第4专题带电粒子在电场和磁场中的运动
2025届高考物理一轮复习资料 第八章 静电场 第4讲 带电粒子在电场中的运动
第4讲带电粒子在电场中的运动学习目标 1.会利用动力学、功能关系分析带电粒子在电场中的直线运动。
2.掌握带电粒子在电场中的偏转规律,会分析带电粒子在电场中偏转的功能关系。
3.会分析、计算带电粒子在交变电场中的直线运动和偏转问题。
1.思考判断(1)带电粒子在匀强电场中只能做类平抛运动。
(×)(2)带电粒子在电场中,只受静电力时,也可以做匀速圆周运动。
(√)2.带电粒子沿水平方向射入竖直向下的匀强电场中,运动轨迹如图所示,粒子在相同的时间内()A.位置变化相同B.速度变化相同C.速度偏转的角度相同D.动能变化相同答案 B考点一 带电粒子(带电体)在电场中的直线运动1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子做匀速直线运动。
(2)粒子所受合外力F 合≠0且与初速度共线,带电粒子将做加速直线运动或减速直线运动。
2.用动力学观点分析a =qE m ,E =U d ,v 2-v 20=2ad 。
3.用功能观点分析匀强电场中:W =qEd =qU =12m v 2-12m v 20非匀强电场中:W =qU =12m v 2-12m v 20角度 带电粒子在电场中的直线运动例1 (多选)(2022·福建卷,8)我国霍尔推进器技术世界领先,其简化的工作原理如图1所示。
放电通道两端电极间存在一加速电场,该区域内有一与电场近似垂直的约束磁场(未画出)用于提高工作物质被电离的比例。
工作时,工作物质氙气进入放电通道后被电离为氙离子,再经电场加速喷出,形成推力。
某次测试中,氙气被电离的比例为95%,氙离子喷射速度为1.6×104 m/s ,推进器产生的推力为80 mN 。
已知氙离子的比荷为7.3×105 C/kg ;计算时,取氙离子的初速度为零,忽略磁场对离子的作用力及粒子之间的相互作用,则( )图1A.氙离子的加速电压约为175 VB.氙离子的加速电压约为700 VC.氙离子向外喷射形成的电流约为37 AD.每秒进入放电通道的氙气质量约为5.3×10-6 kg答案 AD解析 设一个氙离子所带电荷量为q 0,质量为m 0,由动能定理得q 0U =12m 0v 2,解得氙离子的加速电压为U =m 0v 22q 0≈175 V ,A 正确,B 错误;设1 s 内进入放电通道的氙气质量为m ,由动量定理得Ft =95%m v ,解得m ≈5.3×10-6 kg ,D 正确;氙离子向外喷射形成的电流I =q t =95%m m 0t ·q 0≈3.7 A ,C 错误。
带电粒子在电场和磁场中的运动教案
带电粒子在电场和磁场中的运动教案第一章:电场对带电粒子的作用1.1 静电场的基本概念电荷电场强度电势差1.2 电场对带电粒子的作用力库仑定律电场力的大小和方向电场力的作用效果1.3 电场的图像表示电场线等势面第二章:带电粒子在电场中的运动2.1 电场中的直线运动匀速直线运动匀加速直线运动2.2 电场中的曲线运动圆周运动螺旋运动2.3 电场中的静止状态电荷的平衡状态电荷的受力平衡第三章:磁场对带电粒子的作用3.1 磁场的基本概念磁场强度磁感应强度磁通量3.2 磁场对带电粒子的作用力洛伦兹力洛伦兹力的方向洛伦兹力的大小3.3 磁场的图像表示磁场线磁感线第四章:带电粒子在磁场中的运动4.1 磁场中的直线运动匀速直线运动匀速圆周运动4.2 磁场中的曲线运动螺旋运动螺旋线运动4.3 磁场中的静止状态带电粒子的受力平衡带电粒子的稳定运动第五章:带电粒子在电场和磁场中的组合运动5.1 电场和磁场的相互作用洛伦兹力在电场中的作用洛伦兹力在磁场中的作用5.2 带电粒子在电场和磁场中的复合运动带电粒子的轨迹带电粒子的速度和加速度5.3 实际应用举例粒子加速器磁悬浮列车第六章:带电粒子在非均匀电场中的运动6.1 非均匀电场的基本概念电场强度随位置的变化电势差随位置的变化6.2 带电粒子在非均匀电场中的受力分析电场力随位置的变化带电粒子的加速度随位置的变化6.3 非均匀电场中的轨迹和速度带电粒子的轨迹形状带电粒子的速度随位置的变化第七章:带电粒子在非均匀磁场中的运动7.1 非均匀磁场的基本概念磁场强度随位置的变化洛伦兹力随位置的变化7.2 带电粒子在非均匀磁场中的受力分析洛伦兹力随位置的变化带电粒子的加速度随位置的变化7.3 非均匀磁场中的轨迹和速度带电粒子的轨迹形状带电粒子的速度随位置的变化第八章:带电粒子在电场和磁场组合场中的运动8.1 组合场的基本概念电场和磁场的叠加洛伦兹力和电场力的叠加8.2 带电粒子在组合场中的受力分析洛伦兹力和电场力的合成带电粒子的加速度的合成8.3 组合场中的轨迹和速度带电粒子的轨迹形状带电粒子的速度的合成第九章:带电粒子在电场和磁场中的动力学方程9.1 动力学方程的推导牛顿第二定律洛伦兹力的表达式9.2 动力学方程的应用带电粒子在电场中的动力学方程带电粒子在磁场中的动力学方程9.3 动力学方程的数值解法欧拉法龙格-库塔法第十章:带电粒子在电场和磁场中的实验现象和应用10.1 实验现象的观察电场对带电粒子的作用实验磁场对带电粒子的作用实验10.2 实验数据的处理和分析实验误差的估计实验数据的线性拟合10.3 实际应用的探讨粒子加速器的实验应用磁悬浮列车的技术应用重点和难点解析重点环节1:电场对带电粒子的作用力补充和说明:库仑定律是描述电荷之间相互作用力的基本定律,其公式为F=kQ1Q2/r^2,其中k为库仑常数,Q1和Q2分别为两个电荷的电量,r为两者之间的距离。
专题四 带电粒子在电磁场中的运动
专题四带电粒子在电磁场中的运动【内容要点】1.三种场力做功特点比较(1)重力G:大小为mg,方向总是竖直向下,其做功与路径无关,做功多少除与带电粒子的质量有关外,还与始、末位置的高度差有关。
(2)电场力F电:大小为Eq,方向与电场强度E的方向及带电粒子的性质有关,其做功与路径无关,做功多少除与带电粒子的电量有关外,还与始、末位置的电势差有关。
(3)洛伦磁力F洛:大小跟速度与磁场方向的夹角有关,当带电粒子的速度与磁场方向平行时,F洛= 0,当带电粒子的速度与磁场方向垂直时,F洛= qvB,其方向垂直于速度v 与磁感应强度B所决定的平面,与带电粒子的性质有关,可用左手定则判断,无论带电粒子做什么运动,洛伦磁力都不做功。
4.在电磁场中,微观带电粒子的重力在两种情况下不要考虑(1)题目明确指出重力忽略不计或可以不考虑的;(2)题目未明确指出,但重力远小于其他力的。
5.处理带电粒子在电磁场中运动的三个基本观点(1)动力学观点:利用牛顿运动定律和运动学公式;(2)动量观点:利用动量定理和动量守恒定律;(3)能量观点:利用动能定理和能量守恒定律。
解这类综合题的关键是受力分析,并能画出受力及运动情况示意图,而后灵活运用上述观点求解。
【典型例题】例1串列加速器是用来产生高能离子的装置,如图虚线框内为其主体的原理示意图,其中加速管的中部b处有很高的正电势U,a、c两端均有电极接地(电势为零),现将速度很小的负一价碳离子从a端输入,当离子到达b处时,可被设在b处的特殊装置将其电子剥离,成为n价正离子,而不改变其速度大小,这些正n价碳离子从c端飞出后进入一与其速度方向垂直的、磁感应强度为B的匀强磁场中,在磁场中做半径为R的圆周运动,已知碳离子的质量m = 2.0×10-26kg,U = 7.5×105V,B = 0.50T,n = 2,元电荷e =1.6×10-19C,求R。
例2 1998年6月2日,我国科学家研制的阿尔法磁谱仪由“发现号”航天飞机搭载升空,用于探测宇宙中的反物质和暗物质(即由“反粒子”构成的物质),如31H反粒子3-1H。
高中物理竞赛带电粒子在电磁场中的运动知识点讲解
高中物理竞赛带电粒子在电磁场中的运动知识点讲解要点讲解学习这部分知识,首先要清楚重力场、电场和磁场对带电粒子的作用的性质,以及重力场、电场和磁场对带电粒子作用力的区别:只要带电粒子处于重力场中,就一定会受到重力,而且带电粒子所受重力一定是恒力;只要带电粒子处于电场中,就一定分受到电场力,而且,如果电场是匀强电场,那么带电粒子所受电场力一定是恒力;在磁场中,只有带电粒子运动才可能受到洛仑兹力作用,只有带电粒子的运动方向不与磁场方向平行,带电粒子才一定受到洛仑兹力作用。
同时,要注意,洛仑兹力的方向与带电粒子的运动方向垂直,这就意味着,作曲线运动的带电粒子所受的洛仑兹力是变力。
重力、电场力对带电粒子作功;而洛仑兹力对带电粒不作功。
因此,在很多情况下,需要从能量变化的角度考虑问题。
【例题分析】例1.用轻质绝缘细线把带负电的小球悬挂在O点,在没有磁场时,小球在竖直平面内AB之间来回摆动,当小球经过悬点正下方时悬线对小球的拉力为。
现在小球摆动的空间加上方向垂直纸面向外的磁场,如图11-4-1所示,此时小球仍AB之间来回摆动,用表示小球从A向B摆经过悬点正下方时悬线的拉力,用表示小球从B向A 摆经过悬点正下时悬线的拉力。
则(A)(B)(C)(D)分析:带电小球在最低点的受力情况,由于小球做圆周运动,根据牛顿运动定律便可求解。
解:在没有磁场时,小球在悬点正下方时受两个力:拉力和重力mg。
根据牛顿第二定律,有式中V为小球过悬点正下方时的速率,L为摆长,所以小球摆动区加了如图11-4-1示的磁场后,小球摆动的过程中还受洛仑兹力的作用,因洛仑兹力方向和小球运动方向垂直,不改变小球到达悬点正下方的速率V,但小球在悬点正下方时除受悬线拉力和重力外还受洛仑兹力f.当小球由A向B摆动时,f的方向左手定则判断是沿悬线向下,根据牛顿第二定律,小球在悬点正下方时有得当球从B向A摆动经悬点正下方时,洛仑兹力的方向是沿悬线向上,根据牛顿第二定律可得结果是因此(B)选项是正确的。
带电粒子在电场和磁场中所受的力解读
特点:不对运动电荷做功。不改变 v0大小,只改变 v0 方向。即不改变带电粒子的速率和动能。 轨迹: 匀速率圆周运动,速率仍为
v0
回旋半径R:带电粒子作圆周运动的半径。
由牛顿第二定律: qv B mv 0
2 0
R
回旋半径
m v0 R q B
回旋周期T:带电粒子运行一周所需要的时间。 2 R 2 m T v0 qB 回旋频率f:单位时间内带电粒子运行的圈数。
当年用它发现了氯和汞的同位素,以后几年内 又发现了许多种同位素,特别是一些非放射性的同 位素。
阿斯顿于1922年获诺贝尔化学奖。 工作 原理 正离子经过狭缝Sl和S2之后,进入速度选 择器;由S3射出,进入另一磁场,作匀速 圆周运动到达照相底片。
p
滤速器
qE qvB
vE B
F Fe 速度选择器 m B 照相底片 A x s3 B
等螺距螺旋线运动 R mv qB mv0 sin qB 2m h Tv// v0 cos qB
三、带电粒子在电场和磁场中的运动
质谱仪(P155)
~就是用物理方法分析同位素的仪器。
英国实验化学家和物理学家阿斯顿(F.W.Aston, 1877-1945)在1919年创制的。
Fm qv B
Fm 0
匀速圆周运动 匀速直线运动
d
其合运动为螺旋线运动。
螺距
螺旋线的半径为 R mv mv sin qB qB
~与垂直于磁场的速度分量成正比。 粒子的回旋周期 2 R 2 R 2 m T v v sin qB ~与速度、半径无关。
带电粒子在匀强磁场中的运动-临界、极值及多解问题
•
例题
有些题目只告诉了磁感应的大小,而未具体 指出磁感应强度的方向,此时必须要考虑磁
感应强度方向不确定而形成多解
电场力方向一定指向圆心,而洛伦兹力方向可能指向圆心,也可能背离圆心, 从而形成两种情况.
