植物生理学光合作用
植物生理学中的光合作用简述
植物生理学中的光合作用简述植物是自主合成有机物质的生物,而光合作用是植物进行自主合成的重要途径之一。
在日光的照射下,植物通过使用光合色素,将太阳能转化为化学能,并利用该能量为自身合成有机物质。
本文将简单的介绍植物光合作用的基本过程和在其过程中所涉及的分子和机制。
光合作用的基本过程光合作用的主要过程可以被概括为两个基本反应:光反应和暗反应。
在光反应中,太阳能被转换成了化学能,这种能量是由光生电子转移而形成的氧化还原能。
在暗反应中,这种光能被利用来驱动一系列的化学反应,从而产生有机化合物。
在光反应中,最重要的物质就是叶绿素。
叶绿素是光合色素的一种,它是植物中最具代表性的色素之一,可以吸收太阳光中的红、橙、黄、绿、蓝和紫等各种光线,其中吸收光线最大值位于蓝色和红色之间。
叶绿素的一个重要特性是它能够捕捉太阳能,并将其转化成对电子的激发,使光合酶得以工作。
光合酶是一个大分子复合物,在叶绿体膜上焦距定义,它是能够收集光子能量并促进电子跃迁的。
这些光子首先会被捕获到叶绿素分子中形成激发态,接着通过光合酶移入电子传递链,最后产生足够强的还原力保障ATP的合成以及NADPH的自然界生成。
在暗反应中,最重要的过程是卡尔文循环。
该循环由Rubisco酶、甘油磷酸酸倒路、三磷酸甘露醇通路、琥珀酸途径等多个反应过程组成。
在这些反应中,光合产生的CO2和三磷酸葡萄糖被逐步转化成葡萄糖和其他有机化合物。
光合作用涉及的分子和机制在光合作用的过程中,有两种主要的光合色素:叶绿素和类胡萝卜素。
叶绿素是绿色的,主要吸收蓝色和红色的光线。
而类胡萝卜素则是红色、黄色和橙色的,主要吸收蓝色和绿色光线。
这些色素通过吸收光子的能量,能够捕获电子并将其传递到光化学反应中心(PSI和PSII)。
在光化学反应中心中,光能被用于转移电子,产生ATP和NADPH。
这个过程被称为光合成电子传递链。
PSII和PSI是两个主要的复合物,其中PSII通过水光解产生氧气和负离子,而PSI则利用电子来还原NADP+,从而产生NADPH。
植物生理学光合作用
植物生理学光合作用植物生理学是研究植物的生命周期、生长发育、代谢和适应环境的科学领域。
其中,光合作用是植物的重要生理过程之一、在这篇文章中,我将详细介绍什么是光合作用、光合作用的主要过程和影响因素,以及它对植物和整个生态系统的重要性。
光合作用是植物利用阳光能量将二氧化碳和水转化为有机物和氧气的过程。
它是能量的转换过程,将太阳能转化为化学能。
光合作用发生在植物的叶子和其他绿色组织中的叶绿体中。
叶绿体内的叶绿素是发生光合作用的关键组分,它能吸收阳光中的能量,并将其转化为化学能。
光合作用主要包括两个阶段:光反应和暗反应。
在光反应中,叶绿体中的光合色素吸收太阳能量,并将其转化为化学能。
这个过程包括光能的捕获、电子传递和ATP合成。
叶绿体中的光刺激栗子吸收光能,通过一系列复杂的电子传递过程,最终生成ATP(三磷酸腺苷)和NADPH(二磷酸腺苷二核苷酸磷酸酯)。
ATP是能量的“货币”,用于植物的各种代谢反应。
NADPH则用作暗反应中二氧化碳的还原剂。
暗反应是光合作用的第二个阶段,也称为卡尔文循环。
在这个过程中,ATP和NADPH参与将CO2固定成六碳糖分子(葡萄糖)。
这个过程发生在叶绿体的叶绿体基质中,依赖于多种酶的参与。
暗反应是一个复杂的过程,它涉及到三个主要的步骤:固定、还原和再生。
通过这些步骤,光合作用将二氧化碳转化为可以用于植物生长和代谢的有机物。
光合作用的效率和速率受多种因素的影响。
其中最重要的因素是光的强度、温度和二氧化碳的浓度。
光的强度越高,光合作用的速率越快。
然而,当光强过于强烈时,光合作用的速率反而会下降,因为光合色素可能会受损。
温度也是光合作用速率的重要因素。
适宜的温度有助于酶的正常运作,从而提高光合作用的速率。
然而,当温度过高时,酶会变性,导致光合作用受到抑制。
二氧化碳的浓度对光合作用速率也有显著影响。
较高的二氧化碳浓度可以促进暗反应中CO2的固定,并提高光合作用效率。
总之,光合作用是植物生理学中的重要过程之一、它是植物利用太阳能将二氧化碳和水转化为有机物质和氧气的过程。
植物生理学 4.光合作用
组成:由核心复合体、 PS ΙΙ捕光复合体和放氧复合体 (OEC)组成。
核心复合体:由6种多肽组成。 其反应中心=Tyr+P680+pheo
捕光复合体:LHCΙΙ
放氧复合体:OEC,位于PS ΙΙ的类囊体膜腔表面,
由多肽和与放氧有关的锰复合体、氯和钙离子组
成。水在光照下经过PS ΙΙ的作用,发生水裂解,
