抽水试验
抽水试验报告
抽水试验报告抽水试验是指对地下水井进行测试,以确定井的水文地质特性,包括井的生产能力、水位变化、水化学特性等等。
本报告将详细介绍抽水试验的过程和结果。
一、抽水试验的目的及意义抽水试验的主要目的是为了测定井的储水能力、地下水的流动状态和水文地质条件,进而确定井的生产能力、水位变化规律和水化学特性,指导水资源的开发和管理。
抽水试验对于地下水开发利用具有重要的意义,尤其对于确定井的生产能力和水位变化规律等方面有重要的指导作用。
二、抽水试验的方法本次抽水试验采用了静态抽水试验的方法进行,测试周期为48小时。
在试验期间,以恒定流量的方式排出水井的地下水量,从而确定井的水文地质特性。
三、试验过程1.试验前的准备工作a. 检查设备在进行试验前,首先需要检查设备,确保设备齐全完好、使用安全可靠。
检查设备包括泵、试验管、计时器、空气压缩机等,确保这些设备能够正常运转。
b. 制定试验计划制定试验计划是试验的关键,需要根据实际情况制定合理的试验方案。
试验计划需要考虑井的深度、直径、孔径以及孔隙度、渗透系数等地下水文地质参数,在此基础上确定试验周期。
c. 安装试验管试验管是连接地下水井和地面设备的管道,安装试验管需要特别小心谨慎。
在安装试验管时,需要确保试验管与井壁之间的空隙足够小,以防止地下水通过空隙渗透入土壤和岩石中。
2.试验过程中的数据测量a. 测量地下水位在试验中需要不断地测量井口的水位,以便了解井的液位变化情况。
为了确保水位的准确性,测量需要同时进行多次,然后取平均值。
在试验期间,需要测量地下水的流量,以确定井的生产能力。
测量地下水流量的方法有多种,包括喷嘴测量法、磁流量计法、涡街流量计法等。
3.试验后的数据处理和分析在试验结束后,需要对试验数据进行处理和分析,以确定井的水文地质特性。
数据处理和分析包括流量曲线绘制、水位变化规律分析、水力学参数的计算。
四、试验结果及分析本次试验的结果显示,井的水位随时间的变化呈现出一个典型的随时间逐渐下降的趋势,而井的流量则随时间的变化对应呈现出一个典型的随时间逐渐上升的趋势。
第八讲--抽水试验
二、空气压缩机抽水
1.空气压缩机抽水的工作原理 压缩空气经风管进入井内,经混合器与扬水管中的水混合
形成气水混合物。该混合物与管外的水相比,其比重较低,因 此在扬水管内外比重差的作用下液面上升。与此同时,混入水 中的压缩空气释放能量,使水中的气泡沿上升过程中逐渐加大。 于是形成较强大的“气举”力而克服扬水管内液体的惯性使水 柱上升,至地表气水分离室里,空气逸出,水排出井外。
风管、扬水管安 装方式
并列式:简单、效率高, 但要求井孔直径大。
同心式:复杂、效率低, 但适用于小直径井孔抽水。
风管直径的计算公式为:
d内
W
60 (k 1) 0.785Vb
式中:d内——风管内径,m; W——所需空气量,m3/min; Pk——压缩空气压力值,大气压;
Vb——压缩空气在风管内的流动速度,Vb=8~10m/s。
●在松软岩层中进行抽水试验时,落程应由小到大,以避 免含水层受到过大的扰动。在基岩中进行抽水试验时, 落程则应由大到小。
●如水质受污染,应适当延长抽水时间,在水的化学成分 稳定前不能停止抽水。
一、抽水设备的选择 抽水设备的类型很多,合理地选择抽水设备是准确
的获取水文资料,充分发挥水井效益和降低成本的重要 措施。
(3)空气压缩机压力计算 开始抽水时,起动压力P0=0.1(H-h0)+ΔP, 大气压
连续抽水时,工作压力P=0.1(H-h)+ΔP , 大气压
式中:ΔP—压缩空气在风管中流动时的压力损失, ΔP=0.2~0.5大气压
由于:H-h0>H-h→P0>P 所以,选择空压机压力应以 P0为依据。
(4)风管、扬水管(井管)的安装形式与计算
2.空气压缩机抽水有关参数的选择与计算
抽水试验教程课件
将试验过程中记录的数据进行整理,计算出抽水试验的各项指标,如抽水速率、总抽水量等。
结束抽水与后续处理
结束抽水
当抽水试验达到预设的时间或 目标时,停止抽水。
数据审核
对采集到的数据进行审核,确 保数据的准确性和完整性。
数据分析
根据采集的数据进行数据分析 ,得出抽水试验的结论。
撰写报告
根据试验结果撰写试验报告, 报告应包括试验目的、试验过 程、数据分析和结论等内容。
数据分析的方法与工具
统计分析
使用统计方法来描述和解释数据,识 别数据的分布和关系。
数据挖掘技术
应用数据挖掘技术来发现数据中的模 式和关联。
专业软件
使用专门的数据分析软件,如SPSS 、Excel等,来执行计算和分析。
编程语言
使用编程语言,如Python、R等,来 编写自定义的分析脚本。
数据结果的展示与报告
01
02
03
图表和图形
使用图表和图形来展示数 据结果,例如柱状图、折 线图、饼图等。
报告和论文
编写报告或论文来详细说 明数据分析的结果,包括 数据的解释、分析和结论 。
数据可视化工具
使用数据可视化工具来交 互式地展示和分析数据结 果,以便更深入地探索和 理解数据。
05
CATALOGUE
抽水试验的常见问题与解决方 案
抽水试验的局限性及改进方向
试验条件限制
抽水试验受限于场地、气候、地质条件等因素。应尽可能创造良 好的试验条件,提高试验精度。
试验成本高
抽水试验需要大量人力、物力和财力支持。应通过优化方案、选用 经济实用的仪器等方法降低成本。
试验周期长
抽水试验需要长时间观测和数据处理,可能耗费较长时间。应通过 改进数据处理方法、优化试验方案等方式缩短试验周期。
第八讲 抽水试验
三角形堰箱测量出水量时,可采用下公式计算: 当H=0.021~0.20m时 当H=0.301~0.350m时 Q=1.4H2.5 Q=1.343H2.47