• 2.方法界定将一半径为 的圆绕着入射点旋转, 从而探索出临界条件,这种方法称为“旋转法”.
•
旋转法”模型示例
带电粒子在磁场中运动的多解问题
• 带电粒子电性不确定形成多解 • 受洛伦兹力作用的带电粒子,可能带正电荷,也可
能带负电荷,在相同的初速度的条件下,正、负粒 子在磁场中运动轨迹不同,导致形成多解.
•
“放缩圆”模型示例
“旋转法”解决有界磁场中的临界问题
• 1.适用条件(1)速度大小一定,方向不同带电粒子 进入匀强磁场时,他们在磁场中做匀速圆周运动的 半径相同,若射入初速度为v0,则圆周半径为 . 如图所示.(2)轨迹圆圆心——共圆带电粒子在磁 场中做匀速圆周运动的圆心在以入射点P为圆心、 半径 的圆上.
临界状态不唯一形成多解
• 带电粒子在洛伦兹力作用下飞越有界磁场 时,由于粒子运动轨迹是圆弧状,因此, 他可能直接穿过去了,也可能转过180°从 入射界面反向飞出,于是形成了多解.如图 所示.
•
Байду номын сангаас
带电粒子在匀强磁场中的运动临界、极值及多解问题
• 1.有界磁场中临界问题的处 理方法
• 2.带电粒子在磁场中运动的 多解问题
1.有界磁场中临界问题的处理方法
• “放缩法”解决有界磁场中的临界问题 • 1.适用条件 • (1)速度方向一定,大小不同粒子源发射速度方向一定、大小
高中物理-专题四第1课时 电场和磁场基本问题
专题四电场和磁场第1课时电场和磁场基本问题1.电场强度的三个公式(1)E=Fq是电场强度的定义式,适用于任何电场。
电场中某点的场强是确定值,其大小和方向与试探电荷q无关,试探电荷q充当“测量工具”的作用。
(2)E=k Qr2是真空中点电荷所形成的电场场强的决定式,E由场源电荷Q和场源电荷到某点的距离r决定。
(3)E=Ud是场强与电势差的关系式,只适用于匀强电场。
注意:式中d为两点间沿电场方向的距离。
2.电场能的性质(1)电势与电势能:φ=E p q。
(2)电势差与电场力做功:U AB=W ABq=φA-φB。
(3)电场力做功与电势能的变化:W=-ΔE p。
3.等势面与电场线的关系(1)电场线总是与等势面垂直,且从电势高的等势面指向电势低的等势面。
(2)电场线越密的地方,等差等势面也越密。
(3)沿等势面移动电荷,电场力不做功,沿电场线移动电荷,电场力一定做功。
4.带电粒子在磁场中的受力情况(1)磁场只对运动的电荷有力的作用,对静止的电荷无力的作用。
(2)洛伦兹力的大小和方向:F洛=q v B sin θ。
注意:θ为v与B的夹角。
F的方向由左手定则判定,四指的指向应为正电荷运动的方向或负电荷运动方向的反方向。
5.洛伦兹力做功的特点由于洛伦兹力始终和速度方向垂直,所以洛伦兹力永不做功。
1.主要研究方法(1)理想化模型法。
如点电荷。
(2)比值定义法。
如电场强度、电势的定义方法,是定义物理量的一种重要方法。
(3)类比的方法。
如电场和重力场的类比;电场力做功与重力做功的类比;带电粒子在匀强电场中的运动和平抛运动的类比。
2.静电力做功的求解方法(1)由功的定义式W=Fl cos α来求。
(2)利用结论“电场力做功等于电荷电势能变化量的负值”来求,即W=-ΔE p。
(3)利用W AB=qU AB来求。
3.电场中的曲线运动的分析采用运动合成与分解的思想方法。
4.匀强磁场中的圆周运动解题关键找圆心:若已知进场点的速度和出场点,可以作进场点速度的垂线,依据是F洛⊥v,与进出场点连线的垂直平分线的交点即为圆心;若只知道进场位置,则要利用圆周运动的对称性定性画出轨迹,找圆心,利用平面几何知识求解问题。
(北京专用)高考物理一轮复习第九章静电场第4讲带电粒子在电场中的运动课件
第一页,共40页。
知识梳理
一、带电粒子在电场(diàn chǎng)中做直线运动 1.运动状态分析
带电粒子沿与电场(diàn chǎng)线平行的方向进入匀 强电场(diàn chǎng),受到的电场(diàn chǎng)力与运动
方 向在同一直线上,做① 匀变速直线 运动。
第十四页,共40页。
1-1 一水平放置的平行板电容器的两极板间距为d,极板分别与电池两
极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计)。小孔正
上方 处的P点有一带电粒子,该粒子从静止开始(kāishǐ)下落,经过小孔进入
d 电容器2,并在下极板处(未与极板接触)返回。若将下极板向上平移 ,则
第八页,共40页。
2.两平行金属板间为匀强电场,不同的带电粒子都以垂直于电场线的方 向飞入匀强电场(不计重力),要使这些粒子经过匀强电场后有相同大小
的偏转角,则它们应具备的条件是 ( ) C
A.有相同的动能和相同的比荷 B.有相同的动量(质量与速度的乘积(chéngjī))和相同的比荷 C.有相同的速度和相同的比荷 D.只要有相同的比荷就可以
第十七页,共40页。
甲
乙
第十八页,共40页。
(1)将该离子推进器固定在地面上进行试验。求氙离子经A、B之间的 电场加速后,通过栅电极B时的速度v的大小; (2)配有该离子推进器的飞船的总质量为M,现需要对飞船运行方向作一 次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很 小的速度Δv,此过程中可认为氙离子仍以第(1)问中所求的速度通过栅 电极B。推进器工作时飞船的总质量可视为不变。求推进器在此次工 作过程中喷射(pēnshè)的氙离子数目N; (3)可以用离子推进器工作过程中产生的推力与A、B之间的电场对氙 离子做功的功率的比值S来反映推进器工作情况。通过计算说明采取 哪些措施可以增大S,并对增大S的实际意义说出你的看法。
带电粒子在匀强磁场中的运动知识小结
匀速圆周运动:当带电粒子所受的重力与电场力
相等,
相反时,带电粒子在
力的作用下,在垂直于
的平面内做匀速圆
周运动;③ 一般的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同
一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线;④ 分阶段
运动:带电粒子可能依次通过几个情况不同的复合场区域,运动情况随区域发生变化,运动过程由几
带电粒子在匀强磁场中的运动(知识小结)
一.带电粒子在磁场中的运动
(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即
①
为静止状向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。 (3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感
线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动
1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动. 2.其特征方程为:F 洛=F 向.
3.三个基本公式: v2
(1)向心力公式:qvB=mR;
mv (2)半径公式:R=qB;
2πm 1 (3)周期和频率公式:T= qB =f ;
(一)边界举例: 1、直线边界(进出磁场有对称性)
规律:如从同一直线边界射入的粒子,再从这一边射出时,速 度与边界的夹角相等。 速度与边界的夹角等于圆弧所对圆心角的一半, 并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题) (在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界) 3、矩形边界 磁场区域为正方形,从 a 点沿 ab 方向垂直射入匀强磁场:
带电粒子和质点在电场、磁场中的运动专题
带电粒子和质点在电场、磁场中的运动专题一、带电粒子在电场和磁场中运动1.带电粒子通常指电子、质子、氚核和α粒子等微观粒子,一般可不计重力.2.处理带电粒子在电场和磁场中运动问题的方法.(1)带电粒子在匀强电场和匀强磁场共存区域内运动时,往往既要受到电场力作用,又要受到洛仑兹力作用.这两个力的特点是,电场力是恒力,而洛仑兹力的大小、方向随速度变化.若二力平衡,则粒子做匀速直线运动.若二力不平衡,则带电粒子所受合外力不可能为恒力,因此带电粒子将做复杂曲线运动.解决粒子做复杂曲线运动问题时,必须用动能定理或能量关系处理.这里要抓住场力做功和能量变化的特点,即电场力做功与电势能变化的特点,以及洛仑兹力永远不做功.(2)若匀强电场和匀强磁场是分开的独立的区域,则带电粒子在其中运动时,分别遵守在电场和磁场中运动规律运动,处理这类问题时要注意分阶段求解.[例1]空间存在相互垂直的匀强电场E和匀强磁场B,其方向如图3-7-1所示.一带电粒子+q以初速度v0垂直于电场和磁场射入,则粒子在场中的运动情况可能是A.沿初速度方向做匀速运动B.在纸平面内沿逆时针方向做匀速圆周运动C.在纸平面内做轨迹向下弯曲的匀变速曲线运动D.初始一段在纸平面内做轨迹向上(或向下)弯曲的非匀变速曲线运动问题:1.应根据哪些物理量的关系来判定粒子的运动情况?2.分析粒子的受力及其特点.判断选择并说明理由.3.若欲使带电粒子在此合场中做匀速运动,对该粒子的电性、带电量多少、质量大小、入射初速度大小有无限制?分析:粒子在场中要受到电场力和洛仑兹力作用.其中电场力为方向竖直向下的恒力;洛仑兹力方向与速度方向垂直且在垂直磁场的纸面内,初态时其方向为竖直向上,随速度大小和方向的变化,洛仑兹力也发生变化.若初态时,电场力和洛仑兹力相等,即qE=Bqv0,则粒子所受合外力为零,粒子做匀速运动.若初态时,电场力和洛仑兹力不相等,则粒子所受合外力不为零,方向与初速度方向垂直(竖直向上或竖直向下),粒子必做曲线运动.比如粒子向下偏转,其速度方向变化,所受洛仑兹力方向改变;同时电场力做正功,粒子动能增加,速度增大,洛仑兹力大小也变化.此时粒子所受合外力大小、方向均变化,则粒子所做曲线运动为非匀变速曲线运动.解:选项A、D正确.讨论与小结:1.判断带电粒子在电场和磁场共存区域内的运动形式,要根据其所受合外力的情况和合外力方向与初速度方向的关系来确定.2.若带电粒子在该合场中做匀速运动,根据qE=Bqv0可知,只要入射粒子的初速度v0=E/B,就可以做匀速运动.与粒子的电性、带电量的多少、质量的大小无关.这一点很重要,很多电学仪器的工作原理都涉及到这方面知识,比如离子速度选择器、质谱仪、电磁流量计等.[例2]如图3-7-2所示为一电磁流量计的示意图,截面为正方形的非磁性管,其边长为d,内有导电液体流动,在垂直液体流动方向加一指向纸里的匀强磁场,磁感应强度为B.现测得液体a、b两点间的电势差为U,求管内导电液体的流量Q为多少?问题:1.液体中的离子在磁场中怎样运动;为什么液体a、b两点间存在电势差?2.简述电磁流量计的工作原理.分析:流量是指单位时间内流过某一横截面的液体的体积.导电液体是指液体内含有正、负离子.在匀强磁场中,导电液体内的正、负离子在洛仑兹力作用下分别向下、上偏转,使管中上部聚积负电荷,下部聚积正电荷.从而在管内建立起一个方向向上的匀强电场,其场强随聚积电荷的增高而加强.后面流入的离子同时受到方向相反的洛仑兹力和电场力作用.当电场增强到使离子所受二力平衡时,此后的离子不再偏移,管上、下聚积电荷不再增加a、b两点电势差达到稳定值U,可以计算出流量Q.解:设液体中离子的带电量为q,因为[例3]如图3-7-3所示,两块平行放置的金属板,上板带正电,下板带等量负电.在两板间有一垂直纸面向里的匀强磁场.一电子从两板左侧以速度v0沿金属板方向射入,当两板间磁场的磁感应强度为B1时,电子从a点射出两板,射出时的速度为2v.当两板间磁场的磁感应强度变子从b点射出时的速率.问题:1.依据力和运动关系,分析电子在合场中为什么会偏转,电子所做的运动是匀变速曲线运动吗?2.因为电子所做运动为非匀变速曲线运动,无法用牛顿运动定律解决,应该考虑用什么方法解决?3.若用动能定理解决,则各场力做功有什么特点?若用能量守恒定律解决,各场的能量有什么特点?分析:电子在合场中受到电场力和洛仑兹力,初态时电子所受二力不平衡,电子将发生偏转.因为洛仑兹力的大小、方向均变化,电子所受合力为变力,做非匀变速曲线运动.