(二)光系统
1 红降现象:
2 双光增益效应(爱默生效应): 3 光系统:光系统Ι (PS Ι )、光系统ΙΙ (PS ΙΙ ) PS I 为小颗粒,存在于基质片层和基粒片层的非垛叠区。 组成:反应中心P700、电子受体和PS Ι 捕光复合体三
部分组成。 光反应:适合长光波反应。
PS ΙΙ
其颗粒较大,受敌草隆抑制。存在于基粒片层的垛叠区。
(二)叶绿体的结构
叶绿体膜 外膜:透性大 内膜:透性小,主要控制物质进出的屏障。
组成:主要为可溶性蛋白质(酶)和其它代谢活跃的
基质
物质,呈高度流动性状态,具有固定二氧化碳
(间质)
的能力。(光合作用的暗反应即淀粉的形成与
贮存是在此进行的 。)
嗜饿颗粒(滴)(脂滴):是一类易与饿酸结合的颗
粒,其主要成分是亲脂性的醌类物质。功能是:
叶绿素a/叶绿素b=3/1 叶黄素/胡萝素=2/1
2 红色: 气温、可溶性糖、花色素(红色)
3 黄色:
叶绿素受破坏
光反应:在光下, 1 原初反应(指对光能的吸收、传递和转
在叶绿体的类囊
换的过程。)
体膜上进行的, 由光所引起的光
光 化学反应。实质
光能 原初反应
电能(电子)
(光量子)
2 电子传递和光合磷酸化(指把原初反应
植物生理学中的光合作用
植物生理学中的光合作用光合作用是植物生理学中一项重要的生理过程,它使植物能够利用阳光能将二氧化碳和水转化为有机物质和氧气。
本文将就光合作用的基本原理、过程和调控因素进行讨论。
一、光合作用的基本原理光合作用是通过光能转化为化学能的过程。
在光合作用中,植物通过叶绿素等色素吸收光能,并利用该光能将二氧化碳和水合成有机物质,同时释放出氧气。
这一过程主要发生在植物的叶绿体中。
二、光合作用的过程光合作用可以分为光反应和暗反应两个阶段。
1. 光反应:光反应发生在叶绿体的基质膜上。
当叶绿体中的色素吸收到光子后,光能被转化为化学能,产生ATP和NADPH等高能化合物。
同时,水分子被光解,释放出氧气并提供电子供应。
2. 暗反应:暗反应发生在叶绿体的基质中,不需要直接依赖光能。
在暗反应中,植物利用光反应阶段生成的ATP和NADPH,将二氧化碳还原为有机物质,例如葡萄糖。
暗反应的最终产物是有机物质,它们被植物用于生长和代谢。
三、光合作用的调控因素光合作用的进行受到许多因素的影响,主要包括光照强度、温度和二氧化碳浓度。
1. 光照强度:光照强度对光合作用的速率有着直接的影响。
当光照强度较低时,光合作用受限于光反应的速率;而在光照强度较高时,暗反应对光合作用速率的影响更大。
2. 温度:温度是另一个重要的调控因素。
在适宜的温度下,光合作用可正常进行;然而,过高或过低的温度均会抑制光合作用的进行。
这是因为较高温度下酶活性受到抑制,而较低温度下酶活性受到限制。
3. 二氧化碳浓度:二氧化碳是暗反应的底物之一,其浓度的增加可以促进暗反应的进行。
然而,在现代工业化社会中,二氧化碳排放导致大气中二氧化碳浓度的增加,进而对植物的光合作用产生了积极的影响。
四、光合作用的重要性光合作用是生物圈中最为重要的能量来源之一。
通过光合作用,植物能够将太阳能转化为化学能,进而提供给其他生物。
此外,光合作用还能够释放出氧气,并吸收大量的二氧化碳,起到了调节大气组成的作用。
植物生理学第三章植物的光合作用
植物生理学第三章植物的光合作用植物的光合作用是指植物利用光能将二氧化碳和水转化成有机物质(如葡萄糖)和氧气的过程。
其反应方程式为:6CO2+6H2O+光能→C6H12O6+6O2光合作用是植物最重要的生理过程之一,它不仅是植物能够生存和生长的基础,还能为其他生物提供氧气和有机物质。
光合作用通过光合色素和叶绿体等生理结构,具有高效和专一性的特点。
植物的光合作用可以分为两个阶段:光能捕获和光化学反应、以及碳固定和假单胞菌循环。
在光能捕获和光化学反应阶段,植物的光合色素(如叶绿素)能够捕获太阳光,并将其转化为化学能。
光合作用发生在叶绿体内,主要以叶绿体膜的光合作用单位,光系统(PSI和PSII)为中心。
光系统中的光合色素吸收太阳光,并将其能量传递给反应中心,激发电子。
通过光合色素的电子传递链,电子在PSII和PSI之间进行转移,最终转移到还原辅酶NADP+上,形成还原辅酶NADPH。
在碳固定和假单胞菌循环阶段,植物利用还原辅酶NADPH和ATP的能量,将二氧化碳转化为有机化合物。
这个过程称为Calvin循环,也叫柠檬酸循环。
Calvin循环包括三个主要步骤:碳固定、还原和再生。
首先,二氧化碳与从光合作用过程中产生的核酮糖五磷酸(RuBP)结合,形成不稳定的六碳中间体。
