n}的通项公式.⑵记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+ 800?若存在,求n 的最小值;若不存在,说明理由.18. 解:(1)设数列{a n}的公差为d,依题意得,2, 2+ d, 2 + 4d成等比数列,故有(2 + d)2= 2(2 + 4d),化简得d2—4d = 0,解得d = 0或d = 4.当 d = 0 时,a n= 2;当 d = 4 时,a n= 2 + (n—1) 4= 4n — 2.从而得数列{a n}的通项公式为a n = 2或a n= 4n — 2.(2) 当a n= 2 时,S n = 2n,显然2n<60n+ 800,此时不存在正整数n,使得S n>60n + 800成立.当a n= 4n— 2 时,S = ? = 2n .令2n2>60n+ 800,即n2—30n—400>0,解得n>40或n<—10(舍去),此时存在正整数n,使得S n>60n + 800成立,n的最小值为41.综上,当a n= 2时,不存在满足题意的正整数n;当a n= 4n—2时,存在满足题意的正整数n,其最小值为41.20.、[2014 湖南卷]已知数列{a n}满足a1= 1, |a n+1—a n|= p n, n€ N*.Kru-n-HIP —fea 2 = p + 1, a 3= p 2+ p + 1 •又 a 1, 2a 2, 3a 3 成等差数列,所以1 解得p = 3或p = 0. 31当p = 0时,a n +1 = a n ,这与{a n }是递增数列矛盾,故 p = 3.1 1 、尹<尹刊,所以 |a 2n + 1— a 2n |<|a 2n — a 2n -1|.②1 1 ,,a n = a 1 + (a 2 — a 1) + (a 3 — a 2) +•••+ (a n — a n — 1) = 1 + ~ —歹 +…+[2014 •宁卷]设等差数列{a n }的公差为d.若数列{2 a 1 a n }为递减数列,—a n ) = 2a 1d<1,所得 a 1d<0.18. 、[2014全国卷]等差数列{a n }的前n 项和为3•已知a 1= 10, a 2为整数,且(1)求{a n }的通项公式;18. 解:(1)由a 1= 10, a 2为整数知,等差数列{a n }的公差d 为整数. 又 S n w S 4,故 a 4》0, a 5 w 0,10+ 3d > 0, 10 + 4d w 0, 解得—d w — 5,3 2 因此d =— 3.故数列{a n }的通项公式为a n = 13 — 3n. —1,其中入为常数.(1)若{a n }是递增数列,且a i . 2a 2, 3a 3成等差数列,求p 的值; ⑵若p = 2,且{a 2n -1}是递增数列, {a 2n }是递减数列,求数列{a n }的通项公式.20.解:(1)因为{a n }是递增数列,所以 a n + 1 一 a n = |a n +1 — a n | = p n .而 a i = 1,因此 4a 2= a 1 + 3a 3,因而 3p 2 — p = 0, ⑵由于{a 2n - 1}是递增数列,因而 a 2n + 1 —a 2n —1>0,于是 (a 2n + 1 — a 2n ) + (a 2n — a 2n -1)>0. 因为2n — 1 由①②知, a2n — a 2n —1>0,因此 a 2n — (—1) 2n a 2n — 1 = 22n -12n 因为{a 2n }是递减数列,同理可得,a 2n + 1 —a 2n <0,故 a 2n +(—1)2n + 1由③④可知, a n +1— a n = (—1) n +2n1 — a 2n = —?2n =4+3- (—1) 2门-1故数列{a n }的通项公式为(—1) 2n(—1) 2门-1 d<0 B . d>0 C . a 1d<0 D . a 1d>0C [解析]令b n = 2a 1a n ,因为数列{2 a 1 a n }为递减数列,所以b n +1 2a 1a n +1b n 2a 1a n2a 1(a n +1S n W S .⑵设b n =a n a n +1,求数列{b n }的前n 项和T n .⑵b n = (13 — 3n )(10— 3n )10 — 3n 13— 3n1.于是 T n = b 1 + b 2 + …+ b n =-17.、 10— 3n13— 3n 3 10— 3n 10 10 (10—3n )- [2014新课标全国卷I ] 已知数列{a n }的前n 项和为 S n , a 1= 1, a n ^ 0, a n a n +1=入n⑴证明:a n + 2— a n =入⑵是否存在 入使得{a n }为等差数列?并说明理由. 17. 解:⑴证明:由题设, a n a n + 1 =入 6— 1 , a n +i a n +2=入 S 1 — 1,两式相减得 a n + 1(a n +2 — a n )=入a 1. 因为a n + 1工0,所以a n + 2 — a n =入(2)由题设,a 1 = 1, a 1a 2=入 1— 1,可得 a 2= — 1, 由(1)知,a 3= + 1. 若{a n }为等差数列,则 2a 2= a 1 + a 3,解得 =4,故a n + 2— a n = 4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列, a 2n—1= 4n — 3;{a 2n }是首项为3,公差为4的等差数列,a 2n = 4n — 1. 所以 a n = 2n — 1, a n +1 — a n = 2.因此存在 入=4,使得数列{ a n }为等差数列.19., , [2014山东卷]已知等差数列{a n }的公差为2,前n 项和为3,且S, 比数列. (1)求数列{a n }的通项公式;—4n ⑵令b n = ( — 1)n 1 ,求数列{b n }的前n 项和T n .a n a n +12X 119. 解:(1)因为 Si = a 1, S 2= 2a 1 + ~2~ x 2= 2a 1 + 2,4 x 3®= 4a 1+x 2= 4a 1+ 12,由题意得(2a 1+ 2)2 = a 1(4a 1 +12),解得 a 1= 1, 所以 a n = 2n — 1.⑵由题意可知,(—1)n —14n_')(2n — 1)( 2n + 1)=2n 2n + 1.当n 为奇数时, 1+ 1 +•••—亠+亠+ 亠+亠 3 5 2n — 3 2n — 1 2n — 1 2n + 11 2n + 1=(—1)n —112n — 1 12n + 1当n 为偶数时,1V 11 1T n = 1 +1 —3+ 5 十…十 2n — 3+2n — 1 =1- 12n + 11 2n — 11 +2n + 1 S 2, S 4成等 b n = (— 1)n — 14n a n a n + 11Tn= 1 + 316.,[2014陕西卷]△ ABC 的内角A , B , C 所对的边分别为 a , b , c.(1) 若 a , b , c 成等差数列,证明: sin A + sin C = 2sin(A + C); ⑵若a , b ,c 成等比数列,求 cos B 的最小值. 16. 解:⑴■/a , b , c 成等差数列,••• a + c = 2b. 由正弦定理得 sin A + sin C = 2si n B.■/ sin B= sin[ n — (A + C)] = sin(A + C),• sin A + sin C = 2sin(A + C).(2) •/ a , b , c 成等比数列,• b 2= ac. 由余弦定理得a 2+ c 2—b 2 a 2+c 2— ac 2ac — ac 1cos B- 2ac 2ac " 2ac 2,当且仅当a = c 时等号成立, 1• cos B 的最小值为》 11.[2014天津卷]设{ a n }是首项为a 1,公差为—1的等差数列,S n 为其前n 项和.若 S 1, S 2,S 4成等比数列,则a 1的值为 ___________________ .1” - 4 X 311. —[解析]T S 2= 2a 1 — 1, S 4= 4a 1+ — X (— 1) = 4a 「6, S 1, S 2, S 4成等比数列,1•- (2a 1 — 1尸=a 1(4a 1 — 6),解得 a 1 = —》22. , [2014 重庆卷]设 a 1 = 1, a n +1=p a §— 2a n + 2 + b(n € N *). (1)若b = 1,求a 2, a 3及数列{a n }的通项公式.⑵若b =— 1,问:是否存在实数 c 使得a 2n <c<a 2n +1对所有n € N *成立?证明你的结论. 22.解:(1)方法一:a 2= 2, a 3=, 2+ 1. 再由题设条件知(a n + 1— 1)2= (a n — 1)2+ 1.从而{(a n — 1)2}是首项为0,公差为1的等差数列, 故(a n — 1)2= n — 1,即 a n = ^j n — 1 + 1(n € N ). 方法二:a 2= 2, a 3= 2 + 1.可写为 a 1= 1 — 1 + 1, a 2= 2— 1 + 1, a 3=、』3— 1 + 1.因此猜想 a n = n — 1+ 1. 下面用数学归纳法证明上式.当n = 1时,结论显然成立.假设n = k 时结论成立,即a k = .''k — 1+ 1,贝ya k +1 = \' (a k — 1) 2 +1 + 1 =百(k — 1) + 1 +1 = ::/ ( k + 1) — 1 + 1, 这就是说,当n = k + 1时结论成立.所以 a n =雪n — 1 + 1(n € N ).⑵方法一:设 f(x) = . (x — 1) 2 +1 — 1,则 a n +1= f(a n ). 令 c = f(c),即 c =( c — 1) 2+ 1 — 1,解得 c = 7.4下面用数学归纳法证明命题 2n + 2 2n + 1.所以T n =, n 为奇数,2n + 1 2n冇,n 为偶数.或 “ 2n + 蔦(—;)n—12n + 1a2n<C<a2n + 1<1.1当n = 1 时,a2= f(1) = 0, a3= f(0) = 2 —1,所以a2<4<a3<1,结论成立.假设n= k时结论成立,即a2k<c<a2k+1<1.易知f(x)在(—g, 1]上为减函数,从而c= f(c)> f(a2k +1)>f(1) = a2,即卩1>C>a2k + 2> a2.再由f(x)在(—m, 1]上为减函数,得c= f(c)<f(a2k+2)<f(a2)= a3<1,故c<a2k+ 3<1,因此a2(k+ 1)<c<a2(k +1)+1<1,这就是说,当n = k+ 1时结论成立.1综上,存在c= 4使a2n<C<a2a+1对所有n€ N*成立.方法—:设f(x) = '...;( X —1) 2+ 1 —1,贝U an+ 1 = f(an).先证:0w a n W 1(n€ N*). ①当n = 1时,结论明显成立.假设n= k时结论成立,即0 w a k< 1.