若用动能定理处理问题,则需知:电场力做功与路径无关,与带电量和初、末两位置的电势差有关.洛仑兹力永远不做功.若用能量守恒定律处理问题,则需知:电子在磁场中只有动能,没有势能;电子在电场中不仅有动能,而且还有势能,因此要规定零电势面.解一:设aO两点电势差为U,电子电量为e,质量m.依据动能定理可知:解二:设O点所在等势面为零电势面,其余同上.依据能量守恒定律可知:电子从a点射出,其守恒方程为:电子从b点射出,其守恒方程为:小结:1.处理带电粒子在电场和磁场共存区域内运动的另一种方法是应用动能定量,或能量守恒定律.2.应用动能定理时要注意,洛仑兹力永远不做功;应用能量守恒定律时注意,若只有电场力做功,粒子的动能加电势能总和不变,计算时需设定零电势面,同时注意电势能的正、负.[例4]如图3-7-4所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B,在X轴下方有沿y轴负方向的匀强电场,场强为E.一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出.射出之后,第三次到达X轴时,它与点O的距离为L.求此粒子射出时的速度V和运动的总路程(重力不计).问题:带电粒子在电场和磁场中分别做什么运动?你能画出它的轨迹示意图吗?分析:本题与前两个例题不同,它的电场和磁场区域是分开的.带电粒子在x轴上方运动只受洛仑兹力作用,做匀速圆周运动,又因为x轴是磁场的边界,粒子入射速度方向与磁场垂直,所以粒子的轨迹为半圆.带电粒子在x轴下方运动只受电场力作用,速度方向与力在一条直线上,粒子做匀变速直线运动.即当粒子从磁场中以速度v垂直于x轴向下射出时,因电场力作用先匀减速到0,再反向加速至v,并垂直射入磁场(粒子在电场中做类平抛运动).因为只要求讨论到粒子第三次到达x轴,所以粒子运动轨迹如图3-7-5所示.解:如图所示,有L=4R设粒子进入电场做减速运动的最大路程为l,加速度为a,则由前面分析知,粒子运动的总路程为S=2rR+2l小结:本题带电粒子的运动比较复杂,要根据粒子运动形式的不同分阶段处理.这是解决同类问题常用的方法.在动笔计算之前,一定要依据力和运动关系认真分析运动规律,分阶段后再个个击破.二、带电质点在电场和磁场中运动1.带电质点是指重力不能忽略,但又可视为质点的带电体.2.处理带电质点在匀强电场和匀强磁场中运动问题的方法(1)讨论带电质点在复合场中运动问题时,要先弄清重力、电场力、洛仑兹力的特点.根据质点受力情况和初速度情况判定运动形式.(2)讨论带电质点在复合场中运动问题时,还须清楚重力、电场力做功和重力势能、电势能变化关系.注意洛仑兹力不做功的特点.若带电质点只受场力作用,则它具有的动能、重力势能和电势能总和不变.[例5]如图3-7-6所示,在匀强电场和匀强磁场共存的区域内,场强E的方向竖直向下,磁感应强度B的方向垂直纸面向里.有三个带有等量同种电荷的油滴M、N、P在该区域中运动,其中M向有做匀速直线运动,N在竖直平面内做匀速圆周运动,P向左做匀速直线运动,不计空气阻力,则三个油滴的质量关系是A.m M>m N>m PB.m P>m N>m MC.m N>m P>m MD.m P>m M>m N问题:1.物体做匀速圆周运动的条件是什么?油滴N在场中的受力情况怎样?其电性如何?2.请对油滴P、M进行受力分析,并选出正确答案.分析:油滴在合场中要同时受到重力、电场力和洛图3-7-6仑兹力作用,其中重力、电场力是恒力,洛仑兹力随速度的变化而变化.若油滴N欲做匀速圆周运动,则其所受重力和电场力必然等大、反向,所受合力表现为洛仑兹力.这样才能满足合外力大小不变,方向时刻与速度方向垂直的运动条件.油滴一定带负电.三油滴的受力分析如图3-7-7所示.因它们所受的电场力和洛仑兹力大小分别相同,所以可知油滴P的质量最大,油滴M的质量最小.解:选项B正确.小结:1.若带电质点在三场共存区域内运动,一般会同时受到重力、电场力、洛仑兹力作用,若电场和磁场又为匀强场,则重力、电场力为恒力,洛仑兹力与速度有关,可为恒力也可为变力.2.若电场和磁场均是匀强场,且带电质点仅受三场力作用.则:(1)若重力与电场力等大、反向,初速度为零,带电质点必静止不动.(2)若重力与电场力等大、反向,初速度不为零,带电质点必做匀速圆周运动,洛仑兹力提供向心力.(3)若初速度不为零,且三力合力为零,带电质点必做匀速直线运动.(4)若初速度不为零,初态洛仑兹力与重力(或电场力)等大、反向,合外力不为零,带电质点必做复杂曲线运动.[例6]如图3-7-8所示,在xOy平面内,有场强E=12N/C,方向沿x轴正方向的匀强电场和磁感应强度大小为B=2T、方向垂直xOy平面指向纸里的匀强磁场.一个质量m=4×10-5kg,电量q=2.5×10-5C带正电的微粒,在xOy平面内做匀速直线运动,运动到原点O时,撤去磁场,经一段时间后,带电微粒运动到了x轴上的P点.求:(1)P点到原点O的距离;(2)带电微粒由原点O运动到P点的时间.问题:1.微粒运动到O点之前都受到哪些力的作用?在这段时间内微粒为什么能做匀速直线运动?2.微粒运动到O点之后都受到哪些力的作用?在这段时间内微粒做什么运动?说明原因.分析:(1)微粒运动到O点之前要受到重力、电场力和洛仑兹力作用,如图3-7-9所示.在这段时间内微粒做匀速直线运动,说明三力合力为零.由此可得出微粒运动到O点时速度的大小和方向.(2)微粒运动到O点之后,撤去磁场,微粒只受到重力、电场力作用,其合力为一恒力,与初速度有一夹角,因此微粒将做匀变速曲线运动,如图3-7-9所示.可利用运动合成和分解的方法去求解.解:因为mg=4×10-4NF=Eq=3×1O-4N(Bqv)2=(Eq)2+(mg)2所以 v=10m/s所以θ=37°因为重力和电场力的合力是恒力,且方向与微粒在O点的速度方向垂直,所以微粒在后一段时间内的运动为类平抛运动.可沿初速度方向和合力方向进行分解.设沿初速度方向的位移为s1,沿合力方向的位移为s2,则因为s l=vt所以 P点到原点O的距离为15m; O点到P点运动时间为1. 2s.[例7]如图3-7-10所示,一对竖直放置的平行金属板长为L,板间距离为d,接在电压为U的电源上,板间有一与电场方向垂直的匀强磁场,磁场方向垂直纸面向里,磁感强度为B,有一质量为m,带电量为+q的油滴,从离平行板上端h高处由静止开始自由下落,由两板正中央P点处进入电场和磁场空间,油滴在P点所受电场力和磁场力恰好平衡,最后油滴从一块极板的边缘D处离开电场和磁场空间.求:(1)h=?(2)油滴在D点时的速度大小?问题:油滴的运动可分为几个阶段?每个阶段油滴做什么运动?每个阶段应该用什么方法来求解?分析:油滴的运动可分为两个阶段:从静止始至P点,油滴做自由落体运动;油滴进入P点以后,要受到重力、电场力和洛仑兹力作用,且合力不为零,由前面的小结知,油滴将做复杂曲线运动并从D点离开.第一个阶段的运动,可以用牛顿运动定律和运动学公式求解,也可以用能量关系求解.第二个阶段的运动只能依据能量关系求解,即重力、电场力做功之和等于油滴动能变化.或油滴具有的重力势能、电势能、动能总和不变.当然这一能量关系对整个运动过程也适用.解:(1)对第一个运动过程,依据动能定理和在P点的受力情况可知:(2)对整个运动过程,依据动能定理可知:小结:由例6、例7可以看出,处理带电质点在三场中运动的问题,首先应该对质点进行受力分析,依据力和运动的关系确定运动的形式.若质点做匀变速运动,往往既可以用牛顿运动定律和运动学公式求解,也可以用能量关系求解.若质点做非匀变速运动,往往需要用能量关系求解.应用能量关系求解时,要特别注意各力做功的特点以及重力、电场力做功分别与重力势能和电势能变化的关系.同步练习(A组)一、选择题1.氢原子中,质量为m,电量为e的电子绕核做匀速圆周运动,现垂直于电子的轨道平面加一磁感应强度为B的匀强磁场,若电子的轨道半径不变,电子受到的电场力是洛仑兹力的N倍,则电子绕核运动的角速度可能为[ ]二、非选择题2.如图3-7-11所示,MN、PQ是一对长为L、相距为d(L d)的平行金属板,两板加有一定电压.现有一带电量为q、质量为m的带正电粒子(不计重力).从两板中央(图中虚线所示)平行极板方向以速度v0入射到两板间,而后粒子恰能从平行板的右边缘飞出.若在两板间施加一个垂直纸面的匀强磁场,则粒子恰好沿入射方向做匀速直线运动.求(1)两板间施加的电压U:(2)两板间施加的匀强磁场的磁感应强度B;(3)若将电场撤销而只保留磁场,粒子仍以原初速大小与方向射入两板间,并打在MN板上某点A处,通过计算MA的大小,对粒子不能射出板间区域加以说明.(B组)一、选择题1.如图3-7-12所示,真空中两水平放置的平行金属板间有电场强度为E的匀强电场,垂直场强方向有磁感应强度为B的匀强磁场,OO′为两板中央垂直磁场方向与电场方向的直线,以下说法正确的是[ ]A.只要带电粒子(不计重力)速度达到某一数值,沿OO′射入板间区域就能沿OO′做匀速直线运动B.若将带电微粒沿OO′射入板间区域,微粒仍有可能沿OO′做匀速直线运动C.若将带电微粒沿OO′射入板间区域,微粒有可能做匀变速曲线运动D.若将带电微粒沿OO′射入板间区域,微粒不可能做匀变速曲线运动二、非选择题2.有一个未知的匀强磁场,用如下方法测其磁感应强度,如图3-7-13所示,把一个横截面是矩形的铜片放在磁场中,使它的上、下两个表面与磁场平行,前、后两个表面与磁场垂直.当通入从左向右的电流I时,连接在上、下两个表面上的电压表示数为U.已知铜片中单位体积内自由电子数为n,电子质量m,带电量为e,铜片厚度(前后两个表面厚度)为d,高度(上、下两个表面的距离)为h,求磁场的磁感应强度B.3.如图3-7-14所示,在y轴右方有一匀强磁场,磁感应强度为B,方向垂直于纸面向外;在x轴下方,有一匀强电场,场强为E,方向平行x轴向左,有一铅板放置在y轴处,且与纸面垂直,现有一质量为m,带电量q的粒子由静止经过加速电压U的电场加速,然后,以垂直于铅板的方向从A处直线穿过铅板,而后从x轴上的D处以与x 轴正向夹角为60°的方向进入电场和磁场叠加的区域,最后达到y轴上的C点,已知OD长为L,求:(1)粒子经过铅板时损失了多少动能?(2)粒子到达C点时的速度多大?4.如图3-7-15所示,在一根足够长的竖直绝缘杆上,套着一个质量为m、带电量为-q的小球,球与杆之间的动摩擦因数为μ.场强为E的匀强电场和磁感应强度为B的匀强磁场方向如图所示,小球由静止开始下落.求:(1)小球开始下落时的加速度;(2)小球的速度多大时,有最大加速度,它们的值是多少?(3)小球运动的最大速度为多少?(C组)非选择题1.如图3-7-16所示的三维空间中,存在磁感应强度为B的匀强磁场和电场强度为E的匀强电场,B和E的方向均与Z轴正方向一致.一质量为m、带电量为q的正离子(重力不计),从坐标原点O以速率v沿y轴正方向射入电场和磁场中.OACD为xOz平面中的一个挡板,求此离子打到此挡板上时的速度大小是多少?2.如图3-7-17甲所示,图的右侧MN为一竖直放置的荧光屏,O为它的中点,OO′与荧光屏垂直,且长度为L.在MN的左侧空间存在着方向水平向里的匀强电场,场强大小为E.乙图是从左边去看荧光屏得到的平面图,在荧光屏上以O为原点建立如图的直角坐标系.一细束质量为m、电量为q的带电粒子以相同的初速度v0从O′点沿O′O方向射入电场区域.粒子的重力和粒子间的相互作用都可忽略不计.(1)若再在MN左侧空间加一个匀强磁场,使得荧光屏上的亮点恰好位于原点O处,求这个磁场的磁感应强度B的大小和方向.(2)如果磁感应强度B的大小保持不变,但把方向变为与电场方A点横坐标的数值.参考答案。
带电粒子在电场和磁场中的运动ppt
第五版
14-1
带电粒子在电场和磁场中的运动
一 带电粒子在电场和磁场中所受的力
电场力 Fe qE
磁场力(洛仑兹力)
z
o
Fm
q+
Fm qv B
运动电荷在电场 和磁场中受的力
x
v
B
y
F qE qv B
1
第七章 恒定磁场
物理学
到半圆盒边缘时
D1
S
回旋加速器原理图
第七章 恒定磁场
qBR0 v m 1 2 Ek mv 2 q 2 B 2 R02 Ek 2m
8
物理学
第五版
14-1
带电粒子在电场和磁场中的运动
我国于1994 年建成的第 一台强流质 子加速器 , 可产生数十 种中短寿命 放射性同位 素.
