裂项相消法求和附答案

合集下载

数列求和之裂项相消(含解析)

数列求和之裂项相消(含解析)

1.已知数列{a n}的前n项的积记为T n,且满足.(1)证明:数列{T n}为等差数列;(2)设,求数列{b n}的前n项和S n.2.已知等差数列{a n}的公差为正数,且a1=1,若a2,a6﹣2a1,a14分别是等比数列{b n}的前三项.(1)分别求数列{a n}、{b n}的通项公式;(2)求数列的前n项之和S n.3.已知数列{a n}的首项a1=4,且a n+1=2a n﹣3.(1)求数列{a n}的通项公式;(2)记b n=log2(a n+1﹣3),求数列的前n项和T n.4.在①a8=9,②S5=20,③a2+a9=13这三个条件中选择两个,补充在下面问题中,并进行解答.已知等差数列{a n}的前n项和为S n,n∈N*,_____,_____.(1)求数列{a n}的通项公式;(2)设,证明数列{b n}的前n项和解析1.已知数列{a n}的前n项的积记为T n,且满足.(1)证明:数列{T n}为等差数列;(2)设,求数列{b n}的前n项和S n.分析:(1)根据数列的递推式和等差数列的定义,即可证明结论;(2)由(1)得T n=2n+1,则,利用裂项相消法,即可得出答案.解答:解:(1)证明:∵,∴当n=1时,,解得T1=a1=3,当n≥2时,,∴,即T n﹣T n﹣1=2,∴数列{T n}是以3为首项,2为公差的等差数列;(2)由(1)得T n=2n+1,则,∴.点评:本题考查数列的求和,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.2.已知等差数列{a n}的公差为正数,且a1=1,若a2,a6﹣2a1,a14分别是等比数列{b n}的前三项.(1)分别求数列{a n}、{b n}的通项公式;(2)求数列的前n项之和S n.分析:(1)设等差数列{a n}的公差为d(d>0),由已知可得(5d﹣a1)2=(a1+d)(a13+13d),可求d;(2)由(1)得,可求数列的前n项之和S n.解答:解:(1)设等差数列{a n}的公差为d(d>0),因为a2,a6﹣2a1,a14是等比数列{b n}的前三项,所以(a6﹣2a1)2=a2a14,即(5d﹣a1)2=(a1+d)(a13+13d),化简得d=2a1,又a1=1,所以d=2.得a n=1+2(n﹣1)=2n﹣1.由(1)可得数列{b n}的前三项分别为b1=3,b2=9,b3=27,显然该等比数列{b n}的公比为3,首项为3,所以.综上,两数列的通项公式分别为a n=2n﹣1,.(2)由(1)得..点评:本题考查数列的通项公式和前n项和公式的求法,注意裂项求和法的合理运用,属中档题.3.已知数列{a n}的首项a1=4,且a n+1=2a n﹣3.(1)求数列{a n}的通项公式;(2)记b n=log2(a n+1﹣3),求数列的前n项和T n.分析:(1)由递推关系构造等比数列{a n﹣3},利用等比数列通项公式求解即可;(2)求出b n,再由裂项相消法求解.解答:解:(1)由a n+1=2a n﹣3得a n+1﹣3=2(a n﹣3),且a1﹣3=1≠0,则数列{a n﹣3}是以1为首项,以2为公比的等比数列,可得,从而;(2),故,故.点评:本题考查由数列的递推式求数列的通项公式,利用裂项相消法求数列的前n项和,属中档题.4.在①a8=9,②S5=20,③a2+a9=13这三个条件中选择两个,补充在下面问题中,并进行解答.已知等差数列{a n}的前n项和为S n,n∈N*,_____,_____.(1)求数列{a n}的通项公式;(2)设,证明数列{b n}的前n项和.分析:(1)利用等差数列的通项公式及求和公式直接求解;(2)利用裂项相消法求和即可得证.解答:解:(1)由于{a n}是等差数列,设公差为d,当选①②时:a8=a1+7d=9,S5=5a1+10d=20,解得a1=2,d=1,所以{a n}的通项公式a n=2+(n﹣1)×1=n+1,n∈N*.选①③时,a8=a1+7d=9,a2+a9=2a1+9d=13,解得a1=2,d=1,所以{a n}的通项公式a n=2+(n﹣1)×1=n+1,n∈N*.选②③时,S5=5a1+10d=20,a2+a9=2a1+9d=13,解得a1=2,d=1,所以{a n}的通项公式a n=2+(n﹣1)×1=n+1,n∈N*.(2)证明:由(1)知a n=n+1,n∈N*,所以,所以,∵n∈N*,∴.点评:本题主要考查数列的通项公式的求法,数列的求和,裂项求和法的应用,考查运算求解能力,属于中档题.。