易知f(x)在(—g, 1]上为减函数,从而0= f(1) w f(a k) w f(0) = 2—1<1.即0 w a k+1 w 1•这就是说,当n= k+ 1时结论成立.故①成立.再证:a2n<a2n+ 1(n€ N ). ②当n = 1 时,a2= f(1) = 0, a3= f(a2) = f(0) =, 2 —1,所以a2<a3,即n= 1 时②成立. 假设n= k 时,结论成立,即a2k<a2k+1.由①及f(x)在( —g, 1]上为减函数,得a2k +1 = f(a2k)>f(a2k+ 1)= a2k+2,a2(k+ 1)= f(a2k+ 1)<f(a2k+2)= a2(k + 1)+1.这就是说,当n= k+ 1时②成立.所以②对一切n€ N*成立.由②得a2n<:-Ja2n —2a2n+ 2—1 ,即(a2n+ 1)2<a2n —2a2n+ 2 ,因此a2n<:③4又由①②及f(x)在(—g, 1]上为减函数,得f(a2n)> f(a2n +1), 即卩a2n + 1>a2n+2., _____________ 1所以a2n + 1> , a2n+1 —2a2n + 1+ 2—1,解得a2n+ 1>[. ④综上,由②③④知存在c=1使a2n<c<a2n+1对一切n € N*成立.4D3等比数列及等比数列前n项和2. [2014重庆卷]对任意等比数列{a n},下列说法一定正确的是()A. a1, a3, a9成等比数列B. a2, a3, a6成等比数列C. a2, a4, a8成等比数列D. a3, a6, a9,成等比数列2. D [解析]因为在等比数列中a n, a2n, a3n,…也成等比数列,所以a3, a6, a9成等比数列.12. 、[2014安徽卷]数列{a n}是等差数列,若a1+ 1, a3+ 3, a5+ 5构成公比为q的等比数列,贝U q = ______ .12. 1 [解析]因为数列{a n}是等差数列,所以a1+ 1, a3 + 3, a5 + 5也成等差数列.又a1+ 1, a3+ 3, a5+ 5构为公比为q的等比数列,所以a1 +1, a3+ 3, a5 + 5为常数列,故q =1.13. 、[2014广东卷]若等比数列{a n}的各项均为正数,且a10an+ a9a12 = 2e5,贝V In a1-3. 12+ In a 2 + …+ In a 20=13.50 [解析]本题考查了等比数列以及对数的运算性质. + a 9a i2 = 2e 5,cc二 a io a ii + a 9a i2 = 2a io a ii = 2e ,「• a io a ii = e , --|n a i + In a 2+…+ In a 2o = In(a i a 2…a 2o ) = In (a io a ii )io = In (e 5)i0= In e 50= 50.i0. [20i4全国卷]等比数列{a n }中,a 4= 2, a 5= 5,则数列{Ig a n }的前8项和等于(C . 4的最小值;若不存在,说明理由.18. 解:(1)设数列{a n }的公差为d , 依题意得,2, 2+ d , 2 + 4d 成等比数列,故有(2 + d)2= 2(2 + 4d),化简得d 2— 4d = 0,解得d = 0或d = 4.又a i + j j 所以a n + 是首项为2■,公比为3的等比数列,所以■/ {a }10. C [解析]设数列{a n }的首项为a 1, 公比为q ,根据a i q 3= 2,a i q 4= 5,解得16 a i = 125'所以 a n = a i q n 1=16n—4125,所以 Ig a n = Ig 2 + (n —4)Ig|,所以前8项的和为5 5 58Ig 2 + (— 3 — 2— 1 + 0 + 1+ 2+ 3 + 4)Ig- = 8Ig 2+ 4lg?= 4Ig 4X- = 4.18.、 [2014湖北卷]已知等差数列{ a n }满足:a i = 2,且a i , a 2, a 5成等比数列. (1)求数列{a n }的通项公式.⑵记S n 为数列{a n }的前n 项和,是否存在正整数n,使得S n >60n + 800?若存在,求 当d = 0时, a n = 2;当d = 4时, a n = 2 + (n — 1) 4 = 4n — 2.-3.12⑵当 a n = 2 时,S n = 2n ,显然 2n<60n + 800, 解得n>40或n<— 10(舍去),1 117. 解:(1)由 a n +1 = 3a n + 1 得 a n +1 + ? = 3 a n + —.此时存在正整数 n , 使得S n >60n + 800成立, n 的最小值为41.综上,当a n = 2时,不存在满足题意的正整数 n; 当a n = 4n — 2时,存在满足题意的正整数 其最小值为41.17.、 、[2014新课标全国卷n ]已知数列{a n }满足 a i = 1, a n + 1= 3a n + 1. (1)证明 a n + 2疋等比数列,并求{a n }的通项公式;1 1⑵证明二+ £+…+a n从而得数列{a n }的通项公式为 a n = 2 或 a n = 4n — 2. 此时不存在正整数 n ,使得 S n >60n + 800 成立.当 a n = 4n — 2 时, S n =n[2 +( 4n — 2)] =2n 2 令 2n 2>60n + 800, 即 n 2— 30n — 400>0,an + 2 = ,因此数1 2⑵证明:由⑴知a n =3n —i.因为当 n > 1 时,3n — 1 > 2 X 3n —1所以2+1+…+丄<3a 1 a 2 a n 219., , [2014 •东卷]已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1, S 2, 比数列.(1)求数列{a n }的通项公式; ⑵令b n = ( — 1)n—1—,求数列{b n }的前n 项和T n . a n a n +119. 解:(1)因为 S 1 = a 1, S 2= 2a 1 +X 2=2a 1+ 2,4 X 3 小S 4= 4a 1 + ~2~X 3= 4a 1 + 12,由题意得(2a 1+ 2)2 = a 1(4a 1 +12),解得 a 1= 1, 所以 a n = 2n — 1.⑵由题意可知,2 2n + 1 2n + 2 2n + 1.列{a n }的通项公式为3n — 1 a n = 21 a 21 2X 3n —1 即a n =右3 132 1 ― 3n <2.S 4成等 b n = (— 1)n — 14na n a n + 1=(—1)n4n(2n — 1)~( 2n + 1) =(—1)n —11_ + _J_2n — 1 2n + 1当n 为偶数时, 1 V 1 1 丄 1T n = 1 + 3 — 3+ 5 +…+ 廿+乔1 2n — 11 2n + 11 2n + 1=2n 2n + 1. 当n 为奇数时,1Tn= 1 +31 1一 + 一+…— 1 + 1 _L + 1 2n — 3+ 2n — 1 + 2n —1+2n + 1所以a1Kru-n-HIP—fe⑵若a , b , c 成等比数列,求 cos B 的最小值. 16.解:(1) •/a , b , c 成等差数列,••• 由正弦定理得 sin A + sin C = 2si n B. • sin A + sin C = 2sin(A + C). (2) •/ a , b , c 成等比数列,• b 4= ac. 由余弦定理得4 3},可得 A = {0 , 1 , 2, 3, 4, 5, 6, 7}.2n + 2 所以T n =2n + 1 ,n 为奇数, 2n + 1+(— 1)2n 2n + 1,n 为偶数.2n + 116.,, [2014陕西卷]△ ABC 的内角A , B , C 所对的边分别为a ,b , c. (1)若a ,b ,c 成等差数列,证明: sin A + sin C = 2si n(A + C); a + c = 2b.■/ sin B = sin[ 7t —(A + C)] = sin (A + C),cos B =0^^ = a^2—^ , 2ac —ac2ac 2ac2ac2'当且仅当a = c 时等号成立,1• cos B 的最小值为111. [2014天津卷]设{ a n }是首项为a 1,公差为—1的等差数列, S 1, S 2, S 4成等比数列,贝y a 1的值为2,…,n 证明:若 a n <b n ,贝U s<t.=—1<0, 所以s<t.D4数列求和—a n + 1b n + 2b n +1b n = 0.(2)证明:由 s , t € A , s = a 1 + a 2q +…+ a n q n,t = b 1+ b 2q + •••+ b n q n ai ,b i € M , i=1, 2,…,n 及 a n <b n ,可得 s —1= (a 1 — b 1) + (a 2— b 2)q + …+ (a n -1 —b n -1)q n 2+ (a n — b n )q n 1 w (q — 1) + (q — 1)q + …+ (q — 1)q n —2— qn—1(q — 1)( 1 — q n —9—q n S n 为其前n 项和.若11.[解析]T S 2= 2a 1 — 1, S 4= 4a 1 +X (— 1) = 4a 1 — 6, S 1, S 2, S 4成等比数列,•- (2a 1 — 1)2= a 1(4a 1 — 6),解得 a 1 =—2'19.、[2014天津卷]已知q 和n 均为给定的大于1的自然数.设集合M = {0,1 ,2,…, q — 1},集合 A = {x|x =X 1 + x 2q +•••+ x n q n —1 ,X i € M , i = 1, 2,…,n}.(1)当q = 2, n = 3时,用列举法表示集合 A.(2)设 s , t € A , s = a 1+ a 2q +…+ a n q n 1 t = b 1 + b 2q + …+ b n q n 1 ,其中a i , b i € M , i = 1,19.解:(1)当 q = 2, n = 3 时,M = {0 , 1}, A = {x|x = X 1+ X 2 - 2 + X 3 - 22, X i €M , i = 1, 17.、 、[2014江西卷]已知首项都是1的两个数列 { a n } , {b n }(b n M 0, n € N *)满足 a n b n + 11b n = (— 1)n —14na n a n + 1 =(—1)n4n(2n — 1)( 2n + 1)=(—1)n2n — 1 + 2n + 1 'n(1)令C n =—,求数列{ C n }的通项公式;(2)若 b n = 3n —1,求数列{a n }的前n 项和S n .17.解:(1)因为 a n b n +1 — a n + l b n + 2b n +l b n = 0, b n 工 0(n € N ),所以a n + 1b n + 1an= 2,即 C n + 1b n所以数列{ C n }是以C 1 = 1为首项,d = 2为公差的等差数列,故 c n = 2n — 1.