人教版初中数学七年级下册期中测试卷及答案
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.下列说法正确的是()A .4的平方根是2-B .16的平方根是4±C .2是4-的算术平方根D .6-是36的算术平方根2.在下列现象中,属于平移的是( ).A .荡秋千运动B .月亮绕地球运动C .操场上红旗的飘动D .教室可移动黑板的左右移动3.已知点P 的坐标为P (3,﹣5),则点P 在第( )象限.A .一B .二C .三D .四4.下列四个说法:①连接两点之间的线段叫做这两点间的距离;②经过直线外一点,有且只有一条直线与这条直线平行;③a 2的算术平方根是a ;④64的立方根是4.其中假命题的个数有( )A .1个B .2个C .3个D .4个5.如图,直线//EF MN ,点A ,B 分别是EF ,MN 上的动点,点G 在MN 上,ACB m ∠=︒,AGB ∠和CBN ∠的角平分线交于点D ,若52D ∠=︒,则m 的值为( ).A .70B .74C .76D .806.下列说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根C .任何一个数都有平方根和立方根D .任何数的立方根都只有一个7.如图,//AB CD ,EF 交AB 于点G ,EM 平分CEF ∠,80FGB ∠=︒,则GME ∠的度数为( ).A .60°B .55°C .50°D .45°8.如图,已知A 1(1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1)……则点A 2021的坐标为( )A .(505,﹣504)B .(506,﹣505)C .(505,﹣505)D .(﹣506,506)二、填空题9.16的算术平方根是 _____.10.点P 关于y 轴的对称点是(3,﹣2),则P 关于原点的对称点是__.11.若点A (9﹣a ,3﹣a )在第二、四象限的角平分线上,则A 点的坐标为_____. 12.如图,//a b ,直角三角板直角顶点在直线b 上.已知150∠=︒,则2∠的度数为______°.13.如图,在ABC 中,1841B C ∠=︒∠=︒,,点D 是BC 的中点,点E 在AB 上,将BDE 沿DE 折叠,若点B 的落点B '在射线CA 上,则BA 与B D '所夹锐角的度数是________.14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 15.若点P(2-m ,m+1)在x 轴上,则P 点坐标为_____.16.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点.A 出发,沿着A →B →C →D →A →B →...路径循环爬行,当爬行路径长为2020个单位长时,蚂蚁所在格点坐标为___.三、解答题17.计算:(1)3116+84-; (2)32|32|--.18.已知6a b +=,4ab =-,求下列各式的值:(1)22a b +;(2)22a ab b -+.19.已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系.(1)如图1,已知ABC ∠与DEF ∠中,//AB FE ,//BC DE ,AB 与DE 相交于点G .问:ABC ∠与DEF ∠有何关系?①请完成下面的推理过程.理由://AB FE ,AGE DEF ∴∠+∠= ( ).//BC DE ,AGE ABC ∴∠=∠( ).ABC DEF ∴∠+∠= .②结论:ABC ∠与DEF ∠关系是 .(2)如图2,已知//AB FE ,//BC ED ,则ABC ∠与DEF ∠有何关系?请直接写出你的结论.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 .20.如图,在平面直角坐标系中,已知P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P1(a+6,b+2).(1)请画出上述平移后的△A1B1C1,并写出点A1,C1的坐标;(2)写出平移的过程;(3)求出以A,C,A1,C1为顶点的四边形的面积.21.阅读下面的对话,解答问题:事实上:小慧的表示方法有道理,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵479<<,∴7的整数部分为2,小数<<,即273部分为72-.请解答:(1)15的整数部分_____,小数部分可表示为________.(2)已知:10-3=x+y,其中x是整数,且0<y<1,求x-y的相反数.22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.23.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A .4的平方根是±2,故错误,不符合题意;B .16的平方根是±4,故正确,符合题意;C .-4没有算术平方根,故错误,不符合题意;D .-6是36的一个平方根,故错误,不符合题意;故选B .【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断. 2.D【分析】根据平移的性质依次判断,即可得到答案.【详解】A 、荡秋千运动是旋转,故本选项错误;B 、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室解析:D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室可移动黑板的左右移动是平移,故本选项正确.故选:D.【点睛】本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解.3.D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可.【详解】解:∵点P的坐标为P(3,﹣5),∴点P在第四象限.故选D.【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-).4.C【分析】利用两点间的距离的定义、平行线的判定、算术平方根的定义及立方根的求法分别判断后即可确定正确的选项.【详解】解:①连接两点之间的线段的长度叫做这两点间的距离,故原命题错误,是假命题,符合题意;②经过直线外一点,有且只有一条直线与这条直线平行,正确,是真命题,不符合题意;③a2的算术平方根是a(a≥0),故原命题错误,是假命题,符合题意;2,故原命题错误,是假命题,符合题意;假命题有3个,故选:C.【点睛】本题主要考查真假命题,两点见的距离,平行线的判定,算术平方根,立方根的求法等知识点,熟知相关定义以及运算法则是解题的关键.5.C【分析】先由平行线的性质得到∠ACB=∠5+∠1+∠2,再由三角形内角和定理和角平分线的定义求出m即可.【详解】解:过C作CH∥MN,∴∠6=∠5,∠7=∠1+∠2,∵∠ACB=∠6+∠7,∴∠ACB=∠5+∠1+∠2,∵∠D=52°,∴∠1+∠5+∠3=180°−52°=128°,由题意可得GD为∠AGB的角平分线,BD为∠CBN的角平分线,∴∠1=∠2,∠3=∠4,∴m°=∠1+∠2+∠5=2∠1+∠5,∠4=∠1+∠D=∠1+52°,∴∠3=∠4=∠1+52°,∴∠1+∠5+∠3=∠1+∠5+∠1+52°=2∠1+∠5+52°=m°+52°,∴m°+52°=128°,∴m°=76°.故选:C.【点睛】本题主要考查平行线的性质和角平分线的定义,关键是对知识的掌握和灵活运用.6.D【分析】根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断.【详解】A、一个数的立方根只有1个,故本选项错误;B、负数有立方根,故本选项错误;C、负数只有立方根,没有平方根,故本选项错误;D、任何数的立方根都只有一个,故本选项正确.故选:D.【点睛】本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念.7.C【分析】根据两直线平行的性质定理,进行角的转换,再根据平角求得CEF ∠,进而求得GME ∠.【详解】//AB CD ,FED FGB ∴∠=∠,CEM GME ∠=∠又∵80FGB ∠=︒80FED ∴∠=︒18080100CEF ∴∠=-︒=︒, EM 平分CEF ∠,1502CEM CEF ∴∠=∠=︒, 50GME ∴∠=︒故选:C .【点睛】本题主要考查的是平行线的性质,角平分线的定义等知识点,根据条件数形结合是解题切入点.8.B【分析】求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第解析:B【分析】求2021A 在平面直角坐标系中的位置,经观察分析所有点,除1A 外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点2021A 在第四象限,根据推导可得出结论;【详解】由题可知,第一象限的点:2A ,6A …角标除以4余数为2;第二象限的点:3A ,7A ,…角标除以4余数为3;第三象限的点:4A ,8A ,…角标除以4余数为0;第四象限的点:5A ,9A ,…角标除以4余数为1;由上规律可知:20214=5051÷,∴点2021A 在第四象限,又∵5(2,1)A -,9(3,2)A -,即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商, ∴2021(506,505)A -.故选:B .【点睛】本题主要考查了点的坐标规律,准确理解是解题的关键.二、填空题9.2【详解】∵,的算术平方根是2,∴的算术平方根是2.【点睛】这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去 解析:2【详解】 ∵,4的算术平方根是2,∴ 2.【点睛】16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错. 10.【分析】直接利用关于y 轴对称点的性质得出P 点坐标,再利用关于原点对称点的性质得出答案.【详解】解:∵点P 关于y 轴的对称点是,∴点,则P 关于原点的对称点是.故答案为:.【点睛】本题考解析:()3,2【分析】直接利用关于y 轴对称点的性质得出P 点坐标,再利用关于原点对称点的性质得出答案.【详解】解:∵点P 关于y 轴的对称点是()3,-2,∴点()3,2P --,则P 关于原点的对称点是()3,2.故答案为:()3,2.【点睛】本题考查关于x 轴、y 轴对称的点的坐标求法、关于原点对称的点的坐标求法,牢记相关性质是解题关键.11.(3,﹣3).【分析】根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a =0,然后解方程即可.【详解】∵点P 在第二、四象限角平分线上,∴9﹣a+3﹣a =0,∴a =6,∴A 点的坐标解析:(3,﹣3).【分析】根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a =0,然后解方程即可.【详解】∵点P 在第二、四象限角平分线上,∴9﹣a+3﹣a =0,∴a =6,∴A 点的坐标为(3,﹣3).故答案为:(3,﹣3).【点睛】本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征. 12.40【分析】根据a ∥b ,可以得到∠1=∠DAE ,∠2=∠CAB ,再根据∠DAC=90°,即可求解.【详解】解:如图所示∵a ∥b∴∠1=∠DAE ,∠2=∠CAB∵∠DAC=90°∴∠D解析:40【分析】根据a ∥b ,可以得到∠1=∠DAE ,∠2=∠CAB ,再根据∠DAC =90°,即可求解.【详解】解:如图所示∵a ∥b∴∠1=∠DAE ,∠2=∠CAB∵∠DAC =90°∴∠DAE +∠CAB =180°-∠DAC =90°∴∠1+∠2=90°∴∠2=90°-∠1=40°故答案为:40.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.13..【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数.【详解】如下图,连接DE ,与解析:80︒.【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得BD B D '=, DC DB '=,由等腰三角形性质以及三角形外角定理求得BDB '∠度数,在BOD 中根据内角和即可求得BA 与B D '所夹锐角的度数.【详解】如下图,连接DE ,BA 与B D '相交于点O ,将 △BDE 沿 DE 折叠,BDE B DE '∴△≌△,BD B D '∴=,又∵D 为BC 的中点,BD DC =,BD B D '∴=,41DB C C '∴==︒∠∠,BDB DB C C =''∴=+︒∠∠∠82,18080BOD B BDB '∴=︒--=︒∠∠∠,即BA 与B D '所夹锐角的度数是80︒.故答案为:80︒.【点睛】本题考察了轴对称的性质、全等三角形的性质、中点的性质、三角形的外角以及内角和定理,综合运用以上性质定理是解题的关键.14.7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵91516 ∴3154<,∵a、b为两个连续的整数,a b<,b=,∴3a=,4a b+=+=;∴347故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.15.(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.【详解】∵点P(2-m,m+1)在x轴上,∴m+1=0,解得:m=-1,∴2-m=3,∴P点坐标解析:(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.【详解】∵点P(2-m,m+1)在x轴上,∴m+1=0,解得:m=-1,∴2-m=3,∴P点坐标为(3,0),故答案为:(3,0)【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.16.(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.【详解析:(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.【详解】解:∵A点坐标为(−2,2),B点坐标为(3,2),C点坐标为(3,−1),∴AB=3−(−2)=5,BC=2−(−1)=3,∴从A→B→C→D→A→B→…一圈的长度为2(AB+BC)=16.∵2020=126×16+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A右边4个单位长度处,即(2,2).故答案为:(2,2).【点睛】本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈.三、解答题17.(1)5;(2)4﹣.【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案.【详解】(1)原式=4+2﹣=5;(2)原式=3﹣(﹣)=3解析:(1)51;(2)2【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案.【详解】(1)原式=4+2﹣12;=512(2)原式===【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.(1)44;(2)48【分析】(1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值;(2)将a2+b2与ab 的值代入原式计算即可求出值.【详解】解:(1)把解析:(1)44;(2)48【分析】(1)把a +b =6两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出原式的值;(2)将a 2+b 2与ab 的值代入原式计算即可求出值.【详解】解:(1)把6a b +=两边平方得:()222236a b a b ab +=++=,把4ab =-代入得:()222436a b ++⨯-=, ∴2244a b +=;(2)∵2244a b +=,4ab =-,∴22a ab b -+=22a b ab +-=()444--=48.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.19.(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据,,即可得与的关系;(2)如图2,根据解析:(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)ABC DEF ∠=∠(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(2)如图2,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(3)由(1)(2)即可得出结论.【详解】解:(1)①理由://AB FE ,180AGE DEF ∴∠+∠=︒(两直线平行,同旁内角互补),//BC DE ,AGE ABC ∴∠=∠ (两直线平行,同位角相等),180ABC DEF ∴∠+∠=︒.②结论:ABC ∠与DEF ∠关系是互补.故答案为:①180︒;两直线平行,同旁内角互补;两直线平行,同位角相等;180︒;②相等.(2)ABC DEF ∠=∠,理由如下://AB FE ,DGA DEF ∴∠=∠,//BC DE ,DGA ABC ∴∠=∠,ABC DEF ∴∠=∠.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,故答案为:这两个角互补或相等.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理.20.(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A1,C1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P1(a+6,b+2)可分别解析:(1)图见详解;()()113,4,4,2A C ;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A 1,C 1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P 1(a +6,b +2)可分别得出A 、B 、C 的对应点A 1,B 1,C 1的坐标,然后连接即可得出图象;(2)由(1)可直接进行求解;(3)由(1)的图象可直接利用割补法进行求解面积.【详解】解:(1)由点P 的对应点P 1(a +6,b +2)可得如图所示图象:∴由图象可得()()113,4,4,2A C ;(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度; (3)连接11,,AA CC ,如图所示:∵点()()13,2,4,2A C -,∴点1,A C 在同一条直线上,且与x 轴平行, ∴1111272142AC C ACC A S S =⨯=⨯=四边形.【点睛】本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键. 21.(1)3,;(2)【分析】(1)先根据二次根式的性质求出的整数部分,则小数部分可求;(2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x 值,则其小数部分可求,即y 值,则x-解析:(1)3153;(2) 63-【分析】(115(233x 值,则其小数部分可求,即y 值,则x-y 值可求.【详解】解:(1)∵91516 ∴3154<,∴整数部分是3,15.故答案为:315.(2)解:∵ 132<∴8 <39∵x 是整数,且0<y<1,∴x=8,38=23 ,∴x-y=(82363-= ∵63的相反数为:(6363-=-∴x-y的相反数是63--.【点睛】本题主要考查了估算无理数的大小,代数式求值.解题的关键是确定无理数的整数部分即可解决问题.22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1)2,2-;(2)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+5,看图可知,表示-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.23.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.。
人教版七年级下册数学期中考试试题(含答案)
人教版七年级下册数学期中考试试卷一、单选题1.下列各式中正确的是A2=±B 3=-C2=D =2.下列说法正确的是A .3是分数B .227是无理数C .π-3.14是有理数D .3是有理数3.如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于A .(1,3)B .(5,3)C .(6,1)D .(8,2)4.如图,直线12l l //,直角三角板的直角顶点C 在直线1l 上,一锐角顶点B 在直线2l 上,若0135∠=,则2∠的度数是A .65B .55C .45D .355.如图,△ABC 沿BC 方向平移得到△DEF ,已知BC=7,EC=4,那么平移的距离为A .2B .3C .5D .76.下列说法正确的个数有()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④不重合的三条直线a、b、c,若//a b,//b c,则//a c.A.1个B.2个C.3个D.4个7.点P为直线l外一点,点A,B在直线l上,若5cmPA=,7cmPB=,则点P到直线l的距离()A.等于5cm B.小于5cm C.不大于5cm D.等于6cm 8.如图,下列条件中,不能判定//AB CD的是()A.180∠+∠=︒B.BAC ACDD BAD∠=∠C.CAD ACB∠=∠∠=∠D.B DCE9.如图,这是小明学校周边环境的示意图,以学校为参照点,儿童公园,图书市场分别距离学校500m、700m,若以(南偏西30°,500)来表示儿童公园的位置,则图书市场的位置应表示为()A.(700,南偏东45︒)B.(南偏东45︒,700)C.(700,北偏东45︒)D.(北偏东45︒,700)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……,第n次移动到点n A,A的坐标是()则点2021A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题11325-3-.(填“>”“<”或“=”)12.根据如表回答下列问题:x 23.123.223.323.423.523.623.723.823.92x 533.61538.24542.89547.56552.25556.96561.69566.44571.21满足23.623.7n <<的整数n 有________个.13.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为_____.14.如图,四边形ABCD 各个顶点的坐标分别为()2,8-、()11,6-、()14,0-、()0,0,则四边形ABCD 的面积是_______.15.如图所示,//AB CD ,EC CD ⊥.若28BEC ∠=︒,则ABE ∠的度数为_______.三、解答题16.(12-(2)求下列式子中x 的值:()229x -=17.根据要求,画图并回答问题:(1)如图,点P 在AOC ∠的边OA 上.①过点P 画OA 的垂线交OC 于B ;②过点P 作直线//PM OC ;(2)表示点О到直线PB 的距离的线段是__________;(3)直接写出所作图中与O ∠互余的角(可以表示出来的角).18.在平面直角坐标系xOy 中,点A 的坐标为()0,4,线段MN 的位置如图所示,其中点M 的坐标为()3,1--,点N 的坐标为()3,2-.(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .点M 平移到点A 的过程可以是:先向__________平移______个单位长度,再向__________平移__________个单位长度;②点B 的坐标为___________.(2)在(1)的条件下,若点C 的坐标为()4,1,连接AC ,BC ,求ABC ∆的面积.19.如图,已知∠1=∠2,∠3=∠4,∠5=∠A ,试说明:BE ∥CF .完善下面的解答过程,并填写理由或数学式:解:∵∠3=∠4(已知)∴AE ∥()∴∠EDC=∠5()∵∠5=∠A (已知)∴∠EDC=()∴DC ∥AB ()∴∠5+∠ABC=180°()即∠5+∠2+∠3=180°∵∠1=∠2(已知)∴∠5+∠1+∠3=180°()即∠BCF+∠3=180°∴BE ∥CF ().20.如图,直线AB 、CD 相交于O 点,∠AOC 与∠AOD 的度数比为4:5,OE ⊥AB ,OF 平分∠DOB ,求∠EOF 的度数.21.(1)计算下列各式的值:=____________________;;通过计算上面各式的值,你发现:对于任意有理数a=__________.(2)利用所得结论解决问题:若有理数a、b在数轴上对应的点的位置如图所示,化简:a b-.22.如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.23.将一副三角板中的两个直角顶点C叠放在一起(如图1),其中30∠=︒,A∠=︒,4560B∠=∠=︒.D E(1)若112∠的度数;BCD∠=︒,求ACE(2)试猜想BCD∠的数量关系,请说明理由;∠与ACE(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究BCD∠等于多少度时,//CD AB?请你直接写出答案.参考答案1.D 2.D 3.C 4.B 5.B 6.A 7.C 8.C 9.D 10.B 11.>【详解】解:因为-25>-27,3-,故答案为:>.12.5【详解】解:∵23.62=556.96,23.72=561.69,∴556.96561.69n <<∴满足23.623.7<<的整数n 有5个,故答案为:5.13.()5,4-【详解】解:∵点M 在第四象限,∴点M 的横坐标为正,纵坐标为负,∵点M 到x 轴的距离为4,到y 轴的距离为5,∴点M 的坐标为()5,4-,故答案为:()5,4-.14.80【详解】解:(1)如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,则四边形ABCD 的面积=12×(14-11)×6+12×(6+8)×(11-2)+12×2×8,=9+63+8,=80;故答案为:80.15.118︒【详解】解:过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC =90°,所以∠GEB =90°-28°=62°,因为EG ∥AB ,所以∠ABE =180°-62°=118°.故答案为:118°.16.(1)63(2)1x =-或5【详解】解:(1()238127232---93232=--+63=-;(2)∵()229x -=,∴23x -=±,∴1x =-或5.【详解】解:(1)如图所示,(2)∵OP ⊥PB∴线段OP 的长为点O 到直线PB 的距离故答案为:OP .(3)∵OP ⊥PB ∴∠OPB =90゜∴∠O +∠PBO =90゜即与O ∠互余的角为PBO ∠∵PM ∥OC ∴∠BPM =∠PBO∴∠O +∠BPM =90゜即与O ∠互余的角为BPM∠∴与O ∠互余的角为PBO ∠,BPM ∠.18.(1)①右,3,上,5(或上,5,右,3均可以);②()6,3;(2)7【分析】(1)①由点M 及其对应点的A 的坐标可得平移的方向和距离,即可;②根据①可得点N 的对应点B 的坐标;(2)割补法求解可得.【详解】解:(1)①∵点A 的坐标为()0,4,点M 的坐标为()3,1--,∴点M 移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;也可以是:先向上平移5个单位长度,再向右平移3个单位长度;②由①得:将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3),∴点B 的坐标为(6,3);(2)如图,过点C 作CF y ⊥于点F ,过点B 作BE CF ⊥交FC 延长线于点E ,过点A 作AD y ⊥轴交EB 的延长线于点D ,则四边形AFED 是矩形,∴3AF =,4CF =,2CE =,2BE =,1BD =,6AD =,∴矩形AFED ABC Rt AFC Rt BCE Rt ABDS S S S S =--- 111634322617222=⨯-⨯⨯-⨯⨯-⨯⨯=.19.答案见解析.【详解】试题分析:根据平行线的判定与性质,灵活判断同位角、内错角、同旁内角,逐步可求解.试题解析:解:∵3=4∠∠(已知)∴AE ∥BC (内错角相等,两直线平行)∴5EDC ∠=∠(两直线平行,内错角相等)∵5=A ∠∠(已知)∴EDC ∠=A ∠(等量代换)∴DC ∥AB (同位角相等,两直线平行)∴05180ABC ∠+∠=(两直线平行,同旁内角互补)即0523180∠+∠+∠=∵1=2∠∠(已知)∴0513180∠+∠+∠=(等量代换)即03180BCF ∠+∠=∴BE ∥CF (同旁内角互补,两直线平行).20.50°.【详解】解:设∠AOC =4x ,则∠AOD =5x ,∵∠AOC +∠AOD =180°,∴4x +5x =180°,解得x =20°,∴∠AOC =4x =80°,∴∠BOD =∠AOC =80°,∵OE ⊥AB ,∴∠BOE =90°,∴∠DOE =∠BOE ﹣∠BOD =10°,又∵OF 平分∠DOB ,∴∠DOF =12∠BOD =40°,∴∠EOF =∠EOD +∠DOF =10°+40°=50°.21.(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩;(2)a b-+【详解】(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩(2)解:由数轴知:21a -<<-,01b <<,∴0a b +<,0a b -<,a b -()()a b a b a b =-++--a b =-+.22.(1)见解析;(2)见解析.【详解】(1)证明:∵AB ∥CD ,∴∠ABC+∠BCD =180°,∵∠ABC =140°,∴∠BCD =40°,∵∠CDF =40°,∴∠BCD =∠CDF ,∴BC ∥EF .(2)解:结论:BD 平分∠ABC .理由:∵AE ∥BD ,∴∠BAE+∠ABD =180°,∵∠BAE =110°,∴∠ABD =70°,∵∠ABC =140°,∴∠ABD =∠DBC =70°,∴BD 平分∠ABC .23.(1)68°;(2)180BCD ACE ∠+∠=︒,理由见解析;(3)当120BCD ∠=︒或60︒时,//CD AB .【详解】解:(1)∵90BCA ECD ∠=∠=︒,112BCD ∠=︒∴1129022DCA BCD BCA ∠=∠-∠=︒-︒=︒.∴902268ACE ECD DCA ∠=∠-∠=-︒=︒.(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒.(3)当120BCD ∠=︒或60︒时,//CD AB .如图2,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,//CD AB ,此时180BCD ∠=︒-18060120B ∠=︒-︒=︒;如图3,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,//CD AB .。