当H=0.201~0.300m时 取上两公式计算的平均值。 式中: H—— 水流经过堰口时水断面的高度( m )。由于计算
(4)风管、扬水管(井管)的安装形式与计算
并列式:简单、效率高,
风管、扬水管安 装方式
但要求井孔直径大。
同心式:复杂、效率低, 但适用于小直径井孔抽水。
风管直径的计算公式为:
W d内 60 ( k 1) 0.785 Vb
式中:d内——风管内径,m; W——所需空气量,m3/min;
式中:C——经验系数,它与k有关。
η——效率系数。
(3)空气压缩机压力计算 开始抽水时,起动压力P0=0.1(H-h0)+ΔP, 大气压 连续抽水时,工作压力P=0.1(H-h)+ΔP , 大气压
式中:ΔP—压缩空气在风管中流动时的压力损失,
ΔP=0.2~0.5大气压 由于:H-h0>H-h→P0>P 所以,选择空压机压力应以 P0为依据。
是一种立式活塞泵,由手柄、拉杆、出水三通、泵体、
活塞和吸水管组成。其吸水高度一般不超过 6~7m ,适用于
浅水位井孔的抽水试验。此泵构造简单,可以自制,安装方 便,但用人力上下压动抽水,水量不易保持均衡。
3.往复式水泵抽水
最大吸水高度约6~7m,适用于浅水位和中等涌水量
的井孔。用往复式水泵抽水时,不需另增设备,可直接
形成气水混合物。该混合物与管外的水相比,其比重较低,因
抽水试验
(二)观测孔的布置
1、布置观测孔的意义 利用观测孔的水位观测数据.可以提高井流公式 所计算出的水文地质参数的精度。这是因为:
观测孔中的水位,不存在抽水孔水跃值和抽水孔附近 三维流的影响,能更真实地代表含水层中的水位; 观测孔中的水位,由于不存在抽水主孔“抽水冲击” 的影响,水位波动小,水位观测数据精度较高; 利用观测孔水位数据参与井流公式的计算,可避开因R 值选取不当给参数计算精度造成的影响
包含的含水层情况
完整井抽水试验 非完整井抽水试验
抽水顺序 正向抽水试验 反向抽水试验
补:按抽水试验任务分
试验抽水
一次降深稳定流单孔抽水,试验性的抽水 概略评价含水层富水性 2-3次降深稳定或非稳定流单孔抽水试验 求水文地质参数,确定Q-S关系 求水源地允许开采量,或求水文地质参数,或判明水 文地质条件
2、观测孔的平面布置
观测孔的平面布置取决于抽水试验的任 务、精度要求、规模大小、含水层的性质, 以及资料整理和参数的计算方法等因素。
综合因素
★ 观测线
为准确求参,应根据含水层边界条件、均质程 度、地下水的类型、流向及水力坡度等,在抽水孔 的一侧宜垂直地下水的流向布置2-3个观测孔。 为了测定含水层不同方向的非均质性或确定抽 水影响半径,可以根据含水层的不同情况,以抽水孔 为中心布置1-4条观测线。如有两条观测线,一条垂 直地下水流向,另一条宜平行地下水流向。
非稳定流抽水试验
3.根据抽水井的类型分
完整井抽水试验
完整井,即钻孔揭穿整个含水层,过滤器长度等于含 水层厚度。 特点:井流理论较完善,故一般应尽量用完整井做抽 水试验。 非完整井,即钻孔仅揭穿含水层的一部分,过滤器长 度小于含水层厚度 特点:当含水层厚度很大,又是均质层时,为了节省 费用,或为了研究过滤器的有效长度时进行非完整井 抽水试验。
抽水试验
第一章基本要求掌握抽水试验的目的、分类、方法及抽水试验准备工作。
位置等。
1.2 抽水试验分类抽水试验主要分为单孔抽水、多孔抽水、群孔干扰抽水和试验性开采抽水。
(1)单孔抽水试验:仅在一个试验孔中抽水,用以确定涌水量与水位降深的关系,概略取得含水层渗透系数。
(2)多孔抽水试验:在一个主孔内抽水,在其周围设置若干个观测孔观测地下水位。
通过多孔抽水试验可以求得较为确切的水文地质参数和含水层不同方向的渗透性能及边界条件等。
1.4 抽水试验准备工作(1) 除单孔抽水试验外,均应编制抽水试验设计任务书;(2) 测量抽水孔及观测孔深度,如发现沉淀管内有沉砂应清洗干净;(3) 做一次最大降深的试验性抽水,作为选择和分配抽水试验水位降深值的依据;(4) 在正式抽水前数日对所有的抽水孔和观测孔及其附近有关水点进行水位统测,编制抽水试验前初始水位等水位线图,如果地下水位日变化很大时,还*凡作了群孔干扰抽水试验的水源地,可不作试验性开采抽水试验。
第二章抽水试验孔布置要求2.1 抽水孔的布置要求抽水孔的布置应符合下列要求:(2) 为了测定含水层不同方向的非均质性或确定抽水影响半径,可以根据含水层的不同情况,以抽水孔为中心布置1~4条观测线;如有两条观测线,一条垂直地下水流向,另一条宜平行地下水流向。
(3) 群孔干扰抽水试验和试验性开采抽水试验应在抽水孔组中心布置一个观测孔;为查明相邻已采水源地的影响,应在连接两个开采中心方向布置观测孔。
为确定水位下降漏斗形态和补给(或隔水)边界,应在边界和外围一定范围内布设一定数量的观测孔。
(4) 多孔抽水孔组的第一个观测孔应尽量避开三维流的影响,相邻两观测孔的水位下降值相差不小于0.1m,最远观测孔的下降值不宜小于0.2m,各观测孔应在对数数轴上呈均匀分布。
第三章稳定流抽水试验要求3.1 水位降深稳定流抽水试验一般进行三次水位降深,最大降深值应按抽水设备能力确定。
水位降深顺序,基岩含水层一般宜先大后小,松散含水层宜按先小后大逐次(1) 水位观测时间一般在抽水开始后第1、3、5、10、20、30、45、60、75、90min进行观测,以后每隔30min观测一次,稳定后可延至1h观测一次。
抽水试验资料整理
抽水试验[pumping test],包括自试井抽取一定水量而在某距离之各观测井测定各种时间距地下水位的变化,观测数据利用各种地下水流理论式或其图解法分析抽水试验的结果。
