2020年高考数学复习利用正余弦定理破解解三角形问题专题突破
【2020备考资料夹】高考数学冲刺专题突破专题10+三角函数与数列大题(理科)
1专题十 三角函数与数列大题(一)命题特点和预测:分析近8年全国Ⅰ卷数列与三角函数大题,发现三角函数与数列大题都是放在17题位置且每年只考一个,8年5考利用正余弦定理解三角形或平面图形问题,3年考数列,主要考查等差数列、等比数列的定义、通项公式、前n 项和公式、求数列通项及数列求和,试题难度为基础题,2019年仍将在数列与解三角形二者中考一题,主要考查等比数列、等差数列的定义、通项公式、前n 项和公式、求数列通项及数列求和或利用正余弦定理解三角形,难度为基础题. (二)历年试题比较: 年份题目2018年 【2018新课标1,理 17】在平面四边形中,,,,.(1)求; (2)若,求.2017年 【2017新课标1,理17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A .(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.2016年 【2016高考新课标理数1】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知(1)求C ;2(2)若的面积为332,求ABC △的周长. 2015年 【2015高考新课标1,理17】n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(1)求{n a }的通项公式;(2)设11n n n b a a +=,求数列{n b }的前n 项和. 2014年【2014课标Ⅰ,理17】已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠, ,其中λ为常数,(1)证明:;(2)是否存在λ,使得{}n a 为等差数列?并说明理由.2013年 【2013课标全国Ⅰ,理17】如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC内一点,∠BPC =90°.(1)若PB =12,求P A ; (2)若∠APB =150°,求tan ∠PBA .2012年 【2012全国,理17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C-b-c=0.(1)求A ;(2)若a=2,△ABC的面积为3,求b,c.2011年【2011全国新课标,理17】等比数列{an }的各项均为正数,且2a1+3a2=1,23239a a a.(1)求数列{a n}的通项公式;(2)设b n=log3a1+log3a2+…+log3a n,求数列1{}nb的前n项和.【解析与点睛】(2018)(17)【解析】(1)在中,由正弦定理得.由题设知,,所以.由题设知,,所以.(2)由题设及(1)知,.在中,由余弦定理得.34所以.点睛:该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理、同角三角函数关系式、诱导公式以及余弦定理,在解题的过程中,需要时刻关注题的条件,以及开方时对于正负号的取舍要从题的条件中寻找角的范围所满足的关系,从而正确求得结果.(2017年)【解析】(1)由题知∴∵由正弦定理得,由sin 0A ≠得. (2)由(1)得,∵∴又∵()0πA ∈,∴60A =︒,3sin A =,1cos 2A =由余弦定理得 ① 由正弦定理得,∴②由①②得33b c +=∴,即ABC △周长为333+【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,5建立函数关系式,如,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.(2016年)【解析】(1)由正弦定理及得,,即,即,因为π<<C 0,所以0sin ≠C ,所以21cos =C,所以3π=C .(2)由余弦定理得:∴6ab =∴5a b +=∴ABC △周长为。
2020年高考文科数学大题专项二 高考中的三角函数与解三角形
二
考情分析
典典例例剖剖析析
专题总结提升
-7-
题型一
题型二
题型三
题型四
对点训练 1(2018 山东潍坊期中联考)设函数 f(x)=sin ωx·cos
ωx- 3cos2ωx+ 23(ω>0)的图象上相邻最高点与最低点的距离为
π2 + 4.
(1)求 ω 的值;
(2)若函数
y=f(x+φ)
0
<
������
高考大题专项二 高考中的三角函数与解三角形
高考大题专项 高考中的三角函数与解三角形
二
考情分析
典例剖析
专题总结提升
-2-
从近五年的高考试题来看,高考对三角函数与解三角形的考查都 呈现出较强的规律性,每年的题量和分值要么三个小题共15分,要 么一个小题和一个大题共17分.在三个小题中,分别考查三角函数 的图象与性质、三角变换、解三角形;在一个小题和一个大题中, 小题要么考查三角函数的图象与性质,要么考查三角变换,大题考 查的都是解三角形.
题型三
题型四
解 (1)在△ABD 中,由正弦定理得si���n������∠��������� = sin∠������������������������������. 由题设知,sin545°= sin∠2������������������,所以 sin∠ADB= 52.
由题设知,∠ADB<90°,所以 cos∠ADB=
<
π 2
是奇函数,求函数 g(x)=cos(2x-φ)
在[0,2π]上的单调递减区间.
高考大题专项 高考中的三角函数与解三角形
二
考情分析
典典例例剖剖析析
决战2020年高考数学(理)三角函数与解三角形专题: 余弦定理及其应用(解析版)
三角函数与平面向量余弦定理及其应用一、具本目标:1.掌握余弦定理,并能解决一些简单的三角形度量问题 ; 2. 能够运用余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.3.考纲解读:利用余弦定理解三角形或者求解平面几何图形中有关量的问题,需要综合应用两个定理及三角形有关知识;余弦定理的应用比较广泛,也比较灵活,在高考中常与面积或取值范围结合进行考查;会利用数学建模思想,结合三角形的知识,解决生产实践中的相关问题. 二、知识概述:1.余弦定理:2.有关的概念:(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫做仰角;在水平线下方的角叫做俯角.(2)方位角:从指北方向顺时针转到目标方向线的水平角叫做方位角.余弦定理内容Cab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222⋅-+=⋅-+=⋅-+=变形形式ab c b a C ac b c a B bc ac b A 2cos 2cos 2cos 222222222-+=-+=-+=解决的问题(1)已知三边,求各角;(2)已知两边和它们的夹角,求第三边和其他两个角.【考点讲解】(3)方向角:相对于某一正方向的水平角.(4)坡角:坡面与水平面所成的锐二面角叫做坡角.坡度:坡面的铅直高度与水平宽度之比叫做坡度.0 3.三角形的面积公式:.,,,,,S C B A c b a ABC 面积为别为,三边所对的三个角分的三边为设∆()()上的高表示边BC h ah S 211=().sin 21sin 21sin 212A bc B ac C ab S ===()外接圆的半径)为ABC R C B A RRabc S ∆==(sin sin sin 2432. ()()内切圆的半径)为ABC r c b a r S ∆++=(214. ()()()()()⎪⎭⎫⎝⎛++=---=c b a p c p b p a p p S 2153. 解斜三角形在实际中的应用:解斜三角形在实际中的应用非常广泛,如测量、航海等方面都可能用到,解题的一般步骤:(1)分析题意,准确理解题意,分清已知与所求; (2)根据题意画出示意图;(3)将需要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理,余弦定理等关知识求解; (4)检验所得到结果是否具有实际意义,对解进行取舍,并写出答案. 4.常见题型与方法:(1)灵活应用正、余弦定理及三角公式进行边角转换 (2)三角形形状的判定方法:①化边为角;②化角为边.(3).三角形中三角函数求值,恒等式证明. (4)通过三角变换探索角的关系,符号规律.(5)熟练掌握由三角形三个元素(至少有一边)求解三角形的其它元素方法; (6)常用的三角形的有关定理:正、余弦定理;内角和定理; (7)常用的三角形面积公式;(8)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能解决解三角形的计算问题.1.【2018年高考全国Ⅱ文理】在ABC △中,5cos 25C =,1BC =,5AC =,则AB =( ) A .42 B .30 C .29D .25【解析】因为2253cos 2cos 121,255C C ⎛⎫=-=⨯-=- ⎪ ⎪⎝⎭所以22232cos 12521532425AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则,故选A. 【答案】A2.【2018年高考全国Ⅲ理数】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =( )A .π2 B .π3 C .π4 D .π6【解析】本题主要考查余弦定理与三角形的面积公式在解三角形中的应用.由题可知:2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =,故选C. 【答案】C3.【2018年高考全国Ⅰ文数】ABC △的内角A B C ,,的对边分别为a b c ,,, sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.【解析】根据题意,由sin sin 4sin sin b C c B a B C +=,结合正弦定理可得sin sin sin sin B C C B +【真题分析】4sin sin sin A B C =,即1sin 2A =,由2228b c a +-=,结合余弦定理可得2cos 8bc A =,所以A 为 锐角,且3cos 2A =从而求得833bc =,所以ABC △的面积为1183123sin 22323S bc A ==⨯⨯=, 故答案是233. 【答案】2334.【2019优选题】在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .已知a +2c =2b ,sin B =2sin C ,则cos A =________.【解析】 由sin B =2sin C 得b =2c .又因为a +2c =2b ,所以a =2c , 因此cos A =b 2+c 2-a 22bc =2c 2+c 2-2c 222c 2=24.【答案】245.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =, 解得23,23c c ==-(舍去),所以243a c ==,113sin 43236 3.222ABC S ac B ==⨯⨯⨯=△ 【答案】636. 【2018·浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.【解析】因为a =7,b =2,A =60°,所以由正弦定理得sin B =b sin A a =2×327=217.由余弦定理a 2=b 2+c 2-2bc cos A 可得c 2-2c -3=0,所以c =3. 【答案】2173 7.【2019年高考北京卷文数】在△ABC 中,a =3,–2b c =,cos B =12-. (1)求b ,c 的值; (2)求sin (B +C )的值.【解析】(1)由余弦定理2222cos b a c ac B =+-,得2221323()2b c c =+-⨯⨯⨯-. 因为2b c =+,所以2221(2)323()2c c c +=+-⨯⨯⨯-.解得5c =.所以7b =. (2)由1cos 2B =-得3sin 2B =.由正弦定理得33sin sin 14a A Bb ==. 在ABC △中,B C A +=π-.所以33sin()sin 14B C A +==. 【答案】(1)7b =,5c =;(2)3314. 8.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 【解析】(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)323c c c c +-=⨯⨯,即213c =.所以33c =. (2)因为sin cos 2A B a b =,由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =.因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 【答案】(1)33c =;(2)255. 9.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(2)若22a b c +=,求sin C .【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-,由题设及正弦定理得()2sin sin 1202sin A C C ︒+-=, 即631cos sin 2sin 222C C C ++=,可得()2cos 602C ︒+=-. 由于0120C ︒︒<<,所以()2sin 602C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+624+=.【答案】(1)60A ︒=;(2)62sin 4C +=.1.ABC △中,角A ,B ,C 的对边分别是a ,b ,c .已知22,2(1sin )b c a b A ==-,则A =( )A.3π4B.π3C.π4D.π6【解析】本题考点余弦定理的应用,由余弦定理得:()2222222cos 22cos 21cos a b c bc A b b A b A =+-=-=-,因为()2221sin a b A =-,所以cos sin A A =,因为cos 0A ≠,所以tan 1A =,因为()0,A ∈π,所以4A π=,故选C. 【答案】C 2.在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = ( ) A.31010 B.1010 C.1010- D.31010- 【解析】本题考点是余弦定理的应用,由题意可设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD =.由余弦定理,【模拟考场】知22222225910cos 210225AB AC BC AD AD AD A AB AC AD AD+-+-===-⋅⨯⨯,故选C . 【答案】C3.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b=( ) A.2 B.3 C.2 D.3【解析】本题考点是余弦定理的应用,由余弦定理得3222452⨯⨯⨯-+=b b ,解得3=b (31-=b 舍去). 【答案】D4.在△AB C 中,如果(a +b +c )(b +c -a )=3bc ,则A 等于 ( ) A.150° B.120°C.60°D.30°【解析】由(a +b +c )(b +c -a )=3bc 得(b +c )2-a 2=3bc ,∴b 2+c 2-a 2=bc ,∴ 2221cos 22b c a A bc +-== 【答案】C5.在△ABC 中,若=13AB ,BC=3,120C ∠=o ,则AC = ( )(A )1(B )2(C )3(D )4【解析】:由余弦定理得213931AC AC AC =++⇒=,选A. 【答案】A6.在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315 ,12,cos ,4b c A -==- 则a 的值为 .【解析】因为0A π<<,所以215sin 1cos 4A A =-=, 又115sin 315,2428ABC S bc A bc bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得 2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【答案】87.若锐角ABC ∆的面积为103 ,且5,8AB AC == ,则BC 等于________.【解析】由已知得ABC ∆的面积为1sin 20sin 2AB AC A A ⋅=103=,所以3sin 2A =,(0,)2A π∈,所以3A π=.由余弦定理得2222cos BC AB AC AB AC A =+-⋅=49,7BC =.【答案】78.已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,2=a ,且()C b c B A b sin )()sin (sin 2-=-+,则ABC ∆面积的最大值为____________.【解析】由2=a ,且()C b c B A b sin )()sin (sin 2-=-+,故()(sin sin )()sin +-=-a b A B c b C ,又根据正弦定理,得()()()+-=-a b a b c b c ,化简得,222+-=b c a bc ,故2221cos 22+-==b c a A bc ,所以060=A ,又224+-=≥b c bc bc ,故1sin 32∆=≤BAC S bc A .【答案】39.设()2sin cos cos 4f x x x x π⎛⎫=-+⎪⎝⎭. (Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫==⎪⎝⎭,求ABC ∆面积的最大值. 试题分析:(I )首先利用二倍角公式化简函数()f x 的解析式,再利用正弦函数的单调性求其单调区间; (II )首先由02A f ⎛⎫= ⎪⎝⎭结合(I )的结果,确定角A 的值,然后结合余弦定理求出三角形ABC ∆面积的最大值.【解析】(I )由题意知()1cos 2sin 2222x x f x π⎛⎫++ ⎪⎝⎭=-sin 21sin 21sin 2222x x x -=-=- . 由222,22k x k k Z ππππ-+≤≤+∈ 可得,44k x k k Z ππππ-+≤≤+∈由3222,22k x k k Z ππππ+≤≤+∈ 可得3,44k x k k Z ππππ+≤≤+∈ 所以函数()f x 的单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(II )由1sin 0,22A f A ⎛⎫=-=⎪⎝⎭得1sin 2A = .由题意知A 为锐角,所以3cos 2A = 由余弦定理:2222cos a b c bc A =+- ,可得:22132bc b c bc +=+≥ .即:23,bc ≤+ 当且仅当b c =时等号成立.因此123sin 24bc A +≤ ,所以ABC ∆面积的最大值为234+ 【答案】(I )单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(II )ABC ∆ 面积的最大值为234+ 10.已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,求△ABC 面积的最大值.【解析】 (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,sin B =sin(A +C )=sin A cos C +cos A sin C ,所以3sin A sin C -cos A sin C -sin C =0.易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,-π6<A -π6<5π6,即A -π6=π6,所以A =π3. (2)法一 由(1)得B +C =2π3C =2π3-B ⎝⎛⎭⎫0<B <2π3, 由正弦定理得a sin A =b sin B =c sin C =2sin π3=43,所以b =43sin B ,c =43sin C .所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C=433·sin B ·sin ⎝⎛⎭⎫2π3-B =433⎝⎛⎭⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝⎛⎭⎫2B -π6+33. 易知-π6<2B -π6<7π6,故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3.法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b2+c2-bc=4bc+4=b2+c2≥2bc bc≤4,当且仅当b=c=2时,等号成立.所以S△ABC=12bc sin A=12×32bc≤34×4=3,即当b=c=2时,S△ABC取得最大值,最大值为 3.。
2020年高考理科数学 《解三角形》题型归纳与训练及答案解析
2020年高考理科数学 《解三角形》题型归纳与训练【题型归纳】题型一 正弦定理、余弦定理的直接应用例1ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin2BA C +=. (1)求cos B(2)若6a c +=,ABC ∆面积为2,求b . 【答案】(1)15cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin2BB =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABC S ∆=,则172ac =. 由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出例2 ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = . 【答案】π3【解析】1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=.【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。
【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。
例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.【答案】34【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B=π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34. 【易错点】大边对大角,应注意角的取值范围【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。
专题24 正弦定理和余弦定理-2020年领军高考数学一轮复习(文理通用)(解析版)
2020年领军高考数学一轮复习(文理通用)专题24正弦定理和余弦定理最新考纲掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.基础知识融会贯通1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.在△ABC 中,已知a ,b 和A 时,解的情况3.三角形常用面积公式(1)S =12a ·h a (h a表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).【知识拓展】 1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C 2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sinA +B 2=cosC 2;(4)cos A +B 2=sin C 2. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ; c =b cos A +a cos B .重点难点突破【题型一】利用正、余弦定理解三角形【典型例题】已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,△ABC 的面积为S ,且.(1)若C =60°且b =1,求a 边的值;(2)当时,求∠A 的大小.【解答】解:(1)由,,∴a =2b •sin C ,∵C =60°且b =1,∴a ;(2)当时,,∵b2+c2﹣2bc•cos A,∴,即,∴,得sin(A)=1.∵A∈(0,π),∴A∈(),则A,得A.【再练一题】在△ABC中,AB=6,.(1)若,求△ABC的面积;(2)若点D在BC边上且BD=2DC,AD=BD,求BC的长.【解答】(本小题满分12分)解:(1)由正弦定理得:,所以sin C=1,,所以,所以.(2)设DC=x,则BD=2x,由余弦定理可得解得:所以.思维升华(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【题型二】和三角形面积有关的问题【典型例题】△ABC的内角A,B,C所对的边分别为a,b,c,已知.(1)求角A;(2)若a=2,求△ABC面积的最大值.【解答】解:(1)由及正弦定理得:,因为sin B≠0,所以,即.因为0<A<π,所以.……………………………………(2)因为a=2,所以,所以,因为,所以当且仅当时S△ABC最大,所以S△ABC最大值为.………………【再练一题】如图所示,在平面四边形ABCD中,若AD=2,CD=4,△ABC为正三角形,则△BCD面积的最大值为.【解答】解:设∠ADC =α,∠ACD =β,由余弦定理得:AC 2=42+22﹣2×4×2cos α=20﹣16cos α,∴cos β,又由正弦定理可得,则sin β,∴S △BCD BC •CD •sin (β)=2BC (sin βcos β)=2BC •(••)=4sin (α)+4,故△BCD 面积的最大值为4+4,故答案为:4+4思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【题型三】正弦定理、余弦定理的简单应用命题点1 判断三角形的形状 【典型例题】已知a .b .c 分别是△ABC 的内角A 、B 、C 的对边,若c <b cos A ,则△ABC 的形状为( ) A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形【解答】解:∵c <b cos A ,∴利用正弦定理化简得:sin C =sin (A +B )=sin A cos B +cos A sin B <sin B cos A , 整理得:sin A cos B <0, ∵sin A ≠0, ∴cos B <0. ∵B ∈(0,π),∴B 为钝角,三角形ABC 为钝角三角形. 故选:A .【再练一题】在△ABC中,若22,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【解答】解:∵22,∴c2﹣a2=bc cos A,∴c2﹣a2=bc•,化简可得:c2=a2+b2,∴△ABC是直角三角形.故选:B.命题点2求解几何计算问题【典型例题】在△ABC中,A,B,C的对边分别是a,b,c,且b=2,B=60°,△ABC的面积为,则a+c=()A.4 B.C.2 D.【解答】解:△ABC中,b=2,B=60°,所以△ABC的面积为S ac sin B ac•,解得ac=4;又b2=a2+c2﹣2ac cos B,即4=a2+c2﹣ac=(a+c)2﹣3ac=(a+c)2﹣12,所以(a+c)2=16,解得a+c=4.故选:A.【再练一题】如图,D是直角△ABC斜边BC上一点,∠BAC=90°,.(1)设∠DAC=30°,求角B的大小;(2)设BD=2DC=2x,且,求x的值.【解答】解:(1)在△ABC中,根据正弦定理,有.∵AC DC,∴sin∠ADC sin∠DAC.又∠ADC=∠B+∠BAD=∠B,∴∠ADC,∴∠C=π,∴∠B;(2)设DC=x,则BD=2x,BC=3x,AC x,∴sin B,cos B,AB x.在△ABD中,AD2=AB2+BD2﹣2AB•BD•cos B,即:(2)2=6x2+4x2﹣2x×2x2x2,得:x=2.故DC=2.思维升华(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系.②化角:通过三角恒等变换,得出内角的关系,此时要注意应用A+B+C=π这个结论.(2)求解几何计算问题要注意:①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.基础知识训练1.【贵州省贵阳市2019届高三2月适应性考试(一)】平行四边形ABCD 中,AB=2,AD=3,AC=4,则BD=( ) A .4 BCD【答案】B 【解析】 如图所示:平行四边形ABCD 中,AB=2,AD=3,AC=4, 则:在△ABC 中,AB=2,BC=3,AC=4,利用余弦定理:22249161cos 22234AB BC AC ABC AB BC +−+−∠===−⋅⋅⋅,故:1cos cos 4DAB ABC ∠=−∠=, 则:2222?•DAB BD AD AB AD AB cos ∠=+−, 解得:. 故选:B .2.【辽宁省丹东市2019届高三总复习质量测试】在ABC ∆中,1cos 3A =,2AB =,3BC =,则ABC ∆的面积为( ) A .1 B .2C .12x xD.【答案】C由余弦定理可知2222cos BC AB AC AB AC A =+−⋅⋅ 234150AC AC ⇒−−=3AC ⇒=,因为1cos 3A =,所以sin A ==因此1sin 2ABC S AB AC A ∆=⋅⋅= C. 3.【山东省烟台市2019届高三3月诊断性测试(一模)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c,若1a =cos )cos 0A C C b A ++=,则角A =( )A .23πB .3πC .6πD .56π 【答案】D 【解析】∵1a =cos )cos 0A C C b A ++=,cos cos cos A C C A b A +=−,)cos A C B b A +==−,sin cos B b A =−,sin sin cos A B B A =−, ∵sin 0B >,cos A A =−,即:tan 3A =−, ∵(0,)A π∈, ∴56A π=. 故选:D .4.【山东省淄博市2019届部分学校高三阶段性诊断考试试题】在ABC ∆中,角,,A B C 对边分别是,,a b c ,满足22()6,3c a b C π=−+=,则ABC ∆的面积为( )A .B .2C .2D .32【答案】B,∴22226c a ab b =−++,又,由余弦定理可得: 222222cos c a b ab C a b ab =+−=+−∴ 222226a ab b a b ab −++=+−,解得:6ab =,由三角形面积公式可得1sin 22ABC S ab C ∆==故答案选B 。