人教版数学七年级下册《期中检测卷》(含答案)
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 32.在平面直角坐标系中,点A (﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A 30° B. 40° C. 50° D. 60°4.如图,AB ∥CD ,∠AGE=126°,HM 平分∠EHD ,则∠MHD 的度数是( )A. 44°B. 25°C. 26°D. 27° 5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°6.点()1,3-向右平移个单位后的坐标为( )A ()4,3- B. ()1,6- C. ()2,3 D. ()1,0- 7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( )A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩ 8.下列说法正确的是( )A. 的平方根是B. 的平方根C. 的平方根D. 的平方根9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,,25,3,0.2020020002...72π-+-(两个非零数之间依次多一个0),其中无理数有_______个12.16的平方根是.13.若25.36=5.036,253.6=15.906,则253600=__________.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________15.319127-=_____.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有_____(填序号).18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA 2B 2变换成△OA 3B 3,…,将△OAB 进行n 次变换,得到△OA n B n ,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是__三、解答题(第19-26题,共64分)19.计算 (1)231981416⎛⎫-+-+ ⎪⎝⎭(2)3232--20.解方程组:(1)23321x y x y -=⎧⎨+=⎩. (2)222529x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.25.如图1,点A、B直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm的小正方形,你能计算出每个长方形的长和宽吗?答案与解析一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 3[答案]C[解析]试题分析:9的算术平方根是3.故选C.考点:算术平方根.2.在平面直角坐标系中,点A(﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][分析]根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.[详解]解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.[点睛]本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 60°[答案]B[解析][分析]先根据∠1=50°,∠FEG=90°,求得∠3的度数,再根据平行线的性质,求得∠2的度数即可.[详解]解:如图,∵∠1=50°,∠FEG=90°,∴∠3=40°,∵AB∥CD,∴∠2=∠3=40°.故选:B.[点睛]本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44°B. 25°C. 26°D. 27°[答案]D[解析][分析]由题意可由平行线的性质,求出∠EHD的度数,再由HM平分∠EHD,即可求出∠MHD的度数.[详解]解:由题意得:∠AGE=∠BGF=126°,∵AB∥CD,∴∠EHD=180°−∠BGF=54°,又∵HM平分∠EHD,∴∠MHD=12∠EHD=27°.故选D.[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°[答案]D[解析][分析]根据对顶角的定义,余角与补角的关系,对各选项分析判断后利用排除法求解.[详解]解:A 、对顶角相等,相等的角不一定是对顶角,故本选项错误;B 、锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角,故本选项错误;C 、只有两直线平行,同位角才相等,故本选项错误;D 、一个角α的补角为180°﹣α,它的余角为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,故本选项正确. 故选D .[点睛]本题综合考查了余角、补角、对顶角,是基本概念题,熟记概念与性质是解题的关键.6.点()1,3-向右平移个单位后坐标为( )A ()4,3-B. ()1,6-C. ()2,3D. ()1,0-[答案]C[解析][分析]直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.[详解]解:把点(−1,3)向右平移3个单位后所得的点的坐标为:(−1+3,3),即(2,3),故选C .[点睛]本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( ) A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩[答案]A[解析][分析] 根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.[详解]根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.[点睛]本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.8.下列说法正确的是()A. 的平方根是B. 的平方根C. 的平方根D. 的平方根[答案]A[解析]分析]根据平方根性质,逐一判定即可.[详解]A选项,的平方根是,正确;B选项,的平方根是,错误;C选项,的平方根是,错误;D选项,没有平方根,错误;故选:A.[点睛]此题主要考查对平方根的理解,熟练掌握,即可解题.9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行[答案]C[解析][分析]根据平行于x轴的直线上两点的坐标特点解答.[详解]∵A,B两点的纵坐标相等,∴过这两点的直线一定平行于x轴.故选C.[点睛]解答此题的关键是掌握平行于坐标轴的直线上的点的坐标的特点.10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4[答案]C[解析][分析]由于二元一次方程2x+y=8中y的系数是1,可先用含x的代数式表示y,然后根据此方程的解是正整数,那么把最小的正整数x=1代入,算出对应的y的值,再把x=2代入,再算出对应的y的值,依此可以求出结果.[详解]解:∵2x +y =8,∴y =8﹣2x ,∵x 、y 都是正整数,∴x =1时,y =6;x =2时,y =4;x =3时,y =2.∴二元一次方程2x +y =8的正整数解共有3对.故选:C .[点睛]由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的正整数解,即此方程中两个未知数的值都是正整数,这是解答本题的关键.注意最小的正整数是1.二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个[答案]3[解析][分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:无理数有2π−0.2020020002…(两个非零数之间依次多一个0),共3个, 故答案为3.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…(相邻两个2之间0的个数逐次加1)等有这样规律的数.的平方根是 .[答案]±2.[解析][详解]±2. 故答案为±2.13.=5.036,=15.906,__________.[答案]503.6[解析][分析]根据平方根的计算方法和规律计算即可[详解]解:253600=25.3610000⨯=5.036×100=503.6.故答案为503.6.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________[答案]15°[解析][分析]如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.[详解]由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.319127-_____.[答案]2 3[解析][分析]根据是实数的性质即可化简.[详解]解:原式=331982127273-==. 故答案为23. [点睛]此题主要考查二次根式的化简,解题的关键是熟知实数的性质.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC ∥AE ;③如果∠1=∠2=∠3,则有BC ∥AE ;④如果∠2=45°,必有∠4=∠E .其中正确的有_____(填序号).[答案]①③[解析][分析]根据平行线的判定和性质解答即可.[详解]解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.[点睛]此题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解决本题的关键.18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,将△OAB进行n次变换,得到△OA n B n,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A2020的坐标是__[答案](22020,3)[解析][分析]根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.[详解]∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,∴An(2n,3);∴A2020(22020,3)故答案为:(22020,3)[点睛]依次观察各点的横纵坐标,得到规律是解决本题的关键.三、解答题(第19-26题,共64分)19.计算(1(2)[答案](1)12-;(2).[解析][分析](1)直接利用立方根以及平方根的性质分别化简得出答案;(2)直接利用绝对值的定义化简得出答案;[详解](11512442 =-+=-(2)==[点睛]考查了实数的混合运算以及二次根式的加减混合运算,正确化简各数是解题关键.20.解方程组:(1)23321x yx y-=⎧⎨+=⎩.(2)222529x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩[答案](1)11xy=⎧⎨=-⎩;(2)521xyz=⎧⎪=-⎨⎪=⎩.[解析][分析](1)首先由①×2+②,消去y,然后解关于x的方程即可求解.(2)由①+②+③得到x+y+z=4④,再由①-④得到y的值,②-④得到z的值,③-④得到x的值.[详解](1)23 321 x yx y①②-=⎧⎨+=⎩由①×2+②,得7x=7,解得x=1,把x=1 代入①式,得2﹣y=3,解得y=﹣1所以原方程组的解为11 xy=⎧⎨=-⎩.(2)2 2....2 5....29.... x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩①②③①+②+③ 得4x+4y+4z=16 即 x+y+z=4 ④①-④ 得y= -2②-④ 得z= 1③-④ 得x= 5所以原方程组的解为521x y z =⎧⎪=-⎨⎪=⎩[点评]考查了解二元一次方程组和解三元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.[答案](1)图见解析(2)点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3)(3)192[解析][分析](1)依据所得点的坐标,描点后首尾顺次连接即可求解;(2)根据点的坐标的平移规律即可求解;(3)根据割补法及三角形的面积公式可得答案.[详解](1)如图,△ABC 和△’’’A B C 为所求; (2)∵把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.∴点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3);(3)三角形ABC 的面积=5×5-12×3×5-12×3×2-12×2×5=25-152-3-5=192.[点睛]本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质,并根据平移变换的定义和性质得出变换后的对应点位置.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?[答案](1)跳绳的单价为16元,毽子的单价为4元;(2)商品按原价的八五折销售.[解析][分析](1)可设跳绳的单价为x 元,毽子的单价为y 元,根据题意列出关于x,y 的二元一次方程组,解方程组即可;(2)设商品按原价的z 折销售,根据第(1)问求出来的跳绳和毽子的单价,根据题意列出方程,解方程即可.[详解](1)设跳绳的单价为x 元,毽子的单价为y 元,根据题意有508011203050680x y x y +=⎧⎨+=⎩ ,解得164x y =⎧⎨=⎩所以跳绳的单价为16元,毽子的单价为4元;(2)设商品按原价的z 折销售,根据题意得(164)100170010z +⨯⨯= 解得8.5z = 所以商品按原价的八五折销售.[点睛]本题主要考查一元一次方程及二元一次方程组的应用,读懂题意,列出方程及方程组是解题的关键. 23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().[答案]∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.[解析][分析]根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.[详解]解:∵AB∥CD,∴∠4=∠BAE( 两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD( 等量代换),∴AD∥BE( 内错角相等,两直线平行).[点睛]本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.[答案]见解析.[解析][分析]根据两直线平行,同旁内角互补得到∠A+∠ABC=180°,再根据∠A=∠C得到∠C+∠ABC=180°,根据同旁内角互补,两直线平行得到DC∥AB,再利用两直线平行,内错角相等得到∠1=∠2.[详解]∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=∠C,∴∠C+∠ABC=180°,∴DC∥AB,∴∠1=∠2.[点睛]考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.25.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.[答案](1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.[解析]分析](1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q 在C 点左侧时;②当Q 在C 点右侧时.[详解]解:(1)1l ∥2l .理由如下:∵AE 平分∠BAC ,CE 平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知), ∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l ∥2l (同旁内角互补,两直线平行)(2)①当Q 在C 点左侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC ,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ ,∴∠BAC=∠CQP +∠CPQ (等量代换)②当Q 在C 点右侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE ,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.[点睛]本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm 的小正方形,你能计算出每个长方形的长和宽吗?[答案]小长方形的长为10mm ,宽为6mm .[解析][分析]设每个小长方形的长为xmm ,宽为 ymm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个长加2的和等于一个长与两个宽的和,于是得方程组,解出即可.[详解]设每个长方形的长为xmm ,宽为 ymm ,由题意得35222x yx x y=⎧⎨+=+⎩,解得:106xy=⎧⎨=⎩.答:小长方形的长为10mm,宽为6mm.[点睛]考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.。
人教版数学七年级下册《期中检测试卷》及答案解析
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 82.下列调查中,适宜采用全面调查的是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 834.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a85.下列等式从左到右的变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C. x2+3x﹣1=x(x+3)﹣1D x2+y2=(x+y)2﹣2xy6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 18.如图,△ABC沿BC所在的直线平移到△DEF的位置,且C点是线段BE的中点,若AB=5,BC=2,AC=4,则AD的长是()A. 5B. 4C. 3D. 29.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确说法是()A. ①④B. ①③④C. ②③D. ①②二、填空题(共6小题)11.因式分解:a2﹣4=_____.12.当x=____时,分式321xx--的值为0.13.已知x2+1,则代数式x2﹣2x+1的值为____.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.15.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度. 16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.三、解答题(共7小题)17.计算与化简: (1)02000(21)(1)-+-; (2)(10a 2﹣5a )÷(5a ). 18.解方程或方程组: (1)24342x y x y +=⎧⎨-=⎩;(2)33233x x x-=--. 19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题: (1)这次共抽取了 名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是 ,频率是 ;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.20.(1)分解因式:2mx2﹣4mxy+2my2.(2)先化简,再求值:211122-⎛⎫-÷⎪++⎝⎭xx x,其中x=2020.21.(1)已知x2+y2=34,x﹣y=2,求(x+y)2的值.(2)设y=kx(x≠0),是否存在实数k,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2?若能,请求出满足条件的k 的值;若不能,请说明理由.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段销售数量销售收入A种型号B种型号第一周 6 5 2100元第二周 4 10 3400元(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由.(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠F AD=50°,∠ABC=40°,求∠BED的度数.(3)将图2中的线段BC沿DC所在的直线平移,使得点B在点A的右侧,若∠F AD=m°,∠ABC=n°,其他条件不变,得到图3,请你求出∠BED的度数(用含m,n的式子表示).答案与解析一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 8[答案]A[解析][分析]根据负整数指数幂的运算法则解答即可.[详解]解:1122-=.故选:A.[点睛]本题考查了负整数指数幂的运算法则,属于基础题型,熟练掌握运算法则是解题关键.2.下列调查中,适宜采用全面调查的是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查[答案]A[解析][分析]由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.[详解]A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.[点睛]本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 83[答案]B[解析][分析]原式提取公因式分解因式后,判断即可.[详解]解:原式=81×(81﹣1)=81×80,则812﹣81肯定能被80整除.故选:B.[点睛]本题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键.4.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a8[答案]D[解析][分析]直接利用幂指数的运算法则和合并同类项法则即可得到答案.[详解]A.a2+a2=2a2,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.(a4)2=a8,故本选项符合题意.故选:D.[点睛]考查了同底数幂的乘法、同底数幂的除法、幂的乘方与积的乘方以及合并同类项.准确掌握法则是解题的关键.5.下列等式从左到右的变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B. ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C. x2+3x﹣1=x(x+3)﹣1D. x2+y2=(x+y)2﹣2xy[答案]B[解析][分析]根据因式分解的意义,可得答案.[详解]解:A.属于整式乘法运算,不属于因式分解;B.﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2,属于因式分解;C.右边不是几个整式积的形式,不属于因式分解;D.右边不是几个整式积的形式,不属于因式分解.故选:B.[点睛]本题考查了因式分解的意义,利用因式分解的意义是解题关键.6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°[答案]C[解析][分析]先根据平行线的性质,可得∠AEG的度数,根据EF⊥CD可得EF⊥AB,再根据垂直和平角的定义可得到∠2的度数.[详解]解:∵AB∥CD,∠1=60°,∴∠AEG=60°.∵EF⊥CD,∴EF⊥AB,∴∠2=180°﹣60°﹣90°=30°.故选:C.[点睛]本题主要考查了平行线的性质的运用,解题时注意:两条平行线被第三条直线所截,同位角相等.7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 1 [答案]C[解析]分析]根据二元一次方程组的解及解二元一次方程组即可解答. [详解]解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得2425a b b a +=⎧⎨+=⎩解得:12a b =⎧⎨=⎩∴a +b =1+2=3. 故选:C .[点睛]此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.8.如图,△ABC 沿BC 所在的直线平移到△DEF 的位置,且C 点是线段BE 的中点,若AB =5,BC =2,AC =4,则AD 的长是( )A. 5B. 4C. 3D. 2[答案]B [解析] [分析]利用平移的性质解决问题即可. [详解]解:由平移的性质可知,AD=BE . ∵BC=CE ,BC=2, ∴BE=4, ∴AD=4. 故选:B .[点睛]本题考查平移的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x 个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=[答案]D[解析]分析]根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400个用的时间=6,即可列出方程.[详解]解:设该厂原来每天加工x个零件,根据题意得:10040062x x+=.故选D.[点睛]此题考查了由实际问题抽象出分式方程,分析题意,根据关键描述语,找到合适的等量关系是解决问题的关键.10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确的说法是()A. ①④B. ①③④C. ②③D. ①②[答案]A[解析][分析]利用平行公理对①判断,利用平方差公式的特点对②分析,③通过0指数、底数为1,底数为-1对代数式进行分类讨论得结果,④抓住a取每一个值方程的解都相同,求出x、y的值.