第七章 恒定磁场
2 磁聚焦
洛仑兹力 Fm qv B (洛仑兹力不做功) v 与 B 不垂直 v v // v mv R v // vcosθ v vsinθ qB
2π m T qB
螺距 d v // T vcos (2πm / qB)
第七章 恒定磁场
第七章 恒定磁场
16
物理学
第五版
14-2
载流导线在磁场中所受的力
解
F1 I ABBj
根据对称性分析
F2x 0
y
dF2
Id l
0
F2 F2y j
F2 dF2y dF2 sin
I B
B
dF2
0
C
r
Id l
【关键问题】专题4---电场与磁场
专题4---电场与磁场福建省普通教育教学研究室物理学科编写组【材料导读】本专题包括高中物理的两个关键问题“电场的性质”与“磁场的性质”。
对于“电场的性质”问题,高考中常以选择题的形式出现,考查利用电场线和等势面确定场强的大小和方向,判断电势高低、电场力变化、电场力做功和电势能的变化等,电场力做功与电势能的变化及带电粒子在电场中的运动与牛顿运动定律、动能定理、功能关系相结合的题目是考查的另一热点,电场知识与生产技术、生活实际、科学研究等的联系,如示波管、电容式传感器、静电分选器等,都可成为新情景题的命题素材,应引起重视。
而“磁场的性质”在高考中呈现题型主要为选择题,偶尔也为会在计算题中组成考点,要求考生重点掌握:通电直导线和通电线圈周围的磁场;安培力公式、安培定则及磁感应强度的叠加;通电直导线或线框在磁场中的平衡和运动问题。
本专题通过具体试题呈现这两个关键问题在高考中的考查特点,并以问题串形式引导学生体会用不同方法解决物理问题的异同,再从中归纳问题解决过程中的关键线索和一般方法。
材料中的例题和练习按难度从易到难分为A、B、C三个层次,使用者可根据自身情况选用。
【典例分析】【A】例1(2019年全国Ⅰ卷第15题)如图,空间存在一方向水平向右的匀强电场,两带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则() A.P和Q都带正电荷B.P和Q都带负电荷C.P带正电荷,Q带负电荷P Q D.P带负电荷,Q带正电荷【答案】D【解析】对P、Q整体进行受力分析可知,在水平方向上整体所受电场力为零,所以P、Q 必带等量异种电荷,选项AB错误;对P进行受力分析可知,匀强电场对它的电场力应水平向左,与Q对它的库仑力平衡,所以P带负电荷,Q带正电荷,选项D正确,C错误.【A】变式1:在光滑绝缘的水平地面上放置着四个相同的金属小球,小球A、B、C位于等边三角形的三个顶点上,小球D位于三角形的中心,如图所示。
带电粒子在磁场中的运动
洛伦兹力,带电粒子在磁场中的运动一、洛伦兹力:磁场对运动电荷的作用力1.洛伦兹力的公式:F=qvb2.当带电粒子的运动方向与磁场方向互相平行时,F=03.当带电粒子的运动方向与磁场方向互相垂直时,F=qvb4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷磁场中受到的磁场对电荷的作用力一定为0。
二、洛伦兹力的方向1.运动电荷在磁场中受力方向要用左手定则来判定.2.洛伦兹力F的方向既垂直磁场B的方向,又垂直运动电荷v的方向,即F总是垂直B和v的所在平面.3.使用左手定则判定洛伦兹力方向时,若粒子带正电时,四个手指的指向与正电荷的运动方向相同.若粒子带负电时,四个手指的指向与负电荷的运动方向相反.4.安培力的本质是磁场对运动电荷的作用力的宏观表现.三、洛伦兹力的特征洛伦兹力与电荷运动状态有关:当v=0时,F=0;v≠0,但v∥B时,F=0。
1洛伦兹力对运动电荷不做功.注意:由于洛伦兹力的方向总与带电粒子在磁场中的运动方向垂直,所以洛伦兹力对运动电荷不做功,不能改变运动电荷的速度大小和电荷的大小,但洛伦兹力可以改变运动电荷的速度方向和运动电荷的运动状态.四、带电粒子在匀强磁场中的运动1.不计重力的带电粒子在匀强磁场中的运动可分为三种情况:一是匀速直线运动;二是匀速圆周运动;三是螺旋运动.2.不计重力的带电粒子在匀强磁场中做匀速圆周运动的几个基本公式: (1)向心力公式_qvB=m错误!(2)轨道半径公式R=错误!;(3)周期、频率公式T=2πRv=错误!.3.不计重力的带电粒子垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:带电粒子垂直进入匀强电场,在电场中做类平抛运动曲线运;垂直进入匀强磁场,则做匀速圆周运动曲线运动.一、在研究带电粒子在匀强磁场中做匀速圆周运动规律时,着重把握“一找圆心,二找半径错误!,三找周期错误!或时间”的分析方法.1.圆心的确定因为洛伦兹力F洛指向圆心,根据F洛⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点)的F洛的方向,沿两个洛伦兹力F洛画其延长线的交点即为圆心,另外,圆心位置必定在圆中一根弦的中垂线上(见图).2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点.(1)粒子速度的偏向角(φ)等于同心角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍(如图所示),即φ=α=2θ=ωt。
专题4 磁场对运动物体的作用(解析版)
专题四磁场对运动物体的作用基本知识点1.带电物体在磁场或电场中运动的分析方法和分析力学的方法一样,只是比力学多了洛伦兹力和电场力.2.对带电粒子受力分析求合力,若合力为零,粒子做匀速运动或静止;若合力不为零,粒子做变速直线运动,再根据牛顿第二定律分析粒子速度变化情况.3.洛伦兹力的方向总垂直于速度方向,洛伦兹力对运动电荷不做功.例题分析一、带电物体在复合场中的运动例1如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a、b、c带有等量同种电荷,其中a静止,b向右做匀速运动,c向左做匀速运动.比较它们的重力G a、G b、G c的关系,正确的是()A.G a最大B.G b最大C.G c最大D.G c最小(对应训练)带电油滴以水平向右的速度v0垂直进入磁场,恰做匀速直线运动,如图所示,若带电油滴质量为m,磁感应强度为B,则下述说法正确的是()A.油滴必带正电荷,电荷量为mgv0BB.油滴必带正电荷,比荷为qm=qv0BC.油滴必带负电荷,电荷量为mgv0BD.油滴带什么电性都可以,只要满足q=mgv0B二、带电物体在斜面上运动的问题例2如图所示,匀强磁场的磁感应强度为B,方向垂直于纸面向外,质量为m、带电荷量为q的小球在倾角为α的光滑斜面上由静止开始下滑。
若带电小球下滑后某个时刻对斜面的压力恰好为零,问:(1)小球的带电性质如何?(2)此时小球下滑的速度和位移分别为多大?(对应训练)一个质量为m=0.1 g的小滑块,带有q=5×10-4C的电荷量,放置在倾角α=30°的光滑斜面上(绝缘),斜面固定且置于B=0.5 T的匀强磁场中,磁场方向垂直纸面向里,如图5所示,小滑块由静止开始沿斜面滑下,斜面足够长,小滑块滑至某一位置时,要离开斜面(g取10 m/s2).求:(1)小滑块带何种电荷?(2)小滑块离开斜面时的瞬时速度多大?(3)该斜面长度至少多长?三、带电物体受力情况的动态分析例3如图所示,一个带负电的滑环套在水平且足够长的粗糙的绝缘杆上,整个装置处于方向如图所示的匀强磁场B中.现给滑环施以一个水平向右的瞬时速度,使其由静止开始运动,则滑环在杆上的运动情况可能是()A.始终做匀速运动B.先做减速运动,最后静止于杆上C.先做加速运动,最后做匀速运动D.先做减速运动,最后做匀速运动(对应训练)一细棒处于磁感应强度为B的匀强磁场中,棒与磁场垂直,磁感线方向垂直纸面向里,如图所示,棒上套一个可在其上滑动的带负电的小环c,小环质量为m,电荷量为q,环与棒间无摩擦.让小环从静止滑下,下滑中某时刻环对棒的作用力恰好为零,则此时环的速度为多大?四、洛伦兹力作用下带电体的直线运动例4如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直纸面向里,一带电微粒从a点进入场区并刚好能沿ab直线向上运动,不可忽略重力,下列说法中正确的是()A.微粒一定带负电B.微粒的动能一定减小C.微粒的电势能一定增加D.微粒的机械能一定增加(对应训练)在方向如图所示的匀强电场(场强为E)和匀强磁场(磁感应强度为B)共存的场区中,一电子沿垂直电场线和磁感线的方向以速度v0射入场区,设电子射出场区时的速度为v,则()A.若v0>E/B,电子沿轨迹Ⅰ运动,射出场区时,速度v>v0B.若v0>E/B,电子沿轨迹Ⅱ运动,射出场区时,速度v<v0C.若v0<E/B,电子沿轨迹Ⅰ运动,射出场区时,速度v>v0D.若v0<E/B,电子沿轨迹Ⅱ运动,射出场区时,速度v<v0五、带电体在竖直杆上的运动例5如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m,所带的电荷量为q,小球可在棒上滑动,现将此棒竖直放入沿水平方向且相互垂直的匀强磁场和匀强电场中,电场方向水平向右,磁场方向垂直纸面向外,设小球的电荷量不变,小球由静止下滑的过程中()A.小球加速度一直增加B.小球速度一直增加,直到最后匀速C.棒对小球的弹力一直减小D.小球所受洛伦兹力一直增大,直到最后不变(对应训练)如图所示,套在很长的绝缘直棒上的带正电的小球,其质量为m,带电荷量为+q,小球可在棒上滑动,现将此棒竖直放在互相垂直的匀强电场和匀强磁场中,电场强度为E,磁感应强度为B,小球与棒的动摩擦因数为μ,求小球由静止沿棒下滑的最大加速度和最大速度(设小球电荷量不变).六、带电物体在曲面上的运动例6 如图所示,在竖直平面内放一个光滑绝缘的半圆形轨道,水平方向的匀强磁场与半圆形轨道所在的平面垂直.一个带负电荷的小滑块由静止开始从半圆轨道的最高点M 下滑到最右端,则下列说法中正确的是( )A .滑块经过最低点时的速度比磁场不存在时大B .滑块从M 点到最低点的加速度比磁场不存在时小C .滑块经过最低点时对轨道的压力比磁场不存在时小D .滑块从M 点到最低点所用时间与磁场不存在时相等(对应训练一)如图所示,两个半径相同的半圆形轨道分别竖直放在匀强磁场和匀强电场中,轨道两端在同一高度上,轨道是光滑的.两个相同的带正电小球同时从两轨道左端最高点由静止释放,M 、N 为轨道的最低点,则( )A .两小球到达轨道最低点的速度v M =v NB .两小球到达轨道最低点的速度v M >v NC .小球第一次到达M 点的时间大于小球第一次到达N 点的时间D .在磁场中小球能到达轨道的另一端,在电场中小球不能到达轨道的另一端(对应训练二)如图所示,质量为m =1kg 、电荷量为q =5×10-2C 的带正电的小滑块,从半径为R =0.4m 的光滑绝缘14圆弧轨道上由静止自A 端滑下.整个装置处在方向互相垂直的匀强电场与匀强磁场中.已知E =100V/m ,方向水平向右;B =1T ,方向垂直纸面向里.求:(1)滑块到达圆弧轨道最低点C时的速度;(2)在C点时滑块所受的洛伦兹力;(3)滑块到达C点时对轨道的压力.(g取10m/s2)七、带电小球在复合场中的做单摆运动满足的规律例7如图所示,用丝线吊一个质量为m的带电(绝缘)小球处于匀强磁场中,空气阻力不计,当小球分别从A点和B点向最低点O运动且两次经过O点时()A.小球的动能相同B.丝线所受的拉力相同C.小球所受的洛伦兹力相同D.小球的向心加速度相同(对应训练)质量为m、带电荷量为+q的小球,用一长为l的绝缘细线悬挂在方向垂直纸面向里的匀强磁场中,磁感应强度为B,如图所示,用绝缘的方法使小球位于使悬线呈水平的位置A,然后静止释放,小球运动的平面与B的方向垂直,求小球第一次和第二次经过最低点C时悬线的拉力F T1和F T2.专题训练1.如图所示,在整个空间中存在水平向右的匀强电场和垂直于纸面向里的匀强磁场,一带电物块沿绝缘水平天花板向右做匀速直线运动,则该物块()A.带正电B.带负电C.受到三个力作用D.受到五个力作用2.如图所示,空间存在相互垂直的匀强电场和匀强磁场,电场的方向竖直向下,磁场方向垂直纸面向里,一带电油滴P恰好处于静止状态,则下列说法正确的是()A.若撤去磁场,P可能做匀加速直线运动B.若撤去电场,P一定做匀加速直线运动C.若给P一初速度,P可能做匀速直线运动D.若给P一初速度,P一定做曲线运动3.如图所示,一个带正电荷的小球沿光滑水平绝缘的桌面向右运动,飞离桌子边缘A,最后落到地板上.设有磁场时飞行时间为t1,水平射程为x1,着地速度大小为v1;若撤去磁场而其余条件不变时,小球飞行的时间为t2,水平射程为x2,着地速度大小为v2.则()A.x1>x2B.t1>t2 C.v1>v2D.v1=v24.如图所示,在匀强磁场中有一水平绝缘传送带以速度v沿顺时针方向传动。