数学培优微专题《裂项相消法求和》解析版20

数学培优微专题《裂项相消法求和》解析版20

数学培优微专题《裂项相消法求和》1.已知数列{2a n }是等比数列,且a 1=3,a 3=7(1)证明:数列a n 等差数列,并求出其通项公式;(2)求数列{1(a n -1)(a n+1)}的前n 项和S n 解(1)证明:数列{2a n }是等比数列,设公比为q ,a 1=3,a 3=7,由题意得:q 2=2a 32a 1=2723=24=16,∴q =4,∴2a n =23⋅4n -1=22n +1,∴a n =2n +1.又a 1=3也满足条件,∴数列a n 是等差数列.(2)∵b n =1(a n -1)(a n +1)=12n (2n +2)=14(1n -1n +1),∴S n =14(1-12)+(12-13)+⋯+(1n -1n +1) =n 4(n +1)2.设数列{a n }满足a 1+3a 2+⋯+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列a n 2n +1 的前n 项和.解:(1)数列{a n }满足a 1+3a 2+⋯+(2n -1)a n =2n (i ),当n ≥2时,a 1+3a 2+⋯+(2n -3)a n -1=2(n -1)(ii ),(i )-(ii )得:(2n -1)a n =2.∴a n =22n -1(n ≥2),当n =1时,a 1=2,上式也成立.∴a n =22n -1.(2)∵a n 2n +1=2(2n -1)(2n +1)=12n -1-12n +1.∴设数列a n 2n +1的前n 项和为S n ,则S n =1-13 +13-15 +⋯+12n -1-12n +1 =1-12n +1=2n 2n +1.3.已知数列a n 的前n 项和为S n ,且a n =S n +n 2.(1)若数列a n +t 是等比数列,求t 的取值;(2)求数列a n 的通项公式;(3)记b n =1a n +1+1a n a n +1,求数列b n 的前n 项和T n .解:(1)由a 1=S 1+12=a 1+12,得a 1=1,又由a n =S n +n 2,可得S n =2a n -n ,当n >1时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,所以a 2=2a 1+1=3,a 3=2a 2+1=7,依题意,(3+t )2=(1+t )×(7+t ),解得t =1,故t 的取值为1;(2)由(1)知,当n >1时,a n =2a n -1+1,所以a n +1=2(a n -1+1),又因为a 1+1=2,所以数列a n +1 是以2为首项,2为公比的等比数列,所以a n +1=2×2n -1=2n ,所以a n =2n -1,故数列a n 的通项公式为a n =2n -1;(3)由(2)知,b n =1a n +1+1a n a n +1=a n +1a n a n +1=2n (2n -1)(2n +1-1)=12n -1-12n +1-1则T n =12-1-122-1+122-1-123-1+⋅⋅⋅+12n -1-12n +1-1=1-12n +1-1.4.已知数列n a n -1的前n 项和为n ,数列{b n }满足b 1=1,b n +1-b n =a n ,n ∈N *.(Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)若数列{c n }满足c n =a 2nb 2n,n ∈N *,证明:c 1+c 2+⋅⋅⋅+c n <4.