[详解]①按照平行公理可判断在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项正确;②当k为负值时,多项式x2﹣ky2不能分解成两个一次因式积的形式,故本选项不正确;③当t=4、32时,(t ﹣3)3﹣2t =1,故本选项不正确; ④新方程(a ﹣1)x+(a+2)y=2a ﹣5.∵a 每取一个值时,就有一个方程,而这些方程总有一个公共解,∴当a=1时,y=﹣1,当a=﹣2时,x=3,∴公共解是31x y =⎧⎨=-⎩.综上正确的说法是①④. 故选:A .[点睛]本题考查了平行公理、因式分解、零指数幂和二元一次方程组的解等知识点,熟练掌握相关性质定理及运算法则是解题的关键.二、填空题(共6小题)11.因式分解:a 2﹣4=_____. [答案](a+2)(a ﹣2). [解析]试题分析:直接利用平方差公式分解因式a 2﹣4=(a+2)(a ﹣2).故答案为(a+2)(a ﹣2). [考点]因式分解-运用公式法. 12.当x =____时,分式321x x --的值为0. [答案]3 [解析] [分析]根据分式的值为0可得30x -=,由此可得出x 的值,再代入分式的分母进行检验即可. [详解]由题意得:30x -=, 解得3x =,当3x =时,2123150x -=⨯-=≠, 则当3x =时,分式321x x --的值为0, 故答案为:3.[点睛]本题考查了分式的值为0、分式有意义的条件,掌握分式的值为0的求值方法是解题关键.13.已知x +1,则代数式x 2﹣2x +1的值为____. [答案]2. [解析]利用完全平方公式将所求的代数式进行变形,然后代入求值即可.[详解]解:原式为:2x-2x+12=(x-1),将x=21代入上式,=(x-1)=(2+1-1)=2原式22故答案为:2.[点睛]此题考察了完全平方公式的计算,二次根式的性质.利用完全平方公式将所求代数式进行变形是解答此题的关键.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.[答案]24.[解析][分析]先根据最喜爱体操的学生所占百分比及其对应的人数求出总人数,然后用总人数乘以最喜爱“3D打印”的学生所占百分比即得答案.[详解]解:∵选最爱体操的学生所占百分比为1﹣(10%+35%+40%)=15%,其对应人数为9人,∴被调查的总人数为9÷15%=60(人),∴最喜爱“3D打印”学生数为60×40%=24(人).故答案为:24.[点睛]本题考查了扇形统计图的相关知识,属于基本题型,读懂统计图提供的信息、掌握求解的方法是关键.15.已知∠A与∠B的两边分别平行,其中∠A为x°,∠B的为(210﹣2x)°,则∠A=____度.[答案]70或30.[解析]分∠A=∠B 与∠A+∠B=180°两种情况进行讨论即可求解.详解]解:根据题意,有两种情况:(1)当∠A=∠B ,可得:x=210﹣2x ,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.[点睛]本题考查的是平行线的性质,在解答此题时要注意分类讨论.16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.[答案]7.[解析][分析]设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16-x-y )枚,根据这些硬币的总值为8元(即80角),即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出结论.[详解]解:设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16﹣x ﹣y )枚,依题意,得:x +5y +10(16﹣x ﹣y )=80,∴y =16﹣95x . ∵x ,y 均为正整数,∴x =5,y =7.故答案为:7.[点睛]本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题(共7小题)17.计算与化简:(1)020001)(1)-+-;(2)(10a 2﹣5a )÷(5a ).[答案](1)2;(2)2a ﹣1.[解析](1)分别根据0指数幂的意义和﹣1的偶次幂计算每一项,再合并即可;(2)根据多项式除以单项式的法则解答即可.[详解]解:(1)020001)(1)+-=1+1=2;(2)(10a2﹣5a)÷(5a)=2a﹣1.[点睛]本题考查了0指数幂、实数的混合运算以及多项式除以单项式等知识,属于常见题型,熟练掌握上述基础知识是解题的关键.18.解方程或方程组:(1)24 342 x yx y+=⎧⎨-=⎩;(2)33233xx x-=--.[答案](1)21xy=⎧⎨=⎩;(2)x=﹣9.[解析][分析](1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解..[详解](1)24342x yx y+=⎧⎨-=⎩①②,①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为21 xy=⎧⎨=⎩;(2)分式方程整理得:33xx-﹣2=﹣33x-,去分母得:3x﹣2(x﹣3)=﹣3, 去括号得:3x﹣2x+6=﹣3,解得:x=﹣9,经检验x=﹣9是分式方程的解.[点睛]本题考查了解分式方程,以及解二元一次方程组,熟练掌握各自的解法是解题的关键.19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是,频率是;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.[答案](1)400;(2)108,0.27;(3)678人.[解析][分析](1)将频数直方图内所有的频数求和,即可算得参加调查的总人数;(2)由频数直方图可查用时在2.45-3.45小时的频数是108,频率=频数总人数;(3)在400人中,求出用时在0.45-3.45小时频率,再乘以1200,即可求得全校电子产品用时在0.45-3.45小时的人数.[详解]解:(1)这次共抽取了50+68+108+82+52+40=400(人),故答案为:400;(2)由直方图可得:用时在2.45-3.45小时这组的频数是108,频率是108÷400=0.27;故答案为:108,0.27;(3)用时在0.45-3.45小时频率是(50+68+108)÷400=0.565,(人),1200人中用时在0.45-3.45小时的人数为:12000.565=678答:一周电子产品用时在0.45﹣3.45小时的学生有678人.[点睛]本题考察了频数与频率之间的关系以及用样本的某种“率”推测总体的“率”,解题的关键在于掌握频率=频数总人数.20.(1)分解因式:2mx 2﹣4mxy +2my 2.(2)先化简,再求值:211122-⎛⎫-÷ ⎪++⎝⎭x x x ,其中x =2020. [答案](1)2m (x ﹣y )2;(2)11x -,12009. [解析][分析](1)原式先提取公因式,再运用完全平方公式分解;(2)括号内先通分化简,再计算除法,然后把x 的值代入化简后的式子计算即可.[详解]解:(1)2mx 2﹣4mxy +2my 2=2m (x 2﹣2xy +y 2)=2m (x ﹣y )2; (2)211122-⎛⎫-÷ ⎪++⎝⎭x x x =()()112122x x x x x +-+-÷++ =()()12211x x x x x ++⋅++- =11x -, 当x =2020时,原式=11202012019=-. [点睛]本题考查了多项式的因式分解和分式的化简求值,属于常考题型,熟练掌握分解因式的方法和分式的混合运算法则是解题的关键.21.(1)已知x 2+y 2=34,x ﹣y =2,求(x +y )2的值.(2)设y =kx (x ≠0),是否存在实数k ,使得(3x ﹣y )2﹣(x ﹣2y )(x +2y )+6xy 化简为28x 2?若能,请求出满足条件的k 的值;若不能,请说明理由.[答案](1)64;(2)k =2或﹣2[解析][分析](1)先利用完全平方公式求得2xy的值,再根据(x+y)2=x2+y2+2xy即可求得;(2)先根据完全平方公式和平方差公式将多项式进行化简,再将y=kx代入,整理,根据结果为28x2即可求得k 的值.[详解]解:(1)把x﹣y=2两边平方得:(x﹣y)2=4,即x2﹣2xy+y2=4.∵x2+y2=34,∴2xy=30,则(x+y)2=x2+y2+2xy=34+30=64;(2)原式=9x2﹣6xy+y2﹣x2+4y2+6xy=8x2+5y2,把y=kx代入得:原式=8x2+5k2x2=(5k2+8)x2=28x2,∴5k2+8=28,即k2=4,开方得:k=2或﹣2,则存在实数k=2或﹣2,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2.[点睛]本题考查平方差公式和完全平方公式.熟记公式,并能灵活运用对公式进行变形解题关键.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.[答案](1)A种型号的电风扇的销售单价为100元,B种型号的电风扇的销售单价为300元;(2)能实现利润为8000元的目标,可采购A种型号的电风扇50台,B种型号的电风扇70台.[解析][分析](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,根据前两周的销售数量及销售收入,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,根据该超市一共采购这两种型号的电风扇共120台且销售完毕后可获得8000元利润,即可得出关于m ,n 的二元一次方程组,解之即可得出结论.[详解](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,依题意,得:6521004103400x y x y +=⎧⎨+=⎩, 解得:100300x y =⎧⎨=⎩. 答:A 种型号的电风扇的销售单价为100元,B 种型号的电风扇的销售单价为300元.(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,依题意,得:()()120100803002008000m n m n +=⎧⎨-+-=⎩, 解得:5070m n =⎧⎨=⎩. 答:能实现利润为8000元的目标,可采购A 种型号的电风扇50台,B 种型号的电风扇70台.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB ∥CD ,则∠AEC =∠BAE +∠DCE 成立吗?请说明理由.(2)如图2,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .BE 、DE 所在直线交于点E ,若∠F AD =50°,∠ABC =40°,求∠BED 的度数.(3)将图2中的线段BC 沿DC 所在的直线平移,使得点B 在点A 的右侧,若∠F AD =m °,∠ABC =n °,其他条件不变,得到图3,请你求出∠BED 的度数(用含m ,n 的式子表示).[答案](1)成立,理由见解析;(2)45°;(3)∠BED 的度数改变,∠BED =180°﹣12n °+12m °. [解析][分析](1)根据平行线的性质即可得到结论;(2)先过点E作EH∥AB,根据平行线的性质和角平分线的定义,即可得到结论;(3)过E作EG∥AB,根据平行线的性质和角平分线的定义,即可得到结论.[详解]解:(1)如图1中,作EF∥AB,则有EF∥CD,∴∠1=∠BAE,∠2=∠DCE,∴∠AEC=∠1+∠2=∠BAE+∠DCE.(2)如图2,过点E作EH∥AB,∵AB∥CD,∠F AD=50°,∴∠F AD=∠ADC=50°.∵DE平分∠ADC,∠ADC=50°,∴∠EDC=12∠ADC=25°.∵BE平分∠ABC,∠ABC=40°,∴∠ABE=12∠ABC=20°.∵AB∥CD,∴AB∥CD∥EH,∴∠ABE=∠BEH=20°,∠CDE=∠DEH=25°, ∴∠BED=∠BEH+∠DEH=45°.(3)∠BED的度数改变.过点E作EG∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=∠GAD=m°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=12m°∵AB∥CD,∴AB∥CD∥EG,∴∠BEG=180°﹣∠ABE=180°﹣12n°,∠CDE=∠DEG=12m°,∴∠BED=∠BEG+∠DEG=180°﹣12n°+12m°.故答案为:180°﹣12n°+12m°.[点睛]本题主要考查了平移的性质,平行线的性质以及角平分线的定义的运用,解决问题的关键是正确的作出辅助线.。
人教版七年级数学下册期中测试卷(及答案)
人教版七年级数学下册期中测试卷(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( ) A .2 B .3 C .9 D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 5.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .6669.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3B .-1或-3C .±1或±3D .无法判断 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围是_________________.4.如图,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC =_______.5.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是________.6.近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为________.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩ (1)则m ,n 的值分别是多少?(2)正确的解应该是怎样的?3.如图,在四边形OBCA 中,OA ∥BC ,∠B=90°,OA=3,OB=4.(1)若S 四边形AOBC =18,求BC 的长;(2)如图1,设D 为边OB 上一个动点,当AD ⊥AC 时,过点A 的直线PF 与∠ODA 的角平分线交于点P ,∠APD=90°,问AF 平分∠CAE 吗?并说明理由;(3)如图2,当点D 在线段OB 上运动时,∠ADM=100°,M 在线段BC 上,∠DAO 和∠BMD 的平分线交于H 点,则点D 在运动过程中,∠H 的大小是否变化?若不变,求出其值;若变化,说明理由.4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、B6、C7、B8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、-4π3、-2≤m<34、78°5、24.6、76.510⨯三、解答题(本大题共6小题,共72分)1、(1)55xy⎧=⎨=⎩;(2)25xy⎧=⎪⎨=⎪⎩2、(1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩3、(1)6;(2)略;(3)略.4、(1)证明略;(2)证明略.5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)安排生产甲种产品25件,使总产值是1375千元,A种原料还剩下20吨,B种原料正好用完,还剩下0吨.。
人教版七年级数学下册期中考试卷(附答案)
人教版七年级数学下册期中考试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a –2cB .–aC .aD .2b –a4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠35.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .87.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-69.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD 上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且'ED在A EF∠'内部,如图2,设∠A′ED'=n°,则∠FE D′的度数为___________(用含n的代数式表示).3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.如果一个数的平方根是a +6和2a ﹣15,则这个数为________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=.2.已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数. 6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、C7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、1804n ︒-︒3、2或2-34、815、两6、48三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)30x =;(3)0.7x =-.2、-3≤a <-23、(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;4、60°5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。
人教版七年级数学下学期期中测试卷含答案
七年级数学下学期期中测试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、两条直线的位置关系有()A、相交、垂直B、相交、平行C、垂直、平行D、相交、垂直、平行2、如图所示,是一个“七”字形,与∠1是同位角的是()A、∠2B、∠3C、∠4D、∠53、经过一点A画已知直线a的平行线,能画()A、0条B、1条C、2条D、不能确定4、如图4,下列条件中,不能判断直线a//b的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°5、下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形6、一个正数x的平方根是2a-3与5-a,则x的值是()。
A.64B.36C.81D.497、如图,已知:∠1=∠2,∠3=∠4,∠A=80°,则∠BOC等于()A、95°B、120°C、130°D、无法确定8、若a*=1.1062,b*=0.947是经过舍入后作为的近似值,问a*+b*有几位有效数字?()A、4B、5C、6D、79、下列说法正确的是()A、符号相反的数互为相反数B、符号相反绝对值相等的数互为相反数C、绝对值相等的数互为相反数D、符号相反的数互为倒数10、在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A 与坐标原点0重合,则B平移后的坐标是()。
A.(0,-2)B.(4,2)C.(4,4)D.(2,4)二、填空题(本大题共7小题,每小题4分,共28分)11、用科学记数法表示9349000(保留2个有效数字)为________________.12、如图1直线AB,CD,EF相交与点O,图中∠AOE的对顶角是_________,∠COF的补角是__________。
13、如图2,要把池中的水引到D处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:______________________________14、多项式4x²+4mx+36是一个完全平方式,则m=_____________.15、如图,AC平分∠BAD,∠DAC=∠DCA,填空:因为AC平分∠BAD,所以∠DAC= _______,又因为∠DAC=∠DCA,所以∠DCA= _______,所以AB∥_______。
2024年最新人教版初一数学(下册)期中考卷及答案(各版本)
2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。
2. 2的相反数是______。
3. 3/4的倒数是______。
4. 5的平方是______。
5. 2的立方根是______。
三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。
2. 解不等式:3x + 4 > 11。
3. 解方程组:x + y = 5, x y = 1。
4. 解不等式组:x > 2, x < 5。
5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。
四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。
他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。
求这个长方形的面积。
五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。
2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。
求线段AB的长度。
选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。
人教版数学七年级下册期中测试卷及答案
人教版数学七年级下册期中测试题一、填空题(每题3分,共30分)l、已知∠a的对顶角是81°,则∠a=______.2、把“等角的补角相等”写成“如果…,那么…”的形式_________________________________.3、在平面直角坐标系中,点P(-4,5)到x轴的距离为______,到y轴的距离为________.4、若等腰三角形的边长分别为3和6,则它的周长为________.5、如果P(m+3,2m+4)在y轴上,那么点P的坐标是________.6、如果一个等腰三角形的外角为100°,则它的底角为________..7、一个长方形的三个顶点坐标为(―1,―1),(―1,2)(3,―1),则第四个顶点的坐标是______________.8、将点P(-3,4)先向下平移3个单位,再向左平移2个单位后得到点Q,则点Q的坐标是_____________.9、武夷中学运动场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.10、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2010个球止,共有实心球_____________个。
”二、选择题(每题3分,共30分)11、在同一平面内,两直线可能的位置关系是()A.相交B.平行C.相交或平行D.相交、平行或垂直12、如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是().(A)120°(B)130°(C)140°(D)150°13、在△ABC中,已知∠A:∠B:∠C=1:2:3则△ABC是().A、锐角三角形B、直角三角形C、钝角三角形D以上都不对54D3E21CBA14、如果∠A 和∠B 的两边分别平行,那么∠A 和∠B 的关系是().A.相等B.互余或互补C.互补D.相等或互补15、如右图,下列能判定AB ∥CD 的条件有()个.(1)︒=∠+∠180BCD B ;(2)21∠=∠;(3)43∠=∠;(4)5∠=∠B .A.1B.2C.3D.4第15题图16、下列说法:①三角形的高、中线、角平分线都是线段;②内错角相等;③坐标平面内的点与有序数对是一一对应;④因为∠1=∠2,∠2=∠3,所以∠1=∠3。
人教版数学七年级下册《期中检测试卷》含答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分) 1. 14 的平方根是 A. 12 B. 12± C. 12- D. 116± 2. 如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A. B. C. D. 3. 在平面直角坐标系中,点(-2,5)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4. 下列计算正确的是( )A. 9=±3B. 38-=﹣2C. 2(3)-=﹣3D. 235+=5. 在311.414283π-,,,,中,无理数的个数有( ) A. 1个B. 2个C. 3个D. 4个 6. 若230x y -++=,则的值为( ) A. -8 B. -6 C. 5 D. 67. 如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4 C ∠B =∠DCE D. ∠D +∠DAB =180°8. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A 523220x y x y +=⎧⎨+=⎩B. 522320x y x y +=⎧⎨+=⎩ C 202352x y x y +=⎧⎨+=⎩ D. 203252x y x y +=⎧⎨+=⎩ 9. 如图,现将一块三角板含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为( ).A. 50°;B. 60°;C. 70°;D. 80°.10. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为( )A. (45,10)B. (45,6)C. (45,22)D. (45,0)二、填空题(每小题3分,共18分) 11. 81的算术平方根是________,33128+ = ________. 12. 已知a ,b 为两个连续的整数,且a <57<b ,则a +b =___________.13. 点P(m−1,m+3)在平面直角坐标系的y 轴上,则P 点坐标为_______.14. 如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOD=120°,则∠BOD=__________°.15. 已知方程2x+y =3,用含x 的代数式表示y ,则y =______.16. 用“*”定义新运算:对于任意实数a b 、,都有2*2a b a b =+,如23*423422=⨯+=,那么3*2=__.三、解答下列各题:(共72分)17. 计算(1)31984-+-- (2)21(1)4x -= (3)()()222121-+--+ (4)()334375x -=- 18. 解方程:(1)3? 42x y x y -=⎧⎨+=⎩(2)10216x y x y +=⎧⎨+=⎩ 19. 如图,AD ∥BE ,∠1=∠2,求证:∠A =∠E .请完成解答过程:解:∵AD ∥BE (已知)∠A =∠______(_________________)又∵1=∠2(已知)∴AC ∥_____(________________)∴∠3=∠_____(两直线平行,内错角相等)∴∠A =∠E (_________)20. 若5a+1和a ﹣19是数m 的平方根.求a 和m 的值.21. 已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1;(2)求△A 1B 1C 1的面积.22. “鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有二十五头,下有七十六足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有25个头;从下面数,有76条腿,问笼中各有几只鸡和兔?23. 如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.24. 如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC 边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.25. 如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.答案与解析一、选择题(每小题3分,共30分) 1. 14 的平方根是 A. 12 B. 12± C. 12- D. 116± [答案]B[解析][分析]根据平方根的定义求解. [详解]∵211()24±=, ∴14的平方根是12±. 故选B.[点睛]考查了平方根的概念,解题关键是熟记平方根的定义.2. 如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A.B. C. D.[答案]D[解析][分析] 根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.[详解]通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D 可以通过图案①平移得到.故答案选:D.[点睛]本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象. 3. 