带电体在电磁场中的受力分析和运动分析解读
Uq
m Eq a ==通过电场区的时间:0
v L
t =
粒子通过电场区的侧移距离:2
2
2mdv UqL y =图1
粒子通过电场区偏转角:2
mdv UqL
tg =
θ带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点。所以侧移距离也可表示为:θtg L
y 2
=
。4、粒子在交变电场中的往复运动
π三、带电粒子在复合场中运动的分析
带电粒子在复合场中运动,实际上仍是一个力学问题,解决此类问题的关键是对带电粒子进行正确受力分析和运动情况分析。
1、受力分析:带电粒子在重力场、电场、磁场中运动时,其运动状态的改变是由其受到的合力决定。对运动粒子进行受力分析时必须先场力(包括重力、电场力、磁场力)、后弹力、再摩擦力等。另外要注意重力、电场力与粒子运动速度无关,由粒子的质量决定重力大小,由电场强决定电场力大小;但洛仑兹力的大小与粒子速度有关,方向还与电荷的性质有关。
Uq
a =
粒子通过偏转电场的时间2t为:Uq
m
L
v L t 202==粒子在偏转电场中的侧移距离y为:4
2122L
at y ==
侧向速度y v为:m
Uq at v y 22=
=则粒子射出偏转电场时的速度v为:m
Uq
v v v y 25220=
+=
以速度v进入磁场做匀速度圆周运动的洛仑兹力为向心力,设运动半径为R:
二、带电粒子在匀强磁场的受力分析和运动分析
带电粒子在匀强磁场中运动时,若00=v,有0=洛f,则粒子为静止状态;若B v //,有0=洛f,则粒子做匀速直线运动;若B v ⊥,有Bqv f =洛,则粒子做匀速圆周运动,其
带电粒子在电场和磁场中的运动(2)解读
2011届高考黄冈中学物理冲刺讲解、练习题、预测题08:第4专题带电粒子在电场和磁场中的运动(2)经典考题带电粒子在电场、磁场以及复合场、组合场中的运动问题是每年各地高考的必考内容,留下大量的经典题型,认真地总结归纳这些试题会发现以下特点:①重这些理论在科学技术上的应用;②需要较强的空间想象能力.1.图示是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹.云室放置在匀强磁场中,磁场方向垂直照片向里,云室中横放的金属板对粒子的运动起阻碍作用.分析此径迹可知粒子[2009年高考·安徽理综卷](A.带正电,由下往上运动B.带正电,由上往下运动C.带负电,由上往下运动D.带负电,由下往上运动【解析】粒子穿过金属板后速度变小,由半径公式r=可知,半径变小,粒子的运动方向为由下向上;又由洛伦兹力的方向指向圆心以及左手定则知粒子带正电.[答案]A【点评】题图为安德森发现正电子的云室照片.2.图示为一“滤速器”装置的示意图.a、b为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O进入a、b两板之间.为了选取具有某种特定速率的电子,可在a、b间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选电子仍能够沿水平直线OO′运动,由O′射出.不计重力作用.可能达到上述目的的办法是[2006年高考·全国理综卷Ⅰ](A.使a板的电势高于b板,磁场方向垂直纸面向里B.使a板的电势低于b板,磁场方向垂直纸面向里C.使a板的电势高于b板,磁场方向垂直纸面向外D.使a板的电势低于b板,磁场方向垂直纸面向外【解析】要使电子能沿直线通过复合场,电子所受电场力与洛伦兹力必是一对平衡力.由左手定则及电场的相关知识可知,选项A、D正确.[答案]AD3.图示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场.下列表述正确的是[2009年高考·广东物理卷](A.质谱仪是分析同位素的重要工具B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于D.粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小【解析】粒子在电场中加速有:qU=m v2,粒子沿直线通过速度选择器有:Eq=q v B,粒子在平板S下方磁场中做圆周运动有:r=,由上述过程遵循的规律可知选项A、B、C正确.[答案]ABC4.带电粒子的比荷是一个重要的物理量.某中学物理兴趣小组设计了一个实验,探究电场和磁场对电子运动轨迹的影响,以求得电子的比荷,实验装置如图所示.(1他们的主要实验步骤如下.A.首先在两极板M1M2之间不加任何电场、磁场,开启阴极射线管电源,发射的电子从两极板中央通过,在荧屏的正中心处观察到一个亮点.B.在M1M2两极板间加合适的电场:加极性如图所示的电压,并逐步调节增大,使荧屏上的亮点逐渐向荧屏下方偏移,直到荧屏上恰好看不见亮点为止,记下此时外加电压为U.请问本步骤的目的是什么?C.保持步骤B中的电压U不变,对M1M2区域加一个大小、方向均合适的磁场B,使荧屏正中心重现亮点,试问外加磁场的方向如何?(2根据上述实验步骤,同学们正确推算出电子的比荷与外加电场、磁场及其他相关量的关系为=.一位同学说,这表明电子的比荷将由外加电压决定,外加电压越大则电子的比荷越大.你认为他的说法正确吗?为什么?[2007年高考·广东物理卷][答案](1B.使电子刚好落在正极板的近荧幕端的边缘,利用已知量表达.C.垂直电场方向向外(垂直纸面向外(2说法不正确,电子的比荷是电子的固有参数.5.1932年,劳伦斯和利文斯顿设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.(1求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比.(2求粒子从静止开始加速到出口处所需的时间t.(3实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应强度和加速电场频率的最大值分别为B m、f m,试讨论粒子能获得的最大动能E km.[2009年高考·江苏物理卷]【解析】(1设粒子第1次经过狭缝后的半径为r1,速度为v1,则qU=mv12qv1B=m解得:r1=同理,粒子第2次经过狭缝后的半径r2=则r2∶r1=∶1.(2设粒子到出口处被加速了n圈,则2nqU=mv2qvB=mT=t=nT解得:t=.(3加速电场的频率应等于粒子在磁场中做圆周运动的频率,即f=当磁感应强度为Bm时,加速电场的频率应为fBm=粒子的动能Ek=mv2当fBm≤fm时,粒子的最大动能由Bm决定qvmBm=m解得:Ekm=当fBm≥fm时,粒子的最大动能由fm决定vm=2πfmR解得:Ekm=2π2mfm2R2.[答案](1∶1(2(32π2mf m2R2【点评】回旋加速器为洛伦兹力的典型应用,在高考中多次出现.要理解好磁场对粒子的“加速”没有起作用,但回旋加速器中粒子所能获得的最大动能却与磁感应强度相关.6.如图甲所示,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于xOy平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于.带电粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m、电荷量为q(q>0的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.[2009年高考·全国理综卷Ⅰ]甲【解析】设粒子的入射速度为v,第一次射出磁场的点为N0′,与板碰撞后再次进入磁场的位置为N1.粒子在磁场中运动的半径为R,有:R=乙粒子的速度不变,每次进入磁场与射出磁场的位置间的距离x1保持不变,则有:x1=N0′N0=2R sin θ粒子射出磁场与下一次进入磁场位置间的距离x2始终不变,与N0′N1相等.由图乙可以看出x2=a设粒子最终离开磁场时,与挡板相碰n次(n=0,1,2….若粒子能回到P点,由对称性可知,出射点的x坐标应为-a,即:(n+1x1-nx2=2a由以上两式得:x1=a若粒子与挡板发生碰撞,则有:x1-x2>联立解得:n<3v=·a式中sin θ=解得:v0=,n=0v1=,n=1v2=,n=2.[答案]v0=,n=0v1=,n=1v2=,n=2能力演练一、选择题(10×4分1.如图所示,真空中O点有一点电荷,在它产生的电场中有a、b两点,a点的场强大小为Ea,方向与ab连线成60°角,b点的场强大小为Eb,方向与ab连线成30°角.关于a、b两点的场强大小Ea、Eb及电势φa、φb的关系,以下结论正确的是(A.Ea=,φa>φbB.Ea=Eb,φa<φbC.Ea=3Eb,φa>φbD.Ea=3Eb,φa<φb【解析】由题图可知O点处为负电荷,故φb>φa,又因为Ea=、Eb==,可得Ea=3Eb.[答案] D2.一正电荷处于电场中,在只受电场力作用下从A点沿直线运动到B点,其速度随时间变化的图象如图所示,tA、tB分别对应电荷在A、B两点的时刻,则下列说法中正确的有(A.A处的场强一定大于B处的场强B.A处的电势一定低于B处的电势C.正电荷在A处的电势能一定大于B处的电势能D.由A至B的过程中,电场力一定对正电荷做负功【解析】由题图知正电荷在做加速越来越小的加速运动,说明电场线的方向为:A→B,可知:φA>φB,EA>EB,εA>εB,由A至B的过程中,电场力一定对正电荷做正功.[答案] AC3.如图所示,带正电的粒子以一定的初速度v0沿中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出,已知板长为L,板间的电压为U,带电粒子所带电荷量为q,粒子通过平行金属板的时间为t,不计粒子的重力,则 (A.粒子在前时间内,电场力对粒子做的功为B.粒子在后时间内,电场力对粒子做的功为C.粒子在竖直方向的前和后位移内,电场力做的功之比为1∶2D.