抽水试验分类抽水试验按孔数可分为:单孔抽水试验、多孔抽水、群孔干扰抽水按水位稳定性分为:稳定流抽水试验和非稳定流抽水试验方法按抽水孔类型分为:完整井和非完整井抽水试验的一般要求抽水试验应在洗井结束,洗井质量已达规定要求后进行。
抽水试验的类型、下降次数及延续时间应按照《供水水文地质勘察规范》( TJ27 —78 )及《城市供水水文地质勘察规范》中有关规定执行。
试验前,应根据井孔结构、水位降深、流量及其它条件,合理选择抽水设备和测试仪具。
抽水设备可用量桶、空气压缩机及各种水泵;流量测量,当流量小于2L/s 时,可用量桶,大于2L/s 时。
应用堰箱 (三角堰、梯形堰或矩形堰)或孔板流量计,高压自流水可用喷水管喷发高度测量法测量流量;水位测量可用测钟、浮标水位计或电测水位计;水温测量一般可用缓变温度计或带温度计的测钟。
抽水设备安装后,应先进行试抽,经调试能满足试验要求后,再正式抽水。
采用空气压缩机作抽水试验时,应下测水位管,在测水位管内测量动水位。
抽水试验中应做好地面排水,使抽出的水排至试验孔影响范围以外。
在抽水试验中,应及时进行静止水位、动水位、恢复水位、流量、水温、气温等项观测,并及时如实记录,不得任意涂改或追记。
如遇水位、流量、水的浑浊度及机械运转等发生突变时,应做详细记录,并及时查明原因。
稳定流抽水试验-在抽水过程中,要求出水量和动水位同时相对稳定,并有一定延续时间的抽水试验。
非稳定流抽水试验-在抽水过程中,一般仅保持抽水量固定而观测地下水位变化,或保持水位降深固定,而观测抽水量和含水层中地下水位变化的抽水试验。
开采性抽水试验-按开采条件或接近开采条件要求进行的抽水试验。
群孔抽水试验-两个或两个以上的抽水孔同时抽水,各孔的水位和水量有明显互相影响的抽水试验。
井孔抽水试验
井孔抽水试验一、抽水试验的目的、任务及原理(一)目的与任务1、确定含水层的水文地质参数,如渗透透系数、导水系数、给水系数、弹性储水系数等,为计算井孔涌水量和评价地下水资源提供数据。
2、确定影响半径的大小,了解降落漏斗的形状及其扩展情况,为合理开发利用和有效管理地下水资源取得依据。
3、确定地下水动力性质,查清地下水与地表水之间以及不同含水层之间的水力联第,阐明地下水的补、径、排关系,为各种水源间的补偿调节提供数据资料。
4、确定单井或群井涌水量与水位降深之间的关系,进而拟定合理的适宜的井径、井深、井距等布井方案。
(二)基本原理把流向垂直井中的地下水导引或汲取到井外,使井内的位下降,而进壁外含水层中的地下水在降落漏斗范围内,由于水头差的作用,连续不断地流入进内,逐渐的在井壁周围形成一个以井轴为中心的由小支大以至稳定的降落漏斗。
初期降落漏斗范围攻很小,因地下水流向井的坡度较大,使流速和流量也较大。
但是随着时间的推移,影响范围会不断扩大,水力坡度逐渐变小,所以在抽水设备及井的出水能力很大的情况下,如果控制水位降深不变时,井孔出水量必将逐渐减小;或保持出水量不变则井内水位将会不断下降。
但是,在实际工作中,井的出水能力都是有限的,在满足控制出水量的情况下,水位降深也会逐渐达到相对稳定。
上述过程可以从两个方面加以利用和研究,如采用非稳定流理论,应取用水位降深和出水量尚未达到稳定但变化较小的抽水过程段的观测资料求得水文地质参数。
如采用稳定流理论,则取用水位降深与出水量均达到相对稳定的抽水过程段的观测资料,求得水文地质参数。
二、抽水试验的类型(一)稳定流和非稳定流抽水试验非稳定流抽水试验要求井(孔)出水量或水位两者之中的一个保持为常量,观测另一个的数据随时间变化的关系,而后将其代入相应的计算公式,则可求得渗透系数、导水系数、贮水系数或压力传导系数。
稳定流抽水试验要求水位降深与井(孔)出水量均须达到相对稳定状态,即保持近似的常量,代入计算公式求得渗透系数。
抽水试验方法及过程讲解
图5.1.1 潜水非完整井示意图
5.1.2 潜水非完整井,一个观测孔、中心井抽水试验计算 渗透系数k:
k 0.366Q(lg r1 lg r) (S S1 )(S S1 L)
k——渗透系数(m/d); Q——抽水井涌水量(m3/d); S——抽水井水位下降值(m); S1——观测孔水位下降值(m); r——抽水井半径(m) r1——观测孔到抽水井中心距离(m); L——过滤器长度(m)。
2.5 抽筒 当钻孔水位较深,水量不大,试验要求不高时,可选择抽 筒提水。
2.6 量测器具
观测水位宜使用电测水位计。地下水位较浅时,可采用浮 标水位计。观测读数应精确到1cm。
流量的测试用具应根据流量大小选定。流量小于1L/s时, 可采用容积法或水表;流量为1L/s~30L/s时,宜采用三角 堰;流量大于30L/s时,应采用矩形堰。
卵(碎)石、圆(角)砾、粗砂、中砂 包网过滤器或缠丝过滤器
细砂、粉砂
填砾过滤器
2.2 离心泵 当含水层地下水位高出地面或埋藏较浅,动水位在吸程范 围内时,宜采用离心泵抽水。
2.3 深井泵或潜水泵 当孔(井)水位深度较大、要求抽水降深大、出水量也较 大时,宜选用深井泵或深井潜水泵。
2.4 空压机 当抽水孔直径较小,水位埋深较深,含水层富水性好,且 要求降深很大时,宜采用空压机抽水。
图5.1.3 潜水非完整井示意图
5.1.4 承压水非完整井,单孔抽水试验计算渗透系数k:
k Q
2rS
k——渗透系数(m/d); Q——抽水井涌水量(m3/d); r——抽水井半径(m); S——抽水井水位下降值(m)。
4.4 抽水试验宜三次降深,最大降深应接近工程设计所 需的地下水位降深的标高。三次降深的分配原则宜满足: 最大降深s3(m),s2=2/3s3,s1=1/3s3(s1为第一次降 深,s2为第二次降深)。
水文地质勘查技术手段之抽水试验介绍课件
试验过程中,注意观察 周围环境,防止意外事