然后,该中间体通过一系列酶的作用,将其分解为两个三碳化合物,3-磷酸甘油醇醛(3-PGA)。
最后,3-PGA经过一系列的加氢还原反应和磷酸化反应,合成出葡萄糖和其他有机物质。
光合作用的速率受到光照、温度、二氧化碳浓度和水分等环境条件的影响。
光合速率随着光照强度的增大而增加,但达到一定的饱和点后,光合速率趋于稳定。
温度对光合作用的影响是复杂的。
在适宜温度下,光合速率随着温度的升高而增加,因为反应速率加快。
然而,当温度超过一定范围时,光合作用会受到抑制,因为高温会破坏光系统和酶的结构。
二氧化碳浓度越高,光合速率越快。
水分对光合作用的影响主要是通过调节植物的气孔进行的。
植物生理学中的光合作用
植物生理学中的光合作用是一个极其重要的过程,其负责着能量的转换以及氧气的产生,这不仅是对植物自身的维持健康必不可少,更是地球经济系统和大气环境中不可或缺的重要因素。
在生物学中,“光合作用”是指植物中一系列的化学反应,它利用太阳光和吸收到的二氧化碳以及水中的氢离子进行反应,从而产生出氧气和能量,这个过程在每个用光合作用维持生命的植物中都是必须进行的。
光合作用的过程可以分为两个阶段:第一个阶段是“光反应”,这个过程属于顶部的光合硬件。
在光反应中,植物体中的色素分子吸收了太阳光中的能量,从而将其传递到钙协头蛋白复合体上,然后通过一系列反应最终将能量转化为ATP和NADPH。
第二个阶段是“暗反应”,这个过程则是由下部的光合软件来完成。
在暗反应中,过氧化氢有机质和水会结合形成糖和氧气,这个过程依赖于ATP和NADPH的输出以及酶的参与。
实际上,农作物或其他任何植物都是通过光合作用从太阳能中获得所需能量,从而为它们本身的生长和繁殖提供支持。
值得注意的是,对于这个过程而言,光合作用的速度以及能量的输出是取决于一系列因素的。
首先,光的强度是影响光合作用速率的主要因素。
太阳光非常强烈,因此能够提供充足的能量,使植物进行光合作用。
如果光线太弱,那么植物的光合作用就会减速,从而影响其生长和繁殖。
其次,还有其他的环境因素可以影响植物的光合作用,例如二氧化碳的浓度、空气湿度、温度等等。
通常来说,较高的二氧化碳浓度能够促进植物的光合作用速率,从而提高其生长速度。
最后,特定植物品种的基因也会影响它们的光合作用速率以及对不同环境条件对其影响的适应性。
因此,理解植物的基因组信息可以让我们更好地理解它们的适应性以及在不同环境条件下的行为。
综上所述,光合作用是一项极其关键的生命过程,它不仅帮助各种生物存活、生长和繁殖,也对整个地球的大气和环境系统产生着重要的影响。
了解,以及它受到哪些因素的影响,能够帮助我们更好地理解植物的行为适应性以及如何将它们家在到不同的条件下。
光合作用解释植物生理学
光合作用解释植物生理学光合作用是指植物和一些原核生物能够利用光能将二氧化碳和水转化为有机物质和氧气的过程。
这个过程是植物生理学中最为重要的过程之一,它不仅提供了植物所需的能量,同时也为氧气的产生做出了贡献。
在这篇文章中,我们将对光合作用进行详细的解释,深入探讨其在植物生理学中的重要性以及相关的生理学机制。
光合作用的基本原理光合作用发生在植物细胞中的叶绿体中。
它主要由两个连续的反应阶段组成,即光依赖反应和光独立反应。
在光依赖反应中,植物叶绿体中的光捕捉分子(如叶绿素)吸收光能,并将其转化为电子能。
这些高能电子经过一系列的电子传递反应,最终被用于产生三磷酸腺苷(ATP)和还原型烟酸腺嘌呤二核苷酸(NADPH)。
ATP和NADPH是后续反应所需的能量和电子供应来源,它们在光独立反应中发挥着重要作用。
在光独立反应中,植物利用光依赖反应产生的ATP和NADPH,将二氧化碳和水合成为葡萄糖等有机物质。
这一过程被称为卡尔文循环,其中包含一系列的化学反应,最终产生葡萄糖和其他有机物质。
葡萄糖可用于植物的生长和代谢,也可以在需要时进一步转化为其他有机物质,如淀粉、纤维素和脂肪等。
光合作用的生理学意义光合作用是植物生理学中最重要的过程之一,它不仅为植物提供了所需的能量,还产生了氧气。
以下是光合作用在植物生理学中的几个重要意义:能量供应光合作用通过产生ATP和NADPH(光依赖反应)以及合成葡萄糖(光独立反应),为植物提供了所需的能量。
这些能量被用于植物的生长、光合产物的合成以及其他代谢过程。
通过光合作用,植物能够利用太阳能将无机物质转化为有机物质,实现自身能量的供应。
氧气产生光合作用是地球上氧气的最主要来源之一。
在光合作用的过程中,水分子被氧化,并释放出氧气。
这种氧气的释放极大地影响了地球大气中氧气的浓度,为地球上的其他生物提供了必要的氧气供应。