微专题09 正、余弦定理解三角形-2020高考数学(理)二轮复习微专题聚焦
专题09 正、余弦定理解三角形——2020高考数学(理)二轮复习微专题聚焦【考情分析】解三角形是高考的一个必考点,试题难度不大,多为中、低档题.主要命题的角度:(1)以斜三角形为背景求三角形的基本量、求三角形的面积或判断三角形的形状,主要考查正弦定理、余弦定理以及三角函数公式的应用;(2)以实际生活为背景(如测量、航海、几何天体运行和物理学上的应用等)考查解三角形问题,此类问题在近几年高考中虽未涉及,但深受高考命题者的青睐,应给予关注;(3)解三角形常与三角恒等变换、不等式、平面向量等知识综合命题,这一直是高考考查的重点和热点,考查学生的逻辑思维、转化化归、数形结合的思想和数学运算的核心素养.【必备知识】1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b c R C===AB(R 为C ∆AB 的外接圆的半径).2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2bR B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ;④R SinC SinB SinA cb a 2=++++.3、三角形面积公式:111sin sin sin 222CS bc ab C ac ∆AB =A ==B . 4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =;变形:A bc a c b cos 2222=-+.【重要结论】1、解三角形所涉及的其它知识 (1)三角形内角和定理:A+B+C=π.(2)三角形边角不等关系:B A B A B A b a cos cos sin sin <⇔>⇔∠>∠⇔>. 2、诱导公式在ABC ∆中的应用(1)()()C B A C B A C B A tan )tan(;cos cos ;sin sin -=+-=+=+;(2)2sin 2cos ,2cos 2sinCB AC B A =+=+; 3、已知三边(或三边之比,或三内角正弦之比)判定三角形的形状设a 是三角形中最长的边,则(1)若0222>-+a c b ,则ABC ∆是锐角三角形; (2)若0222=-+a c b ,则ABC ∆是直角三角形; (3)若0222<-+a c b ,则ABC ∆是钝角三角形;或(1)若0sin sin sin 222>-+A C B ,则ABC ∆是锐角三角形; (2)若0sin sin sin 222=-+A C B ,则ABC ∆是直角三角形; (3)若0sin sin sin 222<-+A C B ,则ABC ∆是钝角三角形; 4、三角形中,最大的角不小于3π,最小的角不大于3π. 考点一 利用正、余弦定理求解三角形的边角问题【例1】已知ABC ∆中的内角C B A ,,的对边分别为c b a ,,,且)3sin(sin π+=A b B a .(1)求A ; (2)若c a b ,23,成等差数列,ABC ∆的面积为32,求a 【解析】(1)因为)3sin(sin π+=A b B a ,所以由正弦定理可得)3sin(sin sin sin π+=A B B A ,因为0sin ≠B ,所以)3sin(sin π+=A A .因为),0(π∈A ,所以ππ=++3A A ,所以3π=A .(2)因为c a b ,23,成等差数列,所以a c b 3=+. 又因为ABC ∆的面积为32,所以32sin 21==∆A bc S ABC ,所以323sin bc 21=⨯⨯π,可得bc=8.所以由余弦定理可得bc c b bc bc c b A bc c b a 3)(3cos22)(cos 222222-+=--+=-+=π,即24)3(22-=a a ,解得32=a .【方法归纳 提炼素养】——数学思想是转化与化归,核心素养是数学运算.利用正、余弦定理求解三角形的边角问题,实质是实现边角的转化,解题的思路是: 1、选定理.(1)已知两角及一边,求其余的边或角,利用正弦定理;(2)已知两边及其一边的对角,求另一边所对的角,利用正弦定理; (3)已知两边及其夹角,求第三边,利用余弦定理; (4)已知三边求角或角的余弦值,利用余弦定理的推论; (5)已知两边及其一边的对角,求另一边,利用余弦定理;2、巧转化.化边为角后一般要结合三角形的内角和定理与三角恒等变换进行转化;若将条件转化为边之间的关系,则式子一般比较复杂,要注意根据式子结构特征灵活化简.3、得结论.利用三角函数公式,结合三角形的有关性质(如大边对大角,三角形的内角取值范围等),并注意利用数形结合求出三角形的边、角或判断出三角形的形状等.【类比训练】在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,且A b c B a cos )4(cos -=,则=A 2cos ( )A.87-B.81-C.87D.81【解析】A.因为A b c B a cos )4(cos -=, 所以A B A C B A cos sin cos sin 4cos sin -=, 即A C A B B A cos sin 4cos sin cos sin =+, 所以C A C sin cos 4sin =,又因为0sin ,0≠<<C C π,所以A cos 41=,即41cos =A , 则871cos 22cos 2-=-=A A ,故选A.考点二 利用正、余弦定理等知识求解与三角形有关的最值问题 【例2】在ABC ∆中,内角A B C 、、的对边分别为a b c 、、,且tan 21+tan A cB b=. (1)求角A ;(2)若a =ABC ∆面积的最大值. 【解析】(1)tan 21tan A cB b +=Q sin cos 2sin 1sin cos sin A BC B A B∴+=即sin cos sin cos 2sin sin cos sin B A A B CB A B+=, sin()2sin sin cos sin A B C B A B+∴=,整理得1cos 2A = 0,3A ππ∴=Q <A < (2)2222cos ,a b c bc A =+-Q22222122a b c bc b c bc =∴=+-⨯=+-, 即2232,b c bc bc bc bc =+-≥-=当且仅当3==c b 时,bc 取最大值,从而433sin 21≤=∆A bc S ABC .所以ABC ∆面积的最大值为433. 【方法归纳 提炼素养】——数学思想是转化与化归、整体代换、函数与方程思想,核心素养是数学运算.利用正、余弦定理等知识求解与三角形有关的最值问题,一般先运用正、余弦定理进行边角互化,然后通过三角形中相关角的三角恒等变换,构造关于某一角或某一边的函数或不等式,再利用函数的单调性或基本不等来处理.解题的思路是:1、定基本量.根据题意或几何图形厘清三角形中边、角的关系,利用正、余弦定理求出相关的边、角或边角关系,并选择相关的边、角作为基本量,确定基本量的范围.2、构建函数.根据正、余弦定理或三角恒等变换将待求范围的变量用关于基本量的函数解析式关系.3、求最值.利用基本不等式或函数的单调性等求最值.【类比训练1】在ABC ∆中,角A,B,C 所对的边分别为a,b,c ,且满足)6cos(sin π-=B a A b .(1)求角B 的大小;(2)若D 为AC 的中点,且BD=1,求ABC S ∆的最大值. 【解析】(1)因为)6cos(sin π-=B a A b ,所以B A B A A B sin sin 21cos sin 23sin sin +=, 即B A B A cos sin 3sin sin =, 因为0sin ≠A ,所以3tan =B , 又因为),(π0∈B , 所以3π=B .(2)因为D 为AC 的中点,所以由向量的中线定理得)(21BC BA BD +=,3cos 214141π⋅⋅++=, 又因为BD=1,所以ac ac c a 2422≥-=+ 故34≤ac ,当且仅当a=c 时,等号成立,此时34max =)(ac , 所以ABC S ∆的最大值为333sin 3421=⨯⨯π.【类比训练2】已知ABC ∆的内角A,B,C 的对边分别为a,b,c ,满足bcB A B A 2sin sin cos cos =+,且b=3. (1)求B.(2)求ABC ∆的周长l 的最大值. 【解析】利用正弦定理对b c B A B A 2sin sin cos cos =+化简得BCB B A B B A sin sin 2sin cos sin cos sin cos =+, 即BC B B B A sin sin 2sin cos )sin(=+. 因为0sin )sin(≠=+C B A ,所以21cos =B . 又),0(π∈B ,所以3π=B .(2)解法一:在ABC ∆中,由余弦定理得9cos 222222=-+=-+=ac c a B ac c a b , 所以22)2(3939)(c a ac c a ++≤+=+,即6≤+c a , 所以9≤++=c b a l ,当且仅当a=b=c=3时,ABC ∆的周长l 取得最大值,且最大值为9. 解法二:由正弦定理得32sin 2==BbR ,所以B B R b A A R a sin 32sin 2,sin 32sin 2====,所以)32sin(32sin 323sin 32sin 323A A B A c b a l -++=++=++=π=)6sin(63cos 3sin 333π++=++A A A又因为)32,0(π∈A ,所以)65,6(6πππ∈+A 所以当26ππ=+A ,即3π=A 时,1)6sin(=+πA , 所以963max =+=l .考点三 利用正、余弦定理解平面四边形【例3】如图所示,在四边形ABCD 中,∠D=2∠B,且AD=1,CD=3,33cos =B . (1)求△ACD 的面积;(2)若32=BC ,求AB 的长. 【解析】(1)因为∠D=2∠B,33cos =B , 所以cos D=cos 2B=2cos 2B-1=31-. 因为D ∈(0,π),所以sin D=322cos 12=-D . 因为AD=1,CD=3,所以△ACD 的面积S=21AD·CD·sin D=2322121=⨯⨯.(2)在△ACD 中,由余弦定理得AC 2=AD 2+DC 2-2AD·DC·cos D=12,所以AC=32. 因为BC=32,所以∠B=∠BAC, 由正弦定理得ACBABB AC ∠=sin sin ,所以B ABB B AB B AB B AB B sin 332cos sin 22sin )2sin(sin 32===-=π, 所以AB=4.【方法归纳 提炼素养】——数学思想是转化与化归、数形结合思想,核心素养是数学运算.利用正余弦定理解四边形的解题思路是:1、对于在四边形中解三角形的问题或把一个三角形分为两个三角形来解三角形的问题,分别在两个三角形中列出方程,组成方程组,通过加减消元或者代入消元,求出所需要的量;2、对于含有三角形中的多个量的已知等式,化简求不出结果,需要依据题意应用正余弦定理再列出一个等式,由此组成方程组通过消元法求解.【类比训练】如图,在四边形ABCD 中,7,2,AC CD AD ==2.3ADC π∠=(1)求CAD ∠的正弦值;(2)若2BAC CAD ∠=∠,且△ABC 的面积是△ACD 面积的4倍,求AB 的长. 【解析】(1)在△ACD 中,设(0)AD x x =>,由余弦定理得2227=422cos 3x x x x +-⨯⋅π, 整理得277x =,解得1x =. 所以1, 2.AD CD ==由正弦定理得2sin sin 3DC ACDAC =∠π,解得21sin 7DAC ∠= (2)由已知得4ABC ACD S S ∆∆=,所以11sin 4sin 22AB AC BAC AD AC CAD ⋅⋅∠=⨯⋅⋅∠, 化简得sin 4sin .AB BAC AD CAD ⋅∠=⋅∠所以2sin cos 4sin ,AB CAD CAD AD CAD ⋅∠⋅∠=⋅∠ 于是cos 2.AB CAD AD ⋅∠= 因为21sin 7CAD ∠=,且CAD ∠为锐角, 所以227cos 1sin CAD CAD ∠=-∠=,因此7.AB =考点四 利用正、余弦定理求解实际应用问题【必备知识】 1.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).2.方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). 3.方向角:相对于某一正方向的水平角.(1)北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③). (2)北偏西α,即由指北方向逆时针旋转α到达目标方向. (3)南偏西等其他方向角类似. 4.坡角与坡度(1)坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).(2)坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比. 注意:两种角的区别(1)方位角:从正北方向起按顺时针转到目标方向线之间的水平夹角,方位角的范围是[0,2π]. (2)方向角:正北或正南方向线与目标方向线所成的锐角.【例4】如图,A,B 是海面上位于东西方向相距)(335+海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距320海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点至少需要多长时间?【解析】由题意知AB=)(335+ 海里,因为∠DAB=90°-45°=45°,∠DBA=90°-60°=30°, 所以∠ADB=180°-(45°+30°)=105°, 在△ADB 中,由正弦定理得ADBABDAB DB ∠=∠sin sin , 所以00105sin 45sin )33(5sin sin +=∠∠⋅=ADB DAB AB DB=464222)33(560sin 45cos 60cos 45sin 45sin )33(500000+⨯+=++=310231)31(35=++(海里),又因为∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,BC=320海里, 所以在△DBC 中,由余弦定理得DBC BC BD BC BD CD ∠⋅-+=cos 2222 即900213203102-12003002=⨯⨯⨯+=CD , 所以CD=30(海里), 所以需要的时间13030==t (小时),即救援船到达D 点至少需要1小时. 【方法归纳 提炼素养】——数学思想是转化与化归、数形结合思想,核心素养是数学建模、数学运算.解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图.(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型.(3)求解:利用正弦定理或余弦定理有序地解 出三角形,求得数学模型的解. (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.【类比训练】 如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s 后看山顶的俯角为45°,则山顶的海拔高度为 m.(取≈1.4,≈1.7)【解析】如图,作CD 垂直于AB 的延长线于点D,由题意知∠A=15°,∠DBC=45°,所以∠ACB=30°, AB=50×420=21 000(m). 又在△ABC 中,=,所以BC =×sin 15°=10 500(-)(m).因为CD ⊥AD,所以CD=BC·sin ∠DBC=10 500(-)×=10 500(-1)≈7 350(m).故山顶的海拔高度h=10 000-7 350=2 650(m). 答案:2 650做高考真题 提能力素养【选择题组】1、(2019全国卷Ⅱ高考理·T15)ABC ∆的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC ∆的面积为 .【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =解得23,23c c ==-(舍去) 所以243a c ==,113sin 43236 3.22ABC S ac B ∆==⨯⨯⨯= 2、(2018·全国卷II 高考理科·T6)在△ABC 中,cos C2=√55,BC =1,AC =5,则AB =( ) A .4√2B .√30C .√29D .2√5【解析】选A .cos C =2cos2C2-1=2×(√55)2-1=-35, 在△ABC 中,由余弦定理AB 2=CA 2+CB 2-2CA ·CB ·cos C , 所以AB 2=1+25-2×1×5×(-35)=32,所以AB =4√2.3、(2018·全国Ⅲ高考理科·T9)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C = ( ) A .B .C .D .【解析】选C .由题意S △ABC =12ab sin C =a 2+b 2-c 24,即sin C =a 2+b 2-c 22ab,由余弦定理可知sinC=cosC,即tanC=1,又C ∈(0,π),所以C=.4、(2017·山东高考理科·T9)在△ABC 中,角A,B,C 的对边分别为a,b,c,若△ABC 为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是 ( ) A.a=2b B.b=2a C.A=2B D.B=2A【解析】A.2sinAcosC+cosAsinC=sinAcosC+(sinAcosC+cosAsinC)=sinAcosC+sinB=sinB+2sinBcosC, 即sinAcosC=2sinBcosC,由于△ABC 为锐角三角形, 所以cosC≠0,sinA=2sinB,由正弦定理可得a=2b. 【非选择题组】1、(2018·浙江高考T13)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若a =√7,b =2,A =60°,则sin B = ,c = . 【解析】由正弦定理asinA =bsinB 得=2sinB ,得sin B =√217, 由余弦定理得cos A =b 2+c 2-a 22bc =4+c 2-74c=12,解得c =3.答案:√217 32、(2017·浙江高考·T14)已知△ABC,AB=AC=4,BC=2.点D 为AB 延长线上一点,BD=2,连接CD,则△BDC 的面积是 ,cos ∠BDC= .【解析】因为△ABC 中,AB=AC=4,BC=2,所以由余弦定理得cos ∠ABC=2222AB BC AC AB BC +-⋅=222424242+-⨯⨯=14,则sin ∠DBC=sin ∠ABC=154, 所以S △BDC =12BD·BCsin ∠15,因为BD=BC=2,所以∠BDC=12∠ABC ,则cos ∠cos 12ABC ∠+10答案:15103、(2019全国I 理·T17)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sinC .【解析】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=- 即:222sin sin sin sin sin B C A B C +-= 由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,A π∈Q 3A π∴=(2)2b c +=Q sin 2sin A B C += 又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1sin 2sin 2C C C +=整理可得:3sin C C -=22sin cos 1C C +=Q (()223sin 31sin C C ∴=-解得:sin C =因为sin 2sin 2sin 02B C A C ==->所以sin 4C >,故sin C =(2)法二:2b c +=Q sin 2sin A B C += 又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1sin 2sin 222C C C ++=整理可得:3sin C C -=,即3sin 6C C C π⎛⎫=-= ⎪⎝⎭sin 62C π⎛⎫∴-=⎪⎝⎭ 由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+故sin sin()46C ππ=+=.4、(2019全国III 理·T18)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【解析】(1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=, 因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=. 因为0<B π<,02A Cπ+<< 故2A C B +=或者2A C B π++=,而根据题意A B C π++=,故2A CB π++=不成立, 所以2A CB +=,又因为A BC π++=,代入得3B =π,所以3B π=. (2)因为ABC △是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=, 故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 3sin sin sin 222sin sin ABC C a A S ac B c B c B c C Cπ-=⋅=⋅=⋅=V 22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ-=⋅=-=+.又因,tan 62C C ππ<<>318tan C <+<故82ABC S <<V .故ABC S V取值范围是(82. 5、(2018·北京高考理科·T15)在△ABC 中,a=7,b=8,cosB=-17. (1)求∠A.(2)求AC 边上的高.【解析】方法一:(1)由余弦定理,cosB=c 2+a 2-b 22ca==-17,解得c=-5(舍),或c=3,所以cosA=b 2+c 2-a 22bc==12,又因为0<A<π,所以A=. (2)设AC 边上的高为h,则sinA=hc , 所以h=csinA=3×sin =3√32,即AC 边上的高为3√32. 方法二:(1)因为cosB=-17<0得角B 为钝角,由三角形内角和定理,角A 为锐角, 又sin 2B+cos 2B=1,所以sinB>0,sinB=4√37,由正弦定理,asinA =bsinB ,即sinA=ab sinB=78×4√37=√32, 又因为0<A<,所以A=.(2)设AC 边上的高为h,则h=asinC,由(1)及已知,sinC=sin(A+B)=sinAcosB+sinBcosA=√32×(-17)+12×4√37=3√314, 所以h=asinC=7×3√314=3√32,即AC 边上的高为3√32. 6、(2018·天津高考理科·T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知bsinA=acos .(Ⅰ)求角B 的大小;(Ⅱ)设a=2,c=3,求b 和sin(2A-B)的值.【解析】(Ⅰ)在△ABC 中,由正弦定理asinA =bsinB ,可得bsinA=asinB, 又由bsinA=acos,得asinB=acos ,即sinB=cos ,所以sinB=√32cosB+12sinB ,可得tanB=√3. 又因为B ∈(0,π),可得B=.(Ⅱ)在△ABC 中,由余弦定理及a=2,c=3,B=,有b 2=a 2+c 2-2accosB=7,故b=√7. 由bsinA=acos,可得sinA=√37. 因为a<c,故cosA=√7.因此sin2A=2sinAcosA=4√37,cos2A=2cos 2A-1=17. 所以,sin(2A-B)=sin2AcosB-cos2AsinB=4√37×12-17×√32=3√314. 6、(2017·北京高考理科·T15)在△ABC 中,∠A=60°,c=37a. (1)求sinC 的值.(2)若a=7,求△ABC 的面积. 【解析】(1)根据正弦定理sinA a=sinCc ,所以sinC=sinA c a =37×sin60°=37(2)当a=7时,c=37a=3,因为所以1314,在△ABC 中,sinB=sin[π-(A+C)]=sin(A+C)=sinA×cosC+cosA××1314+12,所以S △ABC =12ac×sinB =12×7×3×7=7、(2017·全国丙卷·理科·T174)△ABC 的内角A,B,C 的对边分别为a,b,c,已知,b=2. (1)求c.(2)设D 为BC 边上一点,且AD ⊥AC,求△ABD 的面积.【解析】(1)因为,所以,所以因为A ∈(0,π),所以A=23π.由余弦定理得a 2=b 2+c 2-2bccosA,代入,b=2得c 2+2c-24=0, 解得c=-6(舍去)或c=4,所以c=4. (2)由(1)知c=4.因为c 2=a 2+b 2-2abcosC,所以16=28+4-2×2×2×cosC ,所以,所以sinC=7,所以在Rt △CAD 中,tanC=ADAC ,所以2=2AD ,即则S △ADC =12×由(1)知S △ABC =12·bc·sinA =12×2×4×2=所以S △ABD =S △ABC -S △ADC =.8、(2017·全国甲卷理科·T17)△ABC 的内角A,B,C 的对边分别为a,b,c,已知sin(A+C)=8sin 22B . (1)求cosB.(2)若a+c=6,△ABC 的面积为2,求b.【解析】(1)由题设及A+B+C=π得sinB=8sin 22B,故sinB=4(1-cosB), 上式两边平方,整理得17cos 2B-32cosB+15=0, 解得cosB=1(舍去),cosB=1517, (2)由cosB=1517得sinB=817,故S △ABC =12acsinB=417ac , 又S △ABC =2,则ac=172,由余弦定理及a+c=6得b 2=a 2+c 2-2accosB=(a+c)2-2ac(1+cosB)=36-2×172×15117⎛⎫+ ⎪⎝⎭=4,所以b=2. 9、(2017·全国乙卷理科·T17)△ABC 的内角A,B,C 的对边分别为a,b,c,已知△ABC 的面积为23sin a A.(1)求sinBsinC.(2)若6cosBcosC=1,a=3,求△ABC 的周长.【解析】(1)因为△ABC 面积S=23sinA a且S=12bcsinA ,所以23sinA a =12bcsinA ,所以a 2=32bcsin 2A ,由正弦定理得sin 2A=32sinBsinCsin 2A ,由sinA≠0得sinBsinC=32. (2)由(1)得sinBsinC=23,又cosBcosC=16,因为A+B+C=π,所以cosA =cos ()B C π--=-cos ()B C +=sinBsin C-cosBcosC =12,又因为A ∈()0,π,所以A=3π,sinA=2,cosA=12,由余弦定理得a 2=b 2+c 2-bc=9 ①, 由正弦定理得b=sinA a ·sinB,c=sinAa ·sinC , 所以bc=22sin Aa ·sinBsinC=8 ②,由①②得所以即△ABC 的周长为10、(2017·天津高考理科·T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=35.(1)求b 和sinA 的值.(2)求sin 24A π⎛⎫+ ⎪⎝⎭的值.【解析】(1)△ABC 中,a>b,sinB=35,所以cosB=45,由余弦定理得,b 2=a 2+c 2-2accosB=13,所以由正弦定理得,sinA=sinB a b(2)由(1)知又a<c,sin2A=2sinAcosA=1213,cos2A=1-2sin 2A=-513,所以,sin 24A π⎛⎫+ ⎪⎝⎭=sin2Acos 4π+cos2Asin 4π=26.11、(2017·天津高考理科·T15)在△ABC 中,内角A,B,C 所对的边分别为a,b,c ,已知2-b 2-c 2). (1)求cosA 的值.(2)求sin(2B-A)的值.【解析】(1)由asinA=4bsinB,及sinA a =sinBb ,得a=2b. 由(a 2-b 2-c 2),及余弦定理,得cosA=2222b c abc+-=5ac-(2)由(1)可得sinA=5,代入asinA=4bsinB,得sinB=sinA4a b=5. 由(1)知,A 为钝角,所以cosB==5, 于是sin2B=2sinBcosB=45,cos2B=1-2sin 2B=35,故sin(2B-A)=sin2BcosA-cos2BsinA=45×⎛⎝⎭-35。
2020年新高考数学复习实际问题中的解三角形问题专题解析
无解
一解
两解
一解
一解
无解
7.三角形常用的面积公式
1
1
1
1
abc
(1)S=2a·ha(ha 表示 a 边上的高).(2)S=2absinC=2acsinB=2bcsinA= 4R .