故发生
试验结束后,及时关闭 电源,防止设备损坏或
人员受伤
试验过程中,注意保持 良好的通风条件,防止
有害气体中毒
试验结束后,及时清理 现场,避免环境污染
试验过程中,注意遵守 相关法律法规,确保试
验的合法性
抽水试验的环境影响
地下水位下降:抽水试验可能导致地下水位下降, 影响地下水资源的分布和生态环境。
地下水水质监测:监测地下水水 质,为地下水污染防治提供依据
地下水水量监测:监测地下水水 量,为地下水资源评价提供依据
地下水动态监测:监测地下水动 态,为地下水开发利用提供依据
水资源评价
✓ 地下水资源评价:通过抽水试 验,了解地下水资源的分布、 储量和水质情况。
✓ 地下水污染评价:通过抽水试 验,了解地下水污染的程度和 范围,为污染防治提供依据。
抽水试验数据的处 理:对数据进行处 理和分析,消除误
差
抽水试验结果的评 价:对试验结果进 行评价,确保结果 的可靠性和准确性
4
抽水试验的应用案例
点击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果, 请言简意赅的阐述您的观点。
地下水监测
地下水位监测:实时监测地下水 位变化,为水资源管理提供依据
12
34
✓ 地下水开采规划:通过抽水试
✓ 地下水环境影响评价:通过抽
验,确定合理的地下水开采方
水试验,评估地下水环境对工
案,保证地下水资源的可持续
程建设、土地开发等活动的影
利用。
响,为环境保护提供依据。
水文地质研究
地下水监测:抽水试验可以监测地下水位、水质等 参数,为地下水资源管理提供依据。
抽水试验教程课件
试验结果分析
01
02
03
04
数据整理
对采集的数据进行整理,绘制 相关图表,如水位随时间变化
曲线等。
结果解读
根据数据和图表,分析地下水 的动态变化、渗透性等特征。
评估地下水状况
根据分析结果,评估地下水的 状况,如水位、水质、水量等
。
编写报告
编写详细的抽水试验报告,包 括试验目的、方法、结果和结
论等。
总结词
通过抽水试验,预测某矿山的涌水量,为矿山的安全生产和环境保护提供依据。
详细描述
在矿山范围内选取具有代表性的区域,进行抽水试验。通过观测井水位变化和涌水量,结合矿山的开采计划和地 下水补给情况,预测矿山的涌水量。对于预测的涌水量较大的区域,采取相应的措施进行防治,确保矿山的安全 生产和环境保护。
抽水试验与其他技术的结合应用
遥感技术
利用遥感技术获取大范围 的地质信息,结合抽水试 验进行水资源评价和地下 水管理。
数值模拟技术
通过数值模拟技术模拟地 下水流场,优化抽水试验 的设计和数据分析。
地球物理勘探技术
结合地球物理勘探技术获 取地下地质结构信息,提 高抽水试验的精度和可靠 性。
提高抽水试验精度的措施
团队协作
试验过程中需要团队协作,各成员应 明确分工,密切配合,确保试验顺利 进行。
试验后的注意事项
数据整理与分析
对试验数据进行整理、分析,得出相应的结 论,为后续工作提供依据。
现场清理
试验结束后,应清理现场,恢复原状,保持 环境整洁。
设备保养与存放
对使用的工具和设备进行保养、存放,确保 其完好无损,以便下次使用。
抽水试验的目的
确定地下水的流向、 流速和渗透系数等参 数。
抽水试验方法及过程
k Q
2rS
5.1.4 承压水非完整 井,单孔抽水试验计 算渗透系数k:
图5.1.4 承压水非完整井示意图
k——渗透系数(m/d); Q——抽水井涌水量(m3/d); r——抽水井半径(m); S——抽水井水位下降值(m)。
5.1.5 承压水非完整井,一个观测孔、中心井抽水试验计 算渗透系数k:
5.1.10 承压水完整井,单孔抽水试验计算渗透系数k:
k0.36Q 6 lgR 公式一 mS r
k——渗透系数(m/d); Q——抽水井涌水量(m3/d); m——含水层厚度(m); S——抽水井水位下降值(m); R——影响半径(m); r——抽水井半径(m)。
图5.1.10 承压水完整井示意图
0.732Qlgr1
k
r
(SS1)(2HSS1)
k——渗透系数(m/d);
Q——抽水井涌水量(m3/d);
H——含水层厚度(m);
S——抽水井水位下降值(m);
Hale Waihona Puke S1——观测孔水位下降值(m); r1——观测孔到抽水井中心距离(m); 图5.1.8 潜水完整井示意图 r——抽水井半径(m)。
5.1.9 潜水完整井,两个观测孔、中心井抽水试验计算渗 透系数k:
02 2 . 4 空 压 机
当抽水孔直径较小,水位埋深较深,含水层富水性 好,且要求降深很大时,宜采用空压机抽水。
03 2 . 5 抽 筒
当钻孔水位较深,水量不大,试验要求不高时,可 选择抽筒提水。
2.6 量测器具
观测水位宜使用电测水位计。地下水位较浅时,可采用浮标水 位计。观测读数应精确到1cm。
0.73Q 2lgr2
k
r1
(S1 S2)(2HS1 S2)
第八讲 抽水试验
为了做到所取资料准确,抽水试验必须符合下述四项基 本要求:
●洗井后和抽水试验前,应测量静止水位和丈量井孔深 度。
●探采结合孔每一含水层的抽水试验应进行两个以上的 落程,每个落程的稳定时间为8~24h。供水量大的井孔,每 一含水层应抽三个落程,稳定时间分别为8、16、24h。每个 落程结束后,应观测其恢复水位。
.
Thank you!
.
s2 32s3,s1 13s3
各次水位抽降差和最小抽降值应大于1m。 每次抽降要有一定的稳定延续时间,以保证资料的准 确性。稳定延续时间的长短可根据钻孔性质和含水层性质 而定。
.
根据抽水试验的资料绘制出水量与水位下降值关系曲线, 称为Q-S曲线。如图12-22所示。
.