环境调节光合作用对环境的调节起到了重要作用。
通过调控光合作用速率,植物能够响应外界环境的变化,并对抗一些有害因素。
植物生理学与光合作用
植物生理学与光合作用植物生理学是研究植物的生命活动以及其与环境的相互关系的科学分支。
光合作用则是植物生理学中的一个重要研究领域。
本文将探讨植物生理学与光合作用之间的关系,以及光合作用在植物生长和发育过程中的重要性。
一、1. 光合作用的定义光合作用是指植物利用光能合成有机物质的过程。
它是植物生命活动中最为基本的代谢过程之一。
光合作用通过将光能转化为化学能,将二氧化碳和水转化为葡萄糖和氧气,同时产生能支持植物生长和维持生命所需的能量。
2. 光合作用的过程光合作用可分为光依赖反应和光独立反应两个阶段。
光依赖反应发生在光合体内的类囊体膜上。
当植物叶片表面受到光线照射时,类囊体中的叶绿素分子吸收光能,将其转化为化学能。
同时,水分子被分解,释放出氧气,电子和质子。
光能转化的化学能使得电子通过一系列的传递过程,最终以还原二氧化碳合成有机物质。
光独立反应则发生在质体中的质体基质或类囊体基质中。
光独立反应以由光合体产生的ATP和NADPH为能源,通过一系列酶催化的反应将二氧化碳转化为葡萄糖。
这一过程称为卡尔文循环。
3. 植物生理学的研究植物生理学研究了光合作用以及其他与之相关的生理过程。
通过研究植物如何利用光能进行光合作用,研究人员可以深入了解植物的生长和发育机制,并改进农业生产。
植物生理学还研究光合作用过程中涉及的生化路径和相应的调节机制。
例如,光照强度、光周期、温度和湿度等因素都会对光合作用的速率和效率产生影响。
研究人员通过调控这些因素,可以优化光合作用过程,提高作物产量和质量。
二、光合作用在植物生长发育中的重要性1. 提供有机物质和能量光合作用是植物合成有机物质和能量的主要途径。
通过光合作用,植物可以合成葡萄糖等有机物,为其自身提供所需的能量和营养物质。
这些有机物质不仅满足植物生长发育的需求,也可供其他生物体利用。
2. 维持生态平衡光合作用通过吸收二氧化碳和释放氧气的过程,对维持地球生态平衡起着重要作用。
植物通过光合作用中的氧气释放,提供氧气供其他生物呼吸,同时吸收二氧化碳和释放氧气,对减缓温室效应和气候变化具有一定的作用。
植物生理学-光合作用的概念和意义知识点
光合作用的概念和意义名词解释温室效应:透过太阳短波辐射,返回地球长波辐射,地球散失能量减少,地球变暖光合膜:光合作用中光能吸收和电子传递过程都是在类囊体的膜片层上进行,因此类囊体膜也称为光合膜荧光现象:叶绿素溶液在透射光下呈绿色,而在反射光下呈红色的现象,荧光寿命很短。
是由于Chl分子吸收光能后,重新以光的形式释放所产生的。
磷光现象:在暗处叶绿素会发出弱光,磷光的寿命为10-2~103秒原初反应:包括光能的吸收,传递和光化学反应;在类囊体膜上进行(光→电)电子传递和光和磷酸化:光能经电能转化为化学能,在类囊体膜上进行碳同化:CO2固定于还原,在间质进行集光色素(天线色素):吸收和传递光能,不进行光化学反应的光合色素,大部分Chl a中心色素:少数特殊状态的Chl a,吸收集光色素传递而来的激发能后,发生光化学反应引起电荷分离的光合色素光合单位:指在光饱和条件下吸收、传递和转化一个光量子到作用中心所需要协同作用的色素分子诱导共振:是指当某一特定的分子吸收能量达到激发态,在重新回到基态时,使另一分子变为激发态光化学反应:指中心色素分子受光激发引起的氧化还原反应。
作用中心包括原初电子供体、原初电子受体、和作用中心色素组成量子产额:每吸收一个光量子所同化的CO2分子数(或释放的氧分子数)红降现象:小球藻能大量吸收波长>690nm的长波红光,但光合作用的效率很低的现象双光增益效益(爱默生):红降出现,如果加入辅助的短波红光(650nm)则光合效率大增,并且比这两种波长单独照射的总和还要高的现象光合链:光合链是类囊体膜上由两个光系统和若干电子传递体,按一定的氧化还原电位依次排列而成的电子传递系统PQ质体醌(质醌):担负着传递氢H+和e-的任务PC质蓝素(质体菁):含铜蛋白质,PSI的远处电子供体Fd铁氧还蛋白:把电子传给FNR后还原NADP为NADPH,或把电子传给Cytb6进行环式光合电子传递。
此外,Fd还在亚硝酸还原,酶活化等方面具有多种功能。
植物生理学第5篇光合作用
β-胡萝卜素
叶黄素
β-胡萝卜素和叶黄素结构式
(三)光合色素的吸收光谱 1、对光合有效的可见光波长为400~700 nm 。 2、太阳光的连续光谱 (白光经三棱镜后形成)