1 (3)S=2r(a+b+c)(r 为内切圆半径).
应用举例: 类型一、测量高度问题
【例 1】如图,一山顶有一信号塔 CD ( CD 所在的直线与地平面垂直),在山脚 A 处测得塔尖 C 的仰角为 ,沿倾斜角为 的山坡向上前进 l 米后到达 B 处,测得 C 的仰角为 .
3 海里.
(1)求 两点间的距离;(精确到 0.01)
(2)某一时刻,我国一渔船在 点处因故障抛锚发出求教信号.一艘 国舰艇正从点 正东 10 海里的点 处以
18 海里/小时的速度接近渔船,其航线为
(直线行进),而我东海某渔政船正位于点 南偏西 方向
20 海里的点 处,收到信号后赶往救助,其航线为先向正北航行 8 海里至点 处,再折向点 直线航行,航
实战演练:
1.如图,一条巡逻船由南向北行驶,在 A 处测得山顶 P 在北偏东150 BAC 150 方向上,匀速向北航
行 20 分钟到达 B 处,测得山顶 P 位于北偏东 600 方向上,此时测得山顶 P 的仰角 600 ,若山高为 2 3 千米,
2020高考数学专项训练《3 正、余弦定理在解三角形中的应用》(有答案)
例题:(2018·南通、泰州一模)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a 2=b 2+c 2-bc ,a =152b . (1)求sin B 的值; (2)求cos ⎝⎛⎭⎫C +π12的值.变式1在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A =4b sin B ,ac =5(a2-b2-c2).(1)求cos A 的值;(2)求sin (2B -A)的值.变式2已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos C =35,D 是线段BC 上的点,cos ∠ADC =210. (1)若b =5,a =7,求c 的大小;(2)若b =7,BD =10,求△ABC 的面积.串讲1在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________________.串讲2在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A a +cos B b =sin Cc .(1)证明:sin A sin B =sin C ; (2)若b2+c2-a2=65bc ,求tan B.(2018·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知b sin A =a cos ⎝⎛⎭⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin (2A -B)的值.(2018·常州期末)已知△ABC 中,a ,b ,c 分别为三个内角A ,B ,C 的对边,3b sin C =c cos B +c.(1)求角B ;(2)若b 2=ac ,求1tan A +1tan C的值.答案:(1)B =π3;(2)233.解析:(1)由正弦定理得b sin B =csin C,又∵3b sin C =c cos B +C , ∴3sin B sin C =cos B sin C +sin C ,3分△ABC 中,sin C >0,所以3sin B -cos B =1,4分所以sin ⎝⎛⎭⎫B -π6=12,-π6<B -π6<5π6,B -π6=π6,所以B =π3;6分(2)因为b 2=ac ,由正弦定理得sin 2B =sin A sin C ,8分1tan A +1tan C =cos A sin A +cos C sin C =cos A sin C +sin A cos C sin A sin C =sin (A +C )sin A sin C =sin (π-B )sin A sin C =sin Bsin A sin C.12分所以1tan A +1tan C =sin B sin 2B =1sin B =132=233.14分专题3例题 答案:(1)55;(2)-1010. 解析:(1)在△ABC 中,根据余弦定理及a 2=b 2+c 2-bc 得cos A =b 2+c 2-a 22bc =12.又因为A ∈(0,π),所以A =π3.在△ABC 中,由正弦定理得a sin A =b sinB 得sin B =b a sin A =215×32=55. (2)因为a =152b >b , 所以A >B ,即得0<B <π3.又sin B =55,所以 cos B =1-sin 2B =255,在△ABC 中,A +B +C =π, 所以cos ⎝⎛⎭⎫C +π12=cos ⎝⎛⎭⎫π-A -B +π12=-cos ⎝⎛⎭⎫B +π4=-⎝⎛⎭⎫22cos B -22sin B =-⎝⎛255×22-⎭⎫55×22= -1010. 变式联想变式1 答案:(1)-55;(2)-255. 解析:(1)由正弦定理得a sin A =bsin B,又因为由a sin A =4b sin B ,可得 a =2b ,又因为ac =5(a 2-b 2-c 2),即b 2+c 2-a 2=-55ac ,所以由余弦定理可得cos A=b 2+c 2-a 22bc =-55ac ac =-55.(2)因为0<A<π,可得sin A =255,代入a sin A =4b sin B ,可得sin B =a sin A 4b =55,由(1)知,A 为钝角,所以cos B =1-sin 2B =255,于是sin 2B =2sin B cos B =45,cos 2B =1-2sin 2B=35,所以sin (2B -A)=sin 2B cos A -cos 2B sin A =45×⎝⎛⎭⎫-55-35×255=-255. 变式2答案:(1)42;(2)42.解析:(1)在△ABC 中,由余弦定理可得c 2=a 2+b 2-2ab cos C =72+52-2×7×5×35=32,即c =4 2.(2)因为0<C<π,所以sin C =1-cos 2C =45,同理sin ∠ADC =1-cos 2∠ADC =7210,所以cos ∠CAD =-cos (∠ADC +C)=-cos ∠ADC cos C +sin ∠ADC sin C =22, 即∠CAD =π4,在△ACD 中,由正弦定理,得CD sin ∠CAD =ACsin ∠ADC,得CD =AC sin ∠CAD sin ∠ADC =7×227210=5,所以S △ABC =12AC·BC·sin C =12×7×15×45=42.点拨:三角形作为重要的平面几何研究对象,通过回顾解三角形的研究思路,有利于培养从定性到定量的研究,研究角度可以是边的关系、角的关系,边角关系入手,解题方法与过程蕴含了基本方程与不等式.其中正弦定理和余弦定理实现了三角形边角几何关系的代数化,遇到边角关系式,基本处理策略就是“化边为角或化角为边”.串讲激活串讲1答案:(6-2,6+2).解法1如图,∠B =∠C =∠BAD =75°,延长BA ,CD 交于点E ,则可知BE =CE ,且在△ADE 中,∠DAE =105°,∠ADE =45°,∠E =30°.在△BEC 中,由正弦定理可得BE =CE =BC sin 75°sin 30°=6+2,由题意可得DE ∈(0,6+2).在△ADE 中,由正弦定理可得AE =DE sin 45°sin 105°=(3-1)DE ,所以AE ∈(0,22).又因为AB =BE -AE ,所以AB的取值范围是(6-2,6+2).(解法1图)解法2(构造法):如图,构造△BEC ,使得∠B =∠BCE =75°,则∠BEC =30°,取BE 边上一点A ,CE 边上一点D ,使得∠BAD =75°.若平移AD 使点D 与点C 重合,此时四边形ABCD 化为△A′BC ,且可在△A′BC 中利用正弦定理求得A′B =2sin 30°sin 75°=6-2;若平移AD 使点D 与点E 重合,此时四边形ABCD 化为△BEC′,且可在△BEC 中利用正弦定理求得BE =2sin 75°sin 30°=6+ 2.又因为ABCD 是平面四边形,所以点D 应在点C 与点E之间,且不与点C 与点E 重合,所以AB 的取值范围是(6-2,6+2).(解法2图)串讲2答案:(1)略;(2)tan B =4.解析:(1)证明:因为cos A a +cos B b =sin C c ,由正弦定理a sin A =b sin B =c sin C 可得cos A sin A +cos Bsin B =sin Csin C=1, 可得sin B cos A +sin A cos B =sin A sin B ,又因为sin B cos A +sin A cos B =sin (A +B)=sin (π-C)=sin C ,即sin A sin B =sin C.(2)因为b 2+c 2-a 2=65bc ,由余弦定理可知,cos A =b 2+c 2-a 22bc =35,因为A ∈(0,π),所以sin A>0,则sin A =1-⎝⎛⎭⎫352=45,即cos A sin A =34,由(1)可知cos A sin A +cos B sin B =sin C sin C=1,可得cos B sin B =1tan B =14,所以tan B =4. 新题在线答案:(1)π3;(2)3314.解析:(1)在△ABC 中,由正弦定理得a sin A =bsin B,得b sin A =a sin B ,又b sin A =a cos ⎝⎛⎭⎫B -π6.∴a sin B =a cos ⎝⎛⎭⎫B -π6,即sin B =cos ⎝⎛⎭⎫B -π6=cos B cos π6+sin B sin π6=32cos B +12sin B ,∴tan B =3,又B ∈(0,π),∴B =π3.(2)在△ABC 中,a =2,c =3, B =π3,由余弦定理得b =a 2+c 2-2ac cos B =7,由b sin A =a cos ⎝⎛⎭⎫B -π6,得sin A =37,∵a <c ,∴cos A =27,∴sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17,∴sin (2A -B)=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.。
2020年高考数学三角函数、三角形、平面向量 专题08 正弦定理与余弦定理 文(含解析)
专题08正弦定理与余弦定理一、本专题要特别小心:1。
解三角形时的分类讨论(锐角钝角之分)2。
边角互化的选取3。
正余弦定理的选取4.三角形中的中线问题5。
三角形中的角平分性问题6.多个三角形问题二.【学习目标】掌握正、余弦定理,能利用这两个定理及面积计算公式解斜三角形,培养运算求解能力.三.【方法总结】1。
利用正弦定理,可以解决以下两类有关三角形的问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角).2。
由正弦定理容易得到:在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即A>B⇔a>b⇔sin A>sin B。
3。
已知三角形两边及其一边的对角解三角形时,利用正弦定理求解时,要注意判断三角形解的情况(存在两解、一解和无解三种可能).而解的情况确定的一般方法是“大边对大角且三角形钝角至多一个”.4。
利用余弦定理,可以解决以下三类有关三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其余角;(3)已知两边和其中一边的对角,求其他边和角.(4)由余弦值确定角的大小时,一定要依据角的范围及函数值的正负确定。
四.【题型方法】}(一)正弦定理辨析三角形例1.已知数列的前项和(1)若三角形的三边长分别为,求此三角形的面积;(2)探究数列中是否存在相邻的三项,同时满足以下两个条件:①此三项可作为三角形三边的长;②此三项构成的三角形最大角是最小角的2倍.若存在,找出这样的三项;若不存在,说明理由。
【答案】(1)(2)见解析【解析】解:数列的前n项和.当时,,当时,,又时,,所以,不妨设三边长为,,,所以所以假设数列存在相邻的三项满足条件,因为,设三角形三边长分别是n,,,,三个角分别是,,由正弦定理:,所以由余弦定理:,即化简得:,所以:或舍去当时,三角形的三边长分别是4,5,6,可以验证此三角形的最大角是最小角的2倍.所以数列中存在相邻的三项4,5,6,满足条件.练习1.以下关于正弦定理或其变形的叙述错误的是A.在中,B.在中,若,则C.在中,若,则;D.在中,【答案】B【解析】在中,;在中,若,则或,即或;在中,若,则;在中,,选B.练习2.在中,内角所对的边分别是,若,则的值为()A.B.C.1 D.【答案】D【解析】根据正弦定理可得故选D。
考点17 正、余弦定理及解三角形-备战2020年高考数学(理)考点一遍过
考点17 正、余弦定理及解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、正弦定理 1.正弦定理在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即sin sin sin a b c==A B C.正弦定理对任意三角形都成立. 2.常见变形 (1)sin sin sin ,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c====== (2);sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++ (3)::sin :sin :sin ;a b c A B C = (4)正弦定理的推广:===2sin sin sin a b c R A B C,其中R 为ABC △的外接圆的半径. 3.解决的问题(1)已知两角和任意一边,求其他的边和角; (2)已知两边和其中一边的对角,求其他的边和角. 4.在ABC △中,已知a ,b 和A 时,三角形解的情况二、余弦定理 1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,2.余弦定理的推论从余弦定理,可以得到它的推论:222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===. 3.解决的问题(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角. 4.利用余弦定理解三角形的步骤三、解三角形的实际应用 1.三角形的面积公式设ABC △的三边为a ,b ,c ,对应的三个角分别为A ,B ,C ,其面积为S .(1)12S ah = (h 为BC 边上的高); (2)111sin sin sin 222S bc A ac B ab C ===;(3)1()2S r a b c =++(r 为三角形的内切圆半径).2.三角形的高的公式h A =b sin C =c sin B ,h B =c sin A =a sin C ,h C =a sin B =b sin A . 3.测量中的术语 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). (3)方向角相对于某一正方向的水平角.①北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③);②北偏西α,即由指北方向逆时针旋转α到达目标方向; ③南偏西等其他方向角类似.(4)坡角与坡度①坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角);②坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比. 4.解三角形实际应用题的步骤考向一 利用正、余弦定理解三角形利用正、余弦定理求边和角的方法:(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.(2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(3)在运算求解过程中注意三角恒等变换与三角形内角和定理的应用. 常见结论:(1)三角形的内角和定理:在ABC △中,π A B C ++=,其变式有:πA B C +=-,π222A B C+=-等. (2)三角形中的三角函数关系:i in(s n s )A B C =+; ()s os co c A B C =-+;sincos 22A B C +=; cos sin 22A B C+=.典例1 在ABC △中,内角A,B,C 所对的边分别为a,b,c ,若bsin2A +√3asinB =0,b =√3c ,则ca的值为A .1 BC .5D .7【答案】D【解析】由bsin2A +√3asinB =0,结合正弦定理,可得sinBsin2A +√3sinAsinB =0, 即2sinBsinAcosA +√3sinAsinB =0, 由于sinBsinA ≠0,所以cosA =−√32, 因为0<A <π,所以A =5π6.又b =√3c ,由余弦定理可得a 2=b 2+c 2−2bccosA =3c 2+c 2+3c 2=7c 2, 即a 2=7c 2,所以ca =√77. 故选D .典例2 已知ABC △的内角A,B,C 的对边分别为a,b,c ,且asinA +bsinB +√2bsinA =csinC . (1)求C ;(2)若a =2,b =2√2,线段BC 的垂直平分线交AB 于点D ,求CD 的长.【解析】(1)因为asinA +bsinB +√2bsin A =csinC ,所以a 2+b 2+√2ab =c 2. 由余弦定理得cosC =a 2+b 2−c 22ab =−√22, 又0<C <π,所以C =3π4.(2)由(1)知C =3π4,根据余弦定理可得c 2=a 2+b 2−2abcosC =22+(2√2)2−2×2×2√2×(−√22)=20,所以c =2√5.由正弦定理得csinC =bsinB ,即sin 2B =,解得sinB =√55.从而cos B =. 设BC 的中垂线交BC 于点E , 因为在Rt BDE △中,cosB =BEBD ,所以cosBEBDB===,因为DE为线段BC的中垂线,所以CD=BD=√52.1.已知△ABC的内角,,A B C的对边分别为,,a b c,且()2cos cos cosC a B b A c+=,1,3a b==,则c= A.3B.CD2.在△ABC中,D是BC上的点,AD平分BAC∠,sin2sinC B=.(1)求BDCD;(2)若1AD AC==,求BC的长.考向二三角形形状的判断利用正、余弦定理判定三角形形状的两种思路:(1)“角化边”:利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)“边化角”:利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角恒等变换,得出内角间的关系,从而判断出三角形的形状,此时要注意应用πA B C++=这个结论.提醒:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免造成漏解.典例 3 在ABC△中,角,,A B C所对的边分别是,,a b c,满足3cos cos sin sin cos2A C A C B++=,且,,a b c成等比数列.(1)求角B的大小;(2)若2,2tan tan tana c baA C B+==,试判断三角形的形状.【解析】(1∵()cos cosB A C=-+,32sin sin2A C∴=,又22sin sin sin b ac B A C =⇒=,232sin 2B ∴=而,,a b c 成等比数列,所以b 不是最大, 故B 为锐角,所以60B =︒.(2)由2tan tan tan a c bA C B+=,利用正弦定理可得cos cos 2cos 1A C B +==,所以ABC △是等边三角形.3.在△ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知sin tan 1cos BC B=-.(1)求证:△ABC 为等腰三角形;(2)若△ABC 是钝角三角形,且面积为24a ,求2b ac的值.考向三 与面积、范围有关的问题(1)求三角形面积的方法①若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.②若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.(2)三角形中,已知面积求边、角的方法三角形面积公式中含有两边及其夹角,故根据题目的特点,若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解;若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.典例4 在ABC △中,角A,B,C 的对边分别为a,b,c ,且a =bcosC +csinB . (1)求角B ;(2)若b =2√2,求ABC △面积的最大值.【解析】(1)由已知和正弦定理得sinA =sinBcosC +sinCsinB , ∵sinA =sin (B +C )=sinBcosC +cosBsinC , ∴sinB =cosB ,解得B =450.(2)由余弦定理得:b 2=a 2+c 2−2accosB ,即(2√2)2=a 2+c 2−2accos450, 整理得:a 2+c 2=8+√2ac .∵a 2+c 2≥2ac (当且仅当a =c 取等号),∴8+√2ac ≥2ac ,即ac ≤4(2+√2), ∴S ΔABC =12acsinB ≤12×4(2+√2)×√22=2√2+2,故ABC △面积的最大值为2√2+2.【名师点睛】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.典例5 在ABC △中,AC =2√3,D 是BC 边上的一点. (1)若AD =1,AD ⃑⃑⃑⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =3,求CD 的长; (2)若∠B =120°,求ABC △周长的取值范围. 【解析】(1)在ADC △中,AD =1,AC =2√3, 所以AD ⃑⃑⃑⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =|AD ⃑⃑⃑⃑⃑ ||AC ⃑⃑⃑⃑⃑ |cos ∠DAC =1×2√3×cos ∠DAC =3, 所以cos ∠DAC =√32.由余弦定理得2222cos CD AC AD AC AD DAC =+∠-⋅⋅=12+1-2×2√3×1×√32=7, 所以CD =√7.(2)在ABC △中,由正弦定理得4sin sin sin sin 3AB BC AC C A B ====,∴AB +BC =4(sinA +sinC)=4[sinA +sin(π3−A)]=4sin(A +π3),ππ0,sin 33A A ⎤⎛⎫<<∴+∈⎥ ⎪⎝⎭⎝⎦.∴AB +BC ∈(2√3,4],故ABC △周长的取值范围为(4√3,4+2√3] .4.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且22()13a b cab--=-.(1)求角C ; (2)若c b ==,求B 及ABC △的面积.5.已知,,a b c 分别是ABC △三个内角,,A B C 所对的边,且1cos 2a C cb +=. (1)求A ;(2)若1a =,求ABC △的周长L 的取值范围.考向四 三角形中的几何计算几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.典例6 如图,在ABC △中,D 为AB 边上一点,且DA DC =,已知π4B =,1BC =.(1)若ABC △是锐角三角形,DC =,求角A 的大小; (2)若BCD △的面积为16,求AB 的长. 【解析】(1)在BCD △中,π4B =,1BC =,DC =,由正弦定理得sin sin BC CDBDC B=∠,解得1sin BDC ∠==所以π3BDC ∠=或2π3. 因为ABC △是锐角三角形,所以2π3BDC ∠=. 又DA DC =,所以π3A =.(2)由题意可得1π1sin 246BCD S BC BD =⋅⋅⋅=△,解得3BD =,由余弦定理得222π2cos4CD BC BD BC BD =+-⋅⋅=251219329+-⨯⨯=,解得CD =,则AB AD BD CD BD =+=+=.所以AB6.如图,在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos B +b =2c .(1)求角A 的大小;(2)若AC 边上的中线BD ,且AB ⊥BD ,求BC 的长.考向五 解三角形的实际应用解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.研究测量距离问题是高考中的常考内容,既有选择题、填空题,也有解答题,难度一般适中,属中档题.解题时要选取合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.典例7 如图,一条巡逻船由南向北行驶,在A 处测得山顶P 在北偏东()1515BAC ︒∠=︒方向上,匀速向北航行20分钟到达B 处,测得山顶P 位于北偏东60︒方向上,此时测得山顶P 的仰角为60︒,若山高为千米,(1)船的航行速度是每小时多少千米?(2)若该船继续航行10分钟到达D 处,问此时山顶位于D 处的南偏东什么方向?【解析】(1)在BCP △中,tan 2PCPBC BC ∠=⇒=, 在ABC △中,由正弦定理得所以)21AB =,故船的航行速度是每小时)61千米.(2)在BCD △中,由余弦定理得CD =在BCD △中,由正弦定理得所以山顶位于D 处南偏东45︒方向.7.如图,某测量人员为了测量西江北岸不能到达的两点A ,B 之间的距离,她在西江南岸找到一个点C ,从C 点可以观察到点A ,B ;找到一个点D ,从D 点可以观察到点A ,C ;找到一个点E ,从E 点可以观察到点B ,C ;并测量得到数据:90ACD ∠=︒,60ADC ∠=︒,15ACB ∠=︒,105BCE ∠=︒,45CEB ∠=︒,1DC CE ==百米.(1)求△CDE 的面积;(2)求A ,B 之间的距离的平方.考向六 三角形中的综合问题1.解三角形的应用中要注意与基本不等式的结合,以此考查三角形中有关边、角的范围问题.利用正弦定理、余弦定理与三角形的面积公式,建立如“22,,a b ab a b ++”之间的等量关系与不等关系,通过基本不等式考查相关范围问题.2.注意与三角函数的图象与性质的综合考查,将两者结合起来,既考查解三角形问题,也注重对三角函数的化简、计算及考查相关性质等.3.正、余弦定理也可能结合平面向量及不等式考查面积的最值或求面积,此时注意应用平面向量的数量积或基本不等式进行求解.典例8 在ABC △,向量(sin ,1)A =m ,(1,cos )B =n ,且⊥m n . (1)求A 的值;(2)若点D 在边BC 上,且3BD BC =ABC △的面积. 【解析】(1)由题意知sin cos 0A B +=⋅=m n ,πA B C ++=,所以5πsin cos()06A A +-=,πsin()06A -=.ππ2π(,)663A -∈-, 所以06A -=,即π6A =.(2)设||BD x =,由3BD BC =,得||3BC x =,由(1)知π6A C ==,所以|在ABD △1x =, 所以3AB BC ==,典例9 ABC △的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 【解析】(1)因为a ,b ,c 成等差数列,所以a +c =2b . 由正弦定理得sin A +sin C =2sin B . 因为sin B =sin[π-(A +C )]=sin(A +C ), 所以sin A +sin C =2sin(A +C ).(2)因为a ,b ,c 成等比数列,所以b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立. 所以cos B 的最小值为12.8.已知()()3sin ,cos ,cos ,cos ,x x x x x ==∈R m n ,设()f x =⋅m n .(1)求()f x 的解析式并求出它的最小正周期T ;(2)在△ABC 中,角,,A B C 所对的边分别为,,a b c ,且1,2,()1a b c f A =+==,求△ABC 的面积.1.设△ABC 的内角A,B,C 所对边的长分别是a,b,c ,且b =3,c =1,A =2B ,则a 的值为 A .2√5 B .4 C .2√3D .2√22.在ABC △中,AB =1,BC =2,则角C 的取值范围是 A .π0,6⎛⎤ ⎥⎝⎦B .ππ,42⎛⎫⎪⎝⎭ C .ππ,62⎡⎫⎪⎢⎣⎭D .ππ,62⎛⎫⎪⎝⎭3.已知ABC △的面积为S ,三个内角A,B,C 的对边分别为a,b,c ,若4S =a 2−(b −c)2,bc =4,则ABC △是A .直角三角形B .钝角三角形C .锐角三角形D .不能确定4.ABC △中,2AB =,10BC =1cos 4A =,则AB 边上的高等于 A 315B .34C .2D .35.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60︒,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15︒,这时船与灯塔的距离为A .B .kmC .D .6.已知ABC △的面积为4,∠A =900,则2AB +AC 的最小值为 A .8 B .4 C .8√2D .4√27.设ABC △的三个内角A 、B 、C 所对的边分别为a 、b 、c ,如果(a +b +c)(b +c −a)=3bc ,且a =√3,那么ABC △外接圆的半径为 A .2 B .4 C .√2D .18. △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =4c =,且cos 3cos a B b A =,则△ABC 的面积为 A .2 B .3C .4D .9.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若向量(,)a c a b =+-p ,(,)b a c =-q ,且∥p q ,则角C = A .π6 B .π4 C .π3D .π210.若ABC △的三个内角A ,B ,C 所对的边分别是a ,b ,c ,sin (C −A )=12sinB ,且b =4,则c 2−a 2=A .10B .8C .7D .411.在ABC △中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC △的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭A .1B .2C D 12.平面四边形ABCD 中,∠ABC =150°,√3AB =2BC ,AC =√13,BD ⊥AB ,CD =3,则四边形ABCD 的面积为A .7√3B .2C .√3+1D .√3+213.已知△ABC ,内角A ,B ,C 对应的边分别为a ,b ,c ,若60A =︒,2b =,则c 的值为____________.14.在ABC △中,D 为BC 边上一点,若ABD △是等边三角形,且AC =ADC △的面积的最大值为 .15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =___________m.16.已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若π,6,143C a b ==≤≤,则sin A 的取值范围为__________.17.