(2) 由 b n = 3n ,知 a n = (2 n — 1)3n ,于是数列{a n }的前n 项和S n = 1 x 3°+ 3X 31 + 5X 32 + …+ (2n — 1)x 3n —1, 3S n = 1 x 31 + 3x 32 + …+ (2n — 3)x 3n —1+ (2n — 1)x 3n ,将两式相减得 —2S n = 1 + 2X (31+ 32+…+ 3n —1) — (2n — 1) x 3n =— 2 — (2n — 2) x 3n ,所以 S n = (n — 1)3n + 1. 18. 、[2014且 S n W S t .(1)求{a n }的通项公式;⑵设b n =a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1= 10, a 2为整数知,等差数列 {a n }的公差又 S n W S 4,故 a 4> 0, a 5< 0,10+ 3d > 0, 10 + 4d w 0, 10 5解得一d W — 5, 3 2 因此d =— 3.故数列{a n }的通项公式为a n = 13 — 3n. (2) b n = (13 — 3n )(10— 3n )10 — 3n 13— 3n.于是 T n = b 1 + b 2 +7- 110 +10— 3n 13— 3n 3 10— 3n 1010 (10—3n )'19., [2014 •东卷]已知等差数列{a n }的公差为2,前n 项和为3,且S,S 2, S 4成等比数列.(1)求数列{a n }的通项公式;⑵令 b n = ( — 1)n 4n a n a n +1 ,求数列{b n }的前n 项和T n .19.解:(1)因为 Si = a 1, S 2= 2a 1 +2X 1x 2= 2a 1+ 2,S 4= 4a 1 +x 2= 4a 1+ 12,由题意得(2a 1+ 2)2 = a 1(4a 1 +12),解得 a 1= 1,所以 a n = 2n — 1. (2)由题意可知,=1 +1 —2 4+ 3当n 为偶数时,2n当n 为奇数时,2n + 1 2n + 22n + 120. 、[2014 湖南卷]已知数列{a n }满足 a 1= 1, |a n +1— a n |= p n , n € N .因为2n — 1 由①②知, a 2n —a 2n —1>0,因此 a 2n — a 2n —1 = (—1) 2n因为{a 2n }是递减数列,同理可得, a 2n + 1 由③④可知,a n +1— a n =(—1)n +2n22 n —1—a 2n <0,故 a 2n + a 2n =— 2n(—1)?2n2n + 1T n = 1 + 1 1 3+ 52n — 3+ 2n - 12n — 1 + 2n + 1=1-2n + 1 T n = 1 + § ―1+ 12n — 3 + 2n — 12n — 12n + 12n + 2 所以T n =2n + 1‘ n 为奇数, 2n + 1 +(—1) 2n 2n + 1'n 为偶数.2n + 1D5单元综合 (1)若{a n }是递增数列,且 a 1, 2a 2, 3a 3成等差数列,求p 的值; ⑵若p = 2,且{a 2n -1}是递增数列, {a 2n }是递减数列,求数列{a n }的通项公式. 20、解:(1)因为{a n }是递增数列,所以a n + 1 — a n = |a n +1 — a n | = p n .而 a 1 = 1,因此a 2 = p + 1, a 3= p 2+ p + 1 •又 a 1, 2a 2, 3a 3 成等差数列,所以 4a 2= a 1 + 3a 3,因而 3p 2 — p = 0,1解得p = 3或p = 0.3当p = 0时, a n +1 =a n ,1这与{a n }是递增数列矛盾,故 p = 3.⑵由于{a 2n - 1}是递增数列,因而 a 2n + 1— a 2n —1>0,于疋 (a 2n +1 — a 2n )+ (a 2n — a 2n —1)>0.①(—1) 2“-1=1 +1 —24+31 亠a n = a 1 + (a 2 — a 1) + (a 3 — a 2) +•••+ (a n — a n T ) = 1 + ? — ?2 + …+(—1)故数列{a n }的通项公式为 a n = (—1)2*-121. 、[2014安徽卷]设实数c >0,整数p > 1, n € N *.⑴证明:当 x >— 1 且 X M 0 时,(1 + x)p> 1 + px ;21.证明:(1)用数学归纳法证明如下.①当p = 2时,(1 + x)2= 1 + 2x + x 2>1 + 2x ,原不等式成立. ②假设p = k(k > 2, k € N *)时,不等式(1 + x)k >1 + kx 成立. =(1 + x)(1 + x)k >(1 + x)(1 + kx)= 1 + (k + 1)x + kx 2>1 + (k + 1)x.所以当p = k + 1时,原不等式也成立.综合①②可得,当x>— 1, X M 0时,对一切整数1 c .1 +"a p— 5.5由此可得,f(x)在[c-,+8 )上单调递增,p1⑵数列{ a n }满足a 1 > cp , a n +1 =pa n + pa n —p,证明: a n > a n +1 > c p. ⑵方法一:先a n >C_. p1①当n =1时,由题设知a1>c 1成立.②假设n = k(k > 1, k € N *)时,不等式 a k > c p 成立. 由 a n + 1 =P — 1丄 c 1a n + a n p p 易知 a >0,当n = k + 1时,a k +1p — 1 , c = +_a kpa k p当 p = k + 1 时,(1 + x)p>1,不等式(1+ x)P >1 + px 均成立.由 a k >cr>0 得一 1< 一 <一-p a p -1<0.由(1)中的结论得 a k +1a k 1+pOr 1>1 + p •—ap.因此a p + 1>c,即a k +1>c —,所以当n = k + 1时,不等式1 an >cp 也成立.综合①②可得,对一切正整数n,不等式a n >c1均成立.再由a n +1a na p可得a n + 1a n<1,即a n+ 1<a n.因而,当1 1 1 x莓时,蚀>%)=c p.综上所述, a n> a n+1 >Cp ,n€ N*方法二:设f(x)=x+px11x> c1,贝y x p> c,p所以f'x)=p—1 c+p(1 —p)xp—J _c1 —x p >°.Kru-n-HIP —fe1①当n = 1时,由a 1>c _>0 ,即卩a 1>c 可知 p1故当n = 1时,不等式a n >a n +1>c~成立. P所以当n = k + 1时,原不等式也成立.(1)求数列{a n }的通项公式. 的最小值;若不存在,说明理由.18. 解:(1)设数列{a n }的公差为d , 依题意得,2, 2+ d , 2 + 4d 成等比数列, 故有(2 + d)2= 2(2 + 4d),化简得d 2- 4d = 0,解得d = 0或d = 4.解得n>40或n<— 10(舍去),a 2 =p -1 C 1—p 1 c 彳a1+ p a1 p = a1 1 + paT 11<a 1,并且 a 2= f(a 1)>cp ,从而可得 a 1 >a 2②假设n = k(k > 1,k € N *)时,不等式 1)>f(cp),即有a k + 1>a k +2>「p综合①②可得,对一切正整数n ,不等式 a n >a n + 11 >C-均成立. p18.、、[2014湖北卷]已知等差数列{a n }满足: a 1 = 2,且 a 1, a 2,a 5成等比数列. ⑵记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n + 800?若存在,求 当d = 0时, a n = 2;当d = 4时, a n = 2 + (n - 1) 4 = 4n — 2.从而得数列{a n }的通项公式为 a n = 2 或 a n = 4n — 2. ⑵当 a n = 2 时,S n = 2n ,显然 2n<60n + 800, 此时不存在正整数 n , 使得S n >60n + 800成立. 当 an = 4n — 2 时,n[2 +( 4n — 2)]=2n 2令 2n 2>60n + 800,即 n 2— 30n — 400>0,此时存在正整数 n , 使得S n >60n + 800成立, n 的最小值为41.综上,当a n = 2时,不存在满足题意的正整数 n; 当a n = 4n — 2时,存在满足题意的正整数 其最小值为41. ,则当 n = k + 1 时,f(a k )>f(a k + a k > a k +1>、[2014江西卷]已知首项都是1的两个数列{a n }, {b n }(b n M 0, n € N *)满足a n b n +1—a n + 1b n + 2b n + 1b n = 0.+ …+ (2n — 1)x 3n —1, 3S n = 1 x 31 + 3x 睜 + …+ (2n — 3)x 3n —1—2S n = 1 + 2X (31+ 32+-+ 3n —1) — (2n — 1) x 3n =— 2 — (2n — 2)x 3n ,所以S n = (n — 1)3n + 1. 17.、(1)令 C n =a nbn'求数列{c n }的通项公式; (2)若 b n = 3n —1 ,求数列{a n }的前n 项和S n .17 .解:(1)因为 a n b n + 1 — a n + 1b n + 2b n + 1b n = 0, b n M 0( n € N ),所以a n +1 a nb n + 1b n=2, 即 卩 C n1所以数列{C n }是以 C 1 = 1为首项,d = 2为公差的等差数列,故C n = 2n — 1.(2)由 b n = 3n —1 ,知 a n = (2n — 1)3n —1,于是数列{a n }的前n 项和S n = 1 x 30 + 3X 31 + 5X 32 + (2n — 1)x 3n ,将两式相减得17.、 、[2014新课标全国卷n ]已知数列{a n }满足 a 1 = 1, a n +1 = 3a n + 1.1 , 3 t , n2T n = 1+ 2 + 歹+…+盯,因此,2T n — T n = 1 + 1 + 2^+…+ 21—1-加 2 —十—加 2n 219. [2014浙江卷]已知数列{a n }和{b n }满足a£2a 3…a n = ( . 2)b n (n € N *).若{a n }为等比 数列,且 a 1 = 2, b 3= 6 + b 2.sV1 (1) 证明a n + 2是等比数列,并求{a n }的通项公式; 1 1 1 3(2) 证明一 +—+•••+—<;.a 1 a 2 a n 21 1 17.解:(1)由 a n +1= 3a n + 1 得 a n +1 + ㊁=3 a n +2 .1 3 1 3又a 1 + = 2,所以a n +1是首项为3■,公比为3n— 1列{a n }的通项公式为a n =1 3n3的等比数列,所以a n + 2 = 3,因此数 1⑵证明:由⑴知乳=3n —1.