在平面直角坐标系中,点(-2,5)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[解析][分析]根据各象限内点P (a ,b )坐标特征:①第一象限:a >0,b >0;②第二象限:a <0,b >0;③第三象限:a <0,b <0;④第四象限:a >0,b <0进行判断即可.[详解]∵第二象限内点横坐标<0,纵坐标>0,∴点(-2,5)所在的象限是第二象限.故选B .[点睛]此题主要考查了平面内坐标点的特征,关键是熟记各象限内坐标点的特征.4. 下列计算正确的是( )3 2 3 =[答案]B[解析][分析]根据算术平方根与立方根的定义即可求出答案.[详解]解:(A )原式=3,故A 错误;(B )原式=﹣2,故B 正确;(C )3,故C 错误;(D ,故D 错误;故选B .[点睛]本题考查算术平方根与立方根,熟练掌握算术平方根与立方根的性质是解题关键.5. 在11.4143π,,,无理数的个数有( ) A. 1个B. 2个C. 3个D. 4个[答案]B[解析][分析] 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:13,1.414,,和π这两个数是无理数.[点睛]本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6. 若230x y -++=,则的值为( ) A. -8B. -6C. 5D. 6[答案]B[解析][分析]根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可. [详解]根据题意得:2030x y -=⎧⎨+=⎩,解得:23x y =⎧⎨=-⎩,则xy =﹣6. 故选B .[点睛]本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7. 如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠B =∠DCED. ∠D +∠DAB =180°[答案]B[解析][分析] 结合图形根据平行线的判定定理对选项逐一判断即可求解.[详解]解:A. ∠1=∠2,根据内错角相等,两直线平行,得到AB ∥CD ,不合题意;B. ∠3=∠4,根据内错角相等,两直线平行,得到AD ∥BC ,符合题意;C. ∠B =∠DCE ,根据同位角相等,两直线平行,得到AB ∥CD ,不合题意;D. ∠D +∠DAB =180°,根据同旁内角互补,两直线平行,得到AB ∥CD ,不合题意.故选:B[点睛]本题考查了平行线的判定定理,熟练掌握平行线的判定定理是解题关键.8. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.523220x yx y+=⎧⎨+=⎩B.522320x yx y+=⎧⎨+=⎩C.202352x yx y+=⎧⎨+=⎩D.203252x yx y+=⎧⎨+=⎩[答案]D[解析]试题分析:要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:①男女生共20人;②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.据此列出方程组:20 3252 x yx y+=⎧⎨+=⎩.故选D.考点:由实际问题抽象出二元一次方程组.9. 如图,现将一块三角板含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为( ).A. 50°;B. 60°;C. 70°;D. 80°.[答案]D[解析]分析:如下图,由平行线的性质可得∠3=∠2,结合∠1=2∠2,∠4=60°,∠1+∠4+∠3=180°即可求得∠1的度数. 详解:∵直尺相对的两边是平行的,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∵∠1+∠4+∠3=180°,∠4=60°,∴3160180 2∠+=,∴∠1=80°.故选D.点睛:本题是一道考查平行线的性质和平角定义的题目,对于“两直线平行,同位角相等”和“平角的度数为180°”的正确应用是解题的关键.10. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为( )A. (45,10)B. (45,6)C. (45,22)D. (45,0)[答案]B[解析][分析]将其左侧相连,看作正方形边上的点.分析边上点的个数得出规律“边长为n的正方形边上有2n+1个点”,将边长为n的正方形边上点与内部点相加得出共有(n+1)2个点,由此规律结合图形的特点可以找出第2019个点的坐标.[详解]解:将其左侧相连,看作正方形边上的点,如图所示.边长为0的正方形,有1个点;边长为1的正方形,有3个点;边长为2的正方形,有5个点;…,∴边长为n的正方形有2n+1个点,∴边长为n的正方形边上与内部共有1+3+5+…+2n+1=(n+1)2个点.∵2019=45×45-6,结合图形即可得知第2019个点的坐标为(45,6).故选B.[点睛]本题考查了规律型中的点的坐标,解题的规律是找出“边长为n的正方形边上点与内部点相加得出共有(n+1)2个点”.本题属于中档题,有点难度,解决该题型题目时,补充完整图形,将其当成正方形边上的点来看待,本题的难点在于寻找第2019个点所在的正方形的边是平行于x轴的还是平行y轴的.二、填空题(每小题3分,共18分)11.= ________.[答案](1). 3 (2). 3 2[解析][分析]根据算术平方根和立方根的定义,分别进行计算,即可得到答案.[详解]9=,3;32==;故答案为:3;32.[点睛]本题考查了算术平方根和立方根,解题的关键是掌握定义进行计算.12. 已知a,b为两个连续的整数,且a<b,则a+b=___________.[答案]15[解析][分析]估算出在哪两个相邻的整数之间,即可求出a与b的值,然后代入a+b计算即可. [详解]∵72<57<82,∴<8,∴a=7,b=8,∴a+b=7+8=15.故答案为15.[点睛]此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.13. 点P(m−1,m+3)在平面直角坐标系的y轴上,则P点坐标为_______.[答案](0,4)[解析]分析:根据y轴上点的横坐标为0,可得m的值,根据m的值,可得点的坐标.详解:由P(m−1,m+3)在直角坐标系的y轴上,得m−1=0,解得m=1.m+3=4,P点坐标为()0,4.故答案为()0,4.点睛:考查平面直角坐标系轴的点的坐标特征,横坐标为零.14. 如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.[答案]30°[解析][分析]先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.[详解]解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA平分∠EOC,∴∠AOC=12∠EOC=30°(角平分线定义),∴∠BOD=30°(对顶角相等).故答案为:30.[点睛]本题考查由角平分线定义,结合补角的性质,易求该角的度数.15. 已知方程2x+y =3,用含x 的代数式表示y ,则y =______.[答案]32x -[解析][分析]把方程2x y 1-=写成用含x 的代数式表示y ,需要进行移项即得.[详解]解:移项得:y 32x =-,故答案为y 32x =-.[点睛]考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的左边,其它的项移到另一边.16. 用“*”定义新运算:对于任意实数a b 、,都有2*2a b a b =+,如23*423422=⨯+=,那么3*2=__. [答案]8 [解析] 由题意得:3※2=2×(3)²+2=6+2=8,故答案为8. 三、解答下列各题:(共72分)17. 计算(1)31984-+-- (2)21(1)4x -= (3)()()222121-+--+ (4)()334375x -=- [答案](1)12 ;(2)x 1=32,x 2=12;(3)0;(4)x=-1. [解析][分析] (1)根据绝对值、立方根、算术平方根的定义进行计算,即可得到答案;(2)利用直接开平方法,即可得到x 的值;(3)由绝对值、算术平方根的定义进行计算,即可得到答案;(4)先化简,然后开立方,即可得到答案.[详解]解:(1) =13(2)2+--=12; (2)21(1)4x -= ∴112x -=±, ∴132x =,212x =; (3)11-=211+-=0;(4)()334375x -=-,∴()34125x -=-,∴45x -=-,∴1x =-;[点睛]本题考查了平方根、立方根,绝对值、以及算术平方根的运算法则,解题的关键是掌握运算法则进行解题. 18. 解方程:(1)3? 42x y x y -=⎧⎨+=⎩(2)10216x y x y +=⎧⎨+=⎩ [答案](1)12x y =⎧⎨=-⎩ ;(2)64x y =⎧⎨=⎩. [解析][分析](1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;[详解]解:(1)342x y x y -=⎧⎨+=⎩①②,由①+②,得:55=x ,∴1x =,把1x =代入①,得:2y =-;∴方程组的解为:12x y =⎧⎨=-⎩; (2)10216x y x y +=⎧⎨+=⎩, 由②①,得:6x =,把6x =代入①,得:4y =,∴方程组的解为:64x y =⎧⎨=⎩; [点睛]本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.19. 如图,AD ∥BE ,∠1=∠2,求证:∠A =∠E .请完成解答过程:解:∵AD ∥BE (已知)∠A =∠______(_________________)又∵1=∠2(已知)∴AC ∥_____(________________)∴∠3=∠_____(两直线平行,内错角相等)∴∠A =∠E (_________)[答案]3,两直线平行,同位角相等;DE,内错角相等,两直线平行;E ;等量代换.[解析][分析]由于AD ∥BE 可以得到∠A=∠3,又∠1=∠2可以得到DE ∥AC,由此可以证明∠E=∠3,等量代换即可证明题目结论.[详解]解:∵AD ∥BE(已知)∠A=∠3 (两直线平行,同位角相等)又∵1=∠2(已知)∴AC∥DE (内错角相等,两直线平行)∴∠3=∠E (两直线平行,内错角相等)∴∠A=∠E(等量代换)[点睛]本题考查平行线的判定和性质,熟练掌握基础知识进行推理是解题关键.20. 若5a+1和a﹣19是数m的平方根.求a和m的值.[答案]a=3,m=256.[解析][分析]根据数m的平方根分别是5a+1和a﹣19一定互为相反数,据此即可列方程求得a的值,然后根据平方根的定义求得m的值.[详解]解:根据题意得:(5a+1)+(a﹣19)=0,解得:a=3,则m=(5a+1)2=162=256.[点睛]本题考查平方根的概念,掌握概念正确计算是解题关键.21. 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出△ABC向下平移4个单位长度得到△A1B1C1;(2)求△A1B1C1的面积.[答案](1)见解析;(2)2.5.[解析][分析](1)将ABC的每个定点向下平移4个单位长度再将其相连即可得到的△A1B1C1,如图所示. (2)用△A1B1C1所在的长方形面积减去其余部分的三个小三角形面积即可得到S△A1B1C1. [详解]解:(1)如图所示:△A1B1C1,即为所求;(2)△A1B1C1的面积为:2×3﹣12×1×3﹣12×1×2﹣12×1×2=2.5.[点睛]本题考查图形的变换-平移以及在平面直角坐标系中求三角形的面积.22. “鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有二十五头,下有七十六足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有25个头;从下面数,有76条腿,问笼中各有几只鸡和兔?[答案]笼中有12只鸡,13只兔[解析][分析]根据“上有二十五头,下有七十六足”,得出关于,的二元一次方程组,解之即得.[详解]设笼中有只鸡,只兔.由题意得:25 2476 x yx y+=⎧⎨+=⎩解得:1213 xy=⎧⎨=⎩答:笼中有12只鸡,13只兔.[点睛]本题考查二元一次方程组的鸡兔同笼问题,找出等量关系并根据生活常识列出方程组是解题关键.23. 如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.[答案](1)AC∥DF,理由见解析;(2)40°.[解析][分析](1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;[详解]解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.[点睛]本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.24. 如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC 边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.[答案]见解析[解析][分析]先根据题意画出图形,再根据平行线的性质进行解答即可.[详解]∠ABC与∠DEF的数量关系是相等或互补,理由如下:①如图,∵DE∥AB,∴∠ABC=∠DPC,又∵EF∥BC,∴∠DEF=∠DPC,∴∠ABC=∠DEF;②如图,因为DE∥AB,∴∠ABC+∠DPB=180°,又∵EF∥BC,∴∠DEF=∠DPB.∴∠ABC+∠DEF=180°.[点睛]本题考查了平行线的性质,根据题意画出图形是解答此题的关键,解答此题时要注意分两种情况讨论,否则会造成漏解.25. 如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.[答案](1)B(﹣8,﹣8),D(2,4),120;(2)∠MPO=∠AMP+∠PON;∠MPO=∠AMP-∠PON;(3)存在,P点坐标为(﹣8,﹣6).[解析][分析](1)利用点A、C的坐标和长方形的性质易得B(﹣8,﹣8),D(2,4),然后根据长方形的面积公式即可计算长方形ABCD的面积;(2)分点P在线段AN上和点P在线段NB上两种情况进行讨论即可得;(3)由于AM=8,AP=12t,根据三角形面积公式可得S△AMP =t,再利用三角形AMP的面积等于长方形面积的13,即可计算出t=20,从而可得AP=10,再根据点的坐标的表示方法即可写出点P的坐标. [详解](1)∵点A、C坐标分别为(﹣8,4)、(2,﹣8),∴B(﹣8,﹣8),D(2,4),长方形ABCD的面积=(2+8)×(4+8)=120;(2)当点P在线段AN上时,作PQ∥AM,如图,∵AM∥ON,∴AM∥PQ∥ON,∴∠QPM=∠AMP,∠QPO=∠PON,∴∠QPM+∠QPO=∠AMP+∠PON,即∠MPO=∠AMP+∠PON;当点P 在线段NB 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON , ∴∠QPM-∠QPO=∠AMP-∠PON ,即∠MPO=∠AMP-∠PON ;(3)存在,∵AM=8,AP=12t ,∴S △AMP =12×8×12t=2t , ∵三角形AMP 的面积等于长方形面积的13, ∴2t=120×13=40,∴t=20,AP=12×20=10, ∵AN=4,∴PN=6∴P 点坐标为(﹣8,﹣6).[点睛]本题考查了坐标与图形性质,结合图形、运用分类讨论思想进行解答是关键.。
人教版数学七年级下册《期中检测卷》含答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题3分,共18分)1. 如图a∥b ,∠3=108°,则∠1的度数是( )A. 72°B. 80°C. 82°D. 108° 2. 下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有 A. 1个 B. 2个 C. 3个 D. 4个3. 点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A. (0,﹣2)B. (0,﹣4)C. (4,0)D. (2,0) 4. 已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( ) A. 1 B. 0 C. -2 D. -15. 已知方程组35x y mx y +=⎧⎨-=⎩的解是方程x ﹣y=1的一个解,则m 的值是( ) A. 1 B. 2 C. 3 D. 46. 如图,一个粒子在第一象限内及x 轴、y 轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x 轴,y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2019分钟时,这个粒子所在位置的坐标是( )A. (44,5)B. (5,44)C. (44,6)D. (6,44)二、填空题(本大题共6小题,每小题3分,共18分)7. 9________8. 在平面直角坐标系中,将点P (﹣1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P 1,则点P 1的坐标为_____.9. 如图,把“QQ”笑脸放在直角坐标系中,已知左眼A 的坐标是(﹣2,3),嘴唇C 点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B 的坐标是___.10. 二元一次方程x +y =5正整数解个数有______个.11. 《算法统宗》中记载了一个问题,大意是:100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分1个馒头.问大小和尚各有多少人?若设大和尚有人,小和尚有人,则根据题意列出方程组是________________________.12. 如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________三、(本大题共5小题,每小题6分,共30分)13. (1)计算:232564(3)--(2)(2 )2﹣|1322314. 解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩ 15. 已知a+1的算术平方根是1,﹣27的立方根是b ﹣12,c ﹣3的平方根是±2,求a+b+c 的平方根. 16. 已知:如图,点E 、F 分别是AB 、CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A=∠D ,∠1=∠2,试说明∠B=∠C .阅读下面的解题过程,在横线上补全推理过程或依据.解:∵∠1=∠2(已知)∠1=∠3( )∴∠2=∠3(等量代换)∴AF ∥DE ( )∴∠4=∠D ( )又∵∠A=∠D (已知)∴∠4=∠A (等量代换)______( )∴∠B=∠C ( )17. 已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值. 四.(本大题共3小题,每小题8分,共24分)18. 如图所示,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠AEF ,已知∠EGD =40°,求∠BEF 的度数19. 如图,MF ⊥NF 于F ,MF 交AB 于点E ,NF 交CD 于点G ,∠1=140°,250∠=︒,试判断AB 和CD 的位置关系,并说明理由.20. 观察下列等式:第1个等式:a 12112=-+,第2个等式:a 2=13223=-+, 第3个等式:a 3=132+=2-3, 第4个等式:a 4=15225=-+, …按上述规律回答以下问题:(1)请写出第n 个等式:a n =__________.(2)a 1+a 2+a 3+…+a n =_________五.(本大题共2小题,每小题9分,共18分)21. 如图,△DEF 是△ABC 经过某种变换得到图形,点A 与点D ,点与点E ,点与点F 分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D ,点与点E ,点与点F 的坐标,并说说对应点的坐标有哪些特征;(2)若点()P a 3,4b +-与点()Q 2a,2b 3-也是通过上述变换得到的对应点,求、b 的值22. 某校为学生开展拓展性课程,拟在一块长比宽多6 m 长方形场地内建造由两个大棚组成的植物养殖区,如图(1),要求两个大棚之间有间隔4 m 的路,设计方案如图(2),已知每个大棚的周长为44 m.(1)求每个大棚的长和宽各是多少?(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?六.(本大题共12分)23. 如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式223(4)0a b c-+-+-=.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,12),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.答案与解析一、选择题(本大题共6小题,每小题3分,共18分)1. 如图a∥b ,∠3=108°,则∠1的度数是( )A. 72°B. 80°C. 82°D. 108°[答案]A[解析][分析] 根据邻补角的定义和平行线的性质进行求解.[详解]解:∵∠3=108°,∴∠2=180°-∠3=72°,∵a ∥b ,∴∠1=∠2=72°.故选A .[点睛]本题主要考查了邻补角的定义和平行线的性质,熟练掌握相关性质是解题关键.2. 下列各数中,313.14159 8 0.131131113 25 7π⋅⋅⋅--,,,,,,无理数的个数有 A 1个B. 2个C. 3个D. 4个[答案]B[解析] 试题分析:无限不循环小数为无理数,由此可得出无理数的个数,因此,由定义可知无理数有:0.131131113…,﹣π,共两个.故选B .3. 点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A. (0,﹣2)B. (0,﹣4)C. (4,0)D. (2,0)[答案]D[解析][分析]根据点在x 轴上的特征,纵坐标为0,可得m +1=0,解得:m =-1,然后再代入m +3,可求出横坐标.[详解]解:因为点 P (m + 3,m + 1)在x 轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.[点睛]本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.4. 已知二元一次方程组m2n42m n3-=⎧⎨-=⎩,则m+n的值是( )A. 1B. 0C. -2D. -1 [答案]D[解析]分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:24 23m nm n-=⎧⎨-=⎩①②②-①得m+n=-1.故选D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.5. 已知方程组35x ymx y+=⎧⎨-=⎩的解是方程x﹣y=1的一个解,则m的值是( )A. 1B. 2C. 3D. 4 [答案]C[解析][分析]根据方程组的解的意义可以得到方程组31x yx y+=⎧⎨-=⎩,求出x y、,然后代入,解方程即可.[详解]解:根据题意,可得到方程组31 x yx y+=⎧⎨-=⎩,解得:21 xy=⎧⎨=⎩.把21xy=⎧⎨=⎩代入5mx y-=得215m-=,m .解得:3故选:C.[点睛]本题主要考查了二元一次方程的解以及解二元一次方程组.6. 如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴,y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2019分钟时,这个粒子所在位置的坐标是( )A. (44,5)B. (5,44)C. (44,6)D. (6,44)[答案]A[解析][分析]要弄清粒子的运动规律,先观察横坐标和纵坐标的相同点:(0,0),粒子运动了0分钟.(1,1)就是运动了2=1×2分钟,将向左运动!(2,2)粒子运动了6=2×3分钟,将向下运动!(3,3),粒子运动了12=3×4分钟.将向左运动…(4 4,44)点处粒子运动了44×45=1980分钟!此时粒子会将向下移动,进而得出答案.[详解]粒子所在位置与运动时间的情况如下:位置:(1,1),运动了2=1×2(分钟),方向向左;位置:(2,2),运动了6=2×3(分钟),方向向下;位置:(3,3),运动了12=3×4(分钟),方向向左;位置:(4,4),运动了20=4×5(分钟),方向向下,由上式规律,到(44,44)处时,粒子运动了44×45=1980(分钟),方向向下,故到2019分钟,须由(44,44)再向下运动2019-1980=39(分钟),所以在第2019分钟时,这个粒子的纵坐标为44-39=5,所以其坐标为(44,5),故选A.[点睛]本题考查了点的坐标的确定.本题也是一个阅读理解并猜想规律的题目,解答此题的关键是总结规律首先确定点所在的大致位置,然后就可以进一步推得点的坐标.二、填空题(本大题共6小题,每小题3分,共18分)7. 9________[答案]3[解析][分析]根据算术平方根的定义,即可得到答案.[详解]解:∵93,∴9的算术平方根是3;故答案为:3.[点睛]本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.8. 在平面直角坐标系中,将点P(﹣1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为_____.[答案](1,1).[解析][分析]根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.[详解]解:∵点P(﹣1,4)向右平移2个单位长度,向下平移3个单位长度,∴﹣1+2=1,4﹣3=1.∴点P1的坐标为(1,1).故答案为:(1,1).9. 如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是___.[答案](3,3).[解析]先确定右眼B的坐标,然后根据向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案:∵左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),∴右眼的坐标为(0,3).∴向右平移3个单位后右眼B的坐标为(3,3).考点:坐标与图形的平移变化.10. 二元一次方程x+y=5的正整数解个数有______个.[答案]4[解析][分析]根据x、y为正整数得出x>0,5-x>0,求出x的范围0<x<5,得出x=1或2或3或4,代入求出y的值,由此即可解答.[详解]∵x+y=5,∴y=5-x,∵x、y为正整数,∴x>0,5-x>0,∴0<x<5,∴x=1或2或3或4,当x=1时,y=5-1=4,当x=2时,y=5-2=3,当x=3时,y=5-3=2,当x=4时,y=5-4=1,∴二元一次方程x+y=5的正整数为1234,,,4321x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩,共4个,故答案为4.[点睛]本题考查了二元一次方程的整数解,求出x的取值范围是解决问题的关键.11. 《算法统宗》中记载了一个问题,大意是:100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分1个馒头.问大小和尚各有多少人?若设大和尚有人,小和尚有人,则根据题意列出方程组是________________________.[答案]100131003x yx y+=⎧⎪⎨+=⎪⎩[解析] [分析]根据有100个和尚分100个馒头,大和尚1人分3个,小和尚3人分1个,正好分完可以列出相应的方程组,本题得以解决.[详解]由题意可得:100131003x y x y +=⎧⎪⎨+=⎪⎩. 故答案为:100131003x y x y +=⎧⎪⎨+=⎪⎩. [点睛]本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 12. 如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________[答案]150°[解析]如图,过点B 作BG ∥AE,因为AE ∥CD,所以AE ∥BG ∥CD.所以∠A=∠2,∠1+∠C=180°.因为∠A=120°,所以∠2=120°,所以∠1=150°-120°=30°.所以∠C=180°-30°=150°,故答案为150°.三、(本大题共5小题,每小题6分,共30分)13. (1)计算:232564(3)--(2)(2 )2﹣|13223[答案](1)-2;(2)5.[解析][分析](1)直接利用二次根式化简方法,对根式分别化简,再求和即可.(2)直接利用二次根式与绝对值的化简方法,对根式与绝对值进行化简,再求和.[详解](1)原式=5+(-4)-3=-2;(2)原式=)212-++=212+=5.