粒子在竖直方向的前和后位移内,电场力的冲量之比为1∶1【解析】粒子在匀强电场中运动,电场力做的功为:W电=qUAB=q·E·y,其中y为粒子在电场方向的位移又由题意知:at2=,a·(2=故在前内电场力做的功W1=qU,在后内电场力做的功W2=前后位移内电场力做的功之比为1∶1又从静止开始的匀加速直线运动通过连续相等位移的时间之比为1∶(-1∶(-∶(-故I前∶I后=1∶(-1.[答案]B4.如图所示,在一正交的电场和磁场中,一带电荷量为+q、质量为m的金属块沿倾角为θ的粗糙绝缘斜面由静止开始下滑.已知电场强度为E,方向竖直向下;磁感应强度为B,方向垂直纸面向里;斜面的高度为h.金属块滑到斜面底端时恰好离开斜面,设此时的速度为v,则(A.金属块从斜面顶端滑到底端的过程中,做的是加速度逐渐减小的加速运动B.金属块从斜面顶端滑到底端的过程中,机械能增加了qEhC.金属块从斜面顶端滑到底端的过程中,机械能增加了mv2-mghD.金属块离开斜面后将做匀速圆周运动【解析】金属块在下滑的过程中,随着速度的增大,洛伦兹力增大,对斜面的压力减小,故摩擦力f=μ(mg+qE-q v B不断减小,金属块做加速度逐渐增大的加速运动,选项A错误.又由功能关系得:ΔE机=W电-W f<qEh,选项B错误.机械能的变化量为:ΔE机=ΔE k+ΔE p=m v2-mgh,选项C正确.由题意知,mg>qE,故离开斜面后金属块不可能做匀速圆周运动,选项D错误.[答案]C5.如图所示,充电的两平行金属板间有场强为E的匀强电场和方向与电场垂直(垂直纸面向里的匀强磁场,磁感应强度为B,构成了速度选择器.氕核、氘核、氚核以相同的动能(Ek从两极板中间垂直于电场和磁场射入速度选择器,且氘核沿直线射出.不计粒子的重力,则射出时(A.动能增加的是氚核 B.动能增加的是氕核C.偏向正极板的是氚核 D.偏向正极板的是氕核【解析】带电粒子直线通过速度选择器的条件为:v0=对于氘核:qE=qB·对于氕核:qE<qB·,向正极偏转,动能减少对于氚核:qE>qB·,向负极偏转,动能增加.[答案]AD6.如图所示,竖直放置的两个平行金属板间有匀强电场,在两板之间等高处有两个质量相同的带电小球,P小球从紧靠左极板处由静止开始释放,Q小球从两板正中央由静止开始释放,两小球最后都能打在右极板上的同一点.则从开始释放到打到右极板的过程中(A.它们的运行时间t P>t QB.它们的电荷量之比q P∶q Q=2∶1C.它们的动能增加量之比ΔEk P∶ΔEk Q=4∶1D.它们的电势能减少量之比ΔE P∶ΔE Q=2∶1【解析】将两小球的运动都沿水平和竖直正交分解,竖直的分运动都为自由落体运动,故它们从开始释放到打在右极板的过程中运行时间相等,选项A错误.对于水平分运动,有:··t2=·t2故知qP∶qQ=2∶1,选项B正确.P球动能的增量ΔE k P=mgh+qPE·d,Q球动能的增量ΔE k Q=mgh+qQE·=mgh +·qPE·d,选项C错误.同理:ΔEP=qPE·d,ΔEQ=qQE·,可得ΔEP∶ΔEQ=4∶1,选项D错误.[答案]B7.均匀分布着等量异种电荷的半径相等的半圆形绝缘杆被正对着固定在同一平面上,如图所示.AB是两种绝缘杆所在圆圆心连线的中垂线而且与二者共面,该平面与纸面平行,有一磁场方向垂直于纸面,一带电粒子(重力不计以初速度v0一直沿直线AB运动.则(A.磁场是匀强磁场B.磁场是非匀强磁场C.带电粒子做匀变速直线运动D.带电粒子做变加速运动【解析】由对称性知直线AB上的电场方向与AB垂直,又由两绝缘杆的形状知AB上的电场并非处处相等.在AB上的每一点,由平衡条件知qE=qvB,故知磁场为非匀强磁场,带电粒子做匀速直线运动.[答案]B8.如图所示,带电粒子在没有电场和磁场的空间内以速度v0从坐标原点O沿x轴方向做匀速直线运动.若空间只存在垂直于xOy平面的匀强磁场时,粒子通过P点时的动能为Ek;当空间只存在平行于y轴的匀强电场时,则粒子通过P点时的动能为(A.E k B.2E k C.4E k D.5E k【解析】由题意知带电粒子只受电场力或洛伦兹力的作用,且有E k=mv02当空间只存在电场时,带电粒子经过P点,说明:·vPy·t=v0·t=10 cm,即vPy=2v0由动能的定义可得:E k P=mv02+mvPy2=5E k.[答案]D9.如图所示,一个带电荷量为+Q 的点电荷甲固定在绝缘平面上的O点;另一个带电荷量为-q、质量为m的点电荷乙,从A点以初速度v0沿它们的连线向甲滑行运动,运动到B 点静止.已知静电力常量为k,点电荷乙与水平面的动摩擦因数为μ,A、B间的距离为s.下列说法正确的是(A.O、B间的距离为B.点电荷乙从A运动到B的运动过程中,中间时刻的速度小于C.点电荷乙从A运动到B的过程中,产生的内能为m v02D.在点电荷甲产生的电场中,A、B两点间的电势差U AB=【解析】由题意知电荷乙做加速度越来越小的减速运动,v-t图象如图所示,可知点电荷乙从A运动到B的中间时刻的速度vC<,故选项B正确;这一过程一直有<μmg,故sOB>,选项A错误.点电荷乙由A运动到B的过程中,电场力做正功,设为W,由动能定理得:W-μmgs=0-m v02可得:此过程中产生的内能Q′=μmgs=W+mv02,选项C错误.由上可知,A、B两点间的电势差为:U AB==,选项D正确.[答案]BD10.如图甲所示,在第Ⅱ象限内有水平向右的匀强电场,电场强度为E,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带电粒子以垂直于x轴的初速度v0从x轴上的P点进入匀强电场中,并且恰好与y轴的正方向成45°角进入磁场,又恰好垂直进入第Ⅳ象限的磁场.已知OP之间的距离为d,则带电粒子在磁场中第二次经过x轴时,在电场和磁场中运动的总时间为(甲A. B.(2+5πC.(2+ D.(2+【解析】带电粒子的运动轨迹如图乙所示.由题意知,带电粒子到达y轴时的速度v=v0,这一过程的时间t1==又由题意知,带电粒子在磁场中的偏转轨道半径r=2d乙故知带电粒子在第Ⅰ象限中的运动时间为:t2===带电粒子在第Ⅳ象限中运动的时间为:t3=故t总=(2+.[答案]D二、非选择题(共60分11.(6分在“用描迹法画出电场中平面上的等势线”的实验中,所用灵敏电流表的指针偏转方向与电流的关系是:当电流从正接线柱流入电流表时,指针偏向正接线柱一侧.(1某同学在实验中接通电源开关,将两表笔E1、E2在导电纸上移动,不管怎样移动,表针都不偏转.经检查,电源与电流表均完好,则产生这一现象的原因可能是____________________.(2排除故障后,用这个电表探测基准点2两侧的等势点时,将电流表正接线柱的E1接在基准点2上,如图所示,把负接线柱的E2接在纸上某一点,若发现电表的指针发生了偏转,该同学移动E2的方向正确的是________.A.若电表的指针偏向正接线柱一侧,E2向右移动B.若电表的指针偏向正接线柱一侧,E2向左移动C.若电表的指针偏向负接线柱一侧,E2向右移动D.若电表的指针偏向负接线柱一侧,E2向左移动[答案](1导电纸导电一面向下(3分(2BC (3分12.(6分用示波器观察频率为900 Hz的正弦电压信号.把该信号接入示波器Y输入.(1当屏幕上出现如图所示的波形时,应调节______旋钮.如果正弦波的正负半周均超出了屏幕的范围,应调节______旋钮或______旋钮,或这两个钮配合使用,以使正弦波的整个波形出现在屏幕内.(2如需要屏幕上正好出现一个完整的正弦波形,应将______旋钮置于______位置,然后调节______旋钮.[答案] (1竖直位移(或↑↓衰减(或衰减调节Y增益(每空1分(2扫描范围 1 k挡位扫描微调(每空1分13.(10分一种半导体材料称为“霍尔材料”,用它制成的元件称为“霍尔元件”.这种材料内有一种称为“载流子”的可定向移动的电荷,每个载流子的电荷量q=1.6×10-19C.霍尔元件在自动检测、控制领域得到广泛应用,如录像机中用来测量录像磁鼓的转速,电梯中用来检测电梯门是否关闭以及自动控制升降电动机的电源的通断等.在一次实验中,由一块霍尔材料制成的薄板宽L1=ab=1.0×10-2 m、长bc=L2=4.0×10-2 m、厚h=1.0×10-3 m,水平放置在竖直向上的磁感应强度B=1.5 T 的匀强磁场中,bc方向通有I=3.0 A的电流,如图所示,沿宽度产生1.0×10-5 V的横向电压.(1假定载流子是电子,则a、b两端哪端的电势较高?(2薄板中形成电流I的载流子定向运动的速度是多少?【解析】(1根据左手定则可确定a端电势较高.(3分(2当导体内有载流子沿电流方向所在的直线做定向运动时,受到洛伦兹力的作用而产生横向分运动,产生横向电场,横向电场的电场力与载流子所受到的洛伦兹力平衡时,导体横向电压稳定.设载流子沿电流方向所在的直线做定向运动的速率为v,横向电压为Uab,横向电场强度为E.则:电场力FE=qE=(2分磁场力FB=qvB(2分平衡时FE=FB(1分解得:v=6.7×10-4 m/s.(2分[答案](1a端电势较高(26.7×10-4 m/s14.(10分图甲为电视机中显像管的工作原理示意图,电子枪中的灯丝加热阴极使电子逸出,这些电子再经加速电场加速后,从O点进入由磁偏转线圈产生的偏转磁场中,经过偏转磁场后打到荧光屏MN上,使荧光屏发出荧光形成图像.不计逸出电子的初速度和重力,已知电子的质量为m、电荷量为e,加速电场的电压为U.偏转线圈产生的磁场分布在边长为l的正方形abcd区域内,磁场方向垂直纸面,且磁感应强度B随时间t的变化规律如图乙所示.在每个周期内磁感应强度B都是从-B0均匀变化到B0.磁场区域的左边界的中点与O点重合,ab边与OO′平行,右边界bc与荧光屏之间的距离为s.由于磁场区域较小,且电子运动的速度很大,所以在每个电子通过磁场区域的过程中,可认为磁感应强度不变,即为匀强磁场,不计电子之间的相互作用.(1求电子射出电场时的速度大小.(2为使所有的电子都能从磁场的bc边射出,求偏转线圈产生磁场的磁感应强度的最大值.(3若所有的电子都能从bc边射出,求荧光屏上亮线的最大长度是多少?【解析】设电子射出电场的速度为v,则根据动能定理,对电子的加速过程有:mv2=eU (1分解得:v=.(1分(2当磁感应强度为B0或-B0时(垂直于纸面向外为正方向,电子刚好从b点或c点射出(1分丙设此时圆周的半径为R,如图丙所示.根据几何关系有:R2=l2+(R-2(1分解得:R=(1分电子在磁场中运动,洛伦兹力提供向心力,因此有:evB0=m(1分解得:B0=.(1分(3根据几何关系可知:tan α=(1分设电子打在荧光屏上离O′点的最大距离为d,则:d=+s tan α=+(1分由于偏转磁场的方向随时间变化,根据对称性可知,荧光屏上的亮线最大长度为:D=2d=l+.(1分[答案] (1(2(3l+15.(12分如图甲所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出;在第二象限内存在沿x轴负方向的匀强电场.一粒子源固定在x轴上的A点,A点坐标为(-L,0.粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上的C点,C点坐标为(0,2L,电子经过磁场偏转后恰好垂直通过第一象限内与x轴正方向成15°角的射线ON(已知电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用.