解:(Ⅰ)∵1a 1-1+2a 2-1+⋯+n a n -1=n ,①1a 1-1+2a 2-1+⋯+n -1a n -1-1=n -1,(n ≥2)②由①-②得n a n -1=1,∴a n =n +1(n ≥2),当n =1时,a 1=2也符合a n =n +1,∴a n =n +1,∵b n +1-b n =a n ,∴b n =b 1+(b 2-b 1)+(b 3-b 2)+⋯+(b n -b n -1)=b 1+a 1+a 2+⋯+a n -1=1+2+⋯+n =(n +1)n 2,当n =1时,b 1=1也符合,∴b n =(n +1)n 2;(Ⅱ)证明:因为c n =a 2n b 2n =4(2n +1)n 2(n +1)2,c n =4(2n +1)n 2(n +1)2=41n 2-1(n +1)2,所以c 1+c 2+⋯+c n 41-122+122-132+132-142+⋯+1n 2-1n +1 2==41-1(n +1)2 ,因为1(n +1)2>0.故c 1+c 2+⋅⋅⋅+c n <4.5.已知数列{a n }的前n 项和为S n ,且a 1=12,a n +1=n +12na n .(1)求{a n }的通项公式;(2)设c n =2-S n n (n +1),n ∈N *,T n 是数列{c n }的前n 项和,证明34≤T n <1.解:(1)由已知得a n +1n +1=12·a n n,其中n ∈N ,∴数列a n n 是公比为12的等比数列,又首项a 1=12,则a n n =12 n ,∴a n =n 12n ;证明:(2)由(1)得,c n =(2-S n )n (n +1)=n +22n ⋅n (n +1)=21n 2n -1(n +1)2n +1,∴T n =2121⋅1-122⋅2+122⋅2-123⋅3+⋯+1n ⋅2n -1(n +1)⋅2n +1 =1-12n (n +1),又令f (n )=12n (n +1),显然f (n )在n ∈N *时单调递减,∴0<f n ≤f (1)=14,故34≤T n <1.6.已知数列a n 的前n 项和为S n ,且a 1=1,a n +1=2S n +1n ∈N + ,数列b n 满足b 1=1,b n +1=b n +a n .(1)求数列a n 和b n 的通项公式;(2)若数列c n 满足c n =a n b n ⋅b n +1且c 1+c 2+...+c n ≥(2b n -1)λ+1对任意n ∈N +恒成立,求实数λ的取值范围.【答案】解:(1)因为a 1=1,a n +1=2S n +1n ∈N + ,所以a n =2S n -1+1n ∈N +,n ≥2 ,则a n +1-a n =2S n -S n -1 ,即a n +1-a n =2a n ,a n +1=3a n n ∈N +,n ≥2 ,因为a 2=2a 1+1=3,a 2=3a 1,所以数列a n 是以1为首项、3为公比的等比数列,a n =3n -1n ∈N + ,因为b n +1=b n +a n ,所以b n +1=b n +3n -1,即b n +1-b n =3n -1,则b n =b n -b n -1 +b n -1-b n -2 +⋯+b 2-b 1 +b 1=3n -2+3n -3+⋯+30+1=30×1-3n -1 1-3+1=3n -1+12.(2)c n =a n b n ⋅b n +1=3n -13n -1+12 ⋅3n +12 =4⋅3n -13n -1+1 3n +1 =213n -1+1-13n +1 ,令T n =c 1+c 2+c 3+⋯+c n ,则T n =2130+1-131+1 +131+1-132+1 +⋯+13n -1+1-13n +1=212-13n +1 =1-23n +1,因为T n ≥2b n -1 λ+1对任意n ∈N +恒成立,所以1-23n +1≥2×3n -1+12-1 ⋅λ+1对任意n ∈N +恒成立,即λ≤-23n+1⋅3n-1min,令y=-23n+1⋅3n-1=-23⋅3n-12+3n-1,t=3n-1≥1,则y=-23t2+t,当t=1时,即当n=1时取到最小值-12,故λ≤-12,实数λ的取值范围为-∞,-12.。