[点睛]此题解题的关键要熟练二次根式与绝对值的化简,的化简是本题的一个易错点.14. 解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩ [答案](1)55x y ⎧=⎨=⎩;(2)025x y ⎧=⎪⎨=⎪⎩[解析][分析]本题需要把两个方程组化简后,根据方程的形式选用合适的方法求解.[详解](1)257320x y x y -=⎧⎨-=⎩, 整理得63157320-=⎧⎨-=⎩x y x y , 两式相减得:5x =,把 5x =代入25x y -=中,得y 5=;所以原方程组的解为:55x y ⎧=⎨=⎩.(2)原方程组变式为51565104x y x y ⎧+=⎨-=-⎩,两式相减得:25y =,将25y=代入5156x y+=中,得251565x+⨯=,解得:0x=.所以原方程组的解为25xy⎧=⎪⎨=⎪⎩.[点睛]本题考查了我二元一次方程组的解法,通过变形选择合适的方法求解是快速解题的关键.15. 已知a+1的算术平方根是1,﹣27的立方根是b﹣12,c﹣3的平方根是±2,求a+b+c的平方根.[答案]±4.[解析][分析]根据题意分别求得a,b,c的值,然后代入式子求解即可.[详解]解:∵a+1的算术平方根是1,∴a+1=1,即a=0;∵﹣27的立方根是b﹣12,∴b﹣12=﹣3,即b=9;∵c﹣3的平方根是±2,∴c﹣3=4,即c=7;∴a+b+c=0+9+7=16,则a+b+c的平方根是±4.[点睛]本题主要考查平方根,算术平方根,立方根,熟练掌握其知识点与区别是解此题的关键.16. 已知:如图,点E、F分别是AB、CD上的点,DE、AF分别交BC于G、H,∠A=∠D,∠1=∠2,试说明∠B=∠C.阅读下面的解题过程,在横线上补全推理过程或依据.解:∵∠1=∠2(已知)∠1=∠3( )∴∠2=∠3(等量代换)∴AF∥DE( )∴∠4=∠D( )又∵∠A=∠D (已知)∴∠4=∠A(等量代换)______( )∴∠B=∠C ( )[答案](1). 对顶角相等(2). 同位角相等,两直线平行(3). 两直线平行,同位角相等(4). AB∥CD (5). 内错角相等,两直线平行(6). 两直线平行,内错角相等[解析][分析]本题主要考查平行线的判定以及性质,根据内错角相等,同位角相等即可判定平行,反之推角等.[详解]由图示可知∠1,∠3关系为对顶角,对顶角性质为相等,故答题空1应填对顶角相等作为依据;因为∠2,∠3关系为同位角且相等,由其推出平行,故答题空2依据同位角相等,两直线平行;因为∠D,∠4关系为同位角,且由AF∥DE推出其相等,故答题空3依据是两直线平行,同位角相等;因为∠4,∠A关系为内错角且相等,故可推出答题空4为AB∥CD,答题空5依据是内错角相等,两直线平行;因为∠B,∠C关系为内错角,且由AB∥CD推出其相等,故答题空6依据为两直线平行,内错角相等.[点睛]本题着重考查同位角以及内错角与直线平行的关系,按照题干所给思路逐步解答即可,本题还未考查两直线平行,同旁内角互补,需注意.17. 已知方程组3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,求m,n的值.[答案]14 mn=⎧⎨=-⎩[解析][分析]先解不含m、n方程组,解得x、y的值,再代入含有m、n的方程组求解即可.[详解]∵3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,∴32453x yy x-=⎧⎨-=⎩和23197-=⎧⎨+=⎩mx nymx ny也有相同的解,∴解方程组3x2y45y x3-=⎧⎨-=⎩得21xy=⎧⎨=⎩,代入23197-=⎧⎨+=⎩mx nymx ny中得431927-=⎧⎨+=⎩m nx n,∴解方程组得14 mn=⎧⎨=-⎩.故答案为14 mn=⎧⎨=-⎩.[点睛]本题主要考查了与二元一次方程组的解有关的知识点,准确理解方程组有相同解的情况,组成新的二元一次方程组求解是解题的关键.四.(本大题共3小题,每小题8分,共24分)18. 如图所示,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,已知∠EGD=40°,求∠BEF的度数[答案]100°[解析][分析]根据平行线性质“两直线平行,内错角相等”,再利用角平分线的性质推出∠BEF=180°-2∠EGD,这样就可求出∠BEF的度数.[详解]解:∵AB∥CD,∴∠EGD=∠AEG.∵EG平分∠AEF,∴∠AEG=∠GEF=∠EGD,∴∠AEF=2∠EGD.又∵∠AEF+∠2=180°,∴∠BEF=180°-2∠EGD=180°-80°=100°.[点睛]此题考查平行线的性质,解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用性质和已知条件计算.19. 如图,MF ⊥NF 于F ,MF 交AB 于点E ,NF 交CD 于点G ,∠1=140°,250∠=︒,试判断AB 和CD 的位置关系,并说明理由.[答案]AB ∥CD ,理由见解析.[解析][分析]延长MF 交CD 于点H ,利用平行线的判定证明.[详解]延长MF 交CD 于点H ,∵∠1=90°+∠CHF ,∠1=140°,∠2=50°,∴∠CHF=140°-90°=50°,∴∠CHF=∠2,∴AB ∥CD .[点睛]本题主要考查了平行线的判定和外角定理,作出适当的辅助线是解答此题的关20. 观察下列等式:第1个等式:a 12112=-+,第2个等式:a 2=第3个等式:a 3第4个等式:a 42=, …按上述规律,回答以下问题:(1)请写出第n 个等式:a n =__________.(2)a 1+a 2+a 3+…+a n =_________[答案] (1).= (2). 1- [解析]分析](1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.[详解]解:∵第1个等式:a11=,第2个等式:a 2=第3个等式:a 3第4个等式:a 42=, ……∴第n=;=(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=2132231n n -+-+-+++-=11n +-;故答案为:11n +-. [点睛]本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题五.(本大题共2小题,每小题9分,共18分)21. 如图,△DEF 是△ABC 经过某种变换得到的图形,点A 与点D ,点与点E ,点与点F 分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A 与点D ,点与点E ,点与点F 的坐标,并说说对应点的坐标有哪些特征;(2)若点()P a 3,4b +-与点()Q 2a,2b 3-也是通过上述变换得到的对应点,求、b 的值[答案](1)见解析;(2)a=-1,b=-1[解析][分析](1)根据点的位置,直接写出点的坐标;(2)根据(1)中发现的规律,两点的横坐标、纵坐标都互为相反数,即横坐标的和为0,纵坐标的和为0,列方程,求a 、b 的值.[详解]解:(1)由图象可知,点A (2,3),点D (-2,-3),点B (1,2),点E (-1,-2),点C (3,1),点F (-3,-1);对应点的坐标特征为:横坐标、纵坐标都互为相反数;(2)由(1)可知,a+3+2a=0,4-b+2b-3=0,解得a=-1,b=-1.[点睛]本题考查了坐标系中点的坐标确定方法,对应点的坐标特征.关键是通过观察发现规律,列方程求解. 22. 某校为学生开展拓展性课程,拟在一块长比宽多6 m 的长方形场地内建造由两个大棚组成的植物养殖区,如图(1),要求两个大棚之间有间隔4 m 的路,设计方案如图(2),已知每个大棚的周长为44 m.(1)求每个大棚的长和宽各是多少?(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?[答案](1)大棚的宽为14米,长为8米;(2)选择方案二更好.[解析]分析:(1)设大棚的宽为a 米,长为b 米,分别利用大棚的周长为44米,长比宽多6米,分别得出等式求出答案; (2)分别求出两种方案的造价进而得出答案.详解:(1)设大棚的宽为a 米,长为b 米,根据题意可得:22246a b a b +=⎧⎨+-=⎩,解得:814a b =⎧⎨=⎩, 答:大棚的宽为14米,长为8米;(2)大棚的面积为:2×14×8=224(平方米),若按照方案一计算,大棚的造价为:224×60−500=12940(元),若按照方案二计算,大棚的造价为:224×70(1−20%)=12544(元)显然:12544<12940,所以选择方案二更好.点睛:考查二元一次方程组的应用,解题的关键是找出题目中的等量关系.六.(本大题共12分)23. 如图,在下面直角坐标系中,已知A (0,a ),B (b ,0),C (b ,c )三点,其中a 、b 、c 满足关系式223(4)0a b c --+-=.(1)求a 、b 、c 的值;(2)如果在第二象限内有一点P (m ,12),请用含m 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.[答案](1)2a =,3b =,4c =;(2)3m -+;(3)存在,点P (3-,12). [解析][分析](1)根据二次根式、绝对值、平方的非负性可得结论; (2)根据P 和A 、B 的坐标,由S 四边形ABOP =S △AOP +S △AOB 可得结论;(3)根据四边形ABOP 的面积与△ABC 的面积相等,列式可得m=-3,从而得P 的坐标.[详解]解:(1)223(4)0a b c --+-=,∴20a -=,30b -=,40c -=,∴2a =,3b =,4c =; (2)由(1)知:OA=2,OB=3,点P (m ,12), ∴S 四边形ABOP =S △AOP +S △AOB =12AO•|x P |+12AO•OB=12m -+×2×3=3m -+; (3)∵B (3,0),C (3,4),∴BC ⊥x 轴,∴S △ABC =12BC•x B =12×4×3=6, ∴3m -+=6,∴3m =-,则当3m =-时,四边形ABOP 的面积与△ABC 的面积相等,此时P (3-,12). [点睛]本题考查了二次根式和平方的非负性、三角形和四边形面积的求法、图形和坐标的性质,难度适中,学会利用三角形面积求四边形的面积,注意横坐标相等的点所在的直线与x 轴垂直.。
人教版七年级数学下册期中测试卷(含答案)
人教版七年级数学下学期期中测试卷(含答案)班级:姓名:学号:分数:(考试时间:120分钟试卷满分:120分)一、选择题(1—6题每题2分,7-16题每题3分,共42分)1.如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位2.为认真贯彻落实党的十八大和中央政治局关于八项规定的精神,厉行节约、反对铺张浪费,某市严格控制“三公”经费支出,共节约“三公”经费5.05亿元.用科学记数法表示为()A.505×106元B.5.05×107元C.50.5×107元D.5.05×108元3.下列运算正确的是()A.a2+a3=a5B.(a3)2=a5C.(a+3)2=a2+9 D.﹣2a2•a=﹣2a34.一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.5.在下图中,∠1=∠2,能判断AB∥CD的是()A.B.C.D.6.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°7.在多项式x2+9中添加一个单项式,使其成为一个完全平方式,则添加的单项式可以是()A.x B.3x C.6x D.9x8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定10.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣11.若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD的度数为()A.30°B.40°C.50°D.60°12.已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.613.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.6614. 已知则( )A. B. C. D.5215.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为A. B. C. D.16.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D →E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C.D.二.填空题(每题3分,共12分)17.长为3m+2n,宽为5m-n的长方形的面积为__________.18.已知:OE平分∠AOD,AB∥CD,OF⊥OE于O,∠D = 50°,则∠BOF=________。
人教版七年级数学下册期中考试卷(加答案)
人教版七年级数学下册期中考试卷(加答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°3.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4 4.已知a=b,下列变形正确的有()个.①a+c=b+c;②a﹣c=b﹣c;③3a=3b;④ac=bc;⑤a bc c =.A.5 B.4 C.3 D.25.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D6.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5y/cm 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5 8.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.若x﹣m与x+3的乘积中不含x的一次项,则m的值为()A.3 B.1 C.0 D.﹣3 二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简a c b abc a b c abc +++结果是________. 2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________. 4.若()2320m n -++=,则m+2n 的值是________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.5.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要______cm .三、解答题(本大题共6小题,共72分)1.解方程组x 3y 1{3x 2y 8+=--=2.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b ,cd ,m 的值;(2)求a b m cd m+++的值.3.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价-进价)(1) 该商场购进A、B两种商品各多少件?(2) 商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、C6、B7、C8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、40°3、(3,7)或(3,-3)4、-15、2或2.56、10三、解答题(本大题共6小题,共72分)1、x2 y1⎧⎨⎩==-2、(1)a+b=0,cd=1,m=±2;(2)3或-13、24°.4、(1)证明略;(2)证明略.5、(1)50;72;(2)详见解析;(3)330.6、(1)该商场购进A、B两种商品分别为200件和120件.(2)B种商品最低售价为每件1080元.。
人教版数学七年级下册《期中考试题》含答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共24分)1.下列调查中,最适宜采用普查方式是( )A. 对全国初中学生视力状况的调査B. 对“十一国庆”期间全国居民旅游出行方式的调查C. 旅客上飞机前的安全检查D. 了解某种品牌手机电池的使用寿命2.如图,下列结论中错误的是( )A. 1∠与2∠同旁内角B. 1∠与6∠是内错角C. 2∠与5∠是内错角D. 3∠与5∠是同位角3.下列方程组中是二元一次方程组的是( ) A. 346564x y z y +=⎧⎨-=⎩B. 3112x y x y +=⎧⎪⎨-=⎪⎩C. 2228x y x y +=⎧⎨-=⎩D. 2.54x y x y +=⎧⎨-=⎩4.如图,OA OB ⊥,若3420BOC '∠=︒,则AOC ∠的度数是( )A. 5520'︒B. 5540'︒C. 5560'︒D. 5580'︒ 5.某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法:①这600名学生的“中华经典诵读”大赛成绩的全体是总体.②每个学生个体.③50名学生是总体的一个样本.④样本容量是50名.其中说法正确的有()A. 1个B. 2个C. 3个D. 4个6.某公司的生产量在1-7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A. 2-6月生产量逐月减少B. 1月份生产量最大C. 这七个月中,每月生产量不断增加D. 这七个月中,生产量有增加有减少7.二元一次方程3x+2y=15正整数解有( )组.A. 1B. 2C. 3D. 无数组8.某公司有学徒工和熟练工两个工种的工人,已知一个学徒工每天制造的零件比一个熟练少20个,一个学徒工与两个熟练工每天共可制造220个零件,求一个学徒工与一个熟练工每天各能制造多少个零件?设一个学徒工每天能制造个零件,一个熟练工每天能制造个零件,根据题意可列方程组为( )A.202220y xx y-=⎧⎨+=⎩B.202220x yx y-=⎧⎨+=⎩C.202220y xx y-=⎧⎨+=⎩D.202220x yx y-=⎧⎨+=⎩二.填空题(共6小题,每小题3分,满分18分)9.如图,从点P向直线l所画的4条线段中,线段__最短,理由是__.10.如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠BOM的度数是__.11.已知方程组|a|-(-1)5y (-5)3y a x b xy =⎧⎨+=⎩是关于x,y 的二元一次方程组,则a b 的值是____. 12.对某中学同年级70名男生的身高进行了测量,得到一组数据,其中最大值是183cm ,最小值是146cm ,对这组数据进行整理时,确定它的组距为5cm ,则至少应分__________组.13.六一儿童节将至,孩子王儿童商店推出甲、乙、丙三种特价玩具,若购甲3件,乙2件,丙1件需要400元;购甲1件,乙2件,丙3件需要440元,则购买甲乙丙三种玩具各一件需要_________元.14.对于X ,Y 定义一种新运算“*”:X *Y =aX +bY ,其中a ,b 为常数,等式右边是通常的加法和乘法运算.已知:3*5=15,4*7=28,那么2*3=________.三.解答题(共58分)15.先化简,再求值:()22223m mn m mn +--,其中1m =-,2n =.16.解下列方程组:(1)312236x y x y +=⎧⎨-=⎩; (2)2(1)54(1)2(5)x y y x -=+⎧⎨-=+⎩. 17.请在图中,过P 点分别画OA 、OB 的垂线.18.网络时代新兴词汇层出不穷.为了解大众对网络词汇的理解,某兴趣小组举行了一个调查活动:选取四个热词A :“硬核人生”,B :“好嗨哦”,C :“双击666”,D :“杠精时代”在街道上对流动人群进行了抽样调查,要求被调查的每位只能勾选一个最熟悉的热词,根据调查结果,该小组绘制了如下的两幅不完整的统计图,请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名路人?(2)补全条形统计图,并求出a 的值;(3)请算出扇形图中的b 的值.19.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表: 批发价(元) 零售价(元) 黑色文化衫25 45 白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.20.如图,直线AB ,CD ,EF 相交于点O .(1)请写出,AOC ∠,AOE ∠EOC ∠的对顶角;(2)若50AOC ︒∠=,求,BOD ∠BOC ∠的度数.21.在等式y =ax 2+bx +c 中,当x =﹣1时,y =3;当x =0时,y =1,当x =1时,y =1,求这个等式中a 、b 、c 的值. 22.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t 的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t 的家庭大约有多少户?23.若规定a c b d =ad ﹣bc ,如2130-=2×0﹣3×(﹣1)=3 (1)计算:2531-; (2)计算:35x y-; (3)解方程组:321325y x x y ⎧-=⎪⎪⎨⎪=-⎪⎩.24.“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.25.如图,∠1=28°,AB⊥CD ,垂足为O,EF 经过点O .求∠2、∠3的度数.答案与解析一.选择题(每小题3分,共24分)1.下列调查中,最适宜采用普查方式的是( )A. 对全国初中学生视力状况的调査B. 对“十一国庆”期间全国居民旅游出行方式的调查C. 旅客上飞机前的安全检查D. 了解某种品牌手机电池的使用寿命[答案]C[解析][分析]由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.[详解]A .对全国初中学生视力状况的调査,范围广,适合抽样调查,故A 错误;B .对“十一国庆”期间全国居民旅游出行方式的调查范围广,适合抽样调查,故B 错误;C .旅客上飞机前的安全检查,适合普查,故C 正确;D .了解某种品牌手机电池的使用寿命,适合抽样调查,故D 错误.故选:C .[点睛]本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.如图,下列结论中错误的是( )A. 1∠与2∠同旁内角B. 1∠与6∠是内错角C. 2∠与5∠是内错角D. 3∠与5∠是同位角[答案]C[解析][分析]利用同位角、内错角、同旁内角的定义判断即可.[详解]解;A .1∠与2∠是同旁内角,所以此选项正确;B .1∠与6∠是内错角,所以此选项正确;C .∠2、∠5既不是同位角、不是内错角,也不是同旁内角,所以此选项错误;D .3∠与5∠是同位角,所以此选项正确,故选:C .[点睛]考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.3.下列方程组中是二元一次方程组的是( )A. 346564x y z y +=⎧⎨-=⎩ B. 3112x y x y +=⎧⎪⎨-=⎪⎩ C. 2228x y x y +=⎧⎨-=⎩D. 2.54x y x y +=⎧⎨-=⎩[答案]D[解析][分析] 由二元一次方程组的定义:两个方程都为整式方程;一共含有2个未知数;最高次项的次数是1;从而可得到答案.[详解]解:A 、该方程组中含有三个未知数,属于三元一次方程组,故本选项不符合题意;B 、第二个方程不是整式方程,不符合二元一次方程组的定义,故本选项不符合题意;C 、第二个方程中未知数的最高次数是2,该方程组属于二元二次方程组,故本选项不符合题意;D 、符合二元一次方程组的定义,故本选项符合题意.故选:D .[点睛]本题考查的是二元一次方程组的定义,掌握定义是解题的关键.4.如图,OA OB ⊥,若3420BOC '∠=︒,则AOC ∠的度数是( )A. 5520'︒B. 5540'︒C. 5560'︒D. 5580'︒[答案]B[解析][分析] 因为OA OB ⊥,所以90AOB ∠=︒,再利用AOC AOB BOC ∠=∠-∠即可得出答案.[详解]∵OA OB ⊥∴90AOB ∠=︒∴903420'5540'AOC AOB BOC ∠=∠-∠=︒-︒=︒故选B[点睛]本题主要考查角和与差,掌握角的运算是解题的关键.5.某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法:①这600名学生的“中华经典诵读”大赛成绩的全体是总体.②每个学生是个体.③50名学生是总体的一个样本.④样本容量是50名.其中说法正确的有( )A. 1个B. 2个C. 3个D. 4个[答案]A[解析][分析]”我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,考查对象是组织了一次全县600名学生参加的“中华经典诵读”大赛的成绩,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.[详解]①这600名学生的“中华经典诵读”大赛成绩的全体是总体,正确;②每个学生的成绩是个体,故原说法错误;③50名学生的成绩是总体的一个样本,故原说法错误;④样本容量是50,故原说法错误.所以说法正确有①,1个.故选:A.[点睛]考查统计知识的总体,样本,个体,等相关知识点,要明确其定义.易错易混点:学生易对总体和个体的意义理解不清而错选.6.某公司的生产量在1-7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A. 2-6月生产量逐月减少B. 1月份生产量最大C. 这七个月中,每月的生产量不断增加D. 这七个月中,生产量有增加有减少[答案]C[解析][分析]根据增长率均为正数,即后边的月份与前面的月份相比是增加的,据此即可求出答案.[详解]图示为增长率的折线图,读图可得:这七个月中,增长率为正,故每月生产量不断上涨,故A,B,D均错误;故选C.[点睛]本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,如增长率.7.二元一次方程3x+2y=15的正整数解有( )组.A. 1B. 2C. 3D. 无数组[答案]B[解析][分析]把方程变形为:25,3x y=-由是3的倍数直接写出方程的正整数解即可.[详解]解:3x+2y=15,25,3x y =- ,x y 为正整数,方程在正整数解为:31,.36x x y y ==⎧⎧⎨⎨==⎩⎩则方程的正整数解有2组.故选:B .[点睛]本题考查的是二元一次方程的正整数解,掌握求二元一次方程的正整数解的方法是解题的关键. 8.某公司有学徒工和熟练工两个工种的工人,已知一个学徒工每天制造的零件比一个熟练少20个,一个学徒工与两个熟练工每天共可制造220个零件,求一个学徒工与 一个熟练工每天各能制造多少个零件?设一个学徒工每天能制造个零件,一个熟练工每天能制造个零件,根据题意可列方程组为( )A. 202220y x x y -=⎧⎨+=⎩B. 202220x y x y -=⎧⎨+=⎩C. 202220y x x y -=⎧⎨+=⎩D. 202220x y x y -=⎧⎨+=⎩[答案]A[解析][分析]根据题意找到两个等量关系列出方程组即可. [详解]解:一个学徒工每天能制造个零件,一个熟练工每天能制造个零件,根据题中:一个学徒工每天制造的零件比一个熟练少20个,以及一个学徒工与两个熟练工每天共可制造220个零件可得方程组:202220y x x y -=⎧⎨+=⎩. 故选A.[点睛]本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够根据题意找到两个等量关系,这是列方程的依据.二.填空题(共6小题,每小题3分,满分18分)9.如图,从点P 向直线l 所画的4条线段中,线段__最短,理由是__.[答案] (1). PB (2). 从直线外一点,到直线上各点所连的线段中,垂线段最短[解析][分析]根据“从直线外一点,到直线上各点所连的线段中,垂线段最短”,进行判断即可.[详解]解:根据“垂线段最短”可知,PB 最短,理由是从直线外一点,到直线上各点所连的线段中,垂线段最短,故答案为:PB ,从直线外一点,到直线上各点所连的线段中,垂线段最短.[点睛]本题考查的是“直线外一点与直线上各点所连的线段中,垂线段最短”,掌握这个基本事实是解题的关键.10.如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 的度数是__.[答案]140°[解析][分析]先根据对顶角相等得出∠AOC =80°,再根据角平分线的定义得出∠COM ,最后解答即可.[详解]解:∵∠BOD =80°,∴∠AOC =80°,∠COB =100°,∵射线OM 是∠AOC 的平分线,∴∠COM =40°,∴∠BOM =40°+100°=140°,故答案为:140°.[点睛]此题考查对顶角和角平分线的定义,关键是得出对顶角相等.11.已知方程组|a|-(-1)5y (-5)3y a x b xy =⎧⎨+=⎩是关于x,y 的二元一次方程组,则a b 的值是____.[答案]-1[解析][分析]利用二元一次方程组的定义确定出a与b的值,代入原式计算即可得到结果.[详解]解:由题意得:|a|=1,b-5=0,a-1≠0,解得:a=-1,b=5,则原式=(-1)5=-1.