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知cosA =−√1010,b =√2,c =√5.(1)求a ;(2)求cos(B −A)的值.18.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知π2A ≠,sin 26cos sin b A A B =. (1)求a 的值; (2)若π3A =,求△ABC 周长的取值范围.19.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,,(cos ,sin )B A =n ,且∥m n .(1)求角B 的大小;(2)若2b =,ABC △的面积为a c +的值.20.如图,渔船甲位于岛屿A 的南偏西60︒方向的B 处,且与岛屿A 相距18海里,渔船乙以15海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2h 追上,此时到达C 处. (1)求渔船甲的速度; (2)求sin α的值.21.在ABC △中,,,A B C 的对边分别为,,a b c ,且cos ,cos ,cos a C b B c A 成等差数列. (1)求B 的值;(2)求()22sin cos A A C +-的范围.22.已知函数f(x)=2cosx(cosx +√3sinx).(1)当x ∈[π24,7π12]时,求f(x)的值域;(2)在ABC △中,若f (B )=−1,BC =√3,sinB =√3sinA,求ABC △的面积.23.如图所示,在平面内,四边形ABCD 的对角线交点位于四边形的内部,1,AB BC AC CD ===,AC CD ⊥,记ABC θ∠=.(1)若45θ=︒,求对角线BD 的长度(2)当θ变化时,求对角线BD 长度的最大值.1.(2017山东理科)在ABC △中,角A ,B ,C 的对边分别为,,.若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是A .B .C .2A B =D .2B A =2.(2018新课标全国Ⅱ理科)在ABC △中,cos 25C =,1BC =,5AC =,则AB =A . BCD .3.(2018新课标全国Ⅲ理科)ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2 B .π3 C .π4D .π64.(2019年高考全国Ⅱ卷理数)ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.5.(2019年高考浙江卷)在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.6.(2018年高考浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.7.(2017浙江)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC的面积是______,cos ∠BDC =_______.8.(2019年高考全国Ⅰ卷理数)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .9.(2019年高考全国Ⅲ卷理数)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC △为锐角三角形,且c =1,求ABC △面积的取值范围.10.(2019年高考北京卷理数)在ABC △中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值.11.(2019年高考天津卷理数)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+ ⎪⎝⎭的值.12.(2019年高考江苏卷)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.13.(2018新课标全国Ⅰ理科)在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =. (1)求cos ADB ∠;(2)若DC =,求BC .14.(2017新课标全国Ⅰ理科)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.15.(2017新课标全国Ⅱ理科)ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin 2BA C +=.(1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .16.(2018北京理科)在△ABC 中,a =7,b =8,cos B =–17.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.1.【答案】C【解析】由题知()2cos cos cosC a B b A c+=,由正弦定理得()2cos sin cos sin cos sinC A B B A C+=,所以()2cos sin sinC A B C+=,即2cos sin sinC C C=,所以在△ABC中,1cos2C=,又因为2221cos,1,322a b cC a bab+-====,所以c=故选C.2.【解析】(1)由正弦定理可得在△ABD中,sin sinAD BDB BAD=∠,在△ACD中,sin sinAD CDC CAD=∠,又因为BAD CAD∠=∠,则sin2sinBD CCD B==.(2)sin2sinC B=,由正弦定理得22AB AC==,设DC x=,则2BD x=,由余弦定理得222254cos cos24AB AD BD xBAD CADAB AD+--∠==∠⋅,2222222AC AD CD xAC AD+--==⋅.因为BAD CAD∠=∠,所以2254242x x--=,解得2x=.则3BC x==3.【解析】(1)由sin tan 1cos B C B =-得:sin sin cos 1cos C BC B=-,则()sin sin cos cos sin sin C B C B C B C =+=+,πA B C ++=,()()sin sin πsin B C A A ∴+=-=,sin sin C A ∴=,由正弦定理可知:c a =, 则△ABC 为等腰三角形.(2)由题意得:2211sin sin 224a S ac B a B ===,解得:1sin 2B =,∵△ABC 为钝角三角形,且a c =,B ∴为钝角,cos 2B ∴=-由余弦定理得:(2222222cos 22b a c ac B a a =+-==+,2222b b ac a∴==+4.【解析】(1)由已知条件化简可得22()3a b c ab --=-,即222a b c ab +-=-,由余弦定理的推论,可得2221cos 22a b c C ab +-==-,2π(0,π),3C C ∈∴=.(2)2π3,3c b C ===,∴又π,,4b c B C B <∴<∴=,在ABC △中,1sin sin()sin cos cos sin ()22224A B C B C B C =+=+=-+=.113sin 2244ABC S bc A ∴===△.5.【解析】(1)1cos 2a C cb +=,∴由正弦定理得1sin cos sin sin 2A C CB +=,又sin sin()sin cos cos sin B A C A C A C =+=+,1sin cos sin 2C A C ∴=, sin 0C ≠,1cos 2A ∴=, 又0πA <<,π3A ∴=. (2)由正弦定理得sinsin a B b c A ===, ]1sin )1sin sin()L a b c B C B A B ∴=++=+=+++1π12cos 12sin 26B B B ⎫⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭, π2πππ5π,0,,,33666A B B ⎛⎫⎛⎫=∴∈∴+∈ ⎪ ⎪⎝⎭⎝⎭, π1sin ,162B ⎛⎫⎛⎤∴+∈ ⎪ ⎥⎝⎭⎝⎦,则(2,3]L ∈.故ABC △的周长L 的取值范围是(2,3].6.【解析】(1)由2cos 2a B b c +=,及正弦定理可得:2sin cos sin 2sin A B B C +=, 则2sin cos sin 2sin 2sin()2sin cos 2cos sin A B B C A B A B A B +==+=+, 整理得sin 2cos sin B A B =, 因为(0,π)B ∈,所以sin 0B >, 所以1cos 2A =,又(0,π)A ∈,所以π3A =. (2)在Rt △ABD中,2sin sin 3BD AD A ===,则1AB ==, 因为D 为AC 的中点,所以24AC AD ==,在△ABC 中,由余弦定理可得222π41241cos133BC =+-⨯⨯⨯=,所以BC =.7.【解析】(1)在△CDE 中,3609015105150DCE ∠=︒-︒-︒-︒=︒, ∴1111sin150112224△CDE S CD CE =⋅⋅︒=⨯⨯⨯=(平方百米). (2)如图,连接AB ,根据题意知,在Rt △ACD中,tan 1tan60AC DC ADC =⋅∠=⨯︒=(百米), 在△BCE 中,180CBE BCE CEB ∠=︒-∠-∠1801054530=︒-︒-︒=︒,由正弦定理sin sin BC CE CEB CBE =∠∠,得1sin 21sin 2CE CEBBC CBE⨯⋅∠===∠(百米),()cos15cos 6045cos60cos45sin60sin45︒=︒-︒=︒︒+︒︒4=,在△ABC 中,由余弦定理得:2222cos AB AC BC AC BC ACB =+-⋅∠,则2322AB =+-=-8.【解析】(1)由,cos ),(cos ,cos ),x x x x x ==∈R m n , 则()f x =⋅m n211π1cos cos 2cos 2sin(2)22262x x x x x x +=++=++, 故函数()f x 的最小正周期2ππ2T ==,故π1()sin(2)62f x x =++,最小正周期为π. (2)因为()1f A =,所以π1sin(2)162A ++=, 所以π1sin(2)62A +=, 又ππ13π2(,)666A +∈, 所以π5π266A +=, 所以π3A =, 又1,2a b c =+=,由余弦定理2222cos a b c bc A =+-得:221b c bc =+-, 所以2()31b c bc +-=, 所以1bc =,则1sin 2△ABC S bc A ==.1.【答案】C【解析】在△ABC 中,∵A =2B ,sin sin a b A B=,b =3,c =1,∴32sin cos sin a B B B=,整理得a =6cos B ,由余弦定理可得21962a a a+-=⨯,∴a =故选C . 2.【答案】A 【解析】因为sin sin AB BC C A=,所以sinC =12sinA ,所以0<sinC ≤12, 又AB <BC ,则C 必为锐角,故C ∈(0,π6]. 3.【答案】A【解析】∵4S =a 2−(b −c)2,bc =4,∴4×12bcsinA =2bc −(b 2+c 2−a 2), 可得2sinA =2−2cosA ,则sinA +cosA =1,可得sin (A +π4)=√22, ∵0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4,解得A =π2.即ABC △是直角三角形. 故选A . 4.【答案】A【解析】设角A ,B ,C 所对的边分别为a ,b ,c ,AB 边上的高为h ,因为2c =,a =21104224b b =+-⨯⨯,化简得260b b --=,解得3b =.又sin A =,所以由1123222h ⨯⨯=⨯,得h =. 故选A. 5.【答案】B【解析】作出示意图如图所示,()15460km AC =⨯=,906030BAC ∠=︒-︒=︒,9015105ACB ∠=︒+︒=︒,则︒=∠45ABC .由正弦定理,可得sin sin AC BCABC BAC=∠∠,则)60sin 30km sin 45BC ︒==︒.所以这时船与灯塔的距离为. 故选B. 6.【答案】A【解析】由题意知ABC △的面积为4,且∠A =900,所以S =12AB ⋅AC =4,即AB ⋅AC =8,所以2AB +AC ≥2√2AB ⋅AC =2√2×8=8,当且仅当AB =2,AC =4时取得等号, 所以2AB +AC 的最小值为8. 故选A . 7.【答案】D【解析】因为(a +b +c)(b +c −a)=3bc ,所以(b +c)2−a 2=3bc , 即b 2+c 2−a 2=bc ,所以cosA =b 2+c 2−a 22bc=12,A ∈(0,π),所以A =π3,因为a =√3,所以由正弦定理可得ABC △的外接圆半径为1112sin 2a R A =⨯==. 故选D . 8.【答案】A【解析】由余弦定理得:222222322a c b b c a a b ac bc+-+-⋅=⋅,即()221623216a a +-=+-,解得:a =,222cos 22b c a A bc +-∴===,sin 2A ∴==,11sin 42222△ABC S bc A ∴==⨯=.故选A. 9.【答案】C【解析】222()()()∥a c a c b a b c a b ab ⇒+-=-⇒=+-p q ,由余弦定理可知:2222cos c a b ab C =+-⋅, 所以1πcos ,(0,π)23C C C =∈⇒=. 故选C . 10.【答案】B【解析】由题意知sin (C −A )=12sinB =12sin (A +C ),即2sinCcosA −2cosCsinA =sinAcosC +cosAsinC ,即sinCcosA =3sinAcosC , 由正弦定理和余弦定理得:c ⋅b 2+c 2−a 22bc=3a ⋅a 2+b 2−c 22ab,即b 2+c 2−a 2=3a 2+3b 2−3c 2,即4c 2−4a 2=2b 2=2×16=32, 则c 2−a 2=8. 故选B . 11.【答案】D【解析】由()22a b c =+-,得2221sin 22ab C a b c ab =+-+,∵2222cos a b c ab C +-=,∴sin 2cos 2C ab C ab =+,cos 1C C -=,即π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, ∵0πC <<,∴ππ5π666C -<-<,∴ππ66C -=,即π3C =,则πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+= ⎪ ⎪⎝⎭⎝⎭122224+⨯=, 故选D . 12.【答案】B【解析】如图,因为√3AB =2BC ,所以设AB =2x,BC =√3x , 又∠ABC =150°,AC =√13,所以由AC 2=AB 2+BC 2−2AB •BC •cos∠ABC , 得13=4x 2+3x 2−4√3x 2cos150∘=13x 2,所以x =1, 所以AB =2,BC =√3, 又BD ⊥AB ,所以∠DBC =60°,由余弦定理可得,CD 2=BD 2+BC 2−2BD •BC •cos∠DBC , 可得9=BD 2+3−√3BD ,解得BD =2√3, 故11sin6022△△四边形ABD CBD ABCD S S S AB BD BC BD =+=⋅+⋅︒11222=⨯⨯=故选B.13.1【解析】由正弦定理可得:2sin sin sin a b cR A B C====2sin 60a∴=,解得:3a =,由余弦定理可得:22222cos 429a b c bc A c c =+-=+-=,解得:1c =+1,1c ∴=.14.【答案】【解析】如图.在ACD △中,2222248cos 222AD DC AC AD DC ADC AD DC AD DC +-+-∠===-⋅⋅1,整理得22482AD DC AD DC AD DC +=-⋅≥⋅, ∴16AD DC ⋅≤,当且仅当AD =DC 时取等号,∴ADC △的面积1sin 24S AD DC ADC AD DC =⋅∠=⋅≤,∴ADC △的面积的最大值为 15.【答案】6100【解析】依题意,30=∠BAC ,105=∠ABC ,在ABC △中,由 180=∠+∠+∠ACB BAC ABC , 得45=∠ACB ,因为600m AB =,所以由正弦定理可得30sin 45sin 600BC=,即2300=BC m.在Rt BCD △中,因为30=∠CBD ,BC =,所以230030tan CDBC CD ==, 所以6100=CD m.16.【答案】⎤⎥⎣⎦【解析】∵π,6,143C a b ==≤≤, ∴由余弦定理可得:()22222366327=+-=+-=-+c a b ab b b b , ∴()[]2232727,31=-+∈c b ,∴⎡∈⎣c ,由正弦定理sin sin a c A C =,可得6·sin 2sin a C A cc ⨯⎤===⎥⎣⎦.故答案为31⎡⎤⎢⎥⎣⎦. 17.【解析】(1)在ABC △中,由余弦定理得a 2=b 2+c 2−2bccosA =2+5−2×√2×√5×(−√1010)=9,解得a =3.(2)在ABC △中,由cosA =−√1010得A ∈(π2,π),∴sinA =2A =√1010=3√1010, 在ABC △中,由正弦定理得asinA=bsinB,即sin B =, ∴sinB =√55, 又A ∈(π2,π),故B ∈(0,π2), ∴cosB =√1−sin 2B =√1−(√55)2=2√55, ∴cos(B −A)=cosBcosA +sinBsinA =2√55×(−√1010)+√55×3√1010=√210.18.【解析】(1)由sin 26cos sin b A A B =及二倍角公式得sin 3sin b A B =,又sin sin a bA B=即sin sin b A a B =,所以3a =. (2)由正弦定理得sin sin aB b B A ==,sin sin a Cc C A==,则△ABC的周长为:2π33sin()3a b c B C B B ++=++=++-3π3sin cos36sin226B B B⎫⎛⎫=++=++⎪ ⎪⎪⎝⎭⎭,又因为2π(0,)3B∈,所以ππ5π(,)666B+∈,则π1sin(,1]62B⎛⎫+∈⎪⎝⎭.从而π36sin(6,9]6B⎛⎫++∈⎪⎝⎭.因此△ABC周长的取值范围是(]6,9.19.【解析】(1)∵∥m n,∴sin cosb A B=,由正弦定理,得sin sin cosB A A B=,∵sin0A>,∴sin B B=,即tan B=∵0πB<<,∴(212ac=,解得4ac=,由余弦定理2222cosb ac ac B=+-,得221422a c ac=+-⨯2()3a c ac=+-2()12a c=+-,故4a c+=.20.【解析】(1)依题意得,120BAC∠=︒,18AB=,15230AC=⨯=,BCAα∠=.在ABC△中由余弦定理可得2222cos1764BC AB AC AB AC BAC=+-⋅⋅∠=,所以42BC=,所以渔船甲的速度为212BC=海里/小时.(2)在ABC△中,18AB=,120BAC∠=︒,BC=42,BCAα∠=,由正弦定理,得sin sin120AB BCα=︒,所以18sin1202sin4214ABBCα⨯⋅︒===.21.【解析】(1)由题意得,由正弦定理得,即BCA2sin)sin(=+,所以BB2sinsin=.又在ABC △中,则B B 2=或2πB B +=,因为0πB <<,所以π3B =. (2)因为π3B =, 所以2π3AC +=. 22π2sin cos()1cos 2cos(2)3A A C A A +-=-+-π1)3A =-.因为2π03A <<,ππ2π33A -<-<,所以πsin(2)13A <-≤,所以()22sin cos A A C +-的范围是1,12⎛-+ ⎝. 22.【解析】(1)f(x)=2[√32sin2x +12(cos2x +1)] =2sin(2x +π6)+1. ∵x ∈[π24,7π12],∴2x +π6∈[π4,4π3].当2x +π6=π2,即x =π6时,f(x)取得最大值3; 当2x +π6=4π3,即x =7π12时,f(x)取得最小值1−√3,故f(x)的值域为[1-√3,3].(2)设ABC △中A ,B ,C 所对的边分别为a,b,c. ∵f(B)=−1,∴sin(2B +π6)=−1 . ∵0<B <π,即π6<2B +π6<2π+π6. ∴2B +π6=32π,得B =23π.又∵BC =√3,即a =√3,sinB =√3sinA,即b =√3a,∴b =3. 易得sinA =12.∵0<A <π3,∴A =π6,∴C =π6. ∴S ΔABC =12absinC =12×√3×3×12=3√34.23.【解析】(1)在ABC △中,∵1,45AB BC ABC ==∠=︒,∴由余弦定理可得:2222cos 1AC AB BC AB BC ABC =+-⋅⋅∠=, ∴1AC =,则ABC △为等腰直角三角形, ∴135BCD ∠=°, 在△BCD中,1,135BC CD AC BCD ===∠=︒ ,由余弦定理可得:2222cos 5BD BC CD CD BC BCD =+-⋅⋅∠=,∴BD =(2)在ABC △中,∵1,AB BC ABC θ==∠=,∴由余弦定理可得:2222cos 3AC AB BC AB BC ABC θ=+-⋅⋅∠=-, 又由正弦定理可得sin sin AB ACACB ABC=∠∠,即1sin ACB =∠∴sin ACB ∠=∴π()cos cos sin 2BCD ACB ACB ∠=+∠=-∠=在△BCD中,BC CD AC ===由余弦定理可得2222cos 5sin cos )BD BC CD CD BC BCD θθ=+-⋅⋅∠=+-=(π54in )s 4θ+-,∴当3π4θ=时,()2max 9BD =,则max 3BD =.1.【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【名师点睛】本题较为容易,关键是要利用两角和与差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A ,B ,C 的式子,再用正弦定理将角转化为边,得到.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视. 2.【答案】A【解析】因为223cos 2cos 121,255C C ⎛⎫=-=⨯-=- ⎪ ⎪⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则, 故选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的. 3.【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =, 因为()0,πC ∈,所以π4C =. 故选C.【名师点睛】本题主要考查余弦定理与三角形的面积公式在解三角形中的应用,考查考生的运算求解能力,考查的核心素养是数学运算.4.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-所以2a c ==,11sin 22ABC S ac B ==⨯=△ 【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.5.【答案】5,10【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以5BD =.ππcos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征.6.【答案】7,3【解析】由正弦定理得sinsin a A b B =,所以πsin sin 37B == 由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.解答本题时,根据正弦定理得sin B ,根据余弦定理解出c .7【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 44DBC DBC ∠=-∠==,∴1sin 22△BCD S BD BC DBC =⨯⨯⨯∠=. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos 4BDC ∠=或cos 4BDC ∠=-(舍去).综上可得,△BCD cos BDC ∠=. 【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.8.【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=. (2)由(1)知120B C ︒=-,()sin 1202sin A C C ︒+-=,即1cos sin 2sin 222C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 602C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+4=.【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.9.【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =, 因此B =60°.(2)由题设及(1)知ABC △的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===.由于ABC △为锐角三角形,故0°<A <90°,0°<C <90°, 由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,ABC △面积的取值范围是⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 10.【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭. 解得5c =. 所以7b =. (2)由1cos 2B =-得sin B =.由正弦定理得sin sin c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin B C B C B C -=-=. 【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力. 11.【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故717sin 2sin 2cos cos 2sin 666828216B B B πππ⎛⎫+=+=--⨯=-⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.12.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得23=,即213c =.所以3c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.13.【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB=︒∠,所以sin 5ADB ∠=.由题设知,90ADB ∠<︒,所以cos ADB ∠==(2)由题设及(1)知,cos sin BDC ADB ∠=∠=在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠25825=+-⨯⨯25=.所以5BC =.。
2020版高考数学一轮复习第3章三角函数、解三角形第6讲正弦定理和余弦定理理解析版