因为当 n > 1 时,3n — 1 > 2 x 3n —1,I I 1所以 3n — 1w 2X 3n —1,即 a n = 3n — 1w 3n —1.于是丄+1+…+丄< 1+3+…+尙=21— a 1 a 2 a n 3 3 2丄 3耳<2.所以丄+1 +…+ -<3. a 1 a 2 a n 219., (n € N *).(1)若 [2014四川卷]设等差数列{a n }的公差为d ,点(a n , b n )在函数f(x) = 2x 的图像上a i =— 2,点(a 8, 4b 7)在函数f(x)的图像上,求数列{a n }的前n 项和S n ; ⑵若1 a na 1= 1,函数f(x)的图像在点(a 2,b 2)处的切线在x 轴上的截距为2 —花,求数列 厶的前n 项和T n .19.解:(1)由已知得,b 7= 2a 7, b 8= 2a 8= 4b 7,所以 2a 8= 4 x 2a 7 = 2a 7+ 2,解得 d = a 8— a 7= 2,n (n — 1)所以 S n = na 1 + d = — 2n +n(n — 1) = n 2— 3n.⑵函数f(x)= 2x 在点(a 2, b 2)处的切线方程为 y — 2a 2= (2a 2ln 2)(x — a 2), 其在X 轴上的截距为a 2—爲.1 1由题意有a 2— = 2 — ,解得a 2= 2.所以 d = a 2 — a 1= 1. 从而 a n = n , b n = 2n ,a n n_ 所以数列{和的通项公式为b n = 2n , 所以Tn =1+釘討…+F?+2n ,2nn + 1 所以,T n =2— n — 22n(1)求 a n 与 b n .1 1 *⑵设C n = — — b (n € N ).记数列{C n }的前n 项和为S n . (i) 求 S n ;(ii) 求正整数k ,使得对任意n €均有S k > S n . 19. 解:(1)由题意 a£2a 3 …a n = (,2)b n , b 3 — b 2= 6, 知 a 3= Cj 2)b 3 — b 2= 8.又由a 1 = 2,得公比q = 2(q =— 2舍去),所以数列{a n }的通项为 所以,a 1a 2a 3…a n = 2“(叮 ° = ( . 2)n(n+"_ *€ N ).2门 、 2:所以,当n > 5时,C n <0. 综上,若对任意 n € N *恒有S k >S n ,则k = 4.4. [2014 •州调研]已知数列{a n }满足a 1 = 5,a n +1 =乙^打,n € N *.a n = 2n (n €2 故数列{b n }的通项为b n = n(n + 1)(n € N *).11111(2)(i)由(1)知 c n = a ;— b ;=列n n + 1(n € N *).(ii)因为 C 1= 0, C 2>0, C 3>0, 1当n > 5时,C n而n (n +1)2nn (n + 1)(n + 1)( n + 2) C 4>0 ,n (n + 1)—1 ,2n(n + 1)( n — 2)得 n ( n + 1)三 5X( 5 + 1)3. [2014闽南四校期末]若数列{a n }的前n 项和为2 1S n = ?a n + "3,则数列{a }为( A .B .C )a n =— 2n 1 a n = (— 2)n —1 a n = (— 2)n a n =— 2n2B [解析]由 a n = S n — &i -1(n > 2),得 a n = _a n — ^a nT ..,. a n ==(—2)n —1(n >2).又 a 1 = (— 2)1—1 = 1,二 a n = (— 2)n —1.3. —2a n -1.又 a i = 1 ,「• a n a n *6. [2014南昌联考]已知数列{a n }满足 a 1= 1, a n +1 =匚卫(n € N ).若 b n + 1 = (n —1 ,Z 0_ +1 , a n . b 1=— Z,且数列{b n }是递增数列,则实数 入的取值范围为( C . 6. v 2 B .入〉3 > 2 D .入v 31 2 1 1[解析]易知—=2 + 1,•— + 1 = 2- + 1."1 J a a a a n + 1 1 1 —又 a 1= 1 ,•••:+ 1 =7+ 12n 1= 2n ,. b n +1 = (n —入)2,' a n a 1 ' '• b n +1 — b n = (n —入)2~ (n — 1 —入)2 1 = (n —入 + 1)2n 1 >0, n —入 + 1 > 0.又 n € N ,二 Z 2.1(1)求证:数列一1为等比数列.a n⑵是否存在互不相等的正整数m, s, t,使m, s, t成等差数列,且a m—1, a s—1, a t —1成等比数列?如果存在,求出所有符合条件的m, s, t;如果不存在,请说明理由.m+1+ 2 X 3m + 2 X 3t = 32s + 4 X 3s因为 m + t = 2s ,所以 3m + 3t = 2X 3s . 这与m , s , t 互不相等矛盾,(1)求a 1及数列{a n }的通项公式; 即(a n — 1)2— a 2—1 = 0,所以数列{a n }是首项为1,公差为1的等差数列,4.解:⑴证3a n 2a n + 1 ,所以a n + 1 3a n所以a n +13a n1.3因为a1 = 5,所以 a 1所以数列 a n2 11是首项为3,公比为£的等比数列.3 3 1 (2)由(1)知,a ;—1= 2X ]n -1 2 3 3 3n ,所以a n = 3n3n + 2假设存在互不相等的正整数 m , s , t 满足条件,则有m +1 = 2s ,(a s — 1) 2=( a m — 1) (at — 1).由a n = 3n3“+ 2 与(as — 1)2 =(a m — 1)(a t — 1), 3s 2_3m3t3s + 23m + 23t + 2 —1, 又 3m + 3t > 23m+1= 2 X 3s ,当且仅当m = t 时,等号成立,所以不存在互不相等的正整数m , s ,t 满足条件. 2. [2014景德镇质检]已知递增数列、卄1 2{a n }满足 a 1 + a 2 + a 3 +…+ a n = 2(a n + n).⑵设c n = a n + , n 为奇数,a n —1 • 2 a n — 1 + 1, n 为偶数, 求数列{ C n }的前2n 项和T 2n . 2.解:(1)当 n = 1 时,a 1=*(a 2+ 1),解得a 1 = 1. a1 + a 2+ a 3+…+ a n — 1=*(a 2—1 +—1),a 1 + a 2 + a 3+…+ a n = 1 22(a n + n),所以a n =詁2—a n - 1+ 1),所以 a n — a n —1 =1 或 a n + a n —1 = 1(n 》2).又因为数列{a n }为递增数列,所以 a n —a n —1 = 1,则 T 2n = (2 + 4 + …+ 2n)+ [1 x 21 + 3X 23+…+ (2n — 1)x 22n —1] + n = n(n + 1) + [1 x 21 +3X 23+…+ (2n — 1) X 22n —1记 S n = 1 x 21 + 3X 23+…+ (2n — 1) X 22n —1,① 则 4S n = 1X 23+ 3X 25+…+ (2n — 1) X 22n +1 由①一②,得—3S n = 2 + 24+ 26+…+ 22n — (2n — 1)22n +1,所以a n = n.(2)由 C n a n + , n 为奇数, a n —1 • 2a n — 1 + 1, n 为偶数, 得C n =n + 1,n 为奇数, (n — 1) 2n —1+ 1, n 为偶数,]+ n. •②=22 + 24 + 26+…+ 22n — (2n — 1)22n +1 — 2, 4(1 — 4n ) 所以一3S n = 4(: 41 — 4 4 (1 — 4n )卜 —(2n — 1)2 2n +1— 2,所以S n = (2n — 1) 22n +1 9即 S n =( 6n - 5)22n +1 2卜2, 9 罟故 T 2n = g 5)22n +17. 比数列, 2 c 109 " + 2n +[2014福建闽南四校期末]已知数列{ a n }是公差为2的等差数列,且a 1, a 2, a 5成等 则a 2的值为( 3A [解析]T a 1, A . 7. 二 a 2= (a 2— 2)(a 2 + 6),解得 a 2= 3.)2 D . — 2 a 2, a 5成等比数列,a 2= a 1 - a 5, 10. [2014郑州质检]已知各项不为0的等差数列{a n }满足a 4— 2a 7 + 3a 8= 0,数列{b n } 疋等比数列, A . C . 10. 且 b 7= a 7,贝U b 2b 8bn 等于(B . D . [解析]由已知,得 2a 2= a 4 + 3a 8= a 1+ 3d + 3a 1+ 21d = 4a 1 + 24d = 4(a 1 + 6d)= 4a 7, 2n , D ••• a 7= 2 或 a 7 = 0(舍去), 二 b 7= 2,「. b 2b 8bn = b 1q - b 1q 7 • b 1q 10= b 3q 18 = (b 1q 6)3= b 3= 8. 17. [2014温州十校联考]1 n € N *,数列{a n }满足 a n + 1 (1)求数列{a n }的通项公式; ⑵记b n = , a n a n +1,求数列{b n }的前n 项和T n . 已知二次函数f(x)= ax 2+ bx 的图像过点(一4n , 0),且f ' (0= =f '丄,且 a 1= 4. a n 17.解: 由题意知 f ' (0) b = 2n , 16n 2a — 4nb = 0, 1• • a = _, 2,1又数列{a n }满足 1 *b = 2n ,「. f(x) = 2X 2+ 2nx , n € N *. 1 f '—, f'x) = x + 2n ,a n +1 a n11 门=一+ 2n , a n +1 a n1 1 c =2n. a na n + 1 1 1由叠加法可得 a n -4= 2+ 4 + 6i ・+ 2(n - 1) = n2- n ,化简可得 a n =(2n — 1)2(n >2). 当 n = 1时,a1= 4 也符合上式,•• a n = ~2(n € N ).=2-1(2n — 1)( 2n + 1) 2n — 1 2n + 1 b n =. a 1a 2+ Ja 2a 3+・・・+ ‘叮 a n a n +1 =1 1 1 4n (2) ■/ b n = . a n a n +1 = --T n = b 1 + b 2+…+11 1 ,,21—:+7—2+…+3 3 5=21 — 2n — 1 2n + 1 2n + 1 2n + 1'1 3 1 3所以|a2n+ 1—a2n|<|a2n —a2n —11.②2n。