如曲线不通过原点时,则说明 最初测定的水位有误差。图中曲线 Ⅰ为非承压水井出水量与水位降值 关系曲线的一般形式;曲线Ⅱ为承 压水井的一般曲线形式。如果出现 曲线Ⅲ的形式,说明洗井或抽水工 作中存在严重问题,一般为洗井时 泥浆未彻底清除,单位抽降出水量 在抽水过程中出现逐渐增大所致, 应重新洗井后再进行抽水试验。
三、抽水时水位水量的测量
1.水量测量 抽水试验中常用量水堰测量出水量,量水堰测量出 水量是将由井内扬水管排出的水导入量水堰箱中,经前 后挡板阻波稳定后由堰箱的堰口流出,测量水流经过堰 口时水断面的高度,经换算求得出水量。 堰口的形式有三角形、梯形或矩形。水文地质钻探 常用的堰口形式是三角形。
.
三角形堰箱测量出水量时,可采用下公式计算: 当H=0.021~0.20m时 Q=1.4H2.5 当H=0.301~0.350m时 Q=1.343H2.47 当H=0.201~0.300m时 取上两公式计算的平均值。 式中:H——水流经过堰口时水断面的高度(m)。由于计算 较复杂,一般可通过查表法求得水量。
水文地质现场试验-抽水试验
⑺ 水文地质参数的正确概念
• 参数的概念 • 参数的应用条件 • 参数的尺度
出现问题? 解决问题!
中外研究交流方面 以为然所以为然 发展与创新
1、K-渗透系数,T-导水系数,S-储水系数,μ-给水度 2、T=K*M S=μ+Ss*M 3、 在 含 水 层 厚 度 变 化 较 大 的 情 况 下 , 采 用 K/Ss 组 合 ; 在 含 水 层 厚 度变化较小的情况下可以采用T/S组合, 4、不存在在潜水含水层中采用K,S;承压含水层中采用T,S或稳定流 为K,非稳定流为T,S说法。 5、含水层参数与井流参数并不完全吻合,对井流而言,不同深度的 K参数
5 抽水试验专题讲座
⑴ 大厚度含水层 ⑵ “影响半径模型”错误 ⑶ 抽水量的保障 ⑷ 由稳定流理论引发的开采量保证问题 ⑸ 抽水会影响到边界吗? ⑹ 三维流及非完整性对抽水试验设计的影响 ⑺ 水文地质参数的正确概念 ⑻ 中外抽水试验的差异及进展 ⑼ 抽水试验性能分析可代替井群规划 ⑽ 抽水试验重要提示
4 抽水试验小结
一、文字部分 ⑴抽水试验的类型,时间,落程安排及人员观测情况; ⑵场地水文地质条件背景情况; ⑶抽水试验观测值及误差统计情况; ⑷抽水试验参数计算; ⑸存在问题; 二、图表部分 ⑴抽水试验现场曲线二条(稳定流),非稳定流一条; ⑵降深与涌水量历时曲线,相应观测记录表; ⑶ 配线及参数(非稳定流); ⑷抽水试验统计表及实际材料图。
去井损后的潜水非完整井公式 与影响半径经验公式迭代,如 右图。如果只有单落程,则加 入阿勃拉莫夫水跃值经验公式。
K
Q (H 2
h2 )
(ln
水文地质勘查技术:抽水试验概述
任务四水文地质试验二、抽水试验概述掌握抽水试验目的任务、抽水试验类型,掌握不同抽水试验的原理、课程目的适用条件、用途,具有合理选取抽水试验类型的专业技能1、掌握抽水试验目的任务课程任务2、掌握不同抽水试验的原理、适用条件、用途1、抽水试验目的任务课程内容2、抽水试验目的任务重点、难点不同抽水试验的原理、适用条件、用途一、抽水试验的目的、任务抽水试验:是以地下水井流理论为基础,通过在井孔中进行抽水和观测,来测定含水层水文地质参数,评价含水层富水性和判断某些水文地质条件的一种野外试验工作。
抽水试验的目的、任务是:1、直接测定含水层的富水程度和评价井孔的出水能力Q以一定降深(抽水水位降深10m为准\一定口径(口径91mm)的单井出水量来表征的含水层富水程度《水文地质术语》(GB12719∙1991)C1按钻孔单位涌水量(q)富水性[注]分为以下四级:a.弱富水性:qV0.lL/s.m;b.中等富水性:0.lL∕s.m≤q≤l.0L∕s.m;c.强富水性:1.OL∕s.m<q≤5.OL∕s.m;d.极强富水性:q>5.OL∕s.m o2、确定含水层水文地质参数(如K、T、ue、ud、a、Ke等)3、研究井孔的出水量Q与水位降深S的关系,及其与抽水时间t的关系,研究降落漏斗的形状、大小及扩展过程4、研究含水层之间及地下水与地表水之间的水力联系,以及地下水补给通道和强径流带位置等5、确定含水层(含水体)边界位置及性质6、通过抽水试验,为取水工程设计提供所需水文地质数据。
如:通过单孔抽水, 确定井孔的影响半径R,单井出水量Q、单位出水量q等;根据开采性抽水试验或疏干模拟抽水,确定合理的井距L、开采降深S、合理井径r。
,井间干扰系数等。
7、通过开采性抽水试验,直接评价水源地的地下水充许开采量。
(二)抽水试验的类型一般根据抽水试验所依据的井流公式原理、抽水试验的目的任务和方法要求等分类。
1、按依据的井流理论划分(1)稳定流抽水试验:在抽水过程中,要求流量Q、水位降深S(或动水位h)同时相对稳定(即不随时间而变),并有一定延续时间的抽水试验。
水文地质勘查技术之抽水试验概述介绍课件
03
抽水试验结束 后,记录最终
水位和水量
04
整理和分析数 据,得出抽水
试验结果
试验结果的分析与解释
01
抽水试验的目 的是为了获取 地下水动态参 数,如渗透系 数、导水系数
等。
02
分析抽水试验 结果时,需要 结合地下水水 位、流量、压 力等数据,以 及试验过程中 的观测记录。
03
解释抽水试验 结果时,需要 结合地质条件、 水文地质条件 等因素,综合 分析地下水的
4 下水资源的开 发和保护提供 科学依据
水文地质参数确定
地下水位:确定地下水位的深度 和变化规律
含水层厚度:确定含水层的厚度 和分布
地下水水质:确定地下水的水质 和水质变化规律
地下水排泄:确定地下水的排泄 方式和排泄途径
地下水动态:确定地下水的动态 变化和规律
渗透系数:确定地下水的渗透速 度和方向