故答案为-1.[点睛]此题考查了二元一次方程组的定义,熟练掌握二元一次方程组的定义是解本题的关键.12.对某中学同年级70名男生的身高进行了测量,得到一组数据,其中最大值是183cm,最小值是146cm,对这组数据进行整理时,确定它的组距为5cm,则至少应分__________组.[答案]8[解析][分析]根据组数的计算公式即可得出答案.组数=(最大值-最小值)组距,计算结果为小数或分数时,用进一法来确定组数.[详解]解:∵1831467.45-=∵计算结果为小数,我们利用进一法来确定组数,因此组数为8.故答案为:8.[点睛]本题考查的知识点是组数的计算,此类题目要根据题意找出样本数据的最大值和最小值,结合组距,利用公式来求解.13.六一儿童节将至,孩子王儿童商店推出甲、乙、丙三种特价玩具,若购甲3件,乙2件,丙1件需要400元;购甲1件,乙2件,丙3件需要440元,则购买甲乙丙三种玩具各一件需要_________元.[答案]210[解析][分析]设甲玩具的单价为x元,乙玩具的单价为y元,丙玩具的单价为z元,根据“购甲3件,乙2件,丙1件需400元:购甲1件,乙2件,丙3件需440元”,即可得出关于x,y,z的三元一次方程组,再利用(①+②)÷4,即可求出结论.[详解]设甲玩具的单价为x元,乙玩具的单价为y元,丙玩具的单价为z元,依题意,得:32=40023=440x y z x y z ++⎧⎨++⎩①② , (①+②)÷4,得:x+y+z=210. 故答案为:210.[点睛]此题考查三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键. 14.对于X ,Y 定义一种新运算“*”:X *Y =aX +bY ,其中a ,b 为常数,等式右边是通常的加法和乘法运算.已知:3*5=15,4*7=28,那么2*3=________.[答案]2[解析][分析]利用题中的新定义列出方程组,求出方程组的解得到a 与b 的值,代回到新定义的式子中,然后再根据新定义计算2*3即可.[详解]∵X*Y=aX+bY , 3*5=15,4*7=28,∴35154728a b a b +=⎧⎨+=⎩, 解得3524a b =-⎧⎨=⎩, ∴X*Y=-35X+24Y ,∴2*3=-35×2+24×3=2, 故答案为2.[点睛]本题考查了新定义运算与解二元一次方程组,求出a 、b 的值是解题的关键.三.解答题(共58分)15.先化简,再求值:()22223m mn m mn +--,其中1m =-,2n =.[答案]254m mn -+;13-[解析][分析]根据整式的加减法则进行化简,再代数求值即可.[详解]原式=22262m mn m mn +-+=254m mn -+当1m =-,2n =时,原式= ()()251412-⨯-+⨯-⨯ 5813=--=-.[点睛]本题以代数求值方式考查整式的加减与代数计算,熟练掌握整式加减运算是解答关键.16.解下列方程组:(1)312236x y x y +=⎧⎨-=⎩; (2)2(1)54(1)2(5)x y y x -=+⎧⎨-=+⎩. [答案](1)62x y =⎧⎨=⎩;(2)77x y =⎧⎨=⎩[解析][分析](1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.[详解]解:(1)312236x y x y +=⎧⎨-=⎩①②, ①+②得:3x =18,解得:x =6,把x =6代入①得:y =2,则方程组的解为62x y =⎧⎨=⎩; (2)方程组整理得:272414x y x y -=⎧⎨-=-⎩①②, ①﹣②得:3y =21,解得:y =7,把y =7代入①得:x =7,则方程组的解为77x y =⎧⎨=⎩. [点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 17.请在图中,过P 点分别画OA 、OB 的垂线.[答案]详见解析[解析][分析]根据垂线的定义利用尺规即可过P点分别画OA、OB的垂线.[详解]解:如图,PC和PD即为所求.[点睛]本题考查了作图-基本作图,解决本题的关键是掌握基本作图过程.18.网络时代新兴词汇层出不穷.为了解大众对网络词汇的理解,某兴趣小组举行了一个调查活动:选取四个热词A:“硬核人生”,B:“好嗨哦”,C:“双击666”,D:“杠精时代”在街道上对流动人群进行了抽样调查,要求被调查的每位只能勾选一个最熟悉的热词,根据调查结果,该小组绘制了如下的两幅不完整的统计图,请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名路人?(2)补全条形统计图,并求出a的值;(3)请算出扇形图中的b的值.[答案](1)300名;(2)图见解析,a=90;(3)b=90[解析](1)根据选择A的人数和扇形统计图中所对的圆心角的度数,可以求得本次调查了多少名路人;(2)根据扇形统计图中的数据可以求得选择C和选择D的人数,从而补全统计图;(3)根据条形统计图中的数据可以求得b的值.[详解]解:(1)本次调查中,一共调查了:120÷144360︒=300(名);(2)选D的有:a=300×108360︒︒=90(名)选C的有300﹣120﹣75﹣90=15(名), 补全的条形统计图如下图所示:(3)b°=360°×75300=90°,则b=90.[点睛]本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.19.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元) 零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.[答案](1)学校购进黑文化衫80件,白文化衫20件;(2)该校这次义卖活动共获得1900元利润.[分析](1)设学校购进黑文化衫x 件,白文化衫y 件,根据两种文化衫100件共花费2400元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总利润=每件利润×数量,即可求出结论.[详解]解:(1)设学校购进黑文化衫x 件,白文化衫y 件,依题意,得:10025202400x y x y +=⎧⎨+=⎩; 解得: 8020x y =⎧⎨=⎩答:学校购进黑文化衫80件,白文化衫20件.(2)(45-25)×80+(35-20)×20=1900(元). 答:该校这次义卖活动共获得1900元利润.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 20.如图,直线AB ,CD ,EF 相交于点O .(1)请写出,AOC ∠,AOE ∠EOC ∠的对顶角;(2)若50AOC ︒∠=,求,BOD ∠BOC ∠的度数.[答案](1)AOC ∠的对顶角是BOD ∠,AOE ∠的对顶角是BOF ∠,EOC ∠的对顶角是DOF ∠;(2)50BOD ︒∠=,130BOC ︒∠=[解析][分析](1)根据对顶角的定义写出对顶角即可;(2)根据对顶角的性质和邻补角的性质即可得出结论.[详解](1)AOC ∠的对顶角是BOD ∠,AOE ∠的对顶角是BOF ∠,EOC ∠的对顶角是DOF ∠.(2)因为AOC ∠的对顶角是BOD ∠,50AOC ︒∠=,所以50BOD ︒∠=.因为BOC ∠是BOD ∠的邻补角,所以18050130BOC ︒︒︒∠=-=.[点睛]此题考查的是对顶角的定义及性质和邻补角的性质,掌握对顶角的定义、对顶角相等和邻补角互补是解决此题的关键.21.在等式y =ax 2+bx +c 中,当x =﹣1时,y =3;当x =0时,y =1,当x =1时,y =1,求这个等式中a 、b 、c 的值.[答案]a =1,b =﹣1,c =1.[解析][分析]根据题意列出三元一次方程组,解方程组即可.[详解]由题意得,311a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得,a =1,b =﹣1,c =1.[点睛]本题考查的是三元一次方程组的解法,解三元一次方程组的一般步骤:①首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组.②然后解这个二元一次方程组,求出这两个未知数的值.③再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个关于第三个未知数的一元一次方程.④解这个一元一次方程,求出第三个未知数的值,得到方程组的解.22.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t 的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t 家庭大约有多少户?[答案](1)12户和0.08;补图见解析;(2)68%;(3)120户.[解析][分析](1)根据0<x≤5中频数为6,频率为0.12,则调查总户数为6÷0.12=50,进而得出在5<x≤10范围内的频数以及在20<x≤25范围内的频率;(2)根据(1)中所求即可得出不超过15t 的家庭总数即可求出,不超过15t 的家庭占被调查家庭总数的百分比;(3)根据样本数据中超过20t 的家庭数,即可得出1000户家庭超过20t 的家庭数.[详解](1)如图所示:根据0<x≤5中频数为6,频率为0.12,则6÷0.12=50,50×0.24=12户,4÷50=0.08, 故表格从上往下依次是:12户和0.08;(2)6121650++×100%=68%; (3)1000×(0.08+0.04)=120户,答:该小区月均用水量超过20t 的家庭大约有120户.考点:1.频数(率)分布直方图;2.用样本估计总体;3.频数(率)分布表.23.若规定a cb d =ad ﹣bc ,如2130-=2×0﹣3×(﹣1)=3 (1)计算:2531-; (2)计算:35x y -;(3)解方程组:321325 y xx y⎧-=⎪⎪⎨⎪=-⎪⎩.[答案](1)﹣17;(2) 5x+3y;(3)11 xy=⎧⎨=-⎩[解析][分析](1)根据所给的式子求出代数式的值即可;(2)根据所给的式子得出关于x、y的方程即可;(3)先根据题意得出关于x、y的二元一次方程组,求出x、y的值即可.[详解]解:(1)∵a bb c=ad﹣bc,∴原式=﹣2﹣15 =﹣17;(2)原式=5x+3y;(3)由题意可得321 325 x yy x+=⎧⎨-=-⎩,解得11 xy=⎧⎨=-⎩.[点睛]本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.24.“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.[答案]两种购买方法:甲种型号手机购买30部,乙种型号手机购买10部;或甲种型号手机购买20部,丙种型号手机购买20部[解析]分析]分三种情况:①设分别购进甲乙两种手机为x、y部,根据两种不同型号的手机共40部,并将60000元恰好用完可以列出方程组,解方程组即可解决问题;②设分别购进甲丙两种手机为x、z部,根据两种不同型号的手机共40部,并将60000元恰好用完可以列出方程组,解方程组即可解决问题;③设分别购进乙丙两种手机为y、z部,根据两种不同型号的手机共40部,并将60000元恰好用完可以列出方程组,解方程组即可解决问题.[详解]解:分三种情况:①设分别购进甲乙两种手机为x、y部,依题意得,40 180060060000 x yx y+=⎧⎨+=⎩,解得:3010 xy=⎧⎨=⎩,即可以购进甲乙两种手机分别是30部、10部;②设分别购进甲丙两种手机为x、z部,依题意得,40 1800120060000 x zx z+=⎧⎨+=⎩,解得:2020 xz=⎧⎨=⎩,即可以购进甲丙两种手机分别是20部、20部;③设分别购进乙丙两种手机为y、z部,依题意得,40 600120060000 y zy z+=⎧⎨+=⎩,解得:2060yz=-⎧⎨=⎩(不合题意,舍去),答:有两种购买方法:甲种型号手机购买30部,乙种型号手机购买10部;或甲种型号手机购买20部,丙种型号手机购买20部;[点评]本题考查了二元一次方程组的应用,比较复杂,解题的关键是根据已知条件分类讨论,然后在可能的情况下分别列出方程组,解方程组根据解的情况就可以确定购买方案.25.如图,∠1=28°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.[答案]62°[解析][分析]利用余角和对顶角的关系,即可求得角的度数.[详解]解:∵直线AB、EF相交于O点,∠1=28°,∴∠3=∠1=28°(对顶角相等),又∵AB⊥CD,∴∠2=90°-∠3=62°,[点睛]本题考查了垂线,对顶角、邻补角.注意:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直.。
人教版数学七年级下学期《期中测试卷》带答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)1.下列各数中,属于无理数的是( ) A. 13 B. 1.414 C. 2 D. 42.如图所示,1,2∠∠不是同位角的是( )A. B.C. D.3.如图,点E 在CD 延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B +∠BDC =180° 4.平面直角坐标系中,点P (-3,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 5.已知点(1,6)A m m -+在轴上,则m =( )A. 6-B. 6C.D. 16.下列生活现象中,属于平移的是( )A. 足球在草地上滚动B. 拉开抽屉C. 投影片的文字经投影转换到屏幕上D. 钟摆的摆动7.下列四个命题:①过一点有且只有一条直线与已知直线垂直;②过直线外一点有且只有一条直线与已知直线平行;③两条直线被第三条直线所截,同旁内角互补;④从直线外一点作直线的垂线段叫做点到直线的距离.其中假命题的是( )A. 0个B. 1个C. 2个D. 3个8.如图,已知AB ∥DE,∠ABC=70°,∠CDE=140°,则∠BCD 值为( )A. 20°B. 30°C. 40°D. 70°9.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是( )A. 35°B. 45°C. 55°D. 65°10.如图,在平面直角坐标系中,点A 1.A 2.A 3.A 4.A 5.A 6的坐标依次为A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…按此规律排列,则点A 2019的坐标是()A. (1009,1)B. (1009,0)C. (1010,1)D. (1010.0)二、填空题(每小题3分,共15分) 11.81的平方根是____.12.把命题“平行于同一直线的两直线平行”改写成:如果__________,那么__________.13.将一个矩形纸片折叠成如图所示的图形,若25ABC ︒∠=,则ACD ∠=_____.14.规定用符号表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____.15.如图,△OAB 的顶点A 的坐标为(3,3),B 的坐标为(4,0);把△OAB 沿x 轴向右平移得到△CDE ,如果D 的坐标为(6,3),那么OE 的长为_____.三、解答题(满分75分)16.(1)计算:239(0.5)81|32|16-+--+- (2)已知51|2|0a b ++-=,求20192019()a a b ++的值. 17.如图,AOB 为一条在O 处拐弯的河,要修一条从村庄P 通向这条河的道路,现在有两种设计方案:一是沿PM 修路,二是沿PO 修路,如果不考虑其他因素,这两种方案哪个更经济些?它是不是最佳方案?如果不是,请你帮助设计出最佳方案,并简要说明理由.18.已知//,70AB DE B ︒∠=,且CM 平分,DCB CM CN ∠⊥,求NCE ∠的度数.19.已知:如图把ABC ∆向上平移3个单位长度,再向右平移2个单位长度,得到A B C '''∆.(1)在图中画出A B C '''∆;(2)写出点,,A B C '''的坐标:的坐标为______,的坐标为 _________; 的坐标为________.(3)在轴上是否存在一点P ,使得,BCP ABC ∆∆的面积相等?若存在,请求出点P 的坐标;若不存在,说明理由.20.已知,如图12,A C ∠=∠∠=∠,求证://AE BC21.如图,已知,AD BC EF BC ⊥⊥,垂足分别为D,F ,试说明:GDC B ∠=∠请补充说明过程,并在括号内填上理由解:,AD BC EF BC ⊥⊥(已知)90ADB EFB ︒∴∠=∠=( )//EF AD ∴( )_________2180︒∴+∠=( )32180︒∠+∠=(已知)//_____AB ∴( )GDC B ∴∠=∠( )22.你能找出规律吗?(1)计算:49___________⨯=;49__________⨯=;1625___________⨯=;1625___________⨯=(2)由(1)结果猜想:a ___________(0,0)b a b ⨯=≥≥(3)请按照此规律计算:①510⨯ ②221235⨯ (4)已知2,10a b ==,则40_________=(用含,a b 式子表示)23.已知直线AB CD ∥.(1)如图1,直接写出ABE ∠,CDE ∠和BED ∠之间的数量关系.(2)如图2,BF ,DF 分别平分ABE ∠,CDE ∠,那么BFD ∠和BED ∠有怎样的数量关系?请说明理由.(3)若点E 的位置如图3所示,BF ,DF 仍分别平分ABE ∠,CDE ∠,请直接写出BFD ∠和BED ∠的数量关系.答案与解析一、选择题(每小题3分,共30分)1.下列各数中,属于无理数的是( )A. 13B. 1.414C. 2D. 4[答案]C[解析][分析]根据无理数的定义:无限不循环小数是无理数即可求解;[详解]A.·10.33=,是无限循环小数,是有理数,B.1.414是有限小数,是有理数,C.2是开方开不尽的数,是无理数;D.42=,是有理数;故选C.[点睛]本题考查无理数;能够化简二次根式,理解无理数的定义是解题的关键.2.如图所示,1,2∠∠不是同位角的是()A. B.C. D.[答案]D[解析][分析]同位角的定义:在截线的同侧,并且在被截线的同一方的两个角是同位角.[详解]A、∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的两条边都不在同一条直线上,不是同位角,符合题意;故选:D.[点睛]本题主要考查了同位角的知识,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B +∠BDC=180°[答案]A[解析][分析]运用平行线的判定方法进行判定即可.[详解]解:选项A中,∠1=∠2,只可以判定AC//BD(内错角相等,两直线平行),所以A错误;选项B中,∠3=∠4,可以判定AB//CD(内错角相等,两直线平行),所以正确;选项C中,∠5=∠B,AB//CD(内错角相等,两直线平行),所以正确;选项D中,∠B +∠BDC=180°,可以判定AB//CD(同旁内角互补,两直线平行),所以正确;故答案为A.[点睛]本题考查平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.4.在平面直角坐标系中,点P(-3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][分析]由题意根据点的横纵坐标特点,判断其所在象限即可.[详解]解:∵点(-3,4)的横纵坐标符号分别为:-,+,∴点P (-3,4)位于第二象限.故选:B .[点睛]本题考查各象限内点的坐标的符号,注意掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.已知点(1,6)A m m -+在轴上,则m =( )A. 6-B. 6C.D. 1[答案]D[解析][分析]直接利用轴上点的坐标特点得出的值,即可得出答案.[详解]∵点A (1m -,6m +)在y 轴上,∴点的横坐标是0,∴10m -=,解得1m =,故选:D .[点睛]本题考查了坐标轴上的点的坐标的特征,解决本题的关键是记住轴上点的特点为横坐标为0.6.下列生活现象中,属于平移的是( )A. 足球在草地上滚动B. 拉开抽屉C. 投影片的文字经投影转换到屏幕上D. 钟摆的摆动 [答案]B[解析]试题分析:根据基平移的定义,对选项进行一一分析,排除错误答案.解:A .足球在草地上滚动方向变化,不符合平移的定义,不属于平移B .拉开抽屉符合平移的定义,属于平移;C .投影片的文字经投影转换到屏幕上,大小发生了变化,不符合平移的定义,不属于平移;D .钟摆的摆动是旋转运动,不属于平移;故选B .7.下列四个命题:①过一点有且只有一条直线与已知直线垂直;②过直线外一点有且只有一条直线与已知直线平行;③两条直线被第三条直线所截,同旁内角互补;④从直线外一点作直线的垂线段叫做点到直线的距离.其中假命题的是( )A. 0个B. 1个C. 2个D. 3个分析]分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.[详解]解:①过同一平面内一点有且只有一条直线与已知直线垂直,故原命题是假命题;②过直线外一点有且只有一条直线与已知直线平行,是真命题;③两条平行的直线被第三条直线所截,同旁内角互补,故原命题是假命题;④从直线外一点作这条直线的垂线段的长度叫点到直线的距离,故原命题是假命题;故选:D.[点睛]此题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为( )A. 20°B. 30°C. 40°D. 70°[答案]B[解析]试题分析:延长ED交BC于F,∵AB∥DE,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC﹣∠MDC=70°﹣40°=30°,故选B.考点:平行线的性质.9.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是( )A. 35°B. 45°C. 55°D. 65°分析:求出∠3即可解决问题;详解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,故选C.点睛:此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.10.如图,在平面直角坐标系中,点A1.A2.A3.A4.A5.A6的坐标依次为A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…按此规律排列,则点A2019的坐标是( )A. (1009,1)B. (1009,0)C. (1010,1)D. (1010.0)[答案]B[解析][分析]根据图象可得移动4次图象完成一个循环,从而可得出点A2019的坐标.[详解]解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以点A2019的坐标为(504×2+1,0),则点A2019的坐标是(1009,0).故选B.[点睛]本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.二、填空题(每小题3分,共15分)81____.[答案]±3[解析][详解]∵81=9,±.∴9的平方根是3故答案为3.12.把命题“平行于同一直线的两直线平行”改写成:如果__________,那么__________.[答案](1). 两条直线平行于同一条直线(2). 这两条直线平行[解析][分析]命题由题设和结论两部分组成,通常写成“如果…那么…”形式.“如果”后面接题设,“那么”后面接结论.[详解]命题可以改写为:“如果两条直线平行于同一条直线,那么这两条直线平行”.故答案为:两条直线平行于同一条直线,这两条直线平行[点睛]本题考查了命题的定义及组成,命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.∠=_____.13.将一个矩形纸片折叠成如图所示的图形,若25ABC︒∠=,则ACD[答案]130°[解析][分析]直接利用翻折变换的性质以及平行线的性质分析得出答案.[详解]解:如图,延长DC到E,根据折叠可知,∠ACB=∠BCE,∵AB∥CD,∴∠BCE=∠ABC=25°,∴∠ACE=50°,∵∠ACE+∠ACD=180°,∴∠ACD=130°,故答案为130°.[点睛]本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.14.规定用符号表示一个实数的整数部分,如[3.65]3,31⎡⎤==⎣⎦,按此规定113⎡⎤-=⎣⎦_____. [答案]-3[解析][分析]先确定13的范围,再确定113⎡⎤-⎣⎦的范围,然后根据题意解答即可.[详解]解:∵3<13<4∴-3<113-<-2∴113⎡⎤-=⎣⎦-3 故答案为-3.[点睛]本题考查了无理数整数部分的有关计算,确定13的范围是解答本题的关键.15.如图,△OAB 的顶点A 的坐标为(3,3),B 的坐标为(4,0);把△OAB 沿x 轴向右平移得到△CDE ,如果D 的坐标为(6,3),那么OE 的长为_____.[答案]7[解析][分析]根据平移的性质得到AD =BE =6﹣3=3,由B 的坐标为(4,0),得到OB =4,根据OE=OB+BE 即可得答案.[详解]∵点A 的坐标为(33点D 的坐标为(63),把△OAB 沿x 轴向右平移得到△CDE ,∴AD =BE =6﹣3=3,∵B 的坐标为(4,0),∴OE =OB+BE =7,故答案为:7[点睛]本题考查图形平移的性质,平移不改变图形的形状和大小;图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等.三、解答题(满分75分)16.(1)|2|(2)已知|2|0b -=,求20192019()a a b ++的值.[答案](1)34-(2)0 [解析][分析](1)根据二次根式的运算法则和开立方的法则分别计算,再做加减运算;(2)根据非负数的性质列出算式,求得、的值代入计算即可.[详解](12|0.522)=- 152224=--+34=--(2)∵|2|0b -=,∴10a +=,20b -=,∴1a =-,2b =,∴20192019()a a b ++20192019(1)(12)=-+-+11=-+0=.[点睛]本题考查了二次根式的混合运算、有理数乘方的运算以及非负数的性质,注意正确使用运算法则以及17.如图,AOB 为一条在O 处拐弯的河,要修一条从村庄P 通向这条河的道路,现在有两种设计方案:一是沿PM 修路,二是沿PO 修路,如果不考虑其他因素,这两种方案哪个更经济些?它是不是最佳方案?如果不是,请你帮助设计出最佳方案,并简要说明理由.[答案]这两种方案沿PO 修路更经济些,不是最佳方案,最佳方案见解析.[解析][分析]根据点到直线的距离定义垂线段最短,进而分析得出即可.[详解]∵在Rt △POM 中,PM >PO ,∴这两种方案沿PO 修路更经济些,它不是最佳方案,过点P 作PN ⊥OB 于点N ,∵OP >PN ,PN 是点P 到OB 上的最短路线,∴此方案是最佳方案.18.已知//,70AB DE B ︒∠=,且CM 平分,DCB CM CN ∠⊥,求NCE ∠的度数.[答案]35°[解析][分析]先根据AB ∥DE ,∠B=70°,CM 平分∠DCB 可求出∠BCM 及∠BCE 的度数,再根据CM ⊥CN 可求出∠BCN 的度数,再由∠NCE=∠BCE-∠BCN 即可解答.[详解]∵AB ∥DE ,∠B=70°,∴∠DCB=180°-∠B=180°-70°=110°,∠BCE=∠B=70°,∵CM 平分∠DCB ,∴∠BCM=12∠DCB=12×110°=55°, ∵CM ⊥CN ,垂足为C ,∴∠BCN=90°-∠BCM=90°-55°=35°,∴∠NCE=∠BCE-∠BCN=70°-35°=35°.[点睛]本题考查了平行线、角平分线及两角互余的性质,用到的知识点为:两直线平行,同旁内角互补;两直线平行,内错角相等.19.已知:如图把ABC ∆向上平移3个单位长度,再向右平移2个单位长度,得到A B C '''∆.(1)在图中画出A B C '''∆;(2)写出点,,A B C '''坐标:的坐标为______,的坐标为 _________; 的坐标为________.(3)在轴上是否存在一点P ,使得,BCP ABC ∆∆的面积相等?若存在,请求出点P 的坐标;若不存在,说明理由.[答案](1)见解析;(2)(0,4),(−1,1),(3,1);(3)P(0,1)或(0,−5),理由见解析[解析][分析](1)根据图形平移的性质画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)根据同底等高的三角形面积相等即可得出结论.详解](1)A ,B ,C 向上平移3个单位长度,再向右平移2个单位长度得到,,,连接,,,即可得到A B C '''∆(2)由图可知,A′(0,4),B′(−1,1),C′(3,1)故答案为:(0,4),(−1,1),(3,1)(3)设P(0,y)∵△BCP 与△ABC 同底等高∴|y+2|=3,即y+2=3或y+2=−3解得y 1=1,y 2=−5∴P(0,1)或(0,−5)故答案为:P(0,1)或(0,−5),理由见解析[点睛]本题考查了作平移图形,一般步骤为:确定平移的方向和平移的距离;确定图形的关键点,如三角形、四边形等图形所有的顶点,圆的圆心等;过这些关键点作与平移的方向平行的射线,在射线上截取与平移的距离相等的线段,得到关键点的对应点;通过关键点作出平移后的图形.20.