光子携带的能量与光的波长成反比 E=N h c/λ
3、吸收光谱:光合色素将太阳连续光谱中 有些波长的光吸收,在光谱上出现黑线 或暗带,这种光谱叫吸收光谱。 叶绿素有2个最强吸收区: ※ λ=640~660nm的红光区 λ=430~450nm的蓝紫光区 叶绿素溶液呈绿色。
(6) 遗传
海棠 叶绿素的形成受遗传因素控制, 如水稻、玉米的白化苗以及花卉 中的斑叶不能合成叶绿素。有些 病毒也能引起斑叶。
花叶
吊兰
问题:指出植物有哪些黄化现象,并分析产生的原因。
植物体内的叶绿素在代谢过程中一方面合成,一方面分解, 在不断地更新。如环境不适宜,叶绿素的形成就受到影响,而 分解过程仍然进行,因而茎叶发黄,光合速率下降。
叶绿体
※绿色植物在光下,把二氧化碳和水转化为糖, 并释放出氧气的过程。
其实质是一个氧化还原反应: H2O是电子供体(还原剂),被氧化到O2的水平; CO2是电子受体(氧化剂),被还原到糖的水平。
2、细菌光合作用 (Bacterial photosynthesis)
光、叶绿素
CO2 + H2S 如:紫色硫细菌
➢黑暗使植物黄化的原理常被应用于 蔬菜生产中,如韭黄、软化药芹、白 芦笋、豆芽菜、葱白、蒜白、大白菜 等生产。
(2) 温度
➢ 叶绿素的生物合成是一 系列酶促反应,受温度 影响。
➢ 叶绿素形成的最低温度 约2℃,最适温度约 30℃,最高温度约40℃ 。
植物生理学第三章_植物光合作用
植物生理学第三章_植物光合作用植物光合作用是植物生理学中非常重要的一个过程,是植物通过光能合成有机物的过程。
光合作用发生在植物叶绿体中,可以分为光依赖反应和暗反应两个阶段。
第一阶段是光依赖反应,也称为光能转化反应。
在这一阶段,植物叶绿体中的叶绿素捕获光能,将其转化为化学能。
植物叶绿素主要吸收蓝光和红光,在吸收光能的过程中,电子跃迁激发到较高的能级,形成激发态的植物叶绿素。
在光系统II中,激发态的叶绿素通过光解水作用释放电子,产生氧气和高能电子。
这些电子被传递到光系统I中,通过电子传递链的过程产生足够的能量。
在这个过程中,氧气通过植物的气孔释放到外界,为植物提供氧气。
第二阶段是暗反应,也称为光独立反应。
在这一阶段,植物利用光能转化的化学能合成有机物,主要是葡萄糖。
这个过程发生在植物叶绿体中的光合体内。
在暗反应中,植物通过卡尔文循环合成葡萄糖。
该循环包括三个主要阶段:固定CO2、还原和再生。
首先,植物将甲酸与二氧化碳反应,生成六碳分子,并通过还原过程将其分解成两个三碳分子。
然后,这些三碳分子在还原过程中转化为葡萄糖,并重新生成甲酸。
整个循环循环进行,不断合成葡萄糖。
在这个过程中,植物通过暗反应中的化学反应将光能转化为化学能,并将其储存为有机物。
这些有机物可以被植物利用为能量和营养物质,也可以用于生长和发育。
总的来说,植物光合作用是植物生理学中的重要过程,通过光能转化产生化学能,并将其转化为有机物。
这个过程不仅为植物提供了能量和营养物质,也为维持地球生态系统的平衡起到了重要的作用。
了解和深入研究植物光合作用对于理解植物生长和发育,以及生态环境变化的影响具有重要意义。
植物生理学:第三章 植物的光合作用
第一节 光合作用的意义 第二节 叶绿体与光合色素 第三节 光合作用机理 第四节 光呼吸 第五节 影响光合作用的因素 第六节 植物对光能的利用 第七节 有机物的运输与分配
本章重点、难点及复习思考题
1
第一节 光合作用的意义 一 光合作用的概念 二 光合作用的意义
2
一 光合作用(photosynthesis) 绿色植物吸收光能,同化CO2和水,
9
◆ 叶绿素分子结构 ◇ chla是叶绿酸的酯。叶 绿酸是双羧酸,其中一个羧 基被甲醇所酯化,另一个被 植醇所酯化。
10
◇ Chla与chlb结构区别 chla第二个吡咯环上一个甲基(-CH3)被醛基(-
CHO)所取代,即为chlb .
11
◇ 叶绿素分子头部
▽ 4个吡咯环组成的卟啉环, 由4个甲烯基(=CH-)连成大的卟 啉环;
15
3 色素的功能
◆ 叶绿素chla和chlb都能吸收光能,少数chla 具光化学活性,能将光能转换成电能。
◆ 类胡萝卜素吸收光能、光保护,保护叶绿色 分子避免其在强光下的光氧化。
16
4 色素的光学特性
◆ 光合作用可利用的光:400 -700nm. ◇光子(photon)或光量子(quantum): 光是一
存在形式:色素蛋白复合体(pigment protein
complex)
2 结构和性质 (1) 叶绿素(chlorophyll): ◆ 叶绿素a (chla)、叶绿素b(chlb).