04
确定地下水开采 方案:如抽水井 布局、抽水量等
抽水试验的分类
01
稳定流抽水试验:适用于含 02
非稳定流抽水试验:适用于
水层渗透系数较大、地下水
含水层渗透系数较小、地下
流速较快的情况
水流速较慢的情况
03
单井抽水试验:适用于单口 04
群井抽水试验:适用于多口
井的抽水试验,可以获取单
井的抽水试验,可以获取群
试验技术的集成与融合:将多种试验技 术进行集成和融合,提高试验结果的综 合性和全面性
试验数据的智能化处理
利用人工智能
1 技术对试验数 据进行自动分 类和分析
利用机器学
2 习算法对试 验数据进行 预测和优化
利用大数据技
3 术对试验数据 进行深度挖掘 和关联分析
抽水试验_精品文档
抽水试验概述抽水试验是一种用于评估水泵性能和水系统工作状态的实验方法。
通过在一定时间内对水泵进行抽水操作,可以测量出水泵的流量、扬程、效率等参数,从而判断水泵的运行情况和性能是否符合要求。
实验步骤1.准备工作–根据实验需求选择合适的水泵和测量设备。
–检查水泵和管道系统,确保其正常运行和无任何漏水现象。
–清理水泵和管道系统,确保无杂质和堵塞。
2.安装测量设备–根据实验需求,选择合适的测量设备,如流量计、压力计等。
–根据设备说明书,正确安装和连接测量设备。
3.开始抽水试验–打开水泵的电源,确保水泵正常启动并运行。
–按照实验计划控制水泵的工作时间和工作状态,记录相应的数据。
4.测量参数–实时记录水泵的流量、扬程、功率等参数。
–测量各个测点的压力值。
–记录水泵的运行时间和工作状态变化。
5.分析数据–对测得的数据进行整理和分析。
–计算水泵的流量、扬程、效率等参数。
–根据数据分析结果,评估水泵的运行情况和性能表现。
6.结果和讨论–根据分析结果,得出水泵的性能评估。
–讨论水泵的优缺点,在实际运行中可能遇到的问题。
–提出改进措施和建议,以优化水泵的运行效果和提高性能。
实验注意事项•在进行抽水试验前,确保水泵和管道系统的安全性和稳定性。
•按照实验计划进行操作,保证数据的准确性和可靠性。
•注意保护设备和仪器的正常运行,避免因操作不当导致的故障或损坏。
•实验过程中,应密切注意水泵的运行状态和周边环境的变化,及时调整实验条件。
•实验结束后,及时关闭水泵的电源,并进行设备和测量设备的清理和维护。
结论抽水试验是评估水泵性能和水系统工作状态的重要方法。
通过合理的操作和数据分析,可以得出水泵的流量、扬程、效率等参数。
根据实验结果,可以评估水泵的运行性能,提出改进措施和建议,以优化水泵的运行效果和提高性能。
抽水试验的实施需要注意安全和准确性,合理选择测量设备,并按照实验计划进行操作。
对于实验中发现的问题和不足,应及时进行讨论和改进,以提高实验的可靠性和有效性。
抽水试验
一、抽水试验的目的 试验是以地下水井流理论为基础,在实际井孔中抽水和
观测。 试验的目的任务是: 研究井的涌水量与水位降深的关系及其与抽水延续时间的
关系: 求得含水层及越流层的水文地质参数; 研究含水层之间及含水层与地表水体之间的水力联系; 确定含水层边界位置及性质; 进行开采或疏干的模拟,以确定井间距、开采降深、合理
五、抽水
抽水试验时水位下降的次数应根据试验目的确定, 宜进行3次。
其中最大下降值,可接近孔内的设计动水位,其 余2次下降值,宜分别为最大下降值的1/3和2/3, 各次下降的水泵吸水管口的安装深度应相同。
注:当抽水孔出水量很小,试验时的出水量已达 到抽水孔极限出水能力时,水位下降次数可适当 减少。
抽水试验的延续时间应按水位下降与时间
注:1在承压含水层中抽水时采用s~lgt关系曲线; 在潜水含水层中抽水时采用Δh2~lg t关系曲线。
2拐点是指曲线上斜率的导数等于零的点。
3当有观测孔时应采用最远观测孔的s(或Δh2) ~lgt关系曲线。
抽水试验时动水位和出水量观测的时间宜在抽水 开始后第1、2、3、4、6、8、10、15、20、25、30、 40、50、60、80、100、120min观测一次。
抽水试验稳定标准
抽水试验的稳定标准,应符合在抽水稳定 延续时间内,抽水孔出水量和动水位与时 间关系曲线只在一定的范围内波动,且没 有持续上升或下降的趋势。
注:1当有观测孔时应以最远观测孔的动水 位判定。
2在判定动水位有无上升或下降趋势时 应考虑自然水位的影响。
稳定流抽水试验,最远观测孔的稳定延续 时间都不得小于2—4h。
(2H 井
K
Q
抽水试验
第一章基本要求掌握抽水试验的目的、分类、方法及抽水试验准备工作。
1.1抽水试验的目的(1)确定含水层及越流层的水文地质参数:渗透系数K、导水系数T、给水度m、弹性释水系数m*、导压系数a、弱透水层渗透系数K'、越流系数b、越流因素B、影响半径R等。
(2)通过测定井孔涌水量及其与水位下降(降深)之间的关系,分析确定含水层的富水程度、(3)(5)(1(2(3(4为充分暴露水文地质问题,宜进行试验性开采抽水试验,并用钻孔实际出水量作为评价地下水可开采量的依据。
1.3抽水试验的方法单孔抽水试验采用稳定流抽水试验方法,多孔抽水、群孔干扰抽水和试验性开采抽水试验一般采用非稳定流抽水试验方法。
在特殊条件下也可采用变流量(阶梯流量或连续降低抽水流量)抽水试验方法。
抽水试验孔宜采用完整井(巨厚含水层可采用非完整井)。
观测孔深应尽量与抽水孔一致。
1.4抽水试验准备工作(1)除单孔抽水试验外,均应编制抽水试验设计任务书;(2)测量抽水孔及观测孔深度,如发现沉淀管内有沉砂应清洗干净;(3)做一次最大降深的试验性抽水,作为选择和分配抽水试验水位降深值的依据;(4)在正式抽水前数日对所有的抽水孔和观测孔及其附近有关水点进行水位统测,编制抽水试验前初始水位等水位线图,如果地下水位日变化很大时,还应取得典型地段抽水前的日水位动态曲线;(5)3m以(6)*凡作了群孔干扰抽水试验的水源地,可不作试验性开采抽水试验。