已知,如图12,A C ∠=∠∠=∠,求证://AE BC[答案]证明见解析[解析][分析]已知12∠=∠,同位角相等,两直线平行,即DC ∥AB ,两直线平行可推得同旁内角互补,可得∠ADC+∠A=180°,又∵A C ∠=∠,得到∠ADC+∠C=180°,同旁内角互补,两直线平行即可得到AE ∥BC .[详解]∵12∠=∠∴DC ∥AB∴∠ADC+∠A=180°∵A C ∠=∠∴∠ADC+∠C=180°∴AE ∥BC[点睛]本题考查了平行线的判定和性质定理,同位角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同旁内角互补.21.如图,已知,AD BC EF BC ⊥⊥,垂足分别为D,F ,试说明:GDC B ∠=∠请补充说明过程,并在括号内填上理由解:,AD BC EF BC ⊥⊥(已知)90ADB EFB ︒∴∠=∠=( )//EF AD ∴( )_________2180︒∴+∠=( )32180︒∠+∠=(已知)//_____AB ∴( )GDC B ∴∠=∠( )[答案]垂直的定义,同位角相等两直线平行,∠1,两直线平行同旁内角互补,同角的补角相等,DG ,内错角相等两直线平行,两直线平行同位角相等.[解析][分析]根据平行线的判定和性质,垂直的定义,同角的补角相等知识一一判断即可.[详解]解:∵AD ⊥BC ,EF ⊥BC (已知)∴∠ADB=∠EFB=90°(垂直的定义),∴EF ∥AD (同位角相等两直线平行),∴∠1+∠2=180°(两直线平行同旁内角互补),又∵∠2+∠3=180°(已知),∴∠1=∠3 (同角的补角相等),∴AB ∥DG (内错角相等两直线平行),∴∠GDC=∠B (两直线平行同位角相等).故答案为:垂直的定义,同位角相等两直线平行,∠1,两直线平行同旁内角互补,同角的补角相等,DG ,内错角相等两直线平行,两直线平行同位角相等.[点睛]本题考查了平行线的判定和性质,解题的关键是熟练掌握基本知识.22.你能找出规律吗?(1)___________=__________=;___________=;___________=(2)由(1)___________(0,0)a b =≥≥(3)请按照此规律计算:(4)已知a b ==则_________=(用含,a b 的式子表示)[答案](1);;20;20;(2;(3)①②;(4)2a b[解析][分析](1)根据二次根式的运算法则计算即可;(2)由(1)=0a ≥,0b ≥);(3)根据(2)的结论即可求解;(4)利用(2)的结论的逆运算即可求解.[详解](1236=⨯=6==;4520=⨯=20==;故答案为:;;20;20;(2)由(1)得:4949⨯=⨯;16251625⨯=⨯; 猜想:a b ab ⨯=(0a ≥,0b ≥);故答案为:ab ; (3)①5105105052⨯=⨯==;②225125121242353535⨯=⨯=⨯==; (4)∵2a =,10b =,∴()22240410210210a b =⨯=⨯=⨯=;故答案为:2a b .[点睛]本题考查了二次根式的乘除混合运算,弄清题中的规律是解本题的关键.23.已知直线AB CD ∥.(1)如图1,直接写出ABE ∠,CDE ∠和BED ∠之间的数量关系.(2)如图2,BF ,DF 分别平分ABE ∠,CDE ∠,那么BFD ∠和BED ∠有怎样的数量关系?请说明理由.(3)若点E 的位置如图3所示,BF ,DF 仍分别平分ABE ∠,CDE ∠,请直接写出BFD ∠和BED ∠的数量关系.[答案](1)ABE CDE BED ∠+∠=∠;(2)12BFD BED ∠=∠,理由见解析;(3)2360BFD BED ∠+∠=︒,理由见解析[解析][分析](1)过点E 作EF AB ∥,根据平行线的性质得1ABE ∠=∠,2CDE ∠=∠,进而即可得到结论;(2)由角平分线的定义得12ABF ABE ∠=∠,12CDF CDE ∠=∠,结合第(1)题的结论,即可求证; (3)过点作//EG CD ,由平行线的性质得360ABE CDE BED ∠+∠+∠=︒,结合第(1)题的结论与角平分线的定义得1()2BFD ABE CDE ∠=∠+∠,进而即可得到结论. 详解](1)ABE CDE BED ∠+∠=∠,理由如下:如图1,过点E 作EF AB ∥,∵AB CD ∥,∴EF CD ∥,∴1ABE ∠=∠,2CDE ∠=∠,∴12ABE CDE BED ∠+∠=∠+∠=∠,即ABE CDE BED ∠+∠=∠;(2)12BFD BED ∠=∠.理由如下: ∵BF ,DF 分别平分ABE ∠,CDE ∠, ∴12ABF ABE ∠=∠,12CDF CDE ∠=∠, ∴111()222ABF CDF ABE CDE ABE CDE ∠+∠=∠+∠=∠+∠, 由(1)得,1()2BFD ABF CDF ABE CDE ∠=∠+∠=∠+∠, 又∵BED ABE CDE ∠=∠+∠, ∴12BFD BED ∠=∠; (3)2360BFD BED ∠+∠=︒,理由如下:如图3,过点作//EG CD ,∵//AB CD ,//EG CD ,∴////AB CD EG ,∴180ABE BEG ∠+∠=︒,180CDE DEG ∠+∠=︒,∴360ABE CDE BED ∠+∠+∠=︒,由(1)知,BFD ABF CDF ∠=∠+∠,又∵BF ,DF 分别平分ABE ∠,CDE ∠, ∴12ABF ABE ∠=∠,12CDF CDE ∠=∠, ∴1()2BFD ABE CDE ∠=∠+∠, ∴2360BFD BED ∠+∠=︒.[点睛]本题主要考查平行线的性质定理与角平分线的定义,添加辅助线,掌握平行线的性质定理,是解题的关键.。
人教版七年级数学下册期中考试卷及答案【完整版】
人教版七年级数学下册期中考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12B .7+7C .12或7+7D .以上都不对2.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .44.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元5.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x /kg 0 1 2 3 4 5 y /cm 1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm 7.把1a a-根号外的因式移入根号内的结果是( ) A .a -B .a --C .aD .a -8.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8B .6C .2D .09.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是_________.5.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______________.6.将一副三角板如图放置,若20AOD∠=,则BOC∠的大小为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x﹣1)=15 (2)711 32x x-+-=2.已知关于x的不等式组5x13(x-1),13x8-x2a22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a的取值范围.3.如图①,已知AD∥BC,∠B=∠D=120°.(1)请问:AB与CD平行吗?为什么?(2)若点E、F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图②,求∠FAC的度数.(3)若点E在直线CD上,且满足∠EAC=12∠BAC,求∠ACD:∠AED的值(请自己画出正确图形,并解答).4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBC ECB∆≅∆(2)OB OC=5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、D6、B7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)<<1、1a42、90°3、135°4、a≤2.5、±46、160°三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、-4≤a<-3.3、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)略;(2)略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m.。
人教(完整版)七年级数学下册期中试卷及答案 - 百度文库
人教(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.36的平方根是()A .6-B .6C .6±D .4±2.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.若点()1,A a a -在第二象限,则点(),1B a a -在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列说法中,真命题的个数为( )①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A .1个B .2个C .3个D .4个 5.将一张边沿互相平行的纸条如图折叠后,若边//AD BC ,则翻折角1∠与2∠一定满足的关系是( )A .122∠=∠B .1290∠+∠=︒C .1230∠-∠=︒D .213230∠-∠=︒ 6.下列命题正确的是( )A .若a >b ,b <c ,则a >cB .若a ∥b ,b ∥c ,则a ∥cC .49的平方根是7D .负数没有立方根 7.一副直角三角板如图所示摆放,它们的直角顶点重合于点O ,//CO AB ,则BOD ∠=( )A .30B .45︒C .60︒D .90︒8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2021,0二、填空题9.计算:﹣9=_____.10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,在平面直角坐标系中,点A ,B ,C 三点的坐标分别是()2,0A -,()0,4B ,()0,1C -,过点C 作//CD AB ,交第一象限的角平分线于点D ,连接AD 交y 轴于点E .则点E 的坐标为______.12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.13.如图,将△ABC 沿直线AC 翻折得到△ADC ,连接BD 交AC 于点E ,AF 为△ACD 的中线,若BE =2,AE =3,△AFC 的面积为2,则CE=_____.14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 15.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A 1,第2次移动到点A 2…第n 次移动到点A n ,则△OA 2A 2021的面积是 __________________.三、解答题17.计算下列各式的值:(1)237)--(233(3)8318.求下列各式中的x 的值:(1)2810x -=;(2)()3164x -=.19.完成下面的证明:已知:如图,130∠=︒,60B ∠=︒,AB AC ⊥.求证://AD BC .证明:AB AC ⊥(已知),∵∠______90=︒(____________________).∴130∠=︒,60B ∠=︒(已知),∵1BAC B ∠+∠+∠=__________.即∠______180B +∠=︒∴//AD BC (______________________________).20.如图①,在平面直角坐标系中,点A 、B 在x 轴上,AB BC ⊥,2AO BO ==,3BC =.(1)写出点A 、B 、C 的坐标.(2)如图②,过点B 作//BD AC 交y 轴于点D ,求CAB BDO ∠+∠的大小. (3)如图③,在图②中,作AE 、DE 分别平分CAB ∠、ODB ∠,求AED ∠的度数. 21.计算:(1)239(6)27----; (2)﹣12+(﹣2)3×31127()89--⨯-; (3)已知实数a 、b 满足1a -+|b ﹣1|=0,求a 2017+b 2018的值.(4)已知5+1的整数部分为a ,5﹣1的小数部分为b ,求2a+3b 的值.22.(1)若一圆的面积与这个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆______C 正.(填“=”或“<”或“>”号)(2)如图,若正方形的面积为216cm ,李明同学想沿这块正方形边的方向裁出一块面积为212cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由. 23.已知:直线AB ∥CD ,M ,N 分别在直线AB ,CD 上,H 为平面内一点,连HM ,HN . (1)如图1,延长HN 至G ,∠BMH 和∠GND 的角平分线相交于点E .求证:2∠MEN ﹣∠MHN =180°;(2)如图2,∠BMH 和∠HND 的角平分线相交于点E .①请直接写出∠MEN 与∠MHN 的数量关系: ;②作MP 平分∠AMH ,NQ ∥MP 交ME 的延长线于点Q ,若∠H =140°,求∠ENQ 的度数.(可直接运用①中的结论)【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义求解即可.【详解】解:∵2(6)36=±,∴36的平方根是6±,故选:C .【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.A【分析】首先根据第二象限内点的坐标符号可得到0<a<1,然后分析出1-a>0,进而可得点B所在象限.【详解】解:∵点A(a-1,a)在第二象限,∴a-1<0,a>0,∴0<a<1,∴1-a>0,∴点B(a,1-a)在第一象限,故选A.【点睛】此题主要考查了点的坐标,关键是掌握第一象限内点的坐标符号(+,+),第二象限内点的坐标符号(-,+),第三象限内点的坐标符号(-,-),第四象限内点的坐标符号(+,-).4.B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题,④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.5.B【分析】根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出1290∠+∠=︒.【详解】解:由翻折可知,∠DAE=21∠,∠CBF=22∠,∵//AD BC,∴∠DAB+∠CBA=180°,∴∠DAE+∠CBF=180°,∠+∠=°,即2122180∴1290∠+∠=︒,故选:B.【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.6.B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A,由a>b,b>c,则a>c,可得选项A错误;选项B,若a∥b,b∥c,则a∥c,正确;选项C,由49的平方根是±7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B.【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.C【分析】由AB//CO得出∠BAO=∠AOC,即可得出∠BOD.【详解】AB CO,解://∴∠=∠=︒OAB AOC60∴∠=︒+︒=︒6090150BOC∠+∠=∠+∠=︒AOC DOA DOA BOD90∴∠=∠=︒60AOC BOD故选:C.【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题.8.B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运解析:B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.【点睛】本题考查了规律型:点的坐标,是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.二、填空题9.﹣3.【详解】试题分析:根据算术平方根的定义﹣=﹣3.故答案是﹣3.考点:算术平方根.解析:﹣3.【详解】﹣3.故答案是﹣3.考点:算术平方根.10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴解析:(2,﹣5).【分析】根据题意分析点P ,先关于y 轴对称,再求关于x 轴对称的点即可【详解】∵点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴对称,∴点P 的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.【分析】设D (x ,y ),由点在第一象限的角平分线上,可得,由待定系数法得直线AB 的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD 的解析式为,令x=0时,得,即可求得点E 解析:20,3⎛⎫⎪⎝⎭ 【分析】设D (x ,y ),由点D 在第一象限的角平分线上,可得x y =,由待定系数法得直线AB 的解析式为24y x =+,由//CD AB ,可设2CD y x b =+,把()0,1C -代入, 得21CD y x =-,进而可求得1(1)D ,,再由待定系数法求得直线AD 的解析式为1233y x =+,令x =0时,得23y =,即可求得点E 的坐标. 【详解】解:设D (x ,y ),点D 在第一象限的角平分线上,∴x y =,//CD AB ,()20A -,,()04B ,∴设直线AB 的解析式为:4y kx =+,把()20A -,,代入得: k =2,24AB y x ∴=+,2CD y x b ∴=+,把()0,1C -代入,得b =-1,21CD y x ∴=-,点D 在21CD y x =-上,(11)D ∴,,设直线AD 的解析式为:11y k x b =+,可得1111120k b k b +=⎧⎨-+=⎩, 111323k b ⎧=⎪⎪∴⎨⎪=⎪⎩, 1233AD y x ∴=+, 当x =0时,23y =, 2(0)3E ∴,, 故答案为:2(0)3, 【点睛】此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键. 12.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a ∥b ,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a ∥b ,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.13.【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD ,即可求得,进而求得【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵解析:【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD =12AC BD ⨯⨯,即可求得AC ,进而求得CE【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵△ABC 沿直线AC 翻折得到△ADC ,∴S △ABC =S △ADC ,BD ⊥AC ,BE =ED ,∴S 四边形ABCD =8, ∴182AC BD ⨯⨯=, ∵BE =2,AE =3,∴BD =4,∴AC =4,∴CE =AC ﹣AE =4﹣3=1.故答案为1.【点睛】本题考查了三角形中线的性质,翻折的性质,利用四边形ABCD 的等面积法求解是解题的关键.14.7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵91516<<,∴3154<<,∵a、b为两个连续的整数,15<<,a bb=,∴3a=,4a b+=+=;∴347故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.15.【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A解析:32【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=12AO•BE=12×4×3=6,S△AOC=12AO•OF=12×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴12BC•AD=16,∴BC•AD=32,故答案为:32.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.16.【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环解析:1009 2【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2∵2021÷4=505…1,∴A2021与A1是对应点,A2020与A0是对应点∴OA2020=505×2=1010,A1A2021=1010∴A2A2021=1010-1=1009则△OA2A2019的面积是12×1×1009=10092,故答案为:10092.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考解析:(1)4-;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 18.(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1),或.,.【点睛】此题考查了解析:(1)9x =或9x =-;(2)5x =【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1)2810x -=2x =81,9x =或9x =-.(2)()3164x -= 14x -=,5x =.【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.19.BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD ,即,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵(已知),∴∠BAC (解析:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD 180B +∠=︒,即1180BAC B ∠+∠+∠=︒,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵AB AC ⊥(已知),∴∠BAC 90=︒(垂直的定义).∵130∠=︒,60B ∠=︒(已知),∴1BAC B ∠+∠+∠=180°即∠BAD 180B +∠=︒∴//AD BC (同旁内角互补,两直线平行)故答案为:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.本题主要考查了垂直定义和平行线的判定,证明∠BAD 180B +∠=︒是解题关键. 20.(1),,;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得,则∠;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1)()2,0A -,()2,0B ,()2,3C ;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得ABD BAC ∠=∠,则∠90CAB BDO ABD BDO +∠=∠+∠=︒;(3)根据角平分线的定义可得CAE BDE ∠+∠45=︒,过点E 作//EF AC ,然后根据平行线的性质得出, 45AED CAE BDE ∠=∠+∠=︒.【详解】解:(1)依题意得:()2,0A -,()2,0B ,()2,3C ;(2)∵//BD AC ,∴ABD BAC ∠=∠,∴90CAB BDO ABD BDO +∠=∠+∠=︒;(3)∵//BD AC ,∴ABD BAC ∠=∠,∵AE ,DE 分别平分CAB ∠,ODB ∠, ∴111()()90222CAE BDE BAC BDO ABD BDO ∠+∠=∠+∠=∠+∠=⨯︒ 45=︒,过点E 作//EF AC ,则CAE AEF ∠=∠,BDE DEF ∠=∠,∴45AED AEF DEF CAE BDE ∠=∠+∠=∠+∠=︒.【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A ,B ,C 的坐标是解题的关键,(3)作出平行线是解题的关键.21.(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4).【解析】【分析】() 1直接利用算术平方根以及立方根的定义化简进而得出答案;()2直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案()3利用绝对值以及平方根的非负性质得出a ,b 的值,进而得出答案;()4直接利用23的范围进而得出a ,b 的值,即可得出答案.【详解】解:(13630=-+=;()23121(2)8⎛-+-⨯ ⎝111333⎛⎫=--+⨯-=- ⎪⎝⎭; ()3110a b -+-=,1a ∴=,1b =,20172018a b +112=+=;()451+的整数部分为a 1的小数部分为b ,3a ∴=,2b =,2366a b ∴+=+=【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键. 22.(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得关于a 的方程,解得a 的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案.【详解】解:(1)圆的面积与正方形的面积都是22cm π,∴)cm )cm ,)C cm ∴=圆,)C cm =正,32848ππππ=⨯>⨯, ∴C C ∴<正圆.(2)不能裁出长和宽之比为3:2的长方形,理由如下:设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得:3212a a ⨯=,解得a =a =∴长为,宽为,正方形的面积为216cm ,∴正方形的边长为4cm , 324>,∴不能裁出长和宽之比为3:2的长方形.【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键.23.(1)见解析;(2)①2∠MEN +∠MHN =360°;②20°【分析】(1)过点E 作EP ∥AB 交MH 于点Q ,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)①2∠MEN +∠MHN =360°;②20°【分析】(1)过点E 作EP ∥AB 交MH 于点Q ,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H 作GI ∥AB ,利用(1)中结论2∠MEN ﹣∠MHN =180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH +∠HNC =360°﹣(∠BMH +∠HND ),进而用等量代换得出2∠MEN +∠MHN =360°. ②过点H 作HT ∥MP ,由①的结论得2∠MEN +∠MHN =360°,∠H =140°,∠MEN =110°.利用平行线性质得∠ENQ +∠ENH +∠NHT =180°,由角平分线性质及邻补角可得∠ENQ +∠ENH +140°﹣12(180°﹣∠BMH )=180°.继续使用等量代换可得∠ENQ 度数.【详解】解:(1)证明:过点E 作EP ∥AB 交MH 于点Q .如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=12∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+12(HND+∠BMH)=130°.∴∠ENQ+12∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.。
人教版数学七年级下册《期中检测试题》及答案解析