2014高考数学(理科)小题限时训练42

2014高考数学(理科)小题限时训练42

2014高考数学(理科)小题限时训练4215小题共75分,时量:45分钟,考试时间:晚21:40—22:10 姓名一、选择题:本大题共8小题,每小题5分,共40分。

1.在复平面内,复数2334ii-+-所对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合1{|24},{|0},2x M x N x x k M N =≤≤=->=∅ 若,则k 的取值范围是A .[2,)+∞B .(2,)+∞C .(,1)-∞-D .(,1]-∞-3.设α、β是两个不同的平面,a 、b 是两条不同的直线,给出下列4个命题,其中正确命题是 A .若//,//,//a b a b αα则 B .若//,//,//,a b a b αβαβ则//C .若,,,/a b a b αβαβ⊥⊥⊥则 D .若a 、b 在平面α内的射影互相垂直,则a b ⊥4.双曲线22221(0,0)x y a b a b-=>>的离心率是2,则213b a +的最小值为A B C .2 D .15.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向旋转一周,点P 所转过的弧AP 的长为l ,弦AP 的长度为d ,则函数()d f l =的图象大致是6.若点M 是△ABC 所在平面内的一点,且满足53AM AB AC =+,则△ABM 与△ABC 的面积比为A .15B .25C .35D .457.设()f x 是定义在R 上的可导函数,且满足()()f x f x '>,对任意的正数a ,下面不等式恒成立的是 A .()(0)af a e f < B .()(0)af a e f >C .(0)()a f f a e <D .(0)()a f f a e>8.若*2sinsinsin (),777n n S n N πππ=+++∈ 则在S 1,S 2,…,S 100中,正数的个数是 A .16 B .72 C .86 D .100二、填空题:本大题共8个小题,考生作答7小题,每小题5分,共35分。

广东2014年张静中学高考数学小题训练及答案三

广东2014年张静中学高考数学小题训练及答案三

广东2014年张静中学高考数学小题训练及答案三班级___________ 姓名__________ 学号_________ 分数___________ 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,选择一个符合题目要求的选项。

1.已知集合P ={0,m },Q ={x |2x 2-5x <0,x ∈Z },若P ∩Q ≠φ,则m = ( )A .1B .2C .1或52D .1或22.椭圆x 225+y 29=1的焦距为 ( )A .4B .6C .8D .103.已知复数21,,iai a R i i+=-∈其中是虚数单位,则a = ( ) A .-2 B .-i C .1 D .24.设函数f (x )在R 上可导,其导函数为f ′ (x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′ (x )的图象可能是()5.已知平面向量(1,2),(2,),a b k a b ==- 若与共线,则|3|a b +=A . 5B .2 5C .5 2D .56.已知条件p :“函数)1(log )(-=x x g m 为减函数”;条件q :“关于x 的二次方程220x x m -+=有解”,则p 是q 的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.设等比数列{a n }的前n 项和为n S ,若63S S =3 ,则69S S =A .2B .73C .83D .38.l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( )A .l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B . l 1∥l 2∥l 3⇒l 1,l 2,l 3共面C .l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面 9.点P (x,y )在函数||y x =的图像上,且x 、y 满足220x y -+≥, 则点P 到坐标原点距离的取值范围是A.[0,3B.[3C.[33D.[0, 10.如果执行右面的程序框图,则输出的结果是A .-5B .-4C .-1D .4 11.函数3()cos[]sin 24f x x x π=-+的值域是 A .[-2,0] B .[-2,98]C .[-1,1]D.[-12.已知函数xe xf =)(,则当21x x <时,下列结论正确的是A .2121)()(1x x x f x f ex -->B .2121)()(1x x x f x f e x++<C .2121)()(2x x x f x f e x -->D .2121)()(2x x x f x f e x++<二.填空题:本大题共4小题,每小题5分。

2014一模小题高考数学选择题

2014一模小题高考数学选择题

东城区:(1)已知集合{|(1)(2)0},R A x x x C A =+-≥则=(A )(xlx<-1,或x>2} (B ){xlx ≤-1,或x ≥2) (C ){x|-l<x<2} (D ){x|-l<x<2} (2)复数1ii -=(A )1122i +(B )1122i - (C )—1122i + (D )一1122i - (3)为了得到函数y=sin (2x-3π)的图象,只需把函数y= sin2x 的图象 (A )向左平移3π个单位长度 (B )向右平移3π个单位长度(C )向左平移6π个单位长度 (D )向右平移6π个单位长度(4)若双曲线等2214x y m -=的离心率为72,则m=(A )5(B )3(C )6(D )26(5)设等差数列{n a }的前n 项和为S n ,若a 1=1,a 2+a 3=11,则S 6一S 3=(A )27(B )39 (C )45 (D )63(6)已知a 132.1,b=log 42,c=log 31.6,则 (A )a>b>c(B )a>c>b (C )b>a>c (D )c>a>b(7)若一个空间几何体的三视图如图所示,则这个几何体的表面积为 (8)已知a ,b 是正数,且满足2<a+2b<4,那么11b a ++的取值范围是第二部分(非选择题 共1 10分)二、填空题共6小题,每小题5分,共30分。