(完整版)裂项相消法求和附答案

(完整版)裂项相消法求和附答案

裂项相消法利用列项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,再就是通项公式列项后,有时需要调整前面的系数,使列项前后等式两边保持相等。

(1)若是{a n }等差数列,则)11.(1111++-=n n n n a a d a a ,)11.(21122n ++-=n n n a a d a a(2)11111+-=+n n n n )( (3))11(1)(1kn n k k n n +-=+(4))121121(2112)121+--=+-n n n n )(((5)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n(6)n n n n -+=++111(7))(11n k n kkn n -+=++ 1.已知数列的前n 项和为, .(1)求数列的通项公式;(2)设,求数列的前n 项和为.[解析] (1) ……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即,……………………………………5分故对2.已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+8.(Ⅰ)求公差d的值;(Ⅰ)若a1=1,设T n是数列{}的前n项和,求使不等式T n≥对所有的nⅠN*恒成立的最大正整数m的值;[解析](Ⅰ)设数列{a n}的公差为d,Ⅰ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅰ)由a1=1,d=2,得a n=2n-1,…………………………………………5分Ⅰ =.…………………………………………6分Ⅰ T n===≥,…………………………………………8分又Ⅰ 不等式T n≥对所有的nⅠN*恒成立,Ⅰ ≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.Ⅰ m的最大正整数值为6.……………………………………………………12分3.)已知各项均不相同的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)设T n为数列的前n项和,求T2 012的值.[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),Ⅰa1=2. (5分)故a n=n+1. (6分)(Ⅰ)==-,(8分)ⅠT n=-+-+…+-=-=. (10分)ⅠT2 012=. (12分)4.)已知数列{a n}是等差数列,-=8n+4,设数列{|a n|}的前n项和为S n,数列的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:≤T n<1.[答案] (1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d. (2分)Ⅰ-=8n+4,Ⅰ(a n+1+a n)(a n+1-a n)=d(2a1-d+2nd)=8n+4.当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20.解方程组得或(4分)经检验知,a n=2n或a n=-2n都满足要求.Ⅰa n=2n或a n=-2n. (6分)(2)证明:由(1)知:a n=2n或a n=-2n.Ⅰ|a n|=2n.ⅠS n=n(n+1). (8分)Ⅰ==-.ⅠT n=1-+-+…+-=1-. (10分)Ⅰ≤T n<1. (12分)5.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅰ)令b n=(-1)n-1,求数列{b n}的前n项和T n.[答案] 查看解析[解析] (Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(Ⅰ)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+=.所以T n=6. 已知点的图象上一点,等比数列的首项为,且前项和(Ⅰ) 求数列和的通项公式;(Ⅰ) 若数列的前项和为,问的最小正整数是多少?[解析]解:(Ⅰ) 因为,所以,所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1的等差数列,,所以,当时,,所以. (6分)(Ⅰ) 由(Ⅰ) 得,(10分)由得,满足的最小正整数为72. (12分)7. 在数列,中,,,且成等差数列,成等比数列().