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.计算:a•a2的结果是( )A. 3aB. a3C. 2a2D. 2a32.下列调查中,最适合采用全面调查的是( )A 调查市区居民的日平均用水量B. 调查全区初中生的每天睡眠时间C. 调查一批灯泡的使用寿命D. 调查某班学生的健康码情况3.据了解,新型冠状病毒(SARS﹣CoV﹣2)的最大直径大约是0.00000014米.数0.00000014用科学记数法表示为( )A. 1.4×10B. 1.4×10C. 1.4×10D. 14×104.用加减法解方程组224x yx y-=⎧⎨+=⎩①②时,方程①+②得( )A. 2y=2B. 3x=6C. x﹣2y=﹣2D. x+y=65.计算11aa a-+,正确结果是()A 1 B. 12C. aD.1a6.已知:如图,直线a∥b,若∠1=70°,则∠2的度数是( )A 100° B. 70° C. 130° D. 110°7.下列多项式中,不能用乘法公式进行因式分解的是( )A. a2﹣1B. a2+2a+1C. a2+4D. 9a2﹣6a+18.若2xy m=-⎧⎨=⎩是方程nx+6y=4的一个解,则代数式3m﹣n+1的值是( )A. 3B. 2C. 1D. ﹣19.抗击新冠肺炎疫情期间,某口罩厂接到加大生产的紧急任务后积极扩大产能,现在每天生产的口罩比原来多4万个.已知现在生产100万个口罩所需的时间与原来生产60万个口罩所需的时间相同,问口罩厂现在每天生产多少个口罩?设原来每天生产x 万个口罩,则由题意可列出方程( ) A. 1004x -=60x B. 1004x +=60x C. 604x -=100x D. 604x +=100x 10.如图,直线AB ∥CD ,折线EFG 交AB 于M ,交CD 于N ,点F 在AB 与CD 之间,设∠AMF =m °,∠EFG =n °,则∠CNG 的度数是( )A. n °B. (m +n )°C. (2n ﹣m )°D. (180+m ﹣n )°二.填空题(共8小题)11.分解因式:22a a +=_____.12.若分式13x -有意义,则取值范围是_____________. 13.如图,在△ABC 中,BC =10cm ,D 是BC 的中点,将△ABC 沿BC 向右平移得△A ′DC ′,则点A 平移的距离AA ′=_____cm .14.将数据83,85,87,89,84,85,86,88,87,90分组,则86.5~88.5这一组的频数是_____.15.已知:如图,在四边形ABCD 中,AB ⊥AC ,垂足为A .如果∠B =∠D =50°,∠CAD =40°,那么∠BCD =_____度.16.如图,在边长为 2a 的正方形中央剪去一边长为 ()a 2+ 的小正方形 ()a 2>,将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为__________________.17.如图,6块同样大小的长方形复合地板刚好拼成一个宽为30cm 的大长方形,则这个大长方形的长是_____cm .18.对于实数a ,b 定义运算“◎”如下:a ◎b =1a b -,如5◎2=512-=2,(﹣3)◎4=314--=﹣1,若(m +2)◎(m ﹣3)=2,则m =_____. 三.解答题(共7小题)19.计算:(﹣1)2020+(π﹣3)0﹣(12)﹣1. 20.解方程组8312x y x y -=⎧⎨+=⎩. 21.先化简,再求值:211()111a a a a a +-÷---,其中a =3. 22.某校组织七年级学生从学校出发,到距学校9km 的教育基地开展社会实践活动,一部分学生骑自行车先出发,半小时后,其他学生乘公共汽车出发,结果两批学生同时到达目的地.已知公共汽车的行驶速度是自行车骑行速度的3倍,求自行车的骑行速度和公共汽车的行驶速度分别是多少?23.如图,点D 在△ABC 的边AC 上,过点D 作DE ∥BC 交AB 于E ,作DF ∥AB 交BC 于F .(1)请按题意补全图形;(2)请判断∠EDF 与∠B 的大小关系,并说明理由.24.国家卫健委规定:中学生每天线上学习时间不超过4小时,某区对七年级学生“停课不停学”期间,使用手机等电子设备的时长情况进行抽样调查,调查结果共分为四个层次:A .0~2小时;B .2~4小时;C .4~6小时;D .6小时以上,根据调查统计结果绘制如图两幅不完整的统计图.请结合统计图,解答下列问题:(1)本次参与调查的学生共有多少人?请补全条形统计图;(2)在扇形统计图中,表示层次D的扇形的圆心角是多少度?(3)若该区一共有3300名七年级学生,那么估计有多少名学生使用电子设备的时长不符合国家卫健委的规定.25.某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等),加工成如图2的竖式与横式两种无盖的长方体铁容器(加工时接缝材料忽略不计).(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,则可加工的竖式和横式长方体铁容器各有多少个?(2)把长方体铁容器加盖可以加工成铁盒.现工厂准备将35块铁板裁剪成长方形铁片和正方形铁片,用来加工铁盒,已知1块铁板可裁成3张长方形铁片或4张正方形铁片,也可以裁成1张长方形铁片和2张正方形铁片.问:该工厂充分利用这35张铁板,最多可以加工成多少铁盒?答案与解析一.选择题(共10小题)1.计算:a•a2的结果是( )A. 3aB. a3C. 2a2D. 2a3[答案]B[解析][分析]原式利用同底数幂的乘法法则计算即可得到结果.[详解]解:原式=a3,故选:B.[点睛]此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.2.下列调查中,最适合采用全面调查的是( )A. 调查市区居民的日平均用水量B. 调查全区初中生的每天睡眠时间C. 调查一批灯泡的使用寿命D. 调查某班学生的健康码情况[答案]D[解析][分析]根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.[详解]解:A、调查市区居民的日平均用水量,调查范围广,适合抽样调查,故此选项不符合题意;B、调查全区初中生的每天睡眠时间,调查范围广,适合抽样调查,故此选项不符合题意;C、调查一批灯泡的使用寿命,适合抽样调查,故此选项不符合题意;D、调查某班学生的健康码情况适合普查,故此选项符合题意;故选:D.[点睛]本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.据了解,新型冠状病毒(SARS﹣CoV﹣2)的最大直径大约是000000014米.数0.00000014用科学记数法表示为( )A. 1.4×10B. 1.4×10C. 1.4×10D. 14×10[答案]C[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.00000014=1.4×10-7,故选:C.[点睛]本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.用加减法解方程组224x yx y-=⎧⎨+=⎩①②时,方程①+②得( )A. 2y=2B. 3x=6C. x﹣2y=﹣2D. x+y=6 [答案]B[解析][分析]直接根据等式的基本性质即可解答.[详解]解:用加减法解方程组224x yx y-=⎧⎨+=⎩①②时,方程①+②得:3x=6.故选:B.[点睛]此题主要考查等式的基本性质,正确理解性质是解题关键.5.计算11aa a-+,正确的结果是()A. 1B. 12C. aD.1a[答案]A[解析]分析]直接利用分式的加减运算法则计算得出答案.[详解]11111 a a aa a a a--++===,故选A.[点睛]此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.6.已知:如图,直线a∥b,若∠1=70°,则∠2的度数是( )A. 100°B. 70°C. 130°D. 110°[答案]D[解析][分析]根据平角的定义先求出∠3,再根据平行线的性质求出∠2.[详解]解:如图:∵∠1+∠3=180°,∴∠3=180°﹣∠1=110°∵a∥b,∴∠2=∠3=110°.故选:D.[点睛]本题考查了平角的定义及平行线的性质,掌握平行线的性质是解决本题的关键.7.下列多项式中,不能用乘法公式进行因式分解的是( )A. a2﹣1B. a2+2a+1C. a2+4D. 9a2﹣6a+1 [答案]C[解析][分析]直接利用公式法分别分解因式进而得出答案.[详解]A、a2﹣1=(a+1)(a﹣1),可以运用公式法分解因式,不合题意;B、a2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C、a2+4,无法利用公式法分解因式,符合题意;D、9a2﹣6a+1=(3a﹣1)2,可以运用公式法分解因式,不合题意;故选:C.[点睛]本题考查了公式法,正确运用乘法公式是解题的关键.8.若2xy m=-⎧⎨=⎩是方程nx+6y=4的一个解,则代数式3m﹣n+1的值是( )A. 3B. 2C. 1D. ﹣1 [答案]A[解析][分析]直接把方程的解代入进行计算,得到3m﹣n=2,再计算得到答案.[详解]解:∵2xy m=-⎧⎨=⎩是方程nx+6y=4的一个解,∴代入得:﹣2n+6m=4,∴3m﹣n=2,∴3m﹣n+1=2+1=3,故选:A.[点睛]本题考查了二元一次方程的解和求代数式的值,能求出3m-n=2是解此题的关键.9.抗击新冠肺炎疫情期间,某口罩厂接到加大生产的紧急任务后积极扩大产能,现在每天生产的口罩比原来多4万个.已知现在生产100万个口罩所需的时间与原来生产60万个口罩所需的时间相同,问口罩厂现在每天生产多少个口罩?设原来每天生产x万个口罩,则由题意可列出方程( )A. 1004x-=60xB.1004x+=60xC.604x-=100xD.604x+=100x[答案]B[解析][分析]设原来每天生产x万个口罩,则现在每天生产(x+4)万个口罩,根据工作时间=工作总量÷工作效率结合现在生产100万个口罩所需的时间与原来生产60万个口罩所需的时间相同,即可得出关于x的分式方程,此题得解.[详解]解:设原来每天生产x万个口罩,则现在每天生产(x+4)万个口罩,依题意,得:1004x=60x;故选:B.[点睛]本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.10.如图,直线AB∥CD,折线EFG交AB于M,交CD于N,点F在AB与CD之间,设∠AMF=m°,∠EFG=n°,则∠CNG的度数是( )A. n°B. (m+n)°C. (2n﹣m)°D. (180+m﹣n)°[答案]D[解析]分析]过点F,作FH∥AB,利用平行线的性质,先用含m、n的代数式表示出∠CNF,根据平角求出∠CNG.[详解]过点F作FH∥AB.∵AB∥CD,∴AB∥FH∥CD.∴∠AMF=∠EFH,∠CNF=∠HFG.∵∠EFH+HFG=∠EFG,∴∠AMF+∠FNC=∠EFG.即∠FNC=n°﹣m°.∴∠CNG=180°﹣(n°﹣m°)=(180+m﹣n)°.故选:D.[点睛]本题考查了平行线的性质及平角的定义.掌握平行线的性质是解题的关键.二.填空题(共8小题)11.分解因式:22a a +=_____.[答案]22(2)a a a a +=+[解析][分析]直接提公因式法:观察原式22a a +,找到公因式,提出即可得出答案.[详解]22(2)a a a a +=+.[点睛]考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.12.若分式13x -有意义,则的取值范围是_____________. [答案]3x ≠[解析][分析]根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.[详解]解:分式13x -有意义, ∴30x -≠,解得:3x ≠,故答案:3x ≠.[点睛]本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键. 13.如图,在△ABC 中,BC =10cm ,D 是BC 的中点,将△ABC 沿BC 向右平移得△A ′DC ′,则点A 平移的距离AA ′=_____cm .[答案]5.[解析][分析]利用平移变换的性质解决问题即可.[详解]解:观察图象可知平移的距离=AA′=BD=12BC=5(cm),故答案为5.[点睛]本题考查平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.14.将数据83,85,87,89,84,85,86,88,87,90分组,则86.5~88.5这一组的频数是_____.[答案]3.[解析][分析]数出数据落在86.5~88.5这一组中的个数即可.[详解]解:将数据83,85,87,89,84,85,86,88,87,90分组,则落在86.5~88.5这一组中的数据有87,88,87,一共3个.故答案为:3.[点睛]本题考查了频数:频数是指每个对象出现的次数.一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.15.已知:如图,在四边形ABCD中,AB⊥AC,垂足为A.如果∠B=∠D=50°,∠CAD=40°,那么∠BCD=_____度.[答案]130.[解析][分析]根据题意可得∠BAD=130°,再根据四边形的内角和等于360°计算即可得出∠BCD的度数.[详解]解:∵AB⊥AC,∴∠BAC=90°,∠BAD=∠BAC+∠CAD=90°+40°=130°,又∵∠BCD+∠BAD+∠B+∠D=360°,∴∠BCD=360°﹣∠BAD﹣∠B﹣∠D=360°﹣130°﹣50°﹣50°=130°.故答案为:130.[点睛]本题主要考查了多边形的内角与外角,熟记多边形的内角和公式是解答本题的关键.16.如图,在边长为 2a 的正方形中央剪去一边长为 ()a 2+ 的小正方形 ()a 2>,将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为__________________.[答案]3a 2 -4a-4[解析][分析]平行四边形的面积等于大正方形的面积减去小正方形的面积.[详解]根据题意得,平行四边形的面积=(2a )2-(a +2)2=3a 2-4a -4.故答案为3a 2-4a -4.[点睛]本题考查了整式混合运算的应用,解题的关键是理解两个正方形的面积与平行四边形的面积之间的关系,列出相应的式子后再化简.17.如图,6块同样大小的长方形复合地板刚好拼成一个宽为30cm 的大长方形,则这个大长方形的长是_____cm .[答案]40.[解析][分析]设每个小长方形的长为xcm ,宽为ycm ,根据长方形的对边相等已经宽为30cm ,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入(1+2y )中即可求出结论.[详解]解:设每个小长方形的长为xcm ,宽为ycm ,依题意,得:2230x y x x y +=⎧⎨+=⎩, 解得:2010x y =⎧⎨=⎩,∴x+2y=40.故答案为:40.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.对于实数a,b定义运算“◎”如下:a◎b=1ab-,如5◎2=512-=2,(﹣3)◎4=314--=﹣1,若(m+2)◎(m﹣3)=2,则m=_____.[答案]7.[解析][分析]利用新定义得到2123mm+-=-,再解这个分式方程即可.详解]解:根据题意得2123mm+-=-,方程两边同乘m﹣3,得:m+2﹣1=2(m﹣3),解这个方程,得:m=7.经检验,m=7是所列方程的解故答案为:7.[点睛]本题考查了解分式方程,熟练掌握解分式方程的步骤是解答本题的关键.三.解答题(共7小题)19.计算:(﹣1)2020+(π﹣3)0﹣(12)﹣1.[答案]0.[解析][分析]先计算乘方,零指数幂和负整数指数幂,再相加减即可.[详解]解:原式=1+1﹣2=0.[点睛]本题考查了有理数的乘方、零指数幂和负整数指数幂的计算,熟记公式,正确的计算出零指数幂和负整数指数幂是解决此题的关键.20.解方程组8 312 x yx y-=⎧⎨+=⎩.[答案]53 xy=⎧⎨=-⎩[解析][分析]根据y 的系数互为相反数,利用加减消元法求解即可.[详解]8312x y x y -=+=⎧⎨⎩①②, ①+②得,4x=20,解得x=5,把x=5代入①得,5-y=8,解得y=-3,所以方程组的解是53x y =⎧⎨=-⎩. 21.先化简,再求值:211()111a a a a a +-÷---,其中a =3. [答案]a +1,4.[解析][分析]先根据分式的混合运算顺序和运算法则化简原式,将a 的值代入计算可得.[详解]解:原式=1(1)(1)a a a a a ÷-+- =(1)(1)1a a a a a+-⨯- =a+1,当a =3时,原式=3+1=4.[点睛]本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.某校组织七年级学生从学校出发,到距学校9km 的教育基地开展社会实践活动,一部分学生骑自行车先出发,半小时后,其他学生乘公共汽车出发,结果两批学生同时到达目的地.已知公共汽车的行驶速度是自行车骑行速度的3倍,求自行车的骑行速度和公共汽车的行驶速度分别是多少?[答案]自行车的速度是12km /h ,公共汽车的速度是36km /h .[解析][分析]设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据骑自行车用的时间-公交车用的时间=半小时即可列出分式方程,求出分式方程的解并检验后即得结果.[详解]解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:99132x x-=,解得:x=12,经检验,x=12是所列分式方程的解,∴3x=36.答:自行车的速度是12km/h,公共汽车的速度是36km/h.[点睛]本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.23.如图,点D在△ABC的边AC上,过点D作DE∥BC交AB于E,作DF∥AB交BC于F.(1)请按题意补全图形;(2)请判断∠EDF与∠B的大小关系,并说明理由.[答案](1)如图,见解析;(2)∠EDF=∠B.理由见解析.[解析][分析](1)利用几何语言画出对应的几何图形;(2)根据平行线的性质得到∠B=∠AED,∠AED=∠EDF,然后根据等量代换得到∠EDF=∠B.[详解]解:(1)如图,(2)∠EDF=∠B.理由如下:∵DE∥BC,∴∠B=∠AED,∵DF∥AB,∴∠AED=∠EDF,∴∠EDF=∠B.[点睛]本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质.24.国家卫健委规定:中学生每天线上学习时间不超过4小时,某区对七年级学生“停课不停学”期间,使用手机等电子设备的时长情况进行抽样调查,调查结果共分为四个层次:A.0~2小时;B.2~4小时;C.4~6小时;D.6小时以上,根据调查统计结果绘制如图两幅不完整的统计图.请结合统计图,解答下列问题:(1)本次参与调查的学生共有多少人?请补全条形统计图;(2)在扇形统计图中,表示层次D的扇形的圆心角是多少度?(3)若该区一共有3300名七年级学生,那么估计有多少名学生使用电子设备的时长不符合国家卫健委的规定.[答案](1)本次参与调查的学生共有200人,补全的条形统计图见解析;(2)18°;(3)估计有825名学生使用电子设备的时长不符合国家卫健委的规定.[解析][分析](1)用条形统计图中A层次的人数除以扇形统计图中A层次的人数所占百分比即可求出参与调查的学生人数,用总人数减去其它三个层次的人数即可求出C层次的人数,进一步即可补全条形统计图;(2)用D层次的人数除以总人数再乘以360°即可求得结果;(3)用C、D两个层次的人数之和除以调查的总人数再乘以3300即可求出结果.[详解]解:(1)30÷15%=200(人),C层次的学生有:200﹣30﹣120﹣10=40(人),即本次参与调查的学生共有200人,补全的条形统计图如图所示;(2)360°×10200=18°,答:在扇形统计图中,表示层次D的扇形的圆心角是18°;(3)3300×4010200=825(名),答:估计有825名学生使用电子设备的时长不符合国家卫健委的规定.[点睛]本题考查了条形统计图、扇形统计图以及利用样本估计总体等知识,属于基本题型,正确理解题意、熟练掌握上述基础知识是解题的关键.25.某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等),加工成如图2的竖式与横式两种无盖的长方体铁容器(加工时接缝材料忽略不计).(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,则可加工的竖式和横式长方体铁容器各有多少个?(2)把长方体铁容器加盖可以加工成铁盒.现工厂准备将35块铁板裁剪成长方形铁片和正方形铁片,用来加工铁盒,已知1块铁板可裁成3张长方形铁片或4张正方形铁片,也可以裁成1张长方形铁片和2张正方形铁片.问:该工厂充分利用这35张铁板,最多可以加工成多少铁盒?[答案](1)可以加工竖式长方体铁容器100个,横式长方体铁容器538个;(2)最多可以加工成19个铁盒.[解析][分析](1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设用m块铁板裁成长方形铁片,n块铁板裁成正方形铁片,则用(35-m-n)块铁板裁成长方形铁片和正方形铁片,根据裁成的长方形铁片和正方形铁片正好配套,即可得出关于m,n的二元一次方程,结合m,n,(35-m-n)均为非负整数,即可得出各裁剪方案,再分别求出各方案所能加工成的铁盒数量,比较后即可得出结论.[详解](1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:43201421176x yx y+=⎧⎨+=⎩,解得:100538 xy=⎧⎨=⎩.答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设用m块铁板裁成长方形铁片,n块铁板裁成正方形铁片,则用(35﹣m﹣n)块铁板裁成长方形铁片和正方形铁片,依题意,得:3(35)42(35)42m m n n m n+--+--=,∴n=65m﹣21.∵m,n,(35﹣m﹣n)均为非负整数,∴259mn=⎧⎨=⎩,203mn=⎧⎨=⎩.当m=25,n=9时,3(35)325(35259)19 44m m n+--⨯+--==;当m=20,n=3时,3(35)320(35203)44m m n+--⨯+--==.∵19>18,∴最多可以加工成19个铁盒.[点睛]本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期中测试
一、选择题(30分) 1.64的立方根是( ) A .8 B .8- C .4 D .4- 2.如图,B ∠的同位角可以是( ) A .1∠ B .2∠
C .3∠
D .4∠
3.如图,下列选项中,哪个不可以得到12l l ∥( )
A .12∠=∠
B .23∠=∠
C .35∠=∠
D .34180∠+∠=︒
4.在平面直角坐标系中,将点A(1,2)-先向上平移3个单位长度,再向左平移2个单位长度,得到点'A ,则点'A 的坐标是( ) A .(1,1)- B .(1,2)-- C .(1,2)- D .(1,2)
5.下列命题中:①邻补角是互补的角;②两直线平行,同位角的平分线互相平行;③|5|-的算术平方根是5;④点P(1,2)-在第四象限.其中是真命题的有( )
A .0个
B .1个
C .2个
D .3个
6.若一正方形的面积为20平方厘米,周长为x 厘米,则x 的值介于下列哪两个整数之间( ) A .16,17 B .17,18 C .18,19 D .19,20
7.在平面内,将一个直角三角板按如图所示摆放在一组平行线上.若155∠=︒,则2∠的度数是( ) A .50︒ B .45︒ C .40︒ D .35︒
8.已知点A(1,0),B(0,2),点P 在x 轴上,且三角形PAB 的面积为5,则点P 的坐标为( ) A .(4,0)- B .(6,0) C .(4,0)-或(6,0) D .无法确定 9.如图,直线1l ,2l 被直线3l 所截,且12l l ∥,过h 上的点A 作3AB l ⊥;交3l 于点B ,其中130∠︒<,则下列选项一定正确的是( ) A .2120∠︒> B .360∠︒< C .4390∠-∠︒>
D .234∠∠> 10.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P 第2019次碰到长方形的边时,点P 的坐标为( )
A .(1,4)
B .(5,0)
C .(7,4)
D .(8,3)
二、填空题(24分)
11.16的算术平方根是___________.
12.如图,四边形ABCD 中,AD BC ∥,110A ∠=︒,则B ∠=___________.
13.在平面直角坐标系中,正方形ABCD 的顶点A ,B ,C 的坐标分别为(1,1)-,(1,1)--,(1,1)-,则顶点D 的坐标为___________. 14.如图,点D 在AOB ∠的平分线OC 上,点E 在OA 上,ED OB ∥,125∠=︒,
则AED ∠的度数___________. 15.如图所示,直线a b ∥,直线c 与直线a ,b 分别相交于点A ,B ,AM b ⊥,垂足为点M ,若158∠=︒,则2∠=___________.
16.按照如图所示的操作步骤,若输入x 的值为2,则输出的值为___________.
17.如图,在宽为21 m 、长为31 m 的长方形地面上修建两条同样宽的道路,余下部分作为耕地。
根据图中数据,计算耕地的面积为___________2m .
18.如图,已知正方形ABCD ,顶点A(1,3),B(1,1),C(3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2 020次变换后,正方形ABCD 的对角线交点M 的坐标变为___________.
三、解答题(10+7+10+12+12+15=66分) 19.计算.
(1)2
|6|(1)--
(2|1-
20.如图,直线EF GH ∥,点A 在EF 上,AC 交GH 于点B ,若72FAC ∠=︒,58ACD ∠=︒,点D 在GH 上,求BDC ∠的度数.
21.已知实数a ,b ,c 满足:4b ,c 的平方根等于它本身,求a 的值.
22.将一副三角尺中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒. (1)若150BCD ∠=︒,求ACE ∠的度数。
(2)试猜想BCD ∠与ACE ∠的数量关系,请说明理由.
(3)若按住三角尺ABC 不动,绕顶点C 转动三角尺DCE ,试探究BCD ∠等于多少度时,CD AB ∥,并简要说明理由.
23.在如图所示的平面直角坐标系中,将三角形ABC 平移后得到三角形'''A B C ,它们的各个顶点坐标如下表所示.
(1___________个单位长
度,再向___________平移___________个单位长度可以得到三角形'''A B C . (2)在平面直角坐标系中画出三角形ABC 及平移后的三角形'''A B C . (3)求出三角形'''A B C 的面积.
24.如图,用粗线在数轴上表示了一个范围,这个范固包含所有大于1小于2的实数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2),请你在数轴上表示出一个范围,使得这个范围:
(1)恰好包含所有大于3-小于0的有理数(画在数轴上).
(2)包含π这两个数,且只含有5个整数(画在数轴上). (3)同时满足以下三个条件:(画在数轴上)
①至少有100对互为相反数的数和100对互为倒数的数. ②有最小的正整数.
③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.
期中测试 答案
一、 1.【答案】C 2.【答案】D 3.【答案】C 4.【答案】A 5.【答案】D 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】D 10.【答案】D 二、 11.【答案】4 12.【答案】70︒ 13.【答案】(1,1) 14.【答案】50︒ 15.【答案】32︒
16.【答案】5 17.【答案】600
18.【答案】 2 0182-(,)
三、
19.【答案】解:(1)原式6318=+-=.
(2)原式5126=+=.
20.【答案】解:因为EF GH ∥,72FAC ∠=︒,所以72CBD FAC ∠=∠=︒.又因为58ACD ∠=︒,所以
180180725850BDC CBD ACD ∠=︒-∠-∠=︒-︒-︒=︒.
21.【答案】由已知条件可知3a =,4b =,0c =,3325a +=+=. 22.【答案】解:(1)∵90BCA ECD ∠=∠=︒,150BCD ∠=︒,
∴1509060DCA BCD BCA ∠=∠-∠=︒-︒=︒, ∴906030ACE ECD DCA ∠=∠-∠=︒-︒=︒.
(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,∴
90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒.
(3)当120BCD ∠=︒或60︒时,CD AB ∥.如图①,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,CD AB ∥,此时180********BCD B ∠=︒-∠=︒-︒=︒;如图②,根据内错角相等,两直线平行,当
60B BCD ∠=∠=︒时,CD AB ∥.
23.【答案】解:(1)右 4 上 2(或:上2右4) (2)如图所示.
24.【答案】解:(1)如图所示.
(2)如图所示.(答案不唯一)
(3)如图所示.(答案不唯一)。