(9)cos 5()4π-= . (10)设抛物线的顶点在原点,准线方程为x=2,则抛物线的方程为 .(11)如图所示茎叶图记录了甲、乙两组各5名同学在期末考试中的数学成绩,则甲组数据的中位数是 ;乙组数据的平均数是 .(12)在△ABC 中,D ,E 分别为BC ,AC 的中点,F 为AB 上的点,|AF|=14|AB|。

若(,),AD AF AE R λμλμλμ=+∈+=则 .(13)已知函数()f x 是定义在R 上的奇函数.当x<0时,2()40,()f x x x f x =->则时的解析式为 ;不等式f (x )<0的解集为 . (14)已知符号函数房山区:(1)已知集合{|(2)0}A x x x =-≤,{2,1,0,1,2}B =--,则AB =(A ){2,1}-- (B ){1,2} (C ){1,0,1,2}- (D ){0,1,2}(2)在复平面内,复数2ii-对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限(3)已知抛物线方程为24y x =-,则它的焦点坐标为(A )(1,0)- (B )(1,0) (C )(2,0)-(D )(2,0)(4)执行如图所示的程序框图,如果输入1a =,2b =,则输出的a 的值为(A )16 (B )12 (C )8(D )7(5)函数122()log f x x x =-的零点个数为 (A )0(B )1 (C )2(D )3(6)已知数列{}n a ,则“11n n a a +>-”是“数列{}n a 为递增数列”的(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(7)如图,有一块锐角三角形的玻璃余料,学优网欲加工成一个面积不小于800cm 2的内接矩形玻璃(阴影部分),则其边长x (单位:cm )的范围是60cm60cmx(A )[10,30](B )[25,32] (C )[20,35](D )[20,40](8)已知直线l :2y x b =+与函数1y x=的图象交于A ,B 两点,记△OAB 的面积为S (O 为坐标原点),则函数()=S f b 是(A )奇函数且在(0,)+∞上单调递增 (B )偶函数且在(0,)+∞上单调递增 (C )奇函数且在(0,)+∞上单调递减(D )偶函数且在(0,)+∞上单调递减第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2014高考数学(理科)小题限时训练34

2014高考数学(理科)小题限时训练34

2014高考数学(理科)小题限时训3415小题共75分,时量:45分钟,考试时间:晚21:40—22:10 姓名 一、选择题(8小题,每小题5分共40分)1. 已知向量a =(1,3),b =(-2,m ),若a 与b a 2+垂直,则m 的值为( )2. A. -1 B. 0 C. 2i D. -23.二进制数111.11转换成十进制数是( )A. 7.3B. 7.5C. 7.75D. 7.1254.已知0>a ,函数()c bx ax x f ++=2,若0x 满足关于x 的方程02=+b ax ,则下列选项的命题中为假命题的是( )A. ∃x ∈R ,f (x )≤f (0x )B. ∀x ∈R ,f (x )≤f (0x )C. ∃x ∈R ,f (x )≥f (0x )D.∀x ∈R ,f (x )≥f (0x )5.图1是某县参加2012年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1,A 2,…,A 10(如A 2表示身高(单位:cm )在[150,155)内的学生人数)图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是( )A.7<iB. 8<iC. 9<iD. 10<i 6.给出以下命题: (1)若,则f (x )>0; (2);(3)f (x )的原函数为F (x ),且F (x )是以T 为周期的函数,则;其中正确命题的个数为( )A. 0B.1C. 2D. 37.若{n a }是公差为1的等差数列,则{n n a a 2122+-}是( )A .公差为3的等差数列 B.公差为4的等差数列C. 公差为5的等差数列D. 公差为6的等差数列8.设不等式组123350x a y x y ≥⎧⎪≥⎨⎪+-≤⎩,,表示的平面区域是W ,若W 中的整点(即横、纵坐标均为整数的点)共有91个,则实数a 的取值范围是( )A.(21]--,B.[10)-,C. (01],D. [12), 二、填空题(本大题共7小题,每小题5分,共35分.)(一)选做题(请在第9,10,11三题中任选两题作答,如果全做,则按前两题记分) 9.用分数法对[]105,0进行优选法实验,按5一等分,共分为21等分,最多只需做_____次实验就能找到其中的最佳点. 10.在极坐标系中,点⎪⎭⎫ ⎝⎛2,1πP 到曲线2234cos :=⎪⎭⎫ ⎝⎛+πθρl 上的点的 最短距离是_____11. .如图,半径为2的⊙O 中,90AOB ∠=︒,D 为OB 的中点, AD 的延长线交⊙O 于点E ,则线段DE 的长为 (二)必做题( 12-16题)12.如图为一个几何体的三视图,尺寸如图所示,则该几可体的表面积为 (不考虑接触点) 13. 某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 . 14. 已知点A (-2,0),B (2,0),动点P 满足∠APB=2θ,且2sin2=∙∙θPB PA .则动点P 的轨迹方程为 . 15. 若()201220122210201242x a x a x a a x ++++=+ ,则2012420a a a a +++被3除的16.已知二次函数()x f 满足()01=-f ,且()1482+≤≤x x f x 对于R x ∈恒成立.则()x f = ;设()()x f x x g 12-=,定义域为D ,现给出一个数学运算程序:()()()123121-→→→→=→n n x g x x g x x g x x 若D x n ∈,则运算继续下去;若D x n ∉,则运算停止.给出371=x ,请你写出满足上述条件的集合{}n x x x ,,21= .9. 10. 11. 12 13. 14 15 16ADCB BC D C 9. 6 10. 22 12. π++3218 13. 16 14. 222x y -= 15. 2 16.()212+x ;⎭⎬⎫⎩⎨⎧--1,31,51,37。

2014高考数学(理科)小题限时训练36

2014高考数学(理科)小题限时训练36

2014高考数学(理科)小题限时训练3615小题共75分,时量:45分钟,考试时间:晚21:40—22:10 姓名 一、选择题(8小题,每小题5分共40分)1.若复数a -i2+i (a ∈R ,i 为虚数单位)是纯虚数,则a 的值为A.-2B.12C.-12D.22.“a =-1”是“直线a 2x -y +6=0与直线4x -(a -3)y +9=0互相垂直”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件3.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车.据《法制晚报》报道,2013年1月10日至1月20日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为A.2160B.2880C.4320D.86404.若下列程序框图中输入n =6,m =4,那么输出的p 等于A.720B.360C.240D.1205.已知{a n }满足a 1=a 2=1,a n +2a n +1-a n +1a n=1,则a 6-a 5的值为A.0B.18C.96D.6006.设双曲线M :x 2a2-y 2=1,点C (0,1),若直线12x y t ⎧=⎪⎪⎨⎪=+⎪⎩ (t 为参数)交双曲线的两渐近线于点A 、B ,且BC =2AC ,则双曲线的离心率为A.52 B.103C. 5D.10 7.已知a =∫π0(sin t -cos t )d t ,则(x -1ax)6的展开式中的常数项为 A.20 B.-20 C.52 D.-528.设点P 是△ABC 内一点(不包括边界),且AP =m AB +n AC (m ,n ∈R ),则(m +1)2+(n -1)2的取值范围是A.(0,2)B.(0,5)C.(1,2)D.(1,5)二、填空题:本大题共7小题,每小题5分 ,共35分,9.在电影拍摄爆炸场面的过程中,为达到逼真的效果,在火药的添加物中需对某种化学药品的加入量进行反复试验,根据经验,试验效果是该化学药品加入量的单峰函数.为确定一个最好的效果,拟用分数法从33个试验点中找出最佳点,则需要做的试验次数至多是 .10.长沙市为“3013年春节高速公路免费通行活动”招募了20名志愿者,他们的编号分别是1号、2号、…、19号、20号,若要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的人在另一组,那么确保5号与14号入选并被分配到同一组的选取种数是.11.如下图,AC 是⊙O 的直径,B 是圆上一点,∠ABC 的平分线与⊙O 相交于D ,已知BC =1,AB =3,则AD = .12.一个几何体的三视图如下图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形.则用 个这样的几何体可以拼成一个棱长为4的正方体.13.在平面直角坐标系xOy 中,设D 是由不等式组⎪⎩⎪⎨⎧≥≤-+≥+-00101y y x y x 表示的区域,E是到原点的距离不大于1的点构成的区域,向E 中随机投一点,则所投点落在D 中的概率是 .14.已知f(x)是定义在R 上的奇函数,且f (x +2)+f (x )=0,当x ∈[0,1]时,f (x )=2x-1,则f (log 18125)= .15.已知函数f (x )=(x 2-x -1a)e ax (a ≠0).(1)曲线y =f (x )在点A (0,f (0))处的切线方程为 ;(2)当a >0时,若不等式f (x )+3a ≥0对x ∈[-3a,+∞)恒成立,则实数a 的取值范围为 . 题号 1 2 3 4 5 6 7 8 答案9. 10. 11.1213. 14 15数学参考答案9.7 10.21 11.2 12.3 13.1π 14.1415.(1)2x +y +1a =0 (2)(0,ln 3]。