8
◆ 主要理化性质 ◇ 不溶于水,溶于有机溶剂,如乙醇、 丙酮、乙醚、氯仿等。 ◇ chla 呈蓝绿色,chlb 呈黄绿色。
黄化现象:缺乏某些条件而影响叶绿素合 成,使叶子发黄的现象.
植物生理学光合作用
植物生理学光合作用光合作用是植物中一种非常重要的生理过程,它使植物能够利用光能将二氧化碳和水转化成能量丰富的有机物质。
在光合作用中,植物通过叶绿素等色素吸收光能,并在发生光合作用的叶绿体中进行一系列的反应,最终合成葡萄糖和氧气。
本文将从光合作用的过程、影响光合作用的因素以及光合作用的生理意义等方面进行详细介绍。
光合作用的过程可以分为光能捕捉、光化学反应和暗反应三个阶段。
首先,光合作用开始于叶绿体中的叶绿素分子吸收光能,使其能够进一步参与反应。
光能被吸收后,植物中的色素将光能传递给特定的反应中心,如光系统Ⅱ和光系统Ⅰ,从而引发一系列电子传递反应。
光化学反应阶段中,植物利用光系统Ⅱ产生的能量促使水分子分解,释放出氧气和电子。
同时,光能也用于将电子转移到光系统Ⅰ,并最终用于产生能量丰富的三磷酸腺苷(ATP)和还原型辅酶NADPH。
这两种能量分子将在暗反应中进一步利用。
暗反应是光合作用的最后一个阶段,它需要依赖先前生成的ATP和NADPH。
在暗反应中,二氧化碳通过碳固定反应参与合成葡萄糖和其他有机物。
此过程中,一部分ATP提供能量,而另一部分NADPH则提供还原能力。
最终产生的葡萄糖可以用于细胞的能量供应、构建新的细胞结构以及储存为淀粉等形式。
然而,光合作用的效率受到多个因素的影响。
首先,光强度对光合作用的效率起着重要作用。
光合作用的光化学反应依赖于充足的光能供应,适宜的光强度可以促进光合作用的进行。
另外,温度也是一个影响光合作用的因素。
过高或过低的温度会降低酶的活性,导致光合作用效率的降低。
此外,二氧化碳浓度也是影响光合作用速率的重要因素。
在二氧化碳浓度较低的情况下,酵素RuBisCO的催化效率下降,从而限制了光合作用的进行。
植物也通过调节气孔的开度来控制二氧化碳的吸收和水分的散失,以满足光合作用的需要。
光合作用在植物的生理过程中具有非常重要的意义。
首先,光合作用是所有植物生物体能够存活和生长的基础,通过合成葡萄糖和其他有机物,植物可以提供自身所需的能量和碳源。
植物生理学光合作用
2、光合色素化学结构与性质 ⑴叶绿素(chlorophyll) 叶绿素不溶于水,但能溶于酒精、丙酮和石油醚等有 机溶剂。 叶绿素是双羧酸二酯,其分子式为:
chla: C32H30ON4Mg chlb: C32H28O2N4Mg
COOCH3 COOC20H39
COOCH3 COOC20H39
极 性 头 部
第五章 植物的光合作用
CO2+H2O
(CH2O) +O2
光能 叶绿体
厂房 叶绿体
动力 光能
原料 二氧化碳和水
产物 有机物和氧
本章主要内容
光合作用的重要性 叶绿体和光合色素 光合作用过程机理 光呼吸 影响光合作用的因素 植物对光能的利用
第一节 光合作用及其重要性 一、碳素同化作用(Carbon assimilation)
(2) 温度
➢ 叶绿素的生物合成是一系列酶促反应,受 温度影响。
➢ 叶绿素形成的最低温度约2℃,最适温度 约30℃,最高温度约40℃ 。
受冻的油菜 ➢秋天叶子变黄和早春寒潮过后秧苗变白,都与低温抑制叶绿素形成有关。
➢ 高温下叶绿素分解大于合成,因而夏天绿叶蔬菜存放不到一天就变黄;相反,温度较低时, 叶绿素解体慢,这也是低温保鲜的原因之一
光子携带的能量和光的波长的关系:
E=N h c/λ E=(6.02×1023)×(6.6262×10-34)×光速/波长
阿伏伽德罗常数 普朗克常数 上式表明:光子的能量与波长成反比。
太阳光谱
10
390
770
100000nm
紫外光
可见光 红外光
390 430 470 500 560 600 650 700
叶绿素b 叶绿素a
植物生理学中的光合作用
植物生理学中的光合作用光合作用是植物生理学中的重要过程,它是植物能量来源的基础,能够将太阳能转化为有机物质。
本文将从光合作用的定义、光合作用的过程及其影响因素三个方面进行论述。
一、光合作用的定义光合作用是指植物利用太阳光能将二氧化碳和水转化为有机物质的过程。
在光合作用中,光能被植物中的叶绿素吸收,经过一系列反应,最终产生光合产物,其中最重要的产物是葡萄糖。
二、光合作用的过程光合作用主要包括光能吸收、光合色素的激发、光合电子传递链和碳酸化反应等几个过程。
1. 光能吸收植物叶片中的叶绿素能够吸收光能,其中最主要的吸收峰位于可见光的蓝色和红色波长区域。
当叶绿素吸收光能后,能量将被转移至反应中心,进入下一步骤。