第6讲 正弦定理和余弦定理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆的半径,则2.在△ABC 中,已知a ,b 和A 时,三角形解的情况3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =□0112ac sin B =□0212ab sin C . (3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.概念辨析(1)正弦定理和余弦定理对任意三角形都成立.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( ) (4)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( ) 答案 (1)√ (2)√ (3)× (4)× 2.小题热身(1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cos A =23,则b=( )A. 2B. 3 C .2 D .3 答案 D解析 由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D.(2)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若cos A cos B =ba =2,则该三角形的形状是( )A.直角三角形 B .等腰三角形 C.等边三角形 D .钝角三角形答案 A解析 因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin2A =sin2B .由ba=2,可知a ≠b ,所以A ≠B .又A ,B ∈(0,π),所以2A =180°-2B ,即A +B =90°,所以C =90°,于是△ABC 是直角三角形.(3)在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.答案 4 3解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C =12×32×23×223=4 3.(4)在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析因为a=4,b=5,c=6,所以cos A=b2+c2-a22bc=52+62-422×5×6=34,所以sin2Asin C=2sin A cos Asin C=2a cos Ac=2×4×346=1.题型一利用正、余弦定理解三角形角度1 用正弦定理解三角形1.(1)设△ABC的内角A,B,C的对边分别为a,b,c.若a=3,sin B=12,C=π6,则b=________;(2)(2017·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b =6,c=3,则A=________.答案(1)1 (2)75°解析(1)因为sin B=12且B∈(0,π),所以B=π6或B=5π6,又C=π6,所以B=π6,A=π-B-C=2π3,又a=3,由正弦定理得asin A=bsin B,即3sin2π3=bsinπ6,解得b=1.(2) 如图,由正弦定理,得3sin60°=6sin B,∴sin B =22. 又c >b ,∴B =45°,∴A =180°-60°-45°=75°. 角度2 用余弦定理解三角形2.(1)在△ABC 中,若b =1,c =3,A =π6,则cos5B =( )A.-32B.12C.12或-1 D .-32或0 (2)在△ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为( ) A.322 B.332 C.32D .3 3 答案 (1)A (2)B解析 (1)因为b =1,c =3,A =π6,所以由余弦定理得a 2=b 2+c 2-2bc cos A =1+3-2×1×3×32=1, 所以a =1.由a =b =1,得B =A =π6,所以cos5B =cos 5π6=-cos π6=-32.(2)由题意得cos A =AB 2+AC 2-BC 22AB ·AC=32+42-1322×3×4=12, ∴sin A =1-⎝ ⎛⎭⎪⎫122=32, ∴边AC 上的高h =AB sin A =332. 角度3 综合利用正、余弦定理解三角形3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解 (1)∵2a cos C -c =2b ,由正弦定理得2sin A cos C -sin C =2sin B,2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C ,∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A,∴sin ∠ADB =AB sin A BD =22. 又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,AC =AB =2,由余弦定理,得BC 2=AB 2+AC2-2AB ·AC ·cos A =(2)2+(2)2-2×2×2cos 2π3=6,∴a = 6.用正弦、余弦定理解三角形的基本题型及解题方法(1)已知两角和一边①用三角形内角和定理求第三个角. ②用正弦定理求另外两条边. (2)已知两边及其中一边所对的角 ①用正弦定理(适用于优先求角的题) 以知a ,b ,A 解三角形为例: a .根据正弦定理,经讨论求B ;b .求出B 后,由A +B +C =180°,求出C ;c .再根据正弦定理a sin A =csin C ,求出边c .②用余弦定理(适用于优先求边的题) 以知a ,b ,A 解三角形为例:列出以边c 为元的一元二次方程c 2-(2b cos A )c +(b 2-a 2)=0,根据一元二次方程的解法,求边c ,然后应用正弦定理或余弦定理,求出B ,C .(3)已知两边和它们的夹角 ①用余弦定理求第三边.②用余弦定理的变形或正弦定理求另外两角. (4)已知三边可以连续用余弦定理求出两角,常常是分别求较小两边所对的角,再由A +B +C =180°,求出第三个角.1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =62b ,A =2B ,则cos B 等于( ) A.66 B.65 C.64 D.63答案 C解析因为a=62b,A=2B,所以由正弦定理可得62bsin2B=bsin B,所以622sin B cos B=1sin B,所以cos B=64.2.(2018·和平区模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a2-b2=3 bc,且sin C=23sin B,则角A的大小为________.答案π6解析由sin C=23·sin B得c=23b.∴a2-b2=3bc=3·23b2,即a2=7b2.则cos A=b2+c2-a22bc=b2+12b2-7b243b2=32.又A∈(0,π).∴A=π6.3.如图,在△ABC中,B=45°,D是BC边上一点,AD=5,AC=7,DC=3,则AB=________.答案562解析在△ACD中,由余弦定理可得cos C=49+9-252×7×3=1114,则sin C=5314.在△ABC中,由正弦定理可得ABsin C=ACsin B,则AB=AC sin Csin B=7×531422=562.题型二利用正、余弦定理判定三角形的形状1.(2018·武汉调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb<cos A ,则△ABC 为( )A.钝角三角形 B .直角三角形 C.锐角三角形 D .等边三角形答案 A解析 因为c b<cos A ,所以c <b cos A , 由正弦定理得sin C <sin B cos A ,又A +B +C =π,所以sin C =sin(A +B ). 所以sin A cos B +cos A sin B <sin B cos A , 所以sin A cos B <0,又sin A >0,所以cos B <0,B 为钝角,所以△ABC 是钝角三角形. 2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A.直角三角形 B .等腰非等边三角形 C.等边三角形 D .钝角三角形答案 C解析 ∵sin A sin B =a c ,∴a b =ac ,∴b =c .又(b +c +a )(b +c -a )=3bc , ∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.条件探究1 把举例说明2中△ABC 满足的条件改为“a cos A =b cos B ”,判断△ABC 的形状.解 因为a cos A =b cos B , 所以sin A cos A =sin B cos B , 所以sin2A =sin2B ,又因为0<2A <2π,0<2B <2π,0<A +B <π, 所以2A =2B 或2A +2B =π, 即A =B 或A +B =π2,所以△ABC 是等腰三角形或直角三角形.条件探究2 把举例说明2中△ABC 满足的条件改为“cos 2B 2=a +c 2c”,判断△ABC 的形状.解 因为cos 2B 2=a +c 2c, 所以12(1+cos B )=a +c 2c ,在△ABC 中,由余弦定理得 12+12·a 2+c 2-b 22ac =a +c 2c. 化简得2ac +a 2+c 2-b 2=2a (a +c ), 则c 2=a 2+b 2,所以△ABC 为直角三角形.1.应用余弦定理判断三角形形状的方法 在△ABC 中,c 是最大的边.若c 2<a 2+b 2,则△ABC 是锐角三角形; 若c 2=a 2+b 2,则△ABC 是直角三角形; 若c 2>a 2+b 2,则△ABC 是钝角三角形. 2.判断三角形形状的常用技巧 若已知条件中既有边又有角,则(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状. (2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.1.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形 答案 C解析 由正弦定理得,a ∶b ∶c =sin A ∶sin B ∶sin C =5∶11∶13,设a =5t ,b =11t ,c =13t (t >0),则cos C =a 2+b 2-c 22ab=5t2+11t 2-13t 22×5t ×11t<0,所以C 是钝角,△ABC 是钝角三角形.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形 B .直角三角形 C.钝角三角形 D .不确定答案 B解析 根据正弦定理,由b cos C +c cos B =a sin A 得sin B ·cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,又因为A +B +C =π,所以sin(B +C )=sin A ,所以sin A =1,由0<A <π,得A =π2.所以△ABC 是直角三角形.题型 三 与三角形面积有关的问题(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解 (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a 3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题意得12bc sin A =a23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33.1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形的面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.(2018·洛阳三模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin B +(c -b )sin C =a sin A .(1)求角A 的大小;(2)若sin B sin C =38,且△ABC 的面积为23,求a .解 (1)由b sin B +(c -b )sin C =a sin A 及正弦定理得b 2+(c -b )c =a 2,即b 2+c 2-bc =a 2, 所以b 2+c 2-a 22bc =cos A =12,所以A =π3.(2)由正弦定理a sin A =b sin B =c sin C ,可得b =a sin B sin A ,c =a sin Csin A,所以S △ABC =12bc sin A =12·a sin B sin A ·a sin Csin A·sin A=a 2sin B sin C2sin A=2 3.又sin B sin C =38,sin A =32,∴38a 2=23,解得a =4.高频考点 用正弦、余弦定理进行边、角之间的转化考点分析 在综合运用正、余弦定理解决较为复杂的与解三角形有关的问题时,常利用边、角之间的转化与化归的方法解决.[典例1] (2018·枣庄二模)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)·(a cos B +b cos A )=abc ,若a +b =2,则c 的取值范围为( )A .(0,2)B .[1,2) C.⎣⎢⎡⎭⎪⎫12,2D .(1,2]答案 B解析 由正、余弦定理,得2cos C (sin A cos B +sin B cos A )=sin C .即 2cos C sin(A +B )=sin C .所以2cos C sin C =sin C ,因为sin C ≠0,所以cos C =12.又C ∈(0,π),所以C =π3.因为c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,且 (a +b )2≥4ab ,所以ab ≤1. 所以c 2≥1,即c ≥1,又c <a +b =2. 所以1≤c <2.[典例2] (2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.答案π3解析 解法一:由2b cos B =a cos C +c cos A 及正弦定理,得11 2sin B cos B =sin A cos C +sin C cos A .∴2sin B cos B =sin(A +C ).又A +B +C =π,∴A +C =π-B .∴2sin B cos B =sin(π-B )=sin B .又sin B ≠0,∴cos B =12.∴B =π3. 解法二:∵在△ABC 中,a cos C +c cos A =b , ∴条件等式变为2b cos B =b ,∴cos B =12. 又0<B <π,∴B =π3. [典例3] (2018·东北三省四市教研联合体模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b =2,且2b cos B =a cos C +c cos A .(1)求B 的大小;(2)求△ABC 面积的最大值.解 (1)由正弦定理a sin A =b sin B =Csin C可得 2sin B cos B =sin A cos C +sin C cos A =sin B ,∵sin B >0,故cos B =12,∵0<B <π,∴B =π3. (2)由b =2,B =π3及余弦定理可得ac =a 2+c 2-4, 由基本不等式可得ac =a 2+c 2-4≥2ac -4,ac ≤4,而且仅当a =c =2时,S △ABC =12ac sin B 取得最大值12×4×32=3,故△ABC 的面积的最大值为 3.方法指导 1.两种主要方法1全部化为角的关系,用三角恒等变换及三角函数的性质解答.2全部化为边的关系,用因式分解、配方等方法变形.2.基本原则1若出现边的一次式一般采用正弦定理;2若出现边的二次式一般采用余弦定理.。
2020江苏高考数学二轮热点难点微专题突破-微专题01-与解三角形有关的最值问题
2020江苏高考数学二轮热点难点微专题突破-微专题01 与解三角形有关的最值问题与三角形有关的最值问题主要涉及求三角函数值最值,边长的最值,面积、向量的最值.解决这类的问题方法有:一、 将所给条件转化为三角函数,利用三角函数求解最值;二、 将所给条件转化为边,利用基本不等式或者函数求解最值;三、 建立坐标系,求出动点的轨迹方程,利用几何意义求解最值;四、 多元问题可消元后再用上述方法求解.如2018年T14就是与解三角形有关的最值问题.【例1】在△ABC 中,已知A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2+2c 2=8,则△ABC 面积的最大值为________. 答案:255解析:(解法1)因为cos C =a 2+b 2-c 22ab =a 2+b 2-8-a 2-b 222ab =3(a 2+b 2)-84ab ≥3ab -42ab,所以ab ≤43-2cos C ,从而S =12ab sin C ≤2sin C 3-2cos C .设t =2sin C3-2cos C,则3t =2sin C +2t cos C =2t 2+1·sin(C +φ),其中tan φ=t ,故3t ≤2t 2+1,解得t ≤255,所以S max =255,当且仅当a =b =2155且tan C =52时,等号成立.(解法2)以AB 所在的直线为x 轴,它的垂直平分线为y 轴,建立如图所示的直角坐标系,则A ⎝⎛⎭⎫-c 2,0,B ⎝⎛⎭⎫c 2,0,C (x ,y ),则由a 2+b 2+2c 2=8得⎝⎛⎭⎫x -c 22+y 2+⎝⎛⎭⎫x +c22+y 2+2c 2=8,即x 2+y 2=4-5c 24,即点C 在圆x 2+y 2=4-5c 24上,所以S ≤c 2r =c 24-54c 2=12·-54⎝⎛⎭⎫c 2-852+165≤255,当且仅当c 2=85时取等号,故S max =255.【方法规律】1. 注意到a 2+b 2+2c 2=8中a ,b 是对称的,因此将三角形的面积表示为S =12ab sin C ,利用余弦定理将ab 表示为C 的形式,进而转化为三角函数来求它的最值.2. 将c 看作定值,这样满足条件的三角形就有无数个,从而来研究点C 所满足的条件,为此建立直角坐标系,从而根据条件a 2+b 2+2c 2=8得到点C 的轨迹方程,进而来求出边AB 上的高所满足的条件.3. 解法1是从将面积表示为角C 的形式来加以思考的,而解法2则是将面积表示为边c 的形式来加以思考的.这两种解法都基于一点,即等式a 2+b 2+2c 2=8中的a ,b 是对称关系.解法2则是从运动变化的角度来加以思考的,这体现了三角函数与解析几何之间的千丝万缕的关系.解法1是一种常规的想法,是必须要认真体会的,而解法2就需要学生能充分地认识知识与知识之间的联系.本题对学生的知识的应用要求、思考问题、分析问题、解决问题的能力要求都比较高.【例2】在△ABC 中,已知角A ,B ,C 的对边分别为a ,b ,c ,tan C =sin A +sin Bcos A +cos B.(1) 求角C 的大小;(2) 若△ABC 的外接圆直径为1,求a 2+b 2+c 2的取值范围. 解析:(1) 因为tan C =sin A +sin B cos A +cos B ,即sin C cos C =sin A +sin Bcos A +cos B ,所以sin C cos A +sin C cos B =cos C sin A +cos C sin B ,即sin C cos A -cos C sin A =cos C sin B -sin C cos B ,所以sin(C -A )=sin(B -C ). 所以C -A =B -C 或C -A =π-(B -C )(不成立),即2C =A +B ,所以C =π3.(2) (解法1)由C =π3可得c =2R sin C =1×32=32,且a =2R sin A =sin A ,b =2R sin B =sin B .设A =π3+α,B =π3-α,0<A <2π3,0<B <2π3,知-π3<α<π3.所以a 2+b 2+c 2=34+sin 2A +sin 2B =34+1-cos2A 2+1-cos2B 2=74-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2π3+2α+cos ⎝⎛⎭⎫2π3-2α=74+12cos2α. 由-π3<α<π3知-2π3<2α<2π3,-12<cos2α≤1,故32<a 2+b 2+c 2≤94.(解法2)因为C =π3,所以c =2R sin C =1×32=32.又因为c 2=a 2+b 2-2ab cos C ,所以34=a 2+b 2-ab ≥a 2+b 22,故a 2+b 2≤32.又a 2+b 2=34+ab >34,故a 2+b 2+c 2∈⎝⎛⎦⎤32,94.【方法规律】点评:本题的第(2)问是一种典型问题即三角形中有一个边以及对角为定值,求与两个边或两个角有关系的最值问题.如本题中C =π3,c =32,可以求a 2+b 2,a +b ,ab ,sin A +sin B ,sin A sin B ,cos A +cos B ,cos A cos B 的取值范围.方法有二:一是利用A +B =2π3,进行消元(代入消元或中值换元(如本题解法一)),转化为三角函数值域求解;二是利用基本不等式,但基本不等式比较适合求一种最值,求范围有时不适合.本题如果加大难度,可以将三角形改成锐角三角形,这时基本不等式就不太适合了.(通过本课题的学习,你学到了什么?你还有其它疑惑吗?)A 组1.在△ABC 中,已知2cos 2A 2=33sin A ,若a =23,则△ABC 周长的取值范围为________.答案:(43,4+23]解析:由2cos 2A 2=33sin A ,可得cos A +1=33sin A ,则233sin ⎝⎛⎭⎫A -π3=1,即sin ⎝⎛⎭⎫A -π3=32,又0<A <π,可解得A =2π3.所以b sin B =c sin C =asin A =4,即b =4sin B ,c =4sin C ,从而a +b+c =23+4sin B +4sin C =23+4sin B +4sin ⎝⎛⎭⎫π3-B =23+4sin ⎝⎛⎭⎫B +π3.又0<B <π3,所以π3<B +π3<2π3,可得43<23+4sin ⎝⎛⎭⎫π3+B ≤4+23,即a +b +c ∈(43,4+23].2.在△ABC 中,若sin C =2cos A cos B ,则cos 2A +cos 2B 的最大值为________. 答案:2+12解析:(解法1)因为sin C =2cos A cos B ,所以sin(A +B )=2cos A cos B ,化简得tan A +tan B =2, cos 2A +cos 2B =cos 2A sin 2A +cos 2A +cos 2B sin 2B +cos 2B=1tan 2A +1+1tan 2B +1=tan 2A +tan 2B +2(tan A tan B )2+tan 2A +tan 2B +1=(tan A +tan B )2-2tan A tan B +2(tan A tan B )2+(tan A +tan B )2-2tan A tan B +1 =6-2tan A tan B(tan A tan B )2-2tan A tan B +5.因为(tan A tan B )2-2tan A tan B +5>0,所以令6-2tan A tan B =t (t >0),则cos 2A +cos 2B =4tt 2-8t +32=4t +32t-8≤4232-8=2+12(当且仅当t =42时取等号). (解法2)由解法1得tan A +tan B =2,令tan A =1+t ,tan B =1-t ,则cos 2A +cos 2B =1tan 2A +1+1tan 2B +1=1t 2+2+2t +1t 2+2-2t =2(t 2+2)(t 2+2)2-4t 2,令d =t 2+2≥2,则cos 2A +cos 2B =2dd 2-4d +8=2d +8d-4≤228-4=2+12,当且仅当d =22时等号成立. (解法3)因为sin C =2cos A cos B ,所以sin C =cos(A +B )+cos(A -B ),即cos(A -B )=sin C +cos C ,cos 2A +cos 2B =1+cos2A 2+1+cos2B 2=1+cos(A +B )cos(A -B )=1-cos C (sin C +cos C )=12-12(sin2C +cos2C )=12-22sin ⎝⎛⎭⎫2C +π4≤12+22=2+12,当且仅当2C +π4=3π2,即C =5π8时取等号.3.在锐角三角形 ABC 中,已知2sin 2 A + sin 2B = 2sin 2C ,则1tan A +1tan B +1tan C的最小值为________. 答案:132解析:因为 2sin 2A +sin 2B =2sin 2C ,所以由正弦定理可得2a 2+b 2=2c 2. 由余弦定理及正弦定理可得cos C =a 2+b 2-c 22ab =b 24ab =b 4a =sin B4sin A .又因为sin B =sin(A +C )=sin A cos C +cos A sin C , 所以cos C =sin A cos C +cos A sin C 4sin A =cos C 4+sin C4tan A,可得tan C =3tan A ,代入tan A +tan B +tan C =tan A tan B tan C 得tan B =4tan A3tan 2A -1,所以1tan A +1tan B +1tan C =1tan A +3tan 2A -14tan A +13tan A =3tan A 4+1312tan A .因为A ∈⎝⎛⎭⎫0,π2,所以tan A >0,所以3tan A 4+1312tan A≥23tan A 4×1312tan A =132,当且仅当3tan A 4=1312tan A ,即tan A =133时取“=”.所以1tan A +1tan B +1tan C 的最小值为132.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,b ),n =(cos A ,cos B ),p =⎝⎛⎭⎫22sinB +C2,2sin A ,若m ∥n ,|p |=3. (1) 求角A ,B ,C 的值;(2) 若x ∈⎣⎡⎦⎤0,π2,求函数f (x )=sin A sin x +cos B cos x 的最大值与最小值. 解析:(1) 因为m ∥n ,所以a cos B =b cos A .由正弦定理,得sin A cos B =sin B cos A ,所以sin(A -B )=0. 又-π<A -B <π,所以A =B . 而p 2=|p |2=8sin 2B +C2+4sin 2A =9, 所以8cos 2A 2+4sin 2A =9,所以4cos 2A -4cos A +1=0,所以(2cos A -1)2=0,所以cos A =12.又0<A <π,所以A =π3,所以A =B =C =π3.(2) f (x )=sin x cos π6+cos x sin π6=sin ⎝⎛⎭⎫x +π6. 因为x ∈⎣⎡⎦⎤0,π2,所以x +π6∈⎣⎡⎦⎤π6,2π3. 所以x =0时,f (x )min =f (0)=12,x =π3时,f (x )max =f ⎝⎛⎭⎫π3=1.B 组1.已知△ABC 中,B =45°,AC =4,则△ABC 面积的最大值为________. 答案:4+42解析:(解法1)如图,设△ABC 的外接圆为圆O ,其直径2R =AC sin ∠ABC =4sin45°=4 2.取AC的中点M ,则OM =Rcos45°=2.过点B 作BH ⊥AC 于点H ,要使△ABC 的面积最大,当且仅当BH 最大.而BH ≤BO +OM ,所以BH ≤R +22R =22+2,所以(S △ABC )max =⎝⎛⎭⎫12AC ·BH max=12×4×(2+22)=4+42,当且仅当BA =BC 时取等号.(解法2)如图,同上易知,△ABC 的外接圆的直径2R =4 2.S △ABC =12AB ·BC ·sin B =2R 2sin A sin B sin C =82sin A sin C =42⎣⎡⎦⎤cos ⎝⎛⎭⎫3π4-2C +22,当A =C =3π8时,(S △ABC )max =4+4 2. 2.已知a ,b ,c 分别为△ABC 的三内角A ,B ,C 的对边,且a cos C +c cos A =2b cos B ,则sin A +sin C 的最大值为________. 答案:3解析:因为a cos C +c cos A =2b cos B ,所以sin A cos C +sin C cos A =sin(A +C )=2sin B cos B ,即sin B =2sin B cos B . 又sin B ≠0,故cos B =12.又B ∈(0,π),故B =π3,即A +C =23π.设A =π3+α,C =π3-α,0<A <2π3,0<C <2π3,知-π3<α<π3.故sin A +sin C =sin ⎝⎛⎭⎫π3+α+sin ⎝⎛⎭⎫π3-α=2sin π3cos α≤3(当α=0即A =C 时取得). 3.已知△ABC 的内角A, B, C 的对边分别是a ,b ,c ,且sin 2A +sin 2B -sin 2C a cos B +b cos A =sin A sin Bc ,若a +b =4,则c 的取值范围为________. 答案:[2,4)解析:因为sin 2A +sin 2B -sin 2C a cos B +b cos A =sin A sin B c ,由正弦定理,得a 2+b 2-c 2sin C =absin A cos B +sin B cos A=ab sin (A +B )=ab sin C ,所以a 2+b 2-c 2=ab .由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,所以C =π3,c 2=a 2+b 2-2ab cos C =(a +b )2-3ab =16-3ab ≥16-3×⎝⎛⎭⎫a +b 22=4,所以c ≥2.又三角形的两边之和大于第三边,所以2≤c <4.4.在△ABC 中,三边长分别是a ,b ,c ,面积S =a 2-(b -c )2,b +c =8,则S 的最大值是________. 答案:6417解析:因为S =a 2-(b -c )2,所以12bc sin A =-(b 2+c 2-a 2)+2bc =2bc -2bc cos A ,所以sin A=4(1-cos A ).又sin 2A +cos 2A =1,解得sin A =817,所以S =12bc sin A =417bc ≤417⎝⎛⎭⎫b +c 22=6417.5.在锐角三角形ABC 中,BC =2,sin B +sin C =2sin A ,则中线AD 长的取值范围是________. 答案:⎣⎡⎭⎫3,132 解析:设△ABC 内角A ,B ,C 所对的边分别为a ,b ,c ,由a =2,sin B +sin C =2sin A ,得b +c =4.因为△ABC 为锐角三角形,所以有⎩⎪⎨⎪⎧b 2+c 2>a 2,a 2+c 2>b 2,a 2+b 2>c 2,即⎩⎪⎨⎪⎧b 2+(4-b )2>4,4+(4-b )2>b 2,b 2+4>(4-b )2,解得32<b<52,则bc =b (4-b )∈⎝⎛⎦⎤154,4.因为|AD →|2=⎣⎢⎡⎦⎥⎤12(AB →+AC →)2=14⎝⎛⎭⎫b 2+c 2+2bc ·b 2+c 2-42bc =14(28-4bc )=7-bc ∈⎣⎡⎭⎫3,134,即AD ∈⎣⎡⎭⎫3,132. 6.在斜三角形ABC 中,1tan A +1tan B +2tan C =0,则tan C 的最大值是__________.答案:-3解析:因为A +B +C =π,所以tan C =-tan(A +B )=-tan A +tan B1-tan A tan B.又1tan A +1tan B +2tan C =0,有tan A +tan B tan A tan B -2(tan A +tan B )1-tan A tan B=0. 若tan A +tan B =0,则tan C =0,不符合题意, 所以tan A +tan B ≠0,因此1tan A tan B -21-tan A tan B=0,解得tan A tan B =13,因为A ,B ,C 中至多有一个钝角,所以tan A >0,tan B >0,tan C =-tan A +tan B 1-tan A tan B=-tan A +tan B 1-13=-32(tan A +tan B )≤-32×2tan A tan B =- 3.当且仅当tan A =tan B =33时,上式取等号.7.在△ABC 中,已知角A ,B ,C 的对边分别是a ,b ,c ,且A ,B ,C 成等差数列. (1) 若BA →·BC →=32,b =3,求a +c 的值;(2) 求2sin A -sin C 的取值范围.解析:(1) 因为A ,B ,C 成等差数列,所以B =π3.因为BA →·BC →=32,所以ac cos B =32,所以12ac =32,即ac =3.因为b =3,b 2=a 2+c 2-2ac cos B , 所以a 2+c 2-ac =3,即(a +c )2-3ac =3, 所以(a +c )2=12,所以a +c =23 (2) 2sin A -sin C =2sin ⎝⎛⎭⎫2π3-C -sin C =2⎝⎛⎭⎫32cos C +12sin C -sin C =3cos C . 因为0<C <2π3,所以3cos C ∈⎝⎛⎭⎫-32,3.所以2sin A -sin C 的取值范围是⎝⎛⎭⎫-32,3.8.设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且满足(2a +c )BC →·BA →+cCA →·CB →=0.(1) 求角B 的大小; (2) 若b =23,试求AB →·CB →的最小值.解析:(1) 因为(2a +c )BC →·BA →+cCA →·CB →=0, 所以(2a +c )ac cos B +cab cos C =0,即(2a +c )cos B +b cos C =0,则(2sin A +sin C )cos B +sin B cos C =0, 所以2sin A cos B +sin(C +B )=0,即cos B =-12,所以B =2π3.(2) 因为b 2=a 2+c 2-2ac cos 2π3,所以12=a 2+c 2+ac ≥3ac ,即ac ≤4.所以AB →·CB →=ac cos 2π3=-12ac ≥-2,即AB →·CB →的最小值为-2.。
2020年高考数学(理)高频考点 三角函数与解三角形 专题10 高考常考题型综合解析(解析版)