求:甲(1第二象限内电场强度E的大小.(2电子离开电场时的速度方向与y轴正方向的夹角θ.(3圆形磁场的最小半径Rm.【解析】(1从A到C的过程中,电子做类平抛运动,有:L=t2(1分2L=v t(1分联立解得:E=.(1分(2设电子到达C点的速度大小为vC,方向与y轴正方向的夹角为θ.由动能定理,有:mvC2-mv2=eEL(2分乙解得:vC=vcos θ==(1分解得:θ=45°.(1分(3电子的运动轨迹图如图乙所示,电子在磁场中做匀速圆周运动的半径r==(1分电子在磁场中偏转120°后垂直于ON射出,则磁场最小半径为:Rm==rsin 60°(2分由以上两式可得:Rm=.(1分[答案] (1(245°(316.(13分如图甲所示,竖直挡板MN的左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度的大小E=40 N/C,磁感应强度的大小B随时间t变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.在t=0时刻,一质量m=8×10-4 kg、带电荷量q=+2×10-4 C的微粒在O点具有竖直向下的速度v=0.12 m/s,O′是挡板MN上一点,直线OO′与挡板MN垂直,取g=10 m/s2.求:(1微粒下一次经过直线OO′时到O点的距离.(2微粒在运动过程中离开直线OO′的最大距离.(3水平移动挡板,使微粒能垂直射到挡板上,挡板与O点间的距离应满足的条件.【解析】(1由题意知,微粒所受重力G=mg=8×10-3 N电场力大小F=Eq=8×10-3 N(1分因此重力与电场力平衡微粒先在洛伦兹力的作用下做匀速圆周运动,则有:qvB=m(1分解得:R==0.6 m由T=(1分解得:T=10π s(1分则微粒在5π s内转过半个圆周,再次经直线OO′时与O点的距离l=2R=1.2 m.(1分(2微粒运动半周后向上匀速运动,运动的时间t=5π s,轨迹如图丙所示.丙位移大小x=vt=0.6π m=1.88 m(2分微粒离开直线OO′的最大距离h=x+R=2.48 m.(2分(3若微粒能垂直射到挡板上的某点P,P点在直线OO′下方时,挡板MN与O点间的距离应满足:L=(4n+1×0.6 m(n=0,1,2 (2)若微粒能垂直射到挡板上的某点P,P点在直线OO′上方时,挡板MN与O点间的距离应满足:L=(4n+3×0.6 m(n=0,1,2….(2分[若两式合写成L=(1.2n+0.6 m(n=0,1,2…同样给分][答案] (11.2 m(22.48 m(3P点在直线OO′下方时,距离L=(4n+1×0.6 m(n=0,1,2…P点在直线OO′上方时,距离L=(4n+3×0.6 m(n=0,1,2…[或L=(1.2n+0.6 m(n=0,1,2…]。
高中物理专题复习—带电粒子在电磁场中的运动(含问题详解)
带电粒子在电磁场中的运动[P 3.]一、考点剖析:带电粒子在电场中的运动比物体在重力场中的运动要丰富得多,它与运动学、动力学、功和能、动量等知识联系紧密,加之电场力的大小、方向灵活多变,功和能的转化关系错综复杂,其难度比力学中的运动要大得多。
带电粒子在磁场中的运动涉及的物理情景丰富,解决问题所用的知识综合性强,很适合对能力的考查,是高考热点之一。
带电粒子在磁场中的运动有三大特点:①与圆周运动的运动学规律紧密联系②运动周期与速率大小无关③轨道半径与圆心位置的确定与空间约束条件有关,呈现灵活多变的势态。
因以上三大特点,很易创造新情景命题,故为高考热点,近十年的高考题中,每年都有,且多数为大计算题。
带电粒子在电磁场中的运动: 若空间中同时同区域存在重力场、电场、磁场,则使粒子的受力情况复杂起来;若不同时不同区域存在,则使粒子的运动情况或过程复杂起来,相应的运动情景及能量转化更加复杂化,将力学、电磁学知识的转化应用推向高潮。
该考点为高考命题提供了丰富的情景与素材,为体现知识的综合与灵活应用提供了广阔的平台,是高考命题热点之一。
[P 5.]二、知识结构d U UL v L md qU at y 加4212122022=⨯⨯==L y dU UL mdv qUL v at v vtan y 222000=====加φ[P 6.]三、复习精要: 1、带电粒子在电场中的运动(1) 带电粒子的加速 由动能定理 1/2 mv 2=qU (2) 带电粒子的偏转带电粒子在初速度方向做匀速运动 L =v 0t t=L/ v 0 带电粒子在电场力方向做匀加速运动F=q E a =qE/m 带电粒子通过电场的侧移偏向角φ(3)处理带电粒子在电场中的运动问题的一般步骤:①分析带电粒子的受力情况,尤其要注意是否要考虑重力、电场力是否是恒力等 ②分析带电粒子的初始状态及条件,确定粒子作直线运动还是曲线运动 ③建立正确的物理模型,进而确定解题方法④利用物理规律或其它解题手段(如图像等)找出物理量间的关系,建立方程组 2、带电粒子在磁场中的运动带电粒子的速度与磁感应线平行时,能做匀速直线运动;t当带电粒子以垂直于匀强磁场的方向入射,受洛伦兹力作用,做匀速圆周运动。
带电粒子在电磁场中的运动
带电粒子在电磁场中的运动[知识精讲]带电粒子在电磁场中运动的问题包括两种基本情形:一种是先后分别在电场、磁场中运动,另一种是在电场和磁场的复合场中运动.对于第一种情形要注意电场力和洛伦兹力的特性所决泄的粒子运动性质的差别,带电粒子在匀强电场中受电场力的作用做匀变速运动,而在匀强磁场中受洛伦兹力的作用做匀速圆周运动,这种情形通常是利用电场来对带电粒子加速后获得一眾的速度,然后在磁场中做匀速圆周运动,因此对于这种情况主要是处理好带电粒子从一场过渡到另一场的速度关系.对于第二种情形,要注意洛伦兹力与运动速度有关,所以粒子的运动和受力相互制约,当粒子的运动速度发生变化时,粒子的受力情况必然发生变化,因此带电粒子要么做匀速直线运动,要么就做变加速曲线运动,当粒子做变加速曲线运动时,要利用洛伦兹力不做功的特点,用功能关系解决问题.[问题稱析][问题1]如图所示,金属圆筒的横截面半径为斤,简内分布有匀强磁场,磁场方向垂直纸面,磁感应强度为万,磁场下面有一加速电场,一个质量为m(重力不计),电量为q的带电粒子,在电场作用下,沿图示轨迹由静止开始从"点运动经过金属圆筒的小孔尸到" 点,在磁场中,带电粒子的速度方向偏转了〃二60°,求加速电场两极板间的电压.解析:带电粒子经过电场加速后获得一左的速度,进入磁场后做匀速圆周运动,根据带电粒子的偏转角度,可以求出带电粒子做圆周运动的半径大小,然后求出它的运动速度, 从而求出加速电压.根据带电粒子进入磁场和到达艸点的速度方向,作岀与速度方向垂直的半径,确泄轨迹圆的圆心,由几何知识可得带电粒子做圆周运动的半径为2^/?tan60°二爲 R带电粒子在做圆周运动过程中,由洛伦兹力提供向心力,所以m\fl…--- 二 qvB2・带电粒子经电场加速后,电势能转化为带电粒子的动能,所以2由①②③式可得* 3届22m[问题2]如图所示,x轴上方有一磁感应强度为5方向垂直于纸而向里的匀强磁场, x轴下方有电场强度为正方向竖直向下的匀强电场.现有一质量为m,电量为q的粒子从y 轴上某一点由静止开始释放,若重力忽略不讣,为使它能到达x轴上位置为的点Q求:y■ X XSx X XX X X KQKrrm(1)粒子应带何种电荷?(2)释放点的位置坐标.(3)从释放到抵达J点经历的时间.解析:从静止开始释放的带电粒子要起动,应放在电场中,所以该带电粒子应放在一y 轴上,因为x轴下方的电场方向是竖直向下的,而带电粒子在x轴方向有位移,带电粒子要运动到磁场中,所以该带电粒子应带负电荷.该粒子释放后,在电场力的作用下,沿卩轴正方向匀加速运动到0点,继而进入X轴上方的匀强磁场中做匀速圆周运动,若苴轨道半径恰好等于彳,则恰好能到达0点,从岀发点到0点的轨迹是一条直线加上半个圆周,假如释放点离0点的距离近一些,粒子进入磁场的速度就小一点,粒子运动半周后到不了0点而要再次进入电场,做减速运动,速度减为零后反向加速再次以原速率进入磁场,开始做第二个半圆周运动,如果粒子在磁场中的轨道半径为士,则第二个半圆运动结束时,刚好到达0点,以此类推,粒子岀发点向0逐4渐靠近,又要能到达。
带电粒子在电场和磁场中的运动(含答案)
带电粒子在电场和磁场中的运动1.如图所示,在以坐标原点O 为圆心、半径为R 的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B ,磁场方向垂直于xOy 平面向里。
一带正电的粒子(不计重力)从O 点沿y 轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t 0时间从P 点射出。
(1)求电场强度的大小和方向。
(2)若仅撤去磁场,带电粒子仍从O 点以相同的速度射入,经t 0/2时间恰从半圆形区域的边界射出。
求粒子运动加速度的大小。
(3)若仅撤去电场,带电粒子仍从O 点射入,且速度为原来的4倍,求粒子在磁场中运动的时间。
【解析】(1)设带电粒子的质量为m ,电荷量为q ,初速度为v ,电场强度为E 。
可判断出粒子受到的洛伦磁力沿x 轴负方向,于是可知电场强度沿x 轴正方向 且有:qE =qvB ,又R =vt 0,则E =BR t 0(2)仅有电场时,带电粒子在匀强电场中作类平抛运动 在y 方向位移:y =v t 22,则y =R2设在水平方向位移为x ,因射出位置在半圆形区域边界上,于是x =32R , 又有:x =12a (t 02)2,得a =43Rt 02(3)仅有磁场时,入射速度v′=4v ,带电粒子在匀强磁场中作匀速圆周运动,设轨道半径为r ,由牛顿第二定律有qv′B =m v′2r ,又qE =ma ,联立解得:r =33R ,由几何关系:sin α=R 2r ,即sin α=32,α=π3,带电粒子在磁场中运动周期:T =2πm qB ,则带电粒子在磁场中运动时间t R =2α2πT ,所以t R =3π18t 02.在平面直角坐标系xOy 中,第1象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B 。
一质量为m 、电荷量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于Y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于Y 轴射出磁场,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 导 电 材 料 内 部 的 电 场 与 电 势 差 存 在 什 么 关 系? (3) 电流在微观上由哪些物理量决定?其数学表 达式是什么? 【解析】本题考查洛伦兹力、电场力、电流的微 观表达等.根据电流方向、磁场方向和左手定则得自 由运动的电荷为负电荷,电流稳恒,上、下表面的电
热点重点难点专题透析· 物理(安徽)
热点重点难点专题透析· 物理(安徽)
专题四
4.(2013 年高考²新课标全国卷Ⅰ)如图甲所示, 半径为 R 的圆是一圆柱形匀强磁场区域的横截面 (纸 面),磁感应强度大小为 B,方向垂直于纸面向外.一 电荷量为 q(q>0)、质量为 m 的粒子沿平行于直径 ab 的方向射入磁场区域,射入点与 ab 的距离为 .已知粒 2 子射出磁场与射入磁场时运动方向间的夹角为 60°, 则粒子的速率为(不计重力)( ).