2014高考数学(理科)小题限时训练31

2014高考数学(理科)小题限时训练31

2014高考数学(理科)小题限时训练3115小题共75分,时量:45分钟,考试时间:晚21:40—22:10 姓名 一、选择题:本大题共8小题,每小题5分,共40分,1.设i 是虚数单位,则复数i1i-+的虚部是( ) A.2i B. 2i - C. 21 D. 21- 2. 若a ∈R ,则2a =是()()120a a --=的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件 C .既不充分又不必要条件3.设两个正态分布)0)(,(1211>σσμN 和)0)(,(2222>σσμN 曲线如图所示。

则有( ) A .2121,σσμμ>< B. 2121,σσμμ<< C. 2121,σσμμ>> D. 2121,σσμμ<> 4.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为{a n }的前n 项和,则3253S S S S --的值为( )A.2B.3C.15D.不存在 5.设b a ,为两条直线,βα,为两个平面,下面四个命题中真命题是( ) A .若b a ,与α所成的角相等,则a ∥b B.若a ∥α,b ∥β,α∥β,则a ∥bC .若βα⊂⊂b a ,,a ∥b则α∥β D.若βαβα⊥⊥⊥,,b a ,则b a ⊥6.已知平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定.若M(x ,y)为D 上动点,点A 的坐标为1).则z OM OA =⋅的最大值为( )A.7.某大学的信息中心A 与大学各部门、各院系B C D E F G H I ,,,,,,,之间拟建立信息联网工程.实际测算的费用如图2所示(单位:万元),请观察图形,可以不建部分网线,就使得信息中心与各部门、各院系连通(直接或中转),则最少的建网费用是( ) A.12万元 B.13万元 C.14万元 D.16万元8. 已知函数()e xf x x =+,对于曲线()y f x =上横坐标成等差数列的三个点,,A B C ,给出以下判断:①ΔABC 一定是钝角三角形 ②ΔABC 可能是直角三角形 ③ΔABC 可能是等腰三角形 ④ΔABC 不可能是等腰三角形其中,正确的判断是( ).A .①,③B .①,④C .②,③D .②,④ 二、填空题(9-11中任选两题, 12-16为必做题) 9.在平面直角坐标系xOy 中,直线l 的参数方程为33x t y t=+⎧⎨=-⎩(参数t ∈R ),圆C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩(参数[)02θ∈π,),则圆心到直线l 的距离为 .10.如图5所示,圆O 的直径6AB =,C 为圆周上一点,3BC =.过C作圆的切线l ,过A 作l 的垂线AD ,AD 分别与直线l 、圆O 交于点D E ,,线段AE 的长为 .11.设c b a ,,均为正数,且9=++c b a ,则cb a 3694++的最小值为12.下图是某算法程序框图,则程序运行后输出的结果是13.某校有教师200人,男学生1 200人,女学生1 000人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女生中抽取的人数为80,则n 等于 .14. 若32nx ⎛+ ⎝的展开式中含有常数项,则最小的正整数n 等于 .15. 若)(x f 在R 上可导,3)2(2)('2+⋅+=x f x x f ,则3()d x f x =⎰.16. 德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数),又称为莱布尼兹三角形: 根据前5行的规律,写出第6行的数依次是 . 9. 10. 11. 12 13. 14 15 16图5答案:DAAA DCBB7.按A H G F A E D C B A I 11112 23 2 ,,连接。

2014高考数学(理科)小题限时训练20

2014高考数学(理科)小题限时训练20

2014高考数学(理科)小题限时训练2015小题共75分,时量:45分钟,考试时间:晚21:40—22:10 姓名 一.选择题(本大题共8小题,每小题5分,共40分,在) 1.函数y =的定义域是 ( )A .[0),+∞B .[1),+∞C .(0),+∞D .(1),+∞2.有下列四个命题,其中真命题是 ( ) A .2,n n n ∀∈≥RB .,,n m m n m ∃∈∀∈= R RC .2,,n m m n ∃∈∃∈<R RD .2,n n n ∀∈<R3.已知三棱柱的三视图如下图所示,其中俯视图为正三角形,则该三棱柱的体积为 ( )A.B.C .D .64.函数f (x )=ln ||(0)1(0)x x x x<⎧⎪⎨>⎪⎩的图象大致是 ( )5.已知ΔABP 的顶点A 、B 分别为双曲线22:1169x y C -=的左、右焦点,顶点P 在双曲线C 上,则|sin sin |sin A B P-的值等于A .B .C .45D .546.我市某机构调查小学生课业负担的情况,设平均每人每天做作业时间为x (单位:分钟),按时间分下列四种情况统计:①0~30分钟;②30~60分钟;③60~90分钟;④90分钟及90分钟以上,有1 000名小学生参加了此项调查,下图是此次调查的流程图,已知输出的结果是600,则平均每天做作业时间在0~60分钟内的学生的频率是 ()A .0.20B .0.40C .0.60D .0.807.已知0<a <1,0<b <1,则函数2()log 2log 8a b f x x b x a =++的图象恒在x 轴上方的概率为( )A .14B .34C .13D .238.已知f (x )是R 上的偶函数,当x ≥0时,f (x )= 1222xx -,又a 是函数g (x ) =2ln(1)x x+-的正零点,则f (–2),f (a ),f (1.5)的大上关系是 ( ) A .(1.5)()(2)f f a f <<- B .(2)(1.5)()f f f a -<< C .()(1.5)(2)f a f f <<-D .(1.5)(2)()f f f a <-<二、填空题(本大题共7小题,每小题5分,共35分)9.用0.618法确定的试点,则经过 次试验后,存优范围缩小为原来的0.6184倍. 10.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则7812a a -的值为 .11.已知复数12312,1,34z i z i z i =-+=-=-,它们在复平面上所对应的点分别为A ,B ,C ,若(,)OC λOA μOB λμ=+∈R ,则λμ+的值是 .12.在极坐标系中,和极轴垂直相交的直线l 与圆4ρ=相交于A 、B 两点,若|AB |=4,则直线l 的极坐标方程为 .13.在计算机的运行过程中,常常要进行二进制数与十进制数的转换与运算.如:十进制数8转换成二进制是1000,记作8(10)=1000(2);二进制数111转换成十进制数是7,记作111(2)=7(10).二进制的四则运算,如:11(2)+101(2)=1000(2),请计算:11(2)×111(2)+1111(2)= (2). 14.,x x ∀∈≠且0R .不等式1|||5|1x a x+>-+恒成立,则实数a 的取值范围是 .15.设集合M ={1,2,3,4,5,6},对于a i ,b i ∈M ,记ii ia eb =且i i a b <,由所有i e 组成的集合设为:A ={e 1,e 2,…,e k },则k 的值为 ;设集合B =1{A}i i i ie |e ,e e ''=∈,对任意e i ∈A ,j e '∈B ,则Μi j e e '+∈的概率为9. 10. 11. ;12.13. 14. 15.理科数学参考答案1. 【解析】A 由2x –1≥0,求得x ≥0 2.【解析】B 对于选项A ,令12n =即可验证不正确;对于选项C 、选项D ,可令n = –1加以验证其不正确,故选B .3.【解析】C 如图将三棱柱还原为直观图,由三视图知,三棱柱的高为4,设底面连长为a 6a ==.故体积264V ⨯=. 4.【解析】B 函数y =ln|x |(x <0)的图象与函数y =ln x 的图象关于y 轴对称,函数1(0)y x x =>的图象是反比例函数 1y x=的图象在每一象限的部分5.【解析】C 由题意得:|PB –P A |=8,|AB |=210=,从而由正弦定理,得|sin sin |||4sin 5A B PB PA P AB --==.6.【解析】B 由流程图可见,当作业时间X 大于60时,S 将会增加1,由此可知S 统计的是作业时间为60分钟以上的学生数量,因此由输出结果为600知有600名学生的作业时间超过60分钟,因此作业时间在0~60分钟内的学生总数有1000–600=400名,所以所求频率为400/1000=0.4. .7.【解析】D 因为函数图象恒在x 轴上方,则42log 32log 0b a a b -<,01,01,log 0,b a b a <<<<∴> log 0,a b >所以311log ,log 82a ab b >∴>,即12b a <.则建立关于a ,b 的直角坐标系,画出关于a 和b 的平面区域,如图.此时,可知此题求解的概率类型为关于面积的几何概型,由图可知基本事件空间所对应的几何度量(Ω)1S =,满足图象在x 轴上方的事件A 所对应的几何度量1122()3S A a da ==⎰.所以()2()(Ω)3S A P A S ==. 8.【解析】A 当a >0时,易知g (x )为增函数,而且g (2)=ln3 – 1>0,g (1.5)=ln2.5–43<lne –1=0,于是由零点存在定理可知在区间(1.5,2)内g (x )存在零点,再由单调性结合题意可知a 就为这个零点,因此有1.5<a <2.又当x ≥0时,直接求导即得()2ln 2x f x'=x >1时,我们有2()2l n 21l n 21l n 10f x e '>-=->-=,由此可见f (x )在(1,)+∞上单调增,可见必有(1.5)()(2)f f a f <<,而又由于f (x )为偶函数,所以(1.5)()(2)f f a f <<-,故选A .9.【解析】5次10.【解析】8 由已知得:21048666()()58016a a a a a a a ++++==⇒=,又分别设等差数列首项为a 1,公差为d ,则78111611116(7)(5)82222a a a d a d a d a -=+-+=+==.11.【解析】因为点A (–1,2 ),B (1,–1 ),C (3,–4 ). 所以OC λOA μOB =+(3,4)(1,2)λ⇒-=-+(1,1)μ-,因此324λμλμ-+=⎧⎨-=-⎩,即12λμ=-⎧⎨=⎩,所以1λμ+=.12.【解析】cos ρθ= 由该圆的极坐标方程为4ρ=知该圆的半径为4,又直线l 被该圆截得的弦长|AB |为4,设该圆圆心为O ,则∠AOB =60°,极点到直线l的距离为4cos30d =︒=,所以直线的极坐标方程为cos ρθ=13.【解析】100100 由题可知,在二进制数中的运算规律是“逢二进一”,所以 11(2)×111(2=10101(2),10101(2)+1111(2)=100100(2).14.【解析】4<a <6 不等式1|||5|1x a x +>-+对于一切非零实数x 均成立,可以先求出1||x x+的最小值,然后利用|5|1a -+小于这个最小值即可求解a 的取值范围.当x >0时,12x x +≥=;当x <0时,1[()()]2x x --+-≤--.从而1||2x x +≥恒成立,所以不等式1|||5|1x a x+>-+对于一切非零实数x 均成立,可转化主|5|12a -+<,即|5|115146a a a -<⇒-<-<⇒<<. 15.【解析】11;6121由题意知,a i ,b i ∈M ,a i <b i ,首先考虑M 中的二元子集有{1,2},{1,3},…,{5,6},共15个,即为26C =15个.又a i <b i ,满足ji i ja ab b =的二元子集有: {1,2},{2,4},{3,6},这时12i i a b =,{1,3},{2,6},这时13i i a b =,{2,3},{4,6},这时23i i a b =,共7个二元子集.故集全A 中的元素个数为k =15 – 7 +3=11.列举A ={1111122334523456354556,,,,,,,,,,},B ={2,3,4,5,6,354556223345,,,,,}131515243546232222222233334455,,,,,+=+=+=+=+=+=共6对.所求概率为:6121p =.。