三角函数与平面向量10 高考常考题型综合解析一、具体目标:高考对本内容的考查主要有:(1)正弦定理和余弦定理以及解三角形问题是B 级要求,主要考查:①边和角的计算;②三角形形状的判断;③面积的计算;④有关的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视.(2)三角函数的有关知识大部分是B 级要求,只有函数y =A sin(ωx +φ)的图象与性质是A 级要求;试题类型可能是填空题,同时在解答题中也有考查,经常与向量结合考查,构成基础题. 二、知识概述:1.正、余弦定理、三角形面积公式 (1)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C=2R (R 为△ABC 外接圆的半径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R ; a ∶b ∶c =sin A ∶sin B ∶sin C .(2)a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C ; 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ; 变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . (3)S △ABC =12ab sin C =12ac sin B =12bc sin A . 2.常见三种函数的图象与性质函数 y =sin xy =cos xy =tan x图象【考点讲解】单调性在⎣⎢⎡-π2+2k π,⎦⎥⎤π2+2k π (k ∈Z )上单调递增; 在⎣⎢⎡π2+2k π,⎦⎥⎤3π2+2k π(k ∈Z )上单调递减在[-π+2k π,2k π](k ∈Z )上单调递增;在[2k π,π+2k π](k ∈Z )上单调递减在⎝ ⎛-π2+k π,⎭⎪⎫π2+k π (k ∈Z )上单调递增 对称性对称中心:(k π,0)(k ∈Z );对称轴:x =π2+k π(k ∈Z )对称中心:⎝ ⎛⎭⎪⎫π2+k π,0 (k ∈Z );对称轴:x=k π(k ∈Z )对称中心:⎝ ⎛⎭⎪⎫k π2,0(k ∈Z )【温馨提示】1.解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到. 2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”. 3.三角形中判断边、角关系的具体方法:(1)通过正弦定理实施边角转换;(2)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解.4.对于三角函数图象的平移变换问题,其平移变换规则是“左加、右减”,并且在变换过程中只变换其自变量x ,如果x 的系数不是1,则需把x 的系数提取后再确定平移的单位和方向.5.已知图象求函数y =A sin ()ωx +φ(A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为( )2sin cos ++x xx x 【真题分析】A .B .C .D .【解析】本题考查函数的性质与图象,由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【答案】D2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是( ) A .①②④B .②④C .①④D .①③【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.【答案】C3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x | 【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图3【答案】A4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=( )A .15B .55C .33D .255【解析】2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,5sin 5α∴=,故选B . 【答案】B5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,) 其中所有正确结论的编号是( )A .①④B .②③C .①②③D .①③④ 【解析】①若()f x 在[0,2π]上有5个零点,可画出大致图象, 由图1可知,()f x 在(0,2π)有且仅有3个极大值点.故①正确;②由图1、2可知,()f x 在(0,2π)有且仅有2个或3个极小值点.故②错误;④当()f x =sin (5x ωπ+)=0时,5x ωπ+=k π(k ∈Z ),所以ππ5k x ω-=, 因为()f x 在[0,2π]上有5个零点,所以当k =5时,π5π52πx ω-=≤,当k =6时,π6π52πx ω-=>,解得1229510ω≤<, 故④正确.③函数()f x =sin (5x ωπ+)的增区间为:πππ2π2π252k x k ω-+<+<+,732π2π1010k k x ωω⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭<<.取k =0,当125ω=时,单调递增区间为71ππ248x -<<, 当2910ω=时,单调递增区间为73ππ2929x -<<,综上可得,()f x 在π0,10⎛⎫⎪⎝⎭单调递增.故③正确. 所以结论正确的有①③④.故本题正确答案为D. 【答案】D6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭( ) A .2-B .2-C .2D .2【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=;又12π()sin ,2π,122g x A x T ωω=∴==∴2ω=,又π()24g =,∴2A =,∴()2sin 2f x x =,3π() 2.8f =故选C.【答案】C7.【2018年高考全国卷II 理数】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是( ) A .π4 B .π2 C .3π4D .π 【解析】因为()πcos sin 2cos 4f x x x x ⎛⎫=-=+ ⎪⎝⎭,所以由π02ππ2π()4k x k k +≤+≤+∈Z 得π3π2π2π()44k x k k -+≤≤+∈Z ,因此[]π3ππ3ππ,,,,,,044444a a a a a a a ⎡⎤-⊂-∴-<-≥-≤∴<≤⎢⎥⎣⎦,从而a 的最大值为π4,故选A.【答案】A 8.【2018年高考天津】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为ππsin 2sin2105y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足()ππ2π22π22k x k k -≤≤+∈Z ,即()ππππ44k x k k -≤≤+∈Z ,令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦. 函数的单调递减区间满足:()π3π2π22π22k x k k +≤≤+∈Z ,即()π3πππ44k x k k +≤≤+∈Z , 令1k =可得一个单调递减区间为:5π7π,44⎡⎤⎢⎥⎣⎦.故选A. 【答案】A9.【2017年高考山东卷理数】在ABC △中,角A ,B ,C 的对边分别为,,.若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( ) A . B . C .2A B = D .2B A = 【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+,所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,故选A.【答案】A10.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭a b c 2a b =2b a =()2222222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式22222122==22110⎛⎫⨯+-⨯ ⎪+⎝⎭; 当1tan 3α=-时,上式=22112()1()2233[]=1210()13⨯-+--⨯-+.综上,π2sin 2.410α⎛⎫+= ⎪⎝⎭ 【答案】21011.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =, 解得23,23c c ==-(舍去),所以243a c ==,113sin 43236 3.222ABC S ac B ==⨯⨯⨯=△ 【答案】6312.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,225AC =AB +BC =,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以1225BD =. ππ72cos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【答案】1225,721013.【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ 【答案】π6-14.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【解析】因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα 所以11sin ,cos 22==αβ,因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【答案】12-15.【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==, ∴1115cos ,sin 14164DBC DBC ∠=-∠=-=, ∴115sin 22BCD S BD BC DBC =⨯⨯⨯∠=△. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=, 解得10cos 4BDC ∠=或10cos 4BDC ∠=-(舍去). 综上可得,△BCD 面积为152,10cos 4BDC ∠=. 【答案】1510,2416.【2019年高考全国Ⅰ卷】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(2)若22a b c +=,求sin C .【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-,由题设及正弦定理得()2sin sin 1202sin A C C ︒+-=,即631cos sin 2sin 222C C C ++=,可得()2cos 602C ︒+=-. 由于0120C ︒︒<<,所以()2sin 602C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+624+=.【答案】(1)60A ︒=;(2)62sin 4C +=.17.【2018年高考浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(1)求sin (α+π)的值; (2)若角β满足sin (α+β)=513,求cos β的值. 【解析】(1)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=. (2)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++,所以56cos 65β=-或16cos 65β=-. 【答案】(1)45;(2)56cos 65β=-或16cos 65β=-. 18.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a aa cb B ac a a +-+-===-⋅⋅. (2)由(1)可得215sin 1cos 4B B =-=, 从而15sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故15371357sin 2sin 2cos cos 2sin 666828216B B B πππ+⎛⎫+=+=-⨯-⨯=-⎪⎝⎭. 【答案】(1)14-;(2)35716+-.19.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米).解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-,直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=.因此道路PB 的长为15(百米). (2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=+<+= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQ a a =-+-=>,得a =4321+,所以Q (4321+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4321+,9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ =+--=+.因此,d 最小时,P ,Q 两点间的距离为17321+(百米).1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c =2,则C =( )A .π12B .π6C .π4D .π3【解析】本题考点是三角形内角和公式,两角和的正弦公式,辅助角公式及正弦定理的应用. 由题意可知,π=++C B A 所以有()C A B +=sin sin ,所以原等式可整理成:()sin sin (sin cos )0++-=A C A C C ,也就是:sin cos cos sin sin sin sin cos 0++-=A C A C A C A C ,【模拟考场】即()sin sin cos 2sin sin 04π⎛⎫+=+= ⎪⎝⎭C A A C A ,因为是三角形△ABC ,.0π或≠C 所以有43π=A .由正弦定理得:C c A a sin sin =,得.6,21sin π==C C 得【答案】B2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1D .3【解析】解法1:(余弦定理)由a 2=b 2+c 2-2bc cos A 得3=1+c 2-2c ×1×cos π3=1+c 2-c ,所以c 2-c -2=0.所以c =2或-1(舍去).法2:(正弦定理)由a sin A =b sin B ,得3sin π3=1sin B ,所以sin B =12,因为b <a ,所以B =π6,从而C =π2,所以c 2=a 2+b 2=4,所以c =2.【答案】B3.函数y =2xsin2x 的图象可能是( )A .B .C .D .【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A ,B ;因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C ,故选 D.【答案】D4.设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x =D .()f x 在(π2,π)单调递减【解析】函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图象的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图象关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确; 当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【答案】D5.设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则( ) A .23ω=,12ϕπ= B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A . 【答案】A6.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【答案】D7.在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315 ,12,cos ,4b c A -==- 则a 的值为 .【解析】因为0A π<<,所以215sin 1cos 4A A =-=, 又115sin 315,2428ABC S bc A bc bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得 2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【答案】88.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A BA B B A+=+ (Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值. 【解析】()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B⎛⎫+=+⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+,即()2sin sin sin A B A B +=+.因为A B C π++=,所以()()sin sin sin A B C C π+=-=.从而sin sin =2sin A B C +. 由正弦定理得2a b c +=.()∏由()I 知2a bc +=, 所以 2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭,当且仅当a b =时,等号成立. 故 cos C 的最小值为12. 9.在平面四边形ABCD 中,90ADC ∠=o ,45A ∠=o ,2AB =,5BD =.(1)求cos ADB ∠;(2)若22DC =,求BC . 【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB =︒∠,所以2sin 5ADB ∠=.由题设知,90ADB ∠<︒, 所以223cos 1255ADB ∠=-=. (2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠225825225=+-⨯⨯⨯25=.所以5BC =. 【答案】(1)235;(2)5. 10. ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.【解析】(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =. 由正弦定理得1sin sin sin 23sin A C B A =.故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin 2B C B C -=-,即1cos()2B C +=-. 所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得33b c +=.故△ABC 的周长为333+.【答案】(1)23;(2)333+. 11. ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin2B AC +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .【解析】(1)由题设及A B C ++=π,可得2sin 8sin2BB =,故()sin 41cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14=sin 217△ABC S ac B ac =. 又=2ABC S △,则172ac =.由余弦定理及6a c +=得:()()222217152cos 21cos 362(1)4,217b ac ac B a c ac B =+-=+-+=-⨯⨯+=所以2b =.【答案】(1)15cos 17B =;(2)2b =.12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 【解析】(1)因为23,2,cos 3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)(2)323c c c c +-=⨯⨯,即213c =.所以33c =. (2)因为sin cos 2A B a b =,由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =.从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =. 因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =.因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 【答案】(1)33c =;(2)255. 13.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为107cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计) (1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处. 因为107,40AC AM ==,所以2240(107)30MC =-=,从而3sin 4MAC =∠, 记AM 与水面的交点为1P ,过1P 作P 1Q 1⊥AC ,Q 1为垂足, 则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=1116sin P MACQ =∠.答:玻璃棒l 没入水中部分的长度为16cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG .同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1.记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32.因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而222211 243240GG KG GK =+=+=. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠. 因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠. 记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH ,故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠. 答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)【答案】(1)16 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm);(2)20 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm).。
2020高考数学核心突破《专题三 三角函数、解三角形与平面向量》(含往年真题分析)
专题三三角函数、解三角形与平面向量第1讲三角函数的图象与性质题型一三角函数的图象1.(1)要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象( C ) A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度(2) (2017·山西朔州模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )在区间⎣⎡⎦⎤0,π2上的最小值为__-1__.突破点拨(1)先利用诱导公式将两函数化为同名三角函数,再利用平移法则求解. (2)先求函数f (x )的解析式,再利用解析式求最值. 解析 (1)因为f (x )=cos ⎝⎛⎭⎫2x +π2-π6 =sin ⎝⎛⎭⎫π6-2x =sin ⎝⎛⎭⎫2x +5π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3, 所以要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象向左平移π4个单位长度.故选C. (2)由函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象,可得A =2,14·2πω=5π6-7π12,解得ω=2.再根据图象经过点⎝⎛⎭⎫7π12,0, 可得2·7π12+φ=π+2k π,k ∈Z .因为|φ|<π2,所以φ=-π6,故函数f (x )=2sin ⎝⎛⎭⎫2x -π6. 因为x ∈⎣⎡⎦⎤0,π2,所以2x -π6∈⎣⎡⎦⎤-π6,5π6, 故函数f (x )的最小值为2×⎝⎛⎭⎫-12=-1. 2. 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y=g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.突破点拨(1)由表中数据先写出A ,ω,φ的值,再由ωx +φ=0,π,2π,求出其余值. (2)写出函数y =g (x )的解析式,由y =sin x 图象的对称中心为(k π,0),k ∈Z ,利用整体思想建立关于θ的方程,根据k ∈Z 及θ>0,求出θ的最小值.解析 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表.且函数表达式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0中心对称, 令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.(1)三角函数图象平移问题需注意三点:一是函数名称是否一致;二是弄清由谁平移得到谁;三是左右的平移是自变量本身的变化.(2)对于由三角函数的图象确定函数解析式的问题,一般由函数的最值可确定A ,由函数的周期可确定ω,由对称轴或对称中心和φ的范围确定φ.题型二 三角函数的性质1. 已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性. 突破点拨(1)先将已知解析式化简,然后求解.(2)根据y =A sin(ωx +φ)+k (A >0,ω>0)与y =sin x 的关系求解. 解析 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32. 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增; 当π2<2x -π3≤π,即5π12<x ≤2π3时,f (x )单调递减.综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎝⎛⎦⎤5π12,2π3上单调递减. 2. 设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.突破点拨(1)先用公式化简,再利用三角函数的性质求解. (2)将x =π8代入,求ω,则周期可求.解析 由已知得f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4. 又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,所以f (x )max =2,此时12x -π4=2k π+π2,k ∈Z ,即f (x )取最大值时,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z .(2)∵x =π8是函数f (x )的一个零点,∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z . 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,其最小正周期为π.求解函数y =A sin(ωx +φ)的性质的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式. (2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入的方法求解.(3)讨论意识:当A 为参数时,求最值应分情况讨论.三角函数的综合应用【预测】 已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2(ω>0),其图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度,得到的函数g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间. 思维导航(1)解题导引:①先化简函数f (x )的解析式,再利用图象与x 轴相邻两个交点的距离是半个周期求解析式;②先求函数g (x )的解析式,再求在⎣⎡⎦⎤-π6,7π12上的单调递增区间. (2)方法指导:三角函数的综合应用主要是将三角函数的图象和性质与三角变换相结合,通过变换将函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意整体思想的应用.规范解答(1)函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2 =32sin 2ωx -12cos 2ωx -4×1-cos 2ωx 2+2 =32sin 2ωx +32cos 2ωx =3sin ⎝⎛⎭⎫2ωx +π3(ω>0). 根据函数f (x )的图象与x 轴相邻两个交点的距离为π2,可得函数f (x )的最小正周期为2×π2=2π2ω,得ω=1. 故函数f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到函数 g (x )=3sin ⎣⎡⎦⎤2(x +m )+π3=3sin ⎝⎛⎭⎫2x +2m +π3的图象.根据g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0, 可得3sin ⎝⎛⎭⎫-2π3+2m +π3=0, 即sin ⎝⎛⎭⎫2m -π3=0, 所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ).因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎫2x +2π3. 令2k π-π2≤2x +2π3≤2k π+π2,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z ,故函数g (x )的单调递增区间为⎣⎡⎦⎤k π-7π12,k π-π12,k ∈Z . 