2.1抽水孔的布置要求抽水孔的布置应符合下列要求:(1)对勘察区水文地质条件具有控制意义的典型地段,应布置单孔抽水试验孔,根据单孔抽水试验资料计算的水文地质参数编制参数分区图;(2)多孔抽水试验孔组,一般参照导水系数分区图,并结合水文地质条件布置,每个有供水意义的参数区至少布置一组,其抽水试验资料所求参数可作为该区计算参数(不用平均参数);(3)(2)(3)(或(4)(5))中布置(6)环境地质观测点。
3.1水位降深稳定流抽水试验一般进行三次水位降深,最大降深值应按抽水设备能力确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章基本要求掌握抽水试验的目的、分类、方法及抽水试验准备工作。
抽水试验的目的(1) 确定含水层及越流层的水文地质参数:渗透系数K、导水系数T、给水度m、弹性释水系数m*、导压系数a、弱透水层渗透系数K'、越流系数b、越流因素B、影响半径R等。
(2) 通过测定井孔涌水量及其与水位下降(降深)之间的关系,分析确定含水层的富水程度、评价井孔的出水能力。
(3) 为取水工程设计提供所需的水文地质数据,如影响半径、单井出水量、单位出水量、井间干扰出水量、干扰系数等,依据降深和流量选择适宜的水泵型号。
(4) 确定水位下降漏斗的形状、大小及其随时间的增长速度;直接评价水源地的可开采量。
(5) 查明某些手段难以查明的水文地质条件,如确定各含水层间以及与地表水之间的水力联系、边界的性质及简单边界的位置、地下水补给通道、强径流带位置等。
抽水试验分类抽水试验主要分为单孔抽水、多孔抽水、群孔干扰抽水和试验性开采抽水。
(1)单孔抽水试验:仅在一个试验孔中抽水,用以确定涌水量与水位降深的关系,概略取得含水层渗透系数。
(2)多孔抽水试验:在一个主孔内抽水,在其周围设置若干个观测孔观测地下水位。
通过多孔抽水试验可以求得较为确切的水文地质参数和含水层不同方向的渗透性能及边界条件等。
(3)群孔干扰抽水试验:在影响半径范围内,两个或两个以上钻孔中同时进行的抽水试验;通过干扰抽水试验确定水位下降与总涌水量的关系,从而预测一定降深下的开采量或一定开采定额下的水位降深值,同时为确定合理的布井方案提供依据。
(4)试验性开采抽水试验:是模拟未来开采方案而进行的抽水试验。
一般在地下水天然补给量不很充沛或补给量不易查清,或者勘察工作量有限而又缺乏地下水长期观测资料的水源地,为充分暴露水文地质问题,宜进行试验性开采抽水试验,并用钻孔实际出水量作为评价地下水可开采量的依据。
抽水试验的方法单孔抽水试验采用稳定流抽水试验方法,多孔抽水、群孔干扰抽水和试验性开采抽水试验一般采用非稳定流抽水试验方法。
在特殊条件下也可采用变流量(阶梯流量或连续降低抽水流量)抽水试验方法。
抽水试验孔宜采用完整井(巨厚含水层可采用非完整井)。
观测孔深应尽量与抽水孔一致。
抽水试验准备工作(1) 除单孔抽水试验外,均应编制抽水试验设计任务书;(2) 测量抽水孔及观测孔深度,如发现沉淀管内有沉砂应清洗干净;(3) 做一次最大降深的试验性抽水,作为选择和分配抽水试验水位降深值的依据;(4) 在正式抽水前数日对所有的抽水孔和观测孔及其附近有关水点进行水位统测,编制抽水试验前初始水位等水位线图,如果地下水位日变化很大时,还应取得典型地段抽水前的日水位动态曲线;(5) 为防止抽出水的回渗,在预计抽水影响范围内的排水沟必须采取防渗措施。
当表层有3 m以上的粘土或亚粘土时,一般可直接挖沟排水。
(6) 需要对多层含水层地下水进行分层评价时,应分层进行抽水试验,或用井中流速、流量仪解决分层抽水问题。
抽水试验工作量要求见表4-1。
表4-1 抽水试验工作量一览表*凡作了群孔干扰抽水试验的水源地,可不作试验性开采抽水试验。
第二章抽水试验孔布置要求抽水孔的布置要求抽水孔的布置应符合下列要求:(1) 对勘察区水文地质条件具有控制意义的典型地段,应布置单孔抽水试验孔,根据单孔抽水试验资料计算的水文地质参数编制参数分区图;(2) 多孔抽水试验孔组,一般参照导水系数分区图,并结合水文地质条件布置,每个有供水意义的参数区至少布置一组,其抽水试验资料所求参数可作为该区计算参数(不用平均参数);(3) 群孔干扰抽水试验和试验性开采抽水试验应在拟建水源地范围内,选择有代表性的典型地段,并结合开采生产井布置。
观测孔的布置要求观测孔的布置应符合下列要求:(1) 为了计算水文地质参数,在抽水孔的一侧宜垂直地下水的流向布置2~3个观测孔。
(2) 为了测定含水层不同方向的非均质性或确定抽水影响半径,可以根据含水层的不同情况,以抽水孔为中心布置1~4条观测线;如有两条观测线,一条垂直地下水流向,另一条宜平行地下水流向。
(3) 群孔干扰抽水试验和试验性开采抽水试验应在抽水孔组中心布置一个观测孔;为查明相邻已采水源地的影响,应在连接两个开采中心方向布置观测孔。
为确定水位下降漏斗形态和补给(或隔水)边界,应在边界和外围一定范围内布设一定数量的观测孔。
(4) 多孔抽水孔组的第一个观测孔应尽量避开三维流的影响,相邻两观测孔的水位下降值相差不小于,最远观测孔的下降值不宜小于,各观测孔应在对数数轴上呈均匀分布。
(5) 在半承压水含水层进行抽水试验时,宜在观测孔附近覆盖层(半透水层或弱含水层)中布置副观测孔。
(6) 在进行试验性开采抽水试验时,应在水位下降漏斗范围内的重要建筑物附近增设工程地质、环境地质观测点。
第三章稳定流抽水试验要求水位降深稳定流抽水试验一般进行三次水位降深,最大降深值应按抽水设备能力确定。
水位降深顺序,基岩含水层一般宜先大后小,松散含水层宜按先小后大逐次进行。