(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅰ)证明:.[解析] (Ⅰ)由条件得,由此可得.猜测. (4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,.所以当时,结论也成立.由①②,可知对一切正整数都成立. (7分)(Ⅰ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8.已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅰ)设,,求使成立的最小的正整数的值.[解析] (1)当时,,由,……………………1分当时,Ⅰ是以为首项,为公比的等比数列.……………………4分故…………………6分(2)由(1)知,………………8分,故使成立的最小的正整数的值.………………12分9. 己知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}的通项公式;(II)设T n为数列的前n项和,若T n≤¨对恒成立,求实数的最小值.[解析] 122.(Ⅰ)设公差为d. 由已知得……………………………3分解得,所以………………………………6分(Ⅰ),………………………………9分对恒成立,即对恒成立又Ⅰ的最小值为……………………………………………………………12分10. 已知数列前项和为,首项为,且,,成等差数列.(Ⅰ)求数列的通项公式;(II)数列满足,求证:,[解析] (Ⅰ)成等差数列, Ⅰ,,当时,,两式相减得:.所以数列是首项为,公比为2的等比数列,.(6分)(Ⅰ) ,(8分),.(12分)11.等差数列{a n}各项均为正整数, a1=3, 前n项和为S n, 等比数列{b n}中, b1=1, 且b2S2=64, {}是公比为64的等比数列.(Ⅰ) 求a n与b n;(Ⅰ) 证明:++…+<.[答案] (Ⅰ) 设{a n}的公差为d, {b n}的公比为q, 则d为正整数,a n=3+(n-1) d,b n=q n-1.依题意有①由(6+d) q=64知q为正有理数, 又由q=知, d为6的因子1, 2, 3, 6之一, 解①得d=2, q=8. 故a n=3+2(n-1) =2n+1, b n=8n-1.(Ⅰ) 证明:S n=3+5+…+(2n+1) =n(n+2) ,所以++…+=+++…+==<.12. 等比数列{a n}的各项均为正数, 且2a1+3a2=1, =9a2a6.(Ⅰ) 求数列{a n}的通项公式;(Ⅰ) 设b n=log3a1+log3a2+…+log3a n, 求数列的前n项和.[答案] (Ⅰ) 设数列{a n}的公比为q. 由=9a2a6得=9, 所以q2=.因为条件可知q>0, 故q=.由2a1+3a2=1得2a1+3a1q=1, 所以a1=.故数列{a n}的通项公式为a n=.(Ⅰ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-.所以数列的前n项和为-.13.等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60.(Ⅰ)求a n和b n;(Ⅰ)求++…+.[答案] (Ⅰ)设{a n}的公差为d,且d为正数,{b n}的公比为q,a n=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2.(4分)故a n=3+2(n-1)=2n+1,b n=2n-1.(6分)(Ⅰ)S n=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-.(12分)14.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1). 等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.(1)求数列{a n}的通项公式;(2)设数列的前n项和为M n,求证:≤M n<.[答案](1)ⅠT5=T3+2b5,Ⅰb4+b5=2b5,即(a1-1)b4=0,又b4≠0,Ⅰa1=1. n≥2时,a n=S n-S n-1=na n-(n-1)a n-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1).Ⅰn-1≥1,Ⅰa n-a n-1=4(n≥2),Ⅰ数列{a n}是以1为首项,4为公差的等差数列,Ⅰa n=4n-3. (6分)(2)证明:Ⅰ==·,(8分)ⅠM n=++…+==<,(10分)又易知M n单调递增,故M n≥M1=.综上所述,≤M n<. (12分)。