结合x ∈⎣⎡⎦⎤-π6,7π12,可得g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间为⎣⎡⎦⎤-π6,-π12和⎣⎡⎦⎤5π12,7π12. 【变式考法】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ (0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解析 (1)由题意,知 f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图象经过点⎝⎛⎭⎫π12,3和⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即y =g (x )的图象上到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )并整理得sin ⎝⎛⎭⎫2φ+π6=1, 因为0<φ<π,所以φ=π6.因此g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z ,得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z .1.(教材回归)下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,符合题意,故选A. 2.(2017·广西南宁质检)将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度后,得到f (x )的图象,则( B )A .f (x )=-sin 2xB .f (x )的图象关于直线x =-π3对称C .f ⎝⎛⎭⎫7π3=12D .f (x )的图象关于点⎝⎛⎭⎫π12,0对称 解析 将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度,得到的图象对应的解析式为f (x )=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π3=cos ⎝⎛⎭⎫2x +2π3.函数f (x )的图象的对称轴满足2x +2π3=k π(k ∈Z ),即对称轴方程为x =k π2-π3(k ∈Z ),所以f (x )的图象关于直线x =-π3对称;令2x +2π3=k π+π2,得x =k π2-π12(k ∈Z ),即f (x )的图象关于点⎝⎛⎭⎫-π12,0对称;f ⎝⎛⎭⎫7π3=-12.故选B. 3.(2017·湖北襄阳模拟)同时具有性质“①最小正周期是4π;②直线x =π3是图象的一条对称轴;③在区间⎝⎛⎭⎫2π3,5π6上是减函数”的一个函数是( D )A .y =sin ⎝⎛⎭⎫2x -π6B .y =cos ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫x 2+π3D .y =sin ⎝⎛⎭⎫x 2+π3解析 对于A 项,B 项,∵T =2π2=π,故A 项,B 项不正确.对于C 项,若直线x =π3为其图象的一条对称轴,则π3×12+π3=k π,k ∈Z ,得π2=k π,k ∈Z ,k 不存在,不满足题意,故C 项不正确.对于D 项,因为T =2π12=4π,且由x 2+π3=k π+π2,k ∈Z ,解得图象的对称轴方程为x =2k π+π3,k ∈Z ;当k =0时,x =π3为图象的一条对称轴.由2k π+π2≤x 2+π3≤2k π+3π2,k ∈Z ,解得单调递减区间为⎣⎡⎦⎤4k π+π3,4k π+7π3,k ∈Z ,所以函数在区间⎝⎛⎭⎫2π3,5π6上是减函数,故D 项正确.故选D.4.(2017·山西晋中考前测试)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将函数y =f (x )的图象向左平移4π3个单位长度,得到函数y =g (x )的图象,则函数y =g (x )在区间⎣⎡⎦⎤π2,5π2上的最大值为( C )A .3B .332C.322D .22解析 由图象可知函数y =f (x )的周期为2⎝⎛⎭⎫7π3-π3=4π, ∴ω=12.又点⎝⎛⎭⎫π3,0,⎝⎛⎭⎫0,-32在函数y =f (x )的图象上, ∴⎩⎨⎧A sin ⎝⎛⎭⎫π6+φ=0,A sin φ=-32,且|φ|<π2.∴φ=-π6,A =3,则f (x )=3sin ⎝⎛⎭⎫12x -π6, ∴g (x )=3sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +4π3-π6=3cos 12x . 由x ∈⎣⎡⎦⎤π2,5π2,可得12x ∈⎣⎡⎦⎤π4,5π4,则3cos 12x ∈⎣⎡⎦⎤-3,322,即g (x )的最大值为322.5.(书中淘金)某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的平均气温最低,为18 ℃,则10月份的平均气温为__20.5__℃.解析 依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5cos ⎝⎛⎭⎫π6×4=20.5. 答案 20.56.(高考改编)把函数y =sin 2x 的图象沿x 轴向左平移π6个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y =f (x )的图象,对于函数y =f (x )有以下四个判断:①该函数的解析式为y =2sin ⎝⎛⎭⎫2x +π6;②该函数图象关于点⎝⎛⎭⎫π3,0对称;③该函数在⎣⎡⎦⎤0,π6上是增函数;④若函数y =f (x )+a 在⎣⎡⎦⎤0,π2上的最小值为3,则a =2 3. 其中,正确判断的序号是__②④__.解析 将函数y =sin 2x 的图象向左平移π6个单位得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象,然后纵坐标伸长到原来的2倍得到y =2sin ⎝⎛⎭⎫2x +π3的图象,所以①不正确.f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2×π3+π3=2sin π=0,所以函数图象关于点⎝⎛⎭⎫π3,0对称,所以②正确.由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,∴函数的单调增区间为⎣⎡⎦⎤-5π12+k π,π12+k π,k ∈Z ,而⎣⎡⎦⎤0,π6⃘⎣⎡⎦⎤-512π+k π,π12+k π(k ∈Z ),所以③不正确.y =f (x )+a =2sin ⎝⎛⎭⎫2x +π3+a ,当0≤x ≤π2时,π3≤2x +π3≤4π3,所以当2x +π3=4π3,即x =π2时,函数取得最小值,y min =2sin 4π3+a =-3+a ,令-3+a =3,得a =23,所以④正确.所以正确的判断为②④.7.(考点聚焦)设函数f (x )=32-3sin 2ωx -sin ωx ·cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值. 解析 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎫2ωx -π3=sin ⎝⎛⎭⎫2ωx +2π3. 因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π4.因此ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π3. 当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32≤sin ⎝⎛⎭⎫2x -π3≤1. 因此-1≤f (x )≤32.故f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值分别为32,-1. 8.(2018·山东青岛调考)已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解析 (1)f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x=3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z . (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1, 可得函数f (x )的值域为⎣⎡⎦⎤0,1+32. 9.(母题营养)已知函数f (x )=sin x cos x +12cos 2x .(1)若tan θ=2,求f (θ)的值;(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,求实数m 的最大值.解析 (1)因为tan θ=2,所以sin θ=2cos θ. 代入sin 2θ+cos 2θ=1,得cos 2θ=15.所以f (θ)=sin θcos θ+12cos 2θ=2cos 2θ+12(2cos 2θ-1)=3cos 2θ-12=110.(2)由已知得f (x )=12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4. 依题意,得g (x )=22sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π4, 即g (x )=22sin ⎝⎛⎭⎫2x -π4. 因为x ∈(0,m ),所以2x -π4∈⎝⎛⎭⎫-π4,2m -π4. 又因为g (x )在区间(0,m )内是单调函数,所以-π4<2m -π4≤π2,即0<m ≤3π8,故实数m的最大值为3π8.10.(母题营养)设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在x ∈⎣⎡⎦⎤0,π2上的值域. 解析 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,从而ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0, 即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2, 即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2, ∵x ∈⎣⎡⎦⎤0,π2,∴53x -π6∈⎣⎡⎦⎤-π6,2π3, ∴函数f (x )的值域为[-1-2,2-2].1.函数f (x )=cos(w x +φ)的部分图象如图所示,则f (x )的单调递减区间为( D )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎡⎦⎤-34,54(f (x )的一个周期)内,函数f (x )的单调递减区间为⎝⎛⎭⎫-14,34.由f (x )是以2为周期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z ,故选D. 2.下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 是奇函数,图象关于原点对称,且最小正周期为π,A 项正确.y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,是偶函数,B 项错误.y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,非奇非偶,C 项错误.y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,非奇非偶,D 项错误.故选A. 3.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( A ) A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 解析 ∵y =sin(2x +1)=sin 2⎝⎛⎭⎫x +12, ∴只需把y =sin 2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.故选A.4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( C )A.3π4 B .π2C.π4D .-π4解析 y =sin(2x +φ)――→左移π8sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ是偶函数,即π4+φ=k π+π2(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.5.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深的最大值为( C )A .5 mB .6 mC .8 mD .10 m解析 由题意可知,当sin ⎝⎛⎭⎫π6x +φ=-1时,函数取得最小值2,即3×(-1)+k =2,∴k =5.因此,函数的最大值是8,故水深的最大值为8 m.6.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( B )A.π12 B .π6C.π3D .5π6解析 y =3cos x +sin x =2sin ⎝⎛⎭⎫x +π3,向左平移m 个单位长度后得到y =2sin ⎝⎛⎭⎫x +π3+m ,由它关于y 轴对称可得sin ⎝⎛⎭⎫π3+m =±1,∴π3+m =k π+π2,k ∈Z ,∴m =k π+π6,k ∈Z ,又m >0,∴m 的最小值为π6.7.已知函数f (x )=A sin(w x +φ)(A ,w ,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( A )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)解析 ∵ω>0,∴T =2πω=π,∴ω=2.又A >0,∴f ⎝⎛⎭⎫2π3=-A , 即sin ⎝⎛⎭⎫4π3+φ=-1,得φ+4π3=2k π+32π(k ∈Z ), 即φ=2k π+π6(k ∈Z ).又∵φ>0,∴可取f (x )=A sin ⎝⎛⎭⎫2x +π6, ∴f (2)=A sin ⎝⎛⎭⎫4+π6, f (-2)=A sin ⎝⎛⎭⎫-4+π6,f (0)=A sin π6. ∵π<4+π6<3π2,∴f (2)<0.∵-7π6<-4+π6<-π,且y =sin x 在⎝⎛⎭⎫-7π6,-π上为减函数, ∴sin ⎝⎛⎭⎫-4+π6<sin ⎝⎛⎭⎫-7π6=sin π6,且sin ⎝⎛⎭⎫-4+π6>sin(-π)=0,从而有0<f (-2)<f (0).故有f (2)<f (-2)<f (0).故选A.8.将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( D )A.5π12B .π3C.π4D .π6解析 g (x )=sin[2(x -φ)] =sin(2x -2φ). ∵|f (x )|≤1,|g (x )|≤1, ∴|f (x )-g (x )|≤2,当且仅当f (x 1)=1,g (x 2)=-1或f (x 1)=-1,g (x 2)=1时,满足|f (x 1)-g (x 2)|=2. 不妨设A (x 1,-1)是函数f (x )图象的一个最低点,B (x 2,1)是函数g (x )图象的一个最高点, 于是x 1=k 1π+3π4(k 1∈Z ),x 2=k 2π+π4+φ(k 2 ∈Z ).∴|x 1-x 2|≥⎪⎪⎪⎪3π4-⎝⎛⎭⎫π4+φ=⎪⎪⎪⎪π2-φ. ∵φ ∈⎝⎛⎭⎫0,π2,|x 1-x 2|min =π3, ∴π2-φ=π3,即φ=π6,故选D. 9.已知函数f (x )=2sin x +φ2cos x +φ2⎝⎛⎭⎫|φ|<π2,且对于任意的x ∈R ,f (x )≤f ⎝⎛⎭⎫π6,则( C ) A .f (x )=f (x +π) B .f (x )=f ⎝⎛⎭⎫x +π2 C .f (x )=f ⎝⎛⎭⎫π3-xD .f (x )=f ⎝⎛⎭⎫π6-x解析 f (x )=sin(x +φ).由题意,可知f (x )≤f ⎝⎛⎭⎫π6对于任意的x ∈R 恒成立,即sin(x +φ)≤sin ⎝⎛⎭⎫π6+φ.又因为|φ|<π2,所以π6+φ=π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫x +π3.f ⎝⎛⎭⎫π3-x =sin ⎝⎛⎭⎫π3-x +π3=sin ⎣⎡⎦⎤-⎝⎛⎭⎫π3+x +π=sin ⎝⎛⎭⎫x +π3=f (x ).故选C. 10.已知函数f (x )=3sin w x +cos w x (w >0)的图象与x 轴的交点的横坐标可构成一个公差为π2的等差数列,把函数f (x )的图象沿x 轴向左平移π6个单位,得到函数g (x )的图象.下列说法正确的是( D )A .g (x )在⎣⎡⎦⎤π4,π2上是增函数B .g (x )的图象关于直线x =-π4对称C .函数g (x )是奇函数D .当x ∈⎣⎡⎦⎤π6,2π3时,函数g (x )的值域是[-2,1]解析 f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6,由题意知T 2=π2,∴T =π,∴ω=2πT=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6.把函数f (x )的图象沿x 轴向左平移π6个单位,得到g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6=2sin ⎝⎛⎭⎫2x +π2=2cos 2x 的图象,易知g (x )是偶函数且在⎣⎡⎦⎤π4,π2上是减函数,其图象不关于直线x =-π4对称,所以A 项,B 项,C 项错误.当x ∈⎣⎡⎦⎤π6,2π3时,2x ∈⎣⎡⎦⎤π3,4π3,则g (x )min =2cos π=-2,g (x )max =2cos π3=1,即函数g (x )的值域为[-2,1],故选D.11.函数f (x )=2x -4sin x ,x ∈⎣⎡⎦⎤-π2,π2的图象大致是( D )解析 因为函数f (x )是奇函数,所以排除A ,B 项,f ′(x )=2-4cos x ,令f ′(x )=2-4cos x =0,得x =±π3,故选D.12.函数f (x )=A sin w x (A >0,w >0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2 018)的值为( A )A .2+2B .32C .62D .-2解析 由题图可知,A =2,T =8,2πω=8,ω=π4,∴f (x )=2sin π4x ,∴f (1)=2,f (2)=2,f (3)=2,f (4)=0,f (5)=-2,f (6)=-2,f (7)=-2,f (8)=0,而2 018=8×252+2,∴f (1)+f (2)+…+f (2 018)=f (1)+f (2)=2+ 2.故选A.第2讲 三角变换与解三角形题型一三角恒等变换1.(1)(2018·河南郑州模拟)若tan α=13,tan(α+β)=12,则tan β=( A )A.17 B .16C .57D .56(2) (2017·河北唐山中学模拟)已知α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45,则cos ⎝⎛⎭⎫5π12-α=( D )A.210B .-210C .-7210D .7210突破点拨(1)注意到β=(α+β)-α,再结合已知条件求tan β的值. (2)注意到cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4,再实施运算. 解析 (1)tan β=tan[(α+β)-α] =tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17.故选A.(2)∵α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45<32, ∴α+π3是钝角,∴cos ⎝⎛⎭⎫α+π3=-35,cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫5π12-α=-cos ⎝⎛⎭⎫712π+α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4=-cos ⎝⎛⎭⎫α+π3·cos π4+sin ⎝⎛⎭⎫α+π3sin π4=7210.故选D. 2. 已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 突破点拨(1)利用诱导公式转化为二倍角公式,再利用同角三角函数基本关系式求解. (2)切化弦,转化为二倍角公式,再利用(1)的结论求解. 解析 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α=12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin α cos α=-2cos 2αsin 2α=-2×-3212=2 3.利用三角恒等变换公式解题的常用技巧(1)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (2)降幂与升幂:通过二倍角公式得到. (3)弦、切互化:一般是切化弦. 题型二 解三角形1. 已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 突破点拨(1)根据正弦定理把已知条件转化为边的关系,然后利用余弦定理求解.(2)利用勾股定理得到边的一个方程,结合已知条件解方程组求得边长,然后求面积.解析 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac . 因为B =90°,由勾股定理得a 2+c 2=b 2,故a 2+c 2=2ac ,进而可得c =a = 2. 所以△ABC 的面积为12×2×2=1.【变式考法】 (1)在本例条件下,求角B 的范围. (2)在本例条件下,若B =60°,b =2,求a 的值. 解析 (1)因为b 2=2ac ,所以cos B =a 2+c 2-b 22ac ≥2ac -2ac2ac =0,又因为0<B <π,所以0<B ≤π2.(2)因为b 2=2ac ,b =2,所以ac =1, 又因为b 2=a 2+c 2-2ac cos B ,所以a 2+c 2=3, 所以a +c =5, 所以a =5+12或5-12. 2. △ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠B sin ∠C; (2)若AD =1,DC =22,求BD 和AC 的长. 突破点拨(1)利用面积关系得边的关系,再利用正弦定理求解. (2)先利用面积比求BD ,再利用余弦定理求解. 解析 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理可得sin ∠B sin ∠C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.利用正、余弦定理解三角形的技巧解三角形问题一般要利用正、余弦定理和三角形内角和定理,正弦定理可以将角转化为边,也可以将边转化成角,当涉及边的平方关系时,一般利用余弦定理,要根据题目特点和正、余弦定理的结构形式,灵活选用.有关解三角形的综合问题(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .思维导航(1)由已知条件选择余弦定理求得AP .(2)由三角形的面积和(1)结论解得PB ,再由余弦定理及正弦定理求得AB 和sin ∠BAP . 规范解答(1)在△APC 中,因为∠P AC =60°,PC =2,AP +AC =4, 由余弦定理得PC 2=AP 2+AC 2-2AP ·AC ·cos ∠P AC ,所以22=AP 2+(4-AP )2-2AP ·(4-AP )·cos 60°,整理得AP 2-4AP +4=0,解得AP =2,所以AC =2.所以△APC 是等边三角形,所以∠ACP =60°.(2)因为∠APB 是△APC 的外角,所以∠APB =120°.因为△APB 的面积是332,所以12AP ·PB ·sin ∠APB =332,所以PB =3.在△APB 中,AB 2=AP 2+PB 2-2AP ·PB ·cos ∠APB =22+32-2×2×3×cos 120°=19,所以AB =19.在△APB 中,由正弦定理得AB sin ∠APB =PBsin ∠BAP,所以sin ∠BAP =3sin 120°19=35738.【变式考法】 (2017·广州模拟)如图,在△ABC 中,∠ABC =30°,AB =3,AC =1,AC <BC ,P 为BC 右上方一点,满足∠BPC =90°.(1)若BP =2,求AP 的长; (2)求△BPC 周长的最大值.解析 由题意知1=AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =3+BC 2-3BC ,解得BC =2(BC =1舍去,则∠CAB =90°.又∠BPC =90°,且BP =2,所以∠PBC =45°,从而∠ABP =75°.连接AP ,由余弦定理得AP =3+2-2×3×2×6-24=6+22. (2)由(1)可知BC =2或BC =1,又因为求△BPC 周长的最大值,所以BC =2,设BP =m ,PC =n ,则m 2+n 2=4.由于BC 长为定值,因此求△BPC 周长的最大值只需求BP +PC =m +n 的最大值即可. 又4=m 2+n 2≥(m +n )22,则m +n ≤22, 当且仅当m =n =2时取等号,此时△BPC 的周长取得最大值,为2+2 2.1.(教材回归)sin 20°cos 10°-cos 160°sin 10°=( D ) A .-32B .32C .-12D .12解析 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.(2017·“江南十校”模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若C=2B ,则sin Bsin A=( D )A.c 2a 2+b 2-c 2 B .b 2a 2+b 2-c 2C.a 2a 2+b 2-c2 D .c 2a 2+c 2-b2解析 由已知,得sin C =sin 2B =2sin B cos B , 所以sin C sin B =2cos B .由正弦定理及余弦定理,得c b =2×a 2+c 2-b 22ac ,则b a =c 2a 2+c 2-b2. 再由正弦定理,得sin B sin A =c 2a 2+c 2-b 2,故选D.3.已知tan α=-2,tan(α+β)=17,则tan β的值为__3__.解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.4.(2017·河南郑州调考)已知△ABC 中,角C 为直角,D 是边BC 上一点,M 是AD 上一点,且CD =1,∠DBM =∠DMB =∠CAB ,则MA =__2__.解析 如图,设∠DMB =θ,则∠ADC =2θ,∠DAC =π2-2θ,∠AMB =π-θ,∠ABM =π2-2θ,在Rt △ABC 中,cos θ=cos ∠CAB =ACAB ;在△CDA 中,由正弦定理得CD sin ⎝⎛⎭⎫π2-2θ=ACsin 2θ; 在△AMB 中,由正弦定理得MA sin ⎝⎛⎭⎫π2-2θ=ABsin (π-θ), ∴CD MA =AC ·sin θAB ·sin 2θ=AC ·sin θ2AB ·sin θcos θ=12,从而MA =2. 5.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=__1__.解析 在△ABC 中,由余弦定理的推论可得cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,由正弦定理可知sin 2A sin C =2sin A cos A sin C =2a ·cos Ac =2×4×346=1.6.(书中淘金)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB . ∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB ,得600sin 45°=CBsin 30°, 有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006, 则此山的高度CD =100 6 m.7.(考点聚焦)已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝⎛⎭⎫θ2=65,θ∈⎝⎛⎭⎫π4,3π4,求f ⎝⎛⎭⎫θ+π8的值. 解析 (1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角), ∴f (x )min =-2+m 2=-2,∴m = 2.由题意知函数f (x )的最小正周期为π,∴2πω=π,∴ω=2.(2)由(1)得f (x )=2sin 2x +2cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴f ⎝⎛⎭⎫θ2=2sin ⎝⎛⎭⎫θ+π4=65, ∴sin ⎝⎛⎭⎫θ+π4=35, ∵θ∈⎝⎛⎭⎫π4,3π4,∴θ+π4∈⎝⎛⎭⎫π2,π,∴cos ⎝⎛⎭⎫θ+π4=-1-sin 2⎝⎛⎭⎫θ+π4=-45, ∴f ⎝⎛⎭⎫θ+π8=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π8+π4=2sin ⎝⎛⎭⎫2θ+π2 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π4=4sin ⎝⎛⎭⎫θ+π4cos ⎝⎛⎭⎫θ+π4 =4×35×⎝⎛⎭⎫-45=-4825. 8.(教材回归)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.解析 (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C <A ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2×217×277=437. 9.(2017·河北唐山二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a 2+b 2=λab . (1)若λ=6,B =5π6,求sin A ;(2)若λ=4,AB 边上的高为3c6,求C . 解析 (1)已知B =5π6,a 2+b 2=6ab ,结合正弦定理得4sin 2A -26sin A +1=0,解得sin A =6±24. 因为0<A <π6,所以sin A <12,所以sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ). 从而有3sin C +cos C =2,即sin ⎝⎛⎭⎫C +π6=1. 又π6<C +π6<7π6,所以C =π3.10.(2017·山东淄博模拟)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,求△ABC 面积的最大值.