2014高考数学(理科)小题限时训练41

2014高考数学(理科)小题限时训练41

2014高考数学(理科)小题限时训练4115小题共75分,时量:45分钟,考试时间:晚21:40—22:10 姓名 1.复数1ii +的共轭复数是 ( ) A .1i -+ B .1i --C .1i +D .1i -2.某市甲、乙、丙3个区共有高中学生20000人,且甲、乙、丙3个区的高中学生人数之比为2:3:5,现要用分层抽样方法从该市甲、乙、丙3个区所有高中学生中抽取一个样本,已知从甲区中抽取了80人,则应从乙、丙2个区中共抽取 ( ) A .120人 B .200人 C .320人 D .400人 3.设集合{|2},{|9},{4,7}A x x a B x b x A B =<<=<<⊆⋂集合若,则a b -的值可以是( ) A .1 B .2C .3D .44.在空间中,下列命题为真命题的是( ) A .对于直线,a b 和平面α,若a a b α⊥且与无公共点,则b α⊥ B .对任意直线a ,在平面α中必存在一条直线b 与之垂直 C .若直线,a b 与平面α所成的角相等,则//a bD .若直线,a b 与平面α所成的角互余,则a b ⊥5.设双曲线2222:1(,0)x y C a b a b-=>的一条渐近线与抛物线2y x =的一个交点的横坐标为001,2x x >若,则双曲线C 的离心率e 的取值范围是( )A .B .C .)+∞D .)+∞ 6.设:;:()sin ()cos()6p q f x x g x x πϕϕ===+函数的图象与的图象关于直线6x π=对称,则p q 是的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件7.已知函数()f x 是定义在R 上的奇函数,且在上是增函数,在[3,)+∞上是减函数,若函数()()g x f ax =在上是增函数,则实数a 的取值范围是( )A .1(0,]2B .(0,2]C .1[,)2+∞ D .[2,)+∞8.在ABC ∆中,D 是BC 边上一点,且BD=3DC ,P 是线段AD 上的一个动点,若AD=2,则(3)PA PB PC ⋅+的最小值是( )A .0B .-2C .-4D .-8二、填空题:本大题共7小题,每小题5分,共35分, 9.设11,(21)4,aa x dx a >+=⎰若则的值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014高考数学(理科)小题限时训练19
15小题共75分,时量:45分钟,考试时间:晚21:40—22:10 姓名 一、选择题(本大题共8小题,每小题5分,共40分 1
.若()f x =
,则()f x 的定义域是( )
A .(,]1
-
02
B .(,)1-+∞2
C .(,)0+∞
D .(,)1-
02
2.计算121
(lg lg 25)100=4
--÷( )
A .-10
B .10
C .20-
D .20
3.设函数⎩⎨⎧>-≤=-,
1,log 1,
1,2)(21x x x x f x 则满足2)(≤x f 的x 的取值范围是( )
A .1[-,2]
B .[0,2]
C .[1,+∞)
D .[0,+∞)
4.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)
x 2-x 1<0,则下列结
论正确的是( )
A .f (1)<f (-2)<f (3)
B .f (3)<f (-2)<f (1)
C .f (-2)<f (1)<f (3)
D .f (3)<f (1)<f (-2) 5.已知()x f 是R 上的奇函数,且当0x >时,1()()12
x
f x =+,则()x f 的反函数的图像
大致是( )
6.若函数2
(2)()m x f x x m
-=+的图象如上右图所示,则m 的范围为 A .(-∞,-1) B .(1,2) C .(-1,2) D . (0,2) 7.设函数()()21
x
f x x x =
∈+R ,区间[](),M a b a b =<其中,集合(){},N y y f x x M ==∈,则使M N =成立的实数对(),a b 有( ) A .1个
B .2个
C .3个
D .4个
8.函数,,y kx b k b =+其中(0k ≠)是常数,其图象是一条直线,称这个函数为线性函数.对于非线性可导.....函数()x f ,在点0x 附近一点x 的函数值()x f ,可以用如下方法求其近似代替值:
()()()()000'≈+-f x f x f x x x .利用这一方法,9983.m =的近似代替值( )
A .大于m
B .小于m
C .等于m
D .与m 的大小关系无法确定 二、填空题(本大题共7小题,每小题5分,共35分.) 9.设集合A ={
}2
,12,4a
a -- ,B ={}a a --1,5,9,且A B ={}9,则实数a =______.
10.已知命题2
sin ,:π
=
∈∃x R x p 使得;命题023:2
<+-x x q 的解集是()2,1,给出下
列四个结论:①“q p ∧”是真命题;②“q p ⌝∧”是假命题;③“q p ∧⌝”是真命
题;④“q p ⌝∨⌝”是假命题.其中正确结论的序号是________.
11.定义在R 上的函数()f x 满足()(4)f x f x -=-+,当2x >时,()f x 单调递增,如果
1212124(2)(2)0,()()x x x x f x f x +<--<+且则 _____0.(在题中空白位置填上
“>”,“<”,“=”,“≥”或“≤”)
12.已知函数)(x f y =的定义域为R ,它的反函数为)(1
x f
y -=,如果)(1
a x f
y +=-与
)(a x f y +=互为反函数且a a f =)((a 为非零常数)
,则)2(a f = . 13.函数()x f 的定义域为D ,若对于任意D x x ∈21,,当21x x <时,都有()()21x f x f ≤,
则称函数()x f 在D 上为非减函数.设函数()x f 在[]1,0上为非减函数,且满足以下三个条件:①()00=f ;②()x f x f 2
1
3=
⎪⎭

⎝⎛;③()()x f x f -=-11.则 =⎪⎭

⎝⎛+⎪⎭⎫ ⎝⎛8131f f _______. 14.设1>a ,函数x y a log =的定义域为[]()n m n m <,,值域为[]1,0,定义“区间[]n m ,
的长度等于m n -”,若区间[]n m ,长度的最小值为
6
5
,则实数a 的值为________. 15.若集合A ={}654321,,,,,a a a a a a ,B ={
}2
6
2
52
42
32
22
1,,,,,a a a a a a 其中
()*∈≤≤N i a i 61,且654321a a a a a a <<<<<.如果{}43,a a B A = ,
1343=+a a ,且B A 中的所有元素之和为403,则=43a a ___,集合A =_____.
9. 10. 11. ;12.
13. 14. 15.
答案
1-8. DCDB ABCA 9. -3 10. ②③ 11. <
12. 0 13.
4
3 14. 6
15. 36 {}12,11,9,4,3,2。

相关文档
最新文档