涌水量及水位变化在稳定延续时间内,涌水量和动水位与时间关系曲线在一定范围内波动,而且没有持续上升或下降的趋势。
当水位降深小于10m,用压风机抽水时,抽水孔水位波动值不得超过10~20cm;用离心泵、深井泵等抽水时,水位波动值不超过5cm。
一般不应超过平均水位降深值的1%,涌水量波动值不能超过平均流量的3%。
注意:①当有观测孔时,应以最远观测孔的动水位判定;②应考虑自然水位影响;③在滨海地区应考虑潮汐对动水位的影响。
观测频率及精度要求(1) 水位观测时间一般在抽水开始后第1、3、5、10、20、30、45、60、75、90min进行观测,以后每隔30min观测一次,稳定后可延至1h观测一次。
水位读数应准确到厘米(cm);(2) 涌水量观测应与水位观测同步进行;当采用堰箱或孔板流量计时,读数应准确到毫米(mm);注意:为保证测量精度要求,可根据流量大小,选用不同规格的堰箱。
当流量小于10L/s时,堰箱断面面积应大于25dm2(即×;流量为10~50L/s 时,堰箱断面面积应大于100dm2(即1×1m);流量为50~100L/s时,堰箱断面面积应大于200dm2 (即1×2m)。
(3) 水温、气温宜2~4h观测一次,读数应准确到℃,观测时间应与水位观测时间相对应。
恢复水位观测要求停泵后应立即观测恢复水位,观测时间间隔与抽水试验要求基本相同。
若连续3h水位不变,或水位呈单向变化,连续4h内每小时水位变化不超过1cm,或者水位升降与自然水位变化相一致时,即可停止观测。
试验结束后应测量孔深,确定过滤器掩埋部分长度。
淤砂部位应在过滤器有效长度以下,否则,试验应重新进行。
第四章非稳定流抽水试验要求钻孔涌水量钻孔涌水量应保持常量,其变化幅度不大于3%。
抽水延续时间抽水延续时间除满足表4-1的要求外,并可结合最远观测孔水位下降与时间关系曲线[S(或Δh2)-lg t]来确定。
(1) 当S(或Δh2)-lg t曲线至拐点后出现平缓段,并可以推出最大水位降深时,抽水方可结束;注意:在承压含水层中抽水,采用S-lg t曲线,在潜水含水层中抽水采用Δh2-lg t曲线。
Δh2是指潜水含水层在自然情况下的厚度H和抽水试验时的厚度h的平方差,即Δh2=H2-h2。
(2) 当S(或Δh2)-lg t曲线没有拐点或出现几个拐点,则延续时间宜根据试验的目的确定。
观测频率及精度要求观测频率及精度应符合下列要求:(1) 水位观测宜按第、1、、2、、3、、4、5、6、7、8、10、12、15、20、25、30、40、50、60、75、90、105、120 min进行观测,以后每隔30 min观测一次,其余观测项目及精度要求可参照稳定流抽水试验要求进行;(2) 抽水孔与观测孔水位必须同步观测;(3) 抽水结束后,或试验期间因故中断抽水时,应观测恢复水位,观测频率应与抽水时一致,水位应恢复到接近抽水前的静止水位。
群孔干扰抽水试验要求群孔干扰抽水试验除按非稳定流抽水要求进行外,还应满足下列要求:(1) 干扰孔之间的距离,应保证一孔抽水,使另一孔产生一定的水位削减;(2) 水位降深次数应根据设计目的而定,一般应尽抽水设备能力做一次最大降深;(3) 各干扰孔过滤器的规格和安装深度应尽量相同;(4) 各抽水孔抽水起、止时间应该相同;(5) 试验过程中,宜同时对泉和可能受影响的地表水点进行水位、流量和水温的观测。
试验性开采抽水试验试验性开采抽水试验除按群孔干扰抽水要求进行外,还应满足下列要求:(1) 抽水试验一般在枯水期进行;(2) 抽水钻孔总涌水量尽量接近设计需水量;(3) 水位下降漏斗中心水位稳定时间不宜少于一个月;(4) 若水位不能达到稳定,应及时调节总涌水量,使其达到稳定。
第五章抽水试验资料整理及参数确定方法抽水试验资料整理试验期间,对原始资料和表格应及时进行整理。
试验结束后,应进行资料分析、整理,提交抽水试验报告。
单孔抽水试验应提交抽水试验综合成果表,其内容包括:水位和流量过程曲线、水位和流量关系曲线、水位和时间(单对数及双对数)关系曲线、恢复水位与时间关系曲线、抽水成果、水质化验成果、水文地质计算成果、施工技术柱状图、钻孔平面位置图等。
并利用单孔抽水试验资料编绘导水系数分区图。
多孔抽水试验还应提交抽水试验地下水水位下降漏斗平面图、剖面图。
群孔干扰抽水试验和试验性开采抽水试验还应提交抽水孔和观测孔平面位置图(以水文地质图为底图)、勘察区初始水位等水位线图、水位下降漏斗发展趋势图(编制等水位线图系列)、水位下降漏斗剖面图、水位恢复后的等水位线图、观测孔的S-t、S-lg t曲线、各抽水孔单孔流量和孔组总流量过程曲线等。
注意:①要消除区域水位下降值;②在基岩地区要消除固体潮的影响;③傍河抽水要消除河水位变化对抽水孔水位变化的影响。
多孔抽水试验、群孔干扰抽水试验和试验性开采抽水试验均应编写试验小结,其内容包括:试验目的、要求、方法、获得的主要成果及其质量评述和结论。
稳定流抽水试验求参方法求参方法可以采用Dupuit 公式法和Thiem公式法。
1.只有抽水孔观测资料时的Dupuit 公式承压完整井:潜水完整井:式中K——含水层渗透系数 (m/d);Q——抽水井流量 (m3/d);sw——抽水井中水位降深 (m);M——承压含水层厚度 (m);R——影响半径 (m);H——潜水含水层厚度 (m);h——潜水含水层抽水后的厚度 (m);rw——抽水井半径 (m)。
2.当有抽水井和观测孔的观测资料时的Dupuit 或Thiem公式承压完整井:Thiem公式:潜水完整井:Thiem公式:式中hw——抽水井中水柱高度 (m);h1、h2——与抽水井距离为r1和r2处观测孔(井)中水柱高度 (m),分别等于初始水位H0与井中水位降深s之差,h1= H0 –s1;h2= H0 –s2。