解析 (1)由a cos C +3a sin C -b -c =0及正弦定理, 得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,所以A =π3. (2)方法一 由(1)得B +C =2π3⇒C =2π3-B ⎝⎛⎭⎫0<B <2π3,因为a sin A =2sin π3=43, 所以由正弦定理得b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝⎛⎭⎫2π3-B =433⎝⎛⎭⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝⎛⎭⎫2B -π6+33.易知-π6<2B -π6<7π6, 故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3.方法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c=2时,等号成立.所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.1.已知函数f (x )=2cos 2x -sin ⎝⎛⎭⎫2x -7π6. (1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2,求实数a的取值范围.解析 (1)f (x )=(1+cos 2x )-⎝⎛⎭⎫sin 2x cos 7π6-cos 2x sin 7π6 =1+32sin 2x +12cos 2x =1+sin ⎝⎛⎭⎫2x +π6, ∴函数f (x )的最大值为2,当且仅当sin ⎝⎛⎭⎫2x +π6=1, 即2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z 时取到.∴函数f (x )取最大值时x 的取值集合为x ⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 化简得sin ⎝⎛⎭⎫2A +π6=12. ∵A ∈(0,π),∴2A +π6∈⎝⎛⎭⎫π6,13π6, ∴2A +π6=5π6,∴A =π3.在△ABC 中,a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎫b +c 22= 1,即a 2≥1,当b =c =1时取等号. 又由b +c >a ,得a <2, ∴a 的取值范围是[1,2).2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. 解析 (1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab .∵△ABC 的面积等于3, ∴12ab sin C =3,∴ab =4, 联立⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A . ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.3.(2017·浙江重点中学联考)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c . (1)若C =2B ,求证:cos A =3cos B -4cos 3B ;(2)若b sin B -c sin C =a ,且△ABC 的面积S =b 2+c 2-a 24,求角B .解析 (1)证明:∵C =2B ,∴A =π-3B , ∴cos A =cos(π-3B )=-cos(B +2B ) =-cos B cos 2B +sin B sin 2B =-cos B (2cos 2B -1)+2sin 2B cos B=cos B -2cos 3B +2cos B (1-cos 2B )=3cos B -4cos 3B , ∴cos A =3cos B -4cos 3B .(2)在△ABC 中,∵S =b 2+c 2-a 24,∴S =b 2+c 2-a 24=12bc sin A .由余弦定理知b 2+c 2-a 24=12bc cos A ,∴12bc cos A =12bc sin A ,∴tan A =1, 而A ∈(0,π),∴A =π4.∵b sin B -c sin C =a ,由正弦定理,得 sin 2B -sin 2C =sin A =22, ∴cos 2C -cos 2B = 2.∵2C =2π-2A -2B =3π2-2B ,∴-sin 2B -cos 2B =2,∴sin ⎝⎛⎭⎫2B +π4=-1. ∵B ∈(0,π),∴2B +π4=3π2,∴B =5π8.4.(2017·武汉武昌五月调研)已和函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2的图象经过点⎝⎛⎭⎫0,12,且相邻两条对称轴的距离为π2.(1)求函数f (x )的解析式及其在[0,π]上的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若f ⎝⎛⎭⎫A 2-cos A =12,bc =1,b +c =3,求a 的值.解析 (1)将⎝⎛⎭⎫0,12代入f (x )的解析式,得sin φ=12. 又因为0<φ<π2,所以φ=π6.又因为最小正周期T =π2×2=π,所以ω=2.所以函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6. 因为x ∈[0,π], 所以π6≤2x +π6≤13π6,所以2x +π6∈⎣⎡⎦⎤π6,π2或2x +π6∈⎣⎡⎦⎤3π2,13π6时,f (x )递增,即x ∈⎣⎡⎦⎤0,π6或x ∈⎣⎡⎦⎤2π3,π时,f (x )递增.所以函数f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤0,π6,⎣⎡⎦⎤2π3,π. (2)由(1)知f ⎝⎛⎭⎫A 2=sin ⎝⎛⎭⎫A +π6,代入已知等式得 sin ⎝⎛⎭⎫A +π6-cos A =32sin A +12cos A -cos A =32sin A -12cos A =sin ⎝⎛⎭⎫A -π6=12, 所以A -π6=π6或5π6,即A =π3或A =π(舍去).又因为bc =1,b +c =3,由余弦定理,得a 2=b 2+c 2-2bc ·cos A =b 2+c 2-bc =(b +c )2-3bc =6,所以a = 6. 5.(2018·山东青岛模拟)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3. (1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.解析 (1)在△ABC 中,∵S =12bc sin A ,∴23=12×4×c ×32,∴c =2.∴a =b 2+c 2-2bc cos A =16+4-2×4×2×12=2 3.(2)∵a sin A =b sin B ,即2332=4sin B,∴sin B =1, 又0<B <π,∴B =π2,∴C =π6,∴f (x )=2(cos C sin x -cos A cos x )=2sin ⎝⎛⎭⎫x -π6, 将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变),得到的图象对应的函数解析式为g (x )=2sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),故g (x )的单调增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). 6.(2018·辽宁协作体一模)设△ABC 是锐角三角形,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B sin ⎝⎛⎭⎫π3-B . (1)求角A 的值;(2)若AB →·AC →=12,a =27,求b ,c (其中b <c ).解析 (1)∵(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B ·sin ⎝⎛⎭⎫π3-B ,∴sin 2A -sin 2B =⎝⎛⎭⎫32cos B +12sin B⎝⎛⎭⎫32cos B -12sin B , 即sin 2A =34cos 2B -14sin 2B +sin 2B=34(cos 2B +sin 2B )=34, ∵角A 为锐角△ABC 的内角,∴sin A >0, ∴sin A =32,∴A =π3. (2)AB →·AC →=bc cos A =12,∴bc =24,又a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =(27)2, ∴b +c =10,又∵b <c ,∴b =4,c =6.第3讲 平面向量题型一 向量的概念及线性运算高考中常从以下角度命题:1. (1)平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).若(a+k c)∥(2b-a),则k=-1613.(2)如图,E为平行四边形ABCD的边DC的中点,F为△ABD的重心,且AB→=a,AD→=b,则FE→=23b+16a.突破点拨(1)利用向量的坐标运算和向量共线定理求解.(2)利用向量加、减法的几何意义和重心公式求解.解析(1)因为(a+k c)∥(2b-a),又a+k c=(3+4k,2+k),2b-a=(-5,2),所以2×(3+4k)-(-5)×(2+k)=0,所以k=-1613.(2)由F为△ABD的重心,得AF→=23×12AC→=13(a+b).又AE→=AD→+DE→=b+12a,所以FE→=AE→-AF→=23b+16a.2.(1)在△ABC中,点M,N满足AM→=2MC→,BN→=NC→.若MN→=xAB→+yAC→,则x=12,y=-16.(2)已知向量a=(2,1),b=(1,-2),若m a+n b=(9,-8)(m,n∈R),则m-n的值为__-3__.突破点拨(1)画出图形,利用向量加减法则求解.(2)利用向量的坐标运算求解.。
2020年高考数学23道题必考考点各个击破精讲副题03 解三角形(含答案)
2020年新课标高考数学23道题必考考点各个击破(按题号与考点编排)副题03 解三角形【副题考法】本副题考题形式为选择题、填空题,主要考查利用正弦定理、余弦定理、三角公式、三角 函数图象与性质解三角形边角及三角形的面积、解测量、航行等实际问题、求平面图形中的边角关系、求与三角形有关最值、取值范围等综合问题,难度为基础题和中档题,分值为5-12分.【副题回扣】1.三角形中的三角变换:(1)角的变换:因为在ABC ∆中,()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+,所以sin()sin A B C +=;cos()cos A B C +=-;tan()tan A B C +=-sin 2A B +=2sin 2cos ,2cos 2sinCB AC B A =+=+; (2)三角形边、角关系定理及面积公式面积公式()()()11sin 22a S ah ab C rp p p a p b pc ====--- (r 为三角形内切圆半径,p 为周长之半).(3)在ABC ∆中,熟记并会证明:,,A B C 成等差数列的充分必要条件是60B =︒;ABC ∆是正三角形的充分必要条件是,,A B C 成等差数列且,,a b c 成等比数列.2.要熟记如下知识: (1)正弦定理: 分类 内容定理2sin sin sin a b cR A B C===(R 是ABC ∆外接圆的半径)变形公式①2sin a R A =,2sin b R B =,2sin c R C =,②sin :sin :sin ::A B C a b c =, ③sin 2a A R =,sin 2b B R =,sin 2c C R= 解决的问题①已知两角和任一边,求其他两边和另一角,②已知两边和其中一边的对角,求另一边的对角(2)在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也 较大,即在ABC ∆中,sin sin A B a b A B >⇔>⇔>.(3)在ABC ∆中,已知a ,b 和A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 sin a b A =sin b A a b <<a b ≥a b > 解的个数一解 两解 一解一解(4)余弦定理分类 内容定理在ABC ∆中,有2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+-变形公式222cos 2b c a A bc +-=;222cos 2a c b B ac +-=;222cos 2a b c C ab+-=解决的问题①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角【易错提醒】1. 已知三角形两边及一边对角,利用正弦定理解三角形时,注意解的个数讨论,可能有一 解、两解或无解,要注意检验解是否满足“大边对大角”,避免增解.2 .注意隐含条件的挖掘;【副题考向】考向一 已知三角形中的边角关系解三角形【解决法宝】1.对已知三角形的边角关系解三角形问题,若所给条件即含边又含角,若含 边或含角的余弦的齐次式,则常用正弦定理将边化成角化成纯角问题,利用三角公式求角或把角化成边利用余弦定理求边或角.2.若条件给出三角形面积,则利用三角形面积公式化为边角问题处理.3.若以向量运算的形式给出条件,则利用向量运算的相关知识化为边角关系,再利用余弦 定理求解.4.在利用正弦定理解题时,注意利用大边对大角来判断所求角的范围.5.关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性 质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.6.三角形中判断边、角关系的具体方法: (1)通过正弦定理实施边角转换; (2)通过余弦定理实施边角转换; (3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐 步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解.例1在ABC ∆中,内角,,A B C 的对边分别是,,a b c ,若2c a =,1sin sin sin 2b B a A a C -=, 则sin B 为( )A .74 B .34 C .73 D .13【分析】先用正弦定理将1sin sin sin 2b B a A a C -=化为纯边关系,再利用余弦定理求出角 B 的余弦,再用同角三角函数基本关系求出B 的正弦.【答案】A考向二利用正弦定理、余弦定理解平面图形问题【解决法宝】对解平面图形中边角问题,若在同一个三角形,直接利用正弦定理与余弦定理求解,若图形中条件与结论不在一个三角形内,思路1:要将不同的三角形中的边角关系利用中间量集中到一个三角形内列出在利用正余弦定理列出方程求解;思路2:根据图像分析条件和结论所在的三角形,分析由条件可计算出的边角和由结论需要计算的边角,逐步建立未知与已知的联系.例2. 如图,平面四边形中,与交于点,若,,则A. B. C. D.【分析】延长到,使,利用向量运算可得出DEAP//,利用正弦定理建立关系式,求得角的大小,并用余弦定理求出的值【解析】设,则,延长到,使,连接DE,所以,依题意,所以,所以,由正弦定理得,两式相除得,所以,所以.在三角形中,由余弦定理得,在中,故,选.考向三 利用正弦定理、余弦定理解测量、航行问题 【解决法宝】1.把握解三角形应用题的四步:①阅读理解题意,弄清问题的实际背景,根据题意画出示意图;②根据图形分析图中哪些量是已知量,哪些量是未知量,需要通过哪些量将未知与已知 沟通起来,将实际问题抽象成解三角形问题的模型;③根据题意选择正弦定理或余弦定理求解;④将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 2.要理解仰角和俯角、方位角、方向角的概念,并能将其化为三角形内角.例3【河南省商丘市一高2018届二模】一艘海监船在某海域实施巡航监视,由A 岛向正 北方向行驶80海里至M 处,然后沿东偏南30°方向行驶50海里至N 处,再沿南偏东30°方向行驶303海里至B 岛,则,A B 两岛之间距离是 _________海里.【分析】首先作出辅助线连接AN 构造出三角形,然后在AMN ∆中连续两次运用余弦定 理可得出AN 和ANM ∠cos 的值,再由)150cos(cos 0ANM ANB ∠-=∠即可得出其余弦值,最后在ANB ∆中运用余弦定理即可得出所求的结果.【解析】连接AN ,则在AMN ∆中,应用余弦定理可得:80502805060cos 220⨯⨯-+=2AN ,即70=AN ;应用余弦定理可得:7170502807050cos 22=⨯⨯-+=∠2ANM ,所以在ANB ∆中,应用余弦定理可得70330270)330(cos 22⨯⨯-+=∠2BC ANB ;而7307021433sin 150sin cos 150cos )150cos(cos 000⨯⨯⨯=∠+∠=∠-=∠ANM ANM ANM ANB ,所以7307021433⨯⨯⨯70330270)330(22⨯⨯-+=2BC ,即70=AB ,故应填70 考向四 判定三角形性质【解题法宝】依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法: 1.利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;2.利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变 形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A B C π++=这个结论.3.如何利用余弦定理判定三角形的形状 由于cos A 与222b c a +-同号, 故当2220b c a +->时,角A 为锐角; 当2220b c a +-=时,三角形为直角三角形; 当2220b c a +-<时,三角形为钝角三角形. 例4 在中,若,且,则的形状为( ).A. 直角三角形B. 等腰直角三角形C. 正三角形或直角三角形D. 正三角形 【分析】由两角和正切公式,即可求出tan (A+B ),即tanC ,即可求出角C ,由即可求出B ,即可的出三角形形状.【解析】∵,∴.∴,. 由,即,∴或. 当时.,无意义.当时.,此时为正三角形,故选.【副题集训】 1.在中,角的对边分别是,已知, ,则( )A.B.C.D.【答案】B 【解析】,所以,故选B 。
2020年高考数学三轮微专题突破02 运用正余弦定理解决三角形问题(教师版)江苏
专题02 运用正余弦定理解决三角形问题一、题型选讲题型一 正余弦定理在三角形中的运用正余弦定理主要就是研究三角形综合的边与角的问题,在三角形中要恰当的选择正余弦定理,但是许多题目中往往给出多边形,因此,要咋爱多边形中恰当的选择三角形,就要根据题目所给的条件,标出边和角,合理的选择三角形,尽量选择边和角都比较多的条件的三角形,然后运用正余弦定理解决。
例1、(2017徐州、连云港、宿迁三检)如图,在ABC △中,已知点D 在边AB 上,3AD DB =,4cos 5A =,5cos 13ACB ∠=,13BC =. (1)求cos B 的值; (2)求CD 的长.解析:(1)在ABC △中,4cos 5A =,(0,π)A ∈, 所以2243sin 1cos 1()55A A =-=-=.同理可得,12sin 13ACB ∠=. 所以cos cos[π()]cos()B A ACB A ACB =-+∠=-+∠sin sin cos cos A ACB A ACB =∠-∠312451651351365=⨯-⨯=. (2)在ABC △中,由正弦定理得,1312sin 203sin 135BC AB ACB A=∠=⨯=.又3AD DB =,所以154BD AB ==. 在BCD △中,由余弦定理得,222cos CD BD BC BD BC B =+-⋅AB C D==例2、(2017年苏北四市模拟)如图,在四边形ABCD 中,已知AB =13,AC =10,AD =5,CD =65,AB →·AC →=50.(1) 求cos ∠BAC 的值; (2) 求sin ∠CAD 的值; (3) 求△BAD 的面积.解析: (1) 因为AB →·AC →=||A B →||A C →cos ∠BAC ,所以cos ∠BAC =AB →·AC→||A B →||A C →=5013×10=513. (2) 在△ADC 中,AC =10,AD =5,CD =65.由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =102+52-(65)22×10×5=35.因为∠CAD ∈(0,π),所以sin ∠CAD =1-cos 2∠CAD =1-⎝⎛⎭⎫352=45.(3) 由(1)知,cos ∠BAC =513.因为∠BAC ∈(0,π),所以sin ∠BAC =1-cos 2∠BAC =1-⎝⎛⎭⎫5132=1213.从而sin ∠BAD =sin(∠BAC +∠CAD ) =sin ∠BAC cos ∠CAD +cos ∠BAC sin ∠CAD =1213×35+513×45=5665.所以S △BAD =12AB ·AD ·sin ∠BAD =12×13×5×5665=28.题型二 运用正余弦定理解决边角问题正余弦定理主要是解决三角形的边角问题,在解三角形时要分析三角形中的边角关系,要合理的使用正、余弦定理,要有意识的考虑是运用正弦定理还是余弦定理,就要抓住这两个定理的使用条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020 年高考数学复习利用正余弦定理破解解三角形问题专题突破考纲要求 : 1. 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题12.会利用三角形的面积公式解决几何计算问题 Sab sin C .2 基础知识回顾 :a b c1. = ==2R ,其中 R 是三角形外接圆的半径.sin A sin B sin C由正弦定理可以变形: (1) a∶b ∶c =sin A∶sin B∶sin C ;(2) a = 2 Rsin A ,b = 2Rsin B ,c =2Rsin C .2 .余弦定理: a 2=b 2+ c 2- 2 bccos A ,b 2=a 2+c 2-2accos B ,c 2=a 2+b 2-2abcos C .b 2+c 2-a 2a 2+c 2- b 2a 2+b 2-c 2变形: cos A = ,cos B = ,cos C =2bc 2ac 2ab4. 三角形常用的面积公式1111 abc(1)S = a ·h a (h a 表示 a 边上的高 ).(2) S = absinC = acsinB = bcsinA =2 2 224R1(3)S=2r(a+b+c)(r 为内切圆半径).应用举例:类型一、利用正(余)弦定理解三角形【例1】已知中,,点在边上,且.(1 )若,求;(2 )求的周长的取值范围.【答案】(1 );(2 ).所以:中,利用正弦定理得:由于:则:,,由于:,则:,得到:,所以的周长的范围是:.【点睛】本题考查了用正弦定理、余弦定理解三角形,尤其在求三角形周长时解题方法是利用正弦定理将边长转化为角的问题,然后利用辅助角公式进行化简,求出范围,一定要掌握解题方法。
【例2】已知在中,所对的边分别为,.(1 )求的大小;(2)若,求的值.【答案】(1 )或(2)12 )∵, ∴又由余弦定理得 ,∴时,则 时,则 ,点睛】 解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的 关系,从而达到解决问题的目的 .其基本步骤是: 第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向 . 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化 .第三步:求结果 类型二、利用正(余)弦定理判断三角形形状【例 3】 在 中, , .(1 )求证: 是直角三角形;(2 )若点 在 边上,且 ,求 .答案】(1 )见解析;( 2 ),∴综上所述,当且仅当 ,此方程无解 .时,可得(2)设,则,,,所以在中,由正弦定理得,所以点睛】本题主要考查的知识点是运用正弦定理和余弦定理解三角形,注意角之间的表示,本题需要一定的计算【例4】在中,角所对的边分别为,已知且(1 )判断的形状;2)若,求的面积答案】(1 )见解析;(2 )(2)由(1)知,,则,因为,所以由余弦定理,得解得,所以的面积.【点睛】本题运用正弦定理、余弦定理和三角形面积公式解三角形,注意在运算过程中作为隐含的条件成立并且加以运用。
类型三、利用正(余)弦定理解决与三角形面积有关的问题【例5】在中,角, , 的对边分别为.已知, .(1)求角;(2)若,求的面积.点睛】 本题考查三角形的解法,正弦定理的应用,两角和与差的三角函数的应用,考查计算能力.【例 6】 在 中,角 , , 的对边分别是 , , ,若 , , 成等差数列(1 )求 ;(2 )若 , ,求 的面积 .得2 )由( 1)得同理得所以 的面积;(2)2.答案】又 ,∴ ,即方法、规律归纳1. 三角形中常见的结论(1) A + B + C =π. (2) 在△ABC 中,A >B ? a >b ? sinA >sinB ? cosA <cosB .(3) 任意两边之和大于第三边,任意两边之差小于第三边.(4) 三角形内的诱导公式: sin (A +B )=sin C ; cos (A + B ) =- cos C ;A +BC A +BCtan (A +B )=- tan C ;sin=cos ;cos=sin .22 22(6) 在△ABC 中, A ,B ,C 成等差数列的充要条件是 B =60 ° .(7) △ABC 为正三角形的充要条件是 A ,B ,C 成等差数列且 a ,b ,c 成等比数列. 2. 判定三角形形状的两种常用途径(1) 通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断.(2) 利用正弦定理、余弦定理化角为边,通过代数恒等变换,求出边与边之间的关系进行判断.实战演练 :1 .在中,角 所对的边分别为 ,且 .(1 )求;而,,得由(2 )若,求的面积的最大值.【答案】(1) ;(2) .点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一决三角形问题时,注意角的限制范围.1 )若 ,求 的面积;2 )若 的面积为 ,求 , .般采用到正弦定理, 出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用. 解2. 在 中,角 , , 的对边分别为 , , ,,答案】3 .已知中,角所对的边分别为且(1 )求角的大小;(2 )若,求面积的最大值。
【答案】;(2)解析】分析】1)利用正弦定理和三角恒等变换的方法化简即得角 的大小 .(2) 先证明再求 面积的最大值详解】1)点睛】(1) 本题主要考查正弦定理余弦定理解三角形,考查基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理能力 .(2) 本题解题的关键是4 .已知 中,内角 所对的边分别为 ,其中 , 1 )若 ,求 的值;2 )若 边上的中线长为 ,求 的面积 .详解】(2)答案】 Ⅱ)由 边上的中线长为 ,即可求解(1)(2)(1 )依题意,,故,所以所以,因为,所以,故,可得2)记边上的中线为CD ,故所以结合(1)可知解得,所以的面积点睛】本题考查了正余弦定理的灵活运用和计算能力,属于基础题.5 .在中,内角的对边分别为,且满足1 )证明:成等差数列;2 )已知的面积为,求的值.答案】(1 )见解析;(2 )详解】即由三角形内角和定理有 由正弦定理有成等差数列点睛】 本题考查正弦定理、余弦定理及三角形的面积公式.解题中利用正弦定理和余弦定理进行边角关系的转化是解题地基本方法. 当等式两边是关于边 或关于角 的齐次式时, 可以利用正弦定理进行边 角转化,如果有余弦定理中的式子则用余弦定理转化,化为单一关系式再进行变形求解.6 .在 中,内角 所对的边分别为 ,已知 1 )求角 ;2 )若 的周长为 8,外接圆半径为 ,求 的面积 .【答案】 (1) ;(2) .【详解】( 1)由 ,1)由题设得 ,根据由余弦定理又由 (1) 得代入得 ,2)由得,即,所以即,因为,所以. 由正弦定理得,因为,所以,所以,得.7 . 的内角 , , 的对边分别为 , , ,已知 1 )求 ;2 )若 ,求 的面积和周长 .也即得 .得周长.详解:(1)由正弦定理以及 又因为 ,所以 ,所以可得由余弦定理得点睛:本题考查正弦定理,三角形的面积公式,考查两角和的余弦公式和诱导公式,在解三角形中边角关 系常常用正弦定理进行相互转化,解题时可根据要求的结论确定选用什么公式,从而确定解题方法.如本 题求三角形面积,利用( 1 )的结论可选用公式,因此可先把 及 代入已知求出 ,再求面积.8 .在 中,角 的对边分别是 ,且 .(Ⅰ)求角 的大小;(Ⅱ)若 ,求 面积的最大值.;(2),答案】(1 )和 代入得 ,所以 ,且 ,得2)将解析】分析:(1)把已知等式用正弦定理转化为角的关系, 可求得 ,从而可得 ,2 )把 及 代入已知可得 ,再由公式求得面积,由余弦定理可求得 ,从而可得 ,所以,即,所以 的周长为【答案】(Ⅰ);(Ⅱ).点睛:本题主要考查了正弦定理、余弦定理、三角形面积公式和基本不等式的应用,属于中档题。
9 .已知的内切圆面积为,角所对的边分别为,若. (1 )求角;(2 )当的值最小时,求的面积.【答案】(1) ;(2) .2)由题意可知的内切圆半径为1 ,如图,设圆为三角形的内切圆,为切点,可得,则,于是化简得,所以或又,所以,即当且仅当时,的最小值为6 ,此时三角形的面积点睛:本题主要考察了正余弦定理的灵活应用及三角形内切圆的性质,属于中档题.10 .已知向量,,且函数)求函数的最大值以及取最大值时的取值集合.)在中,角,,的对边分别为,,,且,,,求的面积.答案】(1) 函数的最大值为,此时的取值集合为.(2)∵ 为的内角,)∵由余弦定理得即又,,故,得,∴ 的面积点睛:本题综合考查平面向量的数量积公式,三角函数的正余弦倍角公式,辅助角公式,及用余弦定理解三角形和三角形面积。
解三角的关键是选择合适的正弦定理与余弦定理及面积公式。
11 .△ABC的内角,A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin(1) 求cos B ;(2) 若a+c=6,△ABC 的面积为2,求b.【答案】(1)cos B=.(2) b =2.点睛:以三角形载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心12 .已知中,,为内一点,且.(Ⅰ)当时,求的长;(Ⅱ)若,令,求的值.【答案】(Ⅰ ) ;(Ⅱ) .由内角和定理得.在直角中,,在中,由正弦定理得:即:,整理可得:,解得13 .的内角的对边分别为.已知,Ⅰ)求角;Ⅱ) 的面积为,其外接圆半径为,且,求.答案】(Ⅰ ) ;(Ⅱ) .由面积公式得由余弦定理得即解得:或,又,所以.14 .已知△ 内角,,的对边分别为,,,.(1 )求;2 )若,,求△ 的面积.(1) 若 的面积为 ,求 ;(2) 若 ,求 的面积 .平方化简求值即可;2)利用三角形的面积公式以及余弦定理转化求解即可答案】(1 )2)解析:解: (1) 由得 得 ,即15 .已知 中,若角 对应的边分别为 ,满足 答案】(1 ) (2) 或解析】 分析:( 1)由得 ,即 ,又 ,两边同时又,那么即,得到,即有.。