热点重点难点专题透析· 物理(安徽)
专题四
【解析】带负电的试探电荷释放后,受电场力作 用,向 O 点加速运动,由于 AO 的连线上各点的电场强 度并不相等,所以加速度不恒定,A 错;由 A 到 O 电场 力做正功,电势能减小,到 O 点电势能最小,动能最 大,B、C 对;从 O 点移动电荷 q 至无穷远处,电场力 做负功,电势能增加,故 q 在 O 点电势能为负,D 错. 【答案】BC
热点重点难点专题透析· 物理(安徽)
专题四
【疑惑】(1)质点在 a 点和 b 点分别受到哪些力作 用,与该点的速度有什么关系? (2)质点由 a 点到 b 点做什么运动,怎样将 a、b 两点的速度或动能联系起来? 【解析】质点所受电场力大小为 F=qE 设质点质量为 m, 经过 a 点和 b 点时速度大小分别 为 va 和 vb,由牛顿第二定律有
热点重点难点专题透析· 物理(安徽)
专题四
IB A. ,负 |q|aU IB C. ,负 |q|bU
IB B. ,正 |q|aU IB D. ,正 |q|bU
【疑惑】(1)带电粒子受到了哪些力作用?形成稳 定电势差时,带电粒子怎样运动?这些力满足什么关 系?
热点重点难点专题透析· 物理(安徽)
专题四
对称性知,圆盘上的电荷在 b、d 处产生的电场等大反 q 10q 向;在 d 处,合电场强度 E=k +E 盘=k 2 ,选项 2 9R 3R
B 正确. 【答案】B
热点重点难点专题透析· 物理(安徽)
专题四
2.(2013 年高考²天津理综卷)两个带等量正电的 点电荷,固定在图中 P、Q 两点,MN 为 PQ 连线的中垂 线,交 PQ 于 O 点,A 为 MN 上的一点.一带负电的试探 电荷 q 从 A 点由静止释放,只在静电力作用下运动, 取无限远处的电势为零,则( ).
热点重点难点专题透析· 物理(安徽)
专题四
3.(2012 年重庆模拟)如图甲所示,有一个正方形 的匀强磁场区域 abcd, e 是 ad 的中点, f 是 cd 的中点. 如 果在 a 点沿对角线方向以速度 v 射入一带负电的粒子, 该粒子恰好从 e 点射出,则( ).
甲
热点重点难点专题透析· 物理(安徽)
m
,
热点重点难点专题透析· 物理(安徽)
专题四
代入上式化简则有 r =
1
2Um
B
r+ ,显然半径之比 = q r3+
3q 3 = ,所以 B 对;由于通过同一电场加速,因此 q 1 出电场时的动能之比为 1∶3,D 对;设磁场宽度为 d,
d 对 P 粒子,根据几何知识可知 sin 30°= ,设另外 r+
热点重点难点专题透析· 物理(安徽)
专题四
A.k
3q
R2
10q B.k 2 9R
Q+q C.k 2 R
9Q+q D.k 2 9R
【疑惑】(1)均匀分布电荷的圆盘,在 b 点和 d 点 产生的场强有什么关系? (2)d 点的场强怎么计算?
q 【解析】b 处合电场强度为 0,即 k 2-E 盘=0;由 R
热点重点难点专题透析· 物理(安徽)
专题四
【知能诊断】 1. (2013 年高考²新课标全国卷Ⅰ)如图,一半径 为 R 的圆盘上均匀分布着电荷量为 Q 的电荷,在垂直 于圆盘且过圆心 c 的轴线上有 a、 b、 d 三个点, a 和 b、 b 和 c、c 和 d 间的距离均为 R,在 a 点处有一电荷量 为 q(q>0)的固定点电荷. 已知 b 点处的电场强度为零, 则 d 点处电场强度的大小为(k 为静电力常量)( ).
专题四
A.如果粒子的速度增大为原来的二倍,粒子将从 d 点射出 B.如果粒子的速度增大为原来的三倍,粒子将从 f 点射出 C.如果粒子的速度不变,磁场的磁感应强度变为 原来的二倍,粒子将从 d 点射出 D.只改变粒子的速度使其分别从 e、d、f 点射出 时,从 e 点射出所用的时间最短
热点重点难点专题透析· 物理(安徽)
热点重点难点专题透析· 物理(安徽)
专题四
A.q 由 A 向 O 的运动是匀加速直线运动 B.q 由 A 向 O 运动的过程电势能逐渐减小 C.q 运动到 O 点时的动能最大 D.q 运动到 O 点时电势能为零 【疑惑】(1)等量正电荷形成的电场的电场线和等 势线的分布规律是怎样的? (2)电场力做功与电势能变化存在什么关系? (3)只有电场力做功,动能和电势能的变化有什么 关系?
专题四
势差不变,则自由运动电荷受到的电场力和磁场力相
U 等,有 q =qvB,再根据电流的微观公式 I=nqSv(q 取 a IB 绝对值), 且 S=ab, 联立解得 n= , 选项 C 正确. |q|bU
【答案】C
热点重点难点专题透析· 物理(安徽)
专题四
7.(2013 年高考²新课标全国卷Ⅱ)如图,匀强电 场中有一半径为 r 的光滑绝缘圆轨道,轨道平面与电 场方向平行.a、b 为轨道直径的两端,该直径与电场 方向平行. 一电荷量为 q(q>0)的质点沿轨道内侧运动, 经过 a 点和 b 点时对轨道压力的大小分别为 Na 和 Nb.不 计重力,求电场强度的大小 E、质点经过 a 点和 b 点时 的动能.
热点重点难点专题透析· 物理(安徽)
专题四
【解析】设 P+、P3+质量为 m,电荷量分别为 q 和
qU 3q,则在同一电场中加速度为 a= ,显然两者加速度 md
之比为 1∶3,A 错;粒子进入磁场后由洛伦兹力提供
v2 mv 向心力,即 qvB=m ,化简得 r= ,粒子经过电场加 r qB
1 2 速, 进入磁场的速度为 v, 则有 qU= mv , v= 2 2qU
2 2
R
R
做圆周运动的半径 r=cf²tan 60°=R,由粒子做圆
mv qBR 周运动的半径公式 r= ,解得速率 v= ,选项 B qB m
正确.
热点重点难点专题透析· 物理(安徽)
专题四
乙 【答案】B
热点重点难点专题透析· 物理(安徽)
专题四
5.(2013 年高考²浙江理综卷)在半导体离子注入 + 3+ 工艺中,初速度可忽略的磷离子 P 和 P ,经电压为 U 的电场加速后,垂直进入磁感应强度大小为 B、方向垂 直纸面向里、有一定宽度的匀强磁场区域,如图所 + 示.已知离子 P 在磁场中转过θ=30°后从磁场右边 界射出, 在电场和磁场中运动时, 离子 P+和 P3+( ).
热点重点难点专题透析· 物理(安徽)
专题四
甲 (1)M、N 间电场强度 E 的大小. (2)圆筒的半径 R. (3)保持 M、N 间电场强度 E 不变,仅将 M 板向上 2 平移 d,粒子仍从 M 板边缘的 P 处由静止释放,粒子 3 自进入圆筒至从 S 孔射出期间,与圆筒的碰撞次数 n.
热点重点难点专题透析· 物理(安徽)
的二倍,选项 A 正确、C 错误;当粒子的速度增大为原 来的四倍时,才会从 f 点射出,选项 B 错误;据粒子
热点重点难点专题透析· 物理(安徽)
专题四
2πm 的周期公式 T= ,可见粒子的周期与速度无关,在
qB
磁场中的运动时间取决于其轨迹圆弧所对应的圆心角, 所以从 e、d 射出时所用时间相等,从 f 点射出时所用 时间最短,D 错误. 【答案】A
热点重点难点专题透析· 物理(安徽)
专题四
A.在电场中的加速度之比为 1∶1 B.在磁场中运动的半径之比为 3∶1 C.在磁场中转过的角度之比为 1∶2 D.离开电场区域时的动能之比为 1∶3 【疑惑】(1)在电场中加速,一般应用什么规律研 究末速度?离开电场的动能由什么决定? (2) 怎样确定离子在磁场中运动的半径和偏转角 度?
+
d 一个粒子的圆心角为θ,同理可得 sin θ= ,由于 r3+
热点重点难点专题透析· 物理(安徽)
专题四
r+ 3 = 3,代入上式得 sin θ= ,θ=60°,因此 r3+ 2
两粒子在磁场中转过的圆心角之比为 1∶2,C 对. 【答案】BCD
热点重点难点专题透析· 物理(安徽)
专题四
6.(2013 年高考²重庆理综卷)如图所示,一段长 方体形导电材料,左右两端面的边长都为 a 和 b,内有 带电荷量为 q 的某种自由运动电荷.导电材料置于方 向垂直于其前表面向里的匀强磁场中,内部磁感应强 度大小为 B.当通以从左到右的稳恒电流 I 时,测得导 电材料上、下表面之间的电压为 U,且上表面的电势比 下表面的低.由此可得该导电材料单位体积内自由运 动电荷数及自由运动电荷的正负分别分( ).
专题四
【疑惑】(1)带电粒子在磁场中受什么力作用,做 什么性质的运动? (2)能推导粒子运动的轨迹方程吗?
乙
热点重点难点专题透析· 物理(安徽)
专题四
【解析】作出示意图如图乙所示,根据几何关系 可以看出,当粒子从 d 点射出时,轨道半径增大为原
mv 来的二倍,由半径公式 R= 可知,速度也增大为原来 qB