2. 光合色素的激发在反应中心,叶绿素分子将光能转化为化学能,并将能量传递给反应中心的特殊叶绿素分子——反应中心叶绿素a。
这一过程称为光合色素的激发。
3. 光合电子传递链叶绿素a激发后,光合电子传递链便开始工作。
在这个过程中,叶绿素a释放出高能电子,并将其传递至不同的细胞膜蛋白上。
通过一系列复杂的电子传递过程,氢离子(H+)被运输至细胞膜内腔,形成负向电压差。
这一过程中,产生的能量可以用来合成三磷酸腺苷(ATP)和一氧化二氢(NADPH)。
4. 碳酸化反应ATP和NADPH经过光合作用供能反应后,参与碳酸化反应。
这一反应是将二氧化碳和水转化为葡萄糖的过程。
在叶绿体中存在着一种称为RuBisCO的酶,它能够催化二氧化碳与一种五碳物质结合,形成六碳物质,再分解成两个PGA分子。
PGA接着经过一系列反应,最终生成葡萄糖。
三、光合作用的影响因素光合作用的效率受到许多因素的影响,主要包括光照强度、二氧化碳浓度和温度三个方面。
1. 光照强度光照强度是影响光合作用速率的重要因素。
适宜的光照强度能够提高光能的吸收和利用效率。
然而,过强的光照则会引起叶片的光合反应受抑制,甚至损伤叶绿素分子。
2. 二氧化碳浓度高浓度的二氧化碳有助于促进光合作用的进行,因为二氧化碳是光合作用的重要底物。
植物生理学-光合作用完整版本
一个羧基在副环(E)上以酯键与甲醇结合—甲基酯化; 另一个羧基(丙酸)在D环上与植醇(叶绿醇)结合— 植醇基酯化; 非极性,亲脂,插入类囊体膜的疏水区,起定位作用。
叶绿素提取:
纯的有机溶剂不能打破叶绿体色素与蛋白质的联系,所以 必须用能与水混溶的有机溶剂并有少量水存在时,才能将 叶绿体色素提取出来。
人类面临 五大问题
人口 粮食 能源 资源 环境
依赖 光合生产
因此,深入探讨光合作用的规律,揭示光合作用的机理, 使之更好地为人类服务,愈加显得重要和迫切。
第2节 能量转换细胞器 —— 叶绿体
叶片是光合作用的主要器官, 叶绿体(chloroplast)是光合作用最重要的细胞器。
叶绿体的基本结构:
绿 490~ 550 230
黄橙红 550~ 585~ 640~ 585 640 700 212 196 181
远红 700~ 740 166
红外 >740
85 低
光合色素分子对光能的吸收及能量的转变示意图
基态:能量的最低状态 激发态:高能、不稳定状态
物质吸收光子→原子中的e重新排列→分子从基态跃迁到激发态 对于Chl分子: Chl + hγ= Chl* Chl*处于不同激发态:吸收红光→第一单线态;吸收蓝光→第二 单线态。第二单线态的能量>第一单线态。
荧光(fluorescence): 第一单线态的叶绿素分子回至基态时所发出的光。
荧光现象: 叶绿素溶液在透射光下呈绿色,而在反射光下呈红色 的现象。
叶绿素的荧光 (反射光下)叶绿素是叶绿酸的酯(叶绿酸是双羧酸,其中一个羧基被甲醇酯化, 另一个被叶绿醇酯化)。 叶绿素可以与碱起皂化反应而生成醇(甲醇和叶绿醇)和叶绿酸的盐, 产生的盐能溶于水中,用此法可将叶绿素与类胡萝卜素分开。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
响叶绿素合成。 ⑤ 水:影响叶绿素的合成,缺水使叶绿素分解加剧。
3. 植物的叶色 ⑴绿叶:一般正常植物叶片的叶绿素与类胡萝卜素分
子比例约为3:1,所以叶片为绿色; ⑵红叶:叶片中含有较多的花色素; ⑶黄叶:正常叶片的叶绿素被破坏时,叶片呈现的颜
3.光合势:指单位土地面积上,作物全生育期或某一阶段 生育期内有多少平方叶面积在进行干物质生产。
第二节 叶绿体及叶绿体色素
一、叶绿体的结构和成分 (一)叶绿体的形态结构(图4-3)
被膜、间质、类囊体(光合膜) (二)叶绿体的成分
叶绿体的化学成分:75%的水、蛋白质、脂类、 色素和无机盐。
二、光合色素的化学特性
原初 反应 包括
光能的吸收(光合色素)
传递(到作用中心)
光化学反应,引起电荷分 离(转换)
1. 光能的吸收与传递 根据功能,将叶绿体色素分为两种类型:
聚光色素和作用中心色素。 ⑴聚光色素(light-harvesting pigment)
包括绝大多数的Chla、全部的Chlb和全 部的类胡萝卜素。
色。 ⑷黄化现象(etiolation):缺乏叶绿素合成的必要条
件而阻止了叶绿素的合成,使叶片发黄的现 象。
第三节 光合作用的机理
H2O 光
ADP+Pi NADP+
(CH2O)n 酶
ATP
O2
NADPH
CO2
光反应
暗反应
光合作用中各种能量转变情况:
光能
电能
活跃的 化学能
稳定的 化学能
类囊体
叶绿体基质
第四章 光合作用
第一节 光合作用的重要性
一、光合作用的概念
CO2+H2O
光能
(CH2O)+ O2
绿色细胞
光能
2H2O+CO2
绿色细胞
还原
氧化
(CH2O)+ H2O + O2
光合作用是一氧化还原过程。 突出特点: 1)水被氧化为分子态O2; 2)CO2被还原成有机物; 3)在上述两过程中同时发生了光能的吸收、
特点:没有光化学活性,只有吸收和传递 光能的作用,把光能聚集到作用中心色素。
聚光色素又称天线色素或捕光色素。 光能传递方式:共振传递(指相同或不同 色素分子靠电子振动在分子间传递能量的过 程)。
⑵ 反应中心色素(reaction center pigment) 少数特殊状态的Chla分子为反应中心色素
(P680、P700)。 特点:具有光化学活性,能进行光化学反
应,又称为 “能量陷阱”。
吸收和传递光能
3.在光合中的作用
少量叶绿素a转化光能
(二)类胡萝卜素
1. 类胡萝卜素结构:含胡萝卜素和叶黄素,前者 分子式为C40H56;后者分子式是C40H56O2,分 子结构如图。
2. 溶解性:不溶于水,易溶于有机溶剂。 3. 颜色:胡萝卜素呈橙黄色,叶黄素呈黄色。 4. 在光合中的作用:可吸收和传递光能;还可保
光能 叶绿素
(CH2O)+ 18O2+ H2O
CO218+2H2O
光能 叶绿素
(CH2O18)+ O2+ H2O
二、光合作用的意义
(一)是无机物转变成有机物的主要途径。 每年地球光合作用合成5×1011t有机物
(二)是太阳能转变成稳定的化学能的主要途径。 将5×1011J日光能转化为化学能
(三)维持大气中氧气和CO2的平衡,保护环境。 释放出5.35×1011t 氧气
2.叶绿素的理化性质
(1)叶绿素a呈蓝绿色,叶绿素b呈黄绿色
(2)不溶于水,溶于有机溶剂
(3)皂化反应
COOCH3
COOK
C32H30ON4Mg 叶绿素a
+2KOH COOC20H39
C32H30ON4Mg 叶绿素a的钾盐
+ CH3OH + CH20H39OH COOK
甲醇 叶绿醇
(4)卟啉环中的镁可被H+或Cu2+所置换。 (5)容易被光分解
四、叶绿素的形成
1. 叶绿素的生物合成(图4-8) ⑴起始物质:谷氨酸或α-酮戊二酸; ⑵重要中间产物:δ-氨基酮戊酸(5-氨基酮戊
酸,原卟啉Ⅸ (protoporphyrin Ⅸ)等;
ห้องสมุดไป่ตู้
2. 影响叶绿素形成的条件 ① 光:原叶绿酸酯转变为叶绿酸酯需要光照;但强光下
叶绿素会被氧化. ② 温:最低温2℃、最适温30℃、最高温40℃,高温下
光合作用的全过程分为三大步骤:
①原初反应 ②电子传递和光合磷酸化
(光反应)
类囊体膜上进行
③碳素同化 (暗反应)基质中进行
光反应
光能的吸 收、
传递和转 换
电子传递和 光合磷酸化
ATP 形成同化力
NADPH
一、原初反应 原初反应指从光合色素分子被光激发开始到引
起第一个光化学反应为止的过程。
一、原初反应(primary reaction)
转化和储藏。 总之,光合作用的本质就是:物质转变
和能量转变。
有三方面的证据证明O2来自于H2O:
1. Van Niel假说
光能
CO2+2H2S
(CH2O) + 2S + H2O
细菌叶绿素
2. Hill反应
4Fe3++2H2O 3. 18O的研究
光能 叶绿素
4Fe + 4H+ + O2
CO2+2H2O18
护叶绿素分子,使其在强光下不致被光氧化而 破坏。
三、光合色素的光学特性
1. 辐射能量 E=Lh=Lhc /λ 光子的能量与波长成反比。
2. 吸收光谱(图4-6) 叶绿素吸收光谱的两个最强区:红光区640- 660nm,蓝紫光区430-450nm。 类胡萝卜素的最大吸收带在蓝紫光部分。
3. 荧光现象和磷光现象(图4-9)
(四)是人类寻求新能源和人工合成食物的理想模型。 (五)是现代农业生产技术措施的核心
“地球上最重要的化学反应”
三、光合作用的度量
1.光合速率:又称光合强度,是指单位叶面积在单位时 间内同化CO2的量或者在单位时间内积累干物质的量。
2.光合生产率:又称净同化率,是指植株的单位叶面积在 一天内进行光合作用减去呼吸和其他消耗之后净积累的 干物质重。
参与光合作用光能的吸收、传递或引起 原初反应的各种色素称为光合色素。
光合 色素
叶绿素 类胡萝卜素
高等植 物
藻胆素
(一)叶绿素
1.叶绿素(chlorophyll)的分子结构(图4-5)
叶绿素a C32H30ON4Mg
COOCH3 COOC20H39
叶绿素b C32H28O2N4Mg
COOCH3 COOC20H39