最新数列求和错位相减法-裂项相消法后附答案

最新数列求和错位相减法-裂项相消法后附答案

数列求和错位相减法-裂项相消法后附答案------------------------------------------作者xxxx------------------------------------------日期xxxx一、解答题1.已知等差数列{a n}的前n项和为S n,且a2=3,S6=36.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足b n=2n⋅a n,n∈N∗,求数列{b n}的前n项和T n.【详解】(Ⅰ)a 2=3,∴a1+d=3S6=36,∴6a1+15d=36则a1=1,d=2a n=2n−1.(Ⅱ)由(Ⅰ)可知,b n=2n(2n−1)T n=1×2+3×22+5×23+⋯+(2n−3)×2n−1+(2n−1)×2n,2T n=1×22+3×23+5×24+⋯+(2n−3)×2n+(2n−1)×2n+1-T n=2+2×22+2×23+2×24.....+2×2n−(2n−1)×2n+1=2+2×4(1−2n−1)−(2n−1)⋅2n+11−2=−6+2n+2−(2n−1)⋅2n+1=−6+2n+1(3−2n)∴T n=6+(2n−3)⋅2n+12.已知数列{a n}的前n项和为S n,且a1=2,a n+1=S n+2,n∈N∗(1)求数列{a n}的通项公式;(2)设b n=n⋅a n,求数列{a n}的前n项和T n.【答案】(1)a n=2n(2)2+(n−1)×2n+1【详解】(1)∵a n+1=S n+2,n∈N∗,∴S n=a n+1−2,即S n+1=2a n+1−2,∴S n+2=2a n+2−2,两式相减,得a n+2=2a n+2−2a n+1,即a n+2=2a n+1, 又∵a 1=2,∴a 2=S 1+2=2+2=4, 即数列是首项为2,公比为2的等比数列, 所以a n =2n ;(2)设b n =n ⋅a n ,则b n =n ×2n ,∴T n =1×2+2×22+3×23+⋯+(n −1)×2n−1+n ×2n , 2T n =1×22+2×23+3×24+⋯+(n −1)×2n +n ×2n+1,两式相减,得:T n =−1×2−1×22−1×23−⋯−1×2n−1−1×2n +n ×2n+1=n ×2n+1−(2+22+23+⋯+2n−1+2n )=n ×2n+1−2×(1−2n)1−2=2+(n −1)×2n+1.【点睛】本题考查数列的递推关系,通项公式,前n 项和,错位相减法,利用错位相减法是解决本题的关键,属于中档题.3.已知等差数列{a n }的前n 项和为S n ,满足S n =(a n +12)2(n ∈N ∗)。

高考数学数列求和错位相减裂项相消(解析版)全

高考数学数列求和错位相减裂项相消(解析版)全

数列求和-错位相减、裂项相消◆错位相减法错位相减法是求解由等差数列a n 和等比数列b n 对应项之积组成的数列c n (即c n =a n b n )的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练.在讲等比数列的时候, 我们推导过等比数列的求和公式,其过程正是利用错位相减的原理, 等比数列的通项b n 其实可以看成等差数列通项a n a n =1 与等比数列通项b n 的积.公式秒杀:S n =(A ⋅n +B )q n -B (错位相减都可化简为这种形式,对于求解参数A 与B ,可以采用将前1项和与前2项和代入式中,建立二元一次方程求解.此方法可以快速求解出结果或者作为检验对错的依据.)【经典例题1】设数列a n 的前n 项和为S n ,若a 1=1,S n =a n +1-1.(1)求数列a n 的通项公式;(2)设b n =na n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1n ∈N ∗ ; (2)T n =2-n +22n.【解析】(1)因为a 1=1,S n =a n +1-1.所以S 1=a 2-1,解得a 2=2.当n ≥2时,S n -1=a n -1,所以a n =S n -S n -1=a n +1-a n ,所以2a n =a n +1,即a n +1a n=2.因为a 2a 1=2也满足上式,所以a n 是首项为1,公比为2的等比数列,所以a n =2n -1n ∈N ∗ .(2)由(1)知a n +1=2n ,所以b n =n2n ,所以T n =1×12+2×12 2+3×12 3+⋯+n ×12 n⋯①12T n =1×12 2+2×12 3+⋯+(n -1)×12 n +n ×12n +1⋯②①-②得12T n =12+12 2+12 3+⋯+12 n -n ×12 n +1=121-12 n1-12-n ×12 n +1=1-1+n 2 12 n ,所以T n =2-n +22n.【经典例题2】已知等差数列a n 的前n 项和为S n ,数列b n 为等比数列,且a 1=b 1=1,S 3=3b 2=12.(1)求数列a n ,b n 的通项公式;(2)若c n =a n b n +1,求数列c n 的前n 项和T n .【答案】(1)a n =3n -2,b n =4n -1(2)T n =4+n -1 4n +1【解析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由题意得:3a 1+3d =12,解得:d =3,所以a n =1+3n -1 =3n -2,由3b 2=12得:b 2=4,所以q =a2a 1=4,所以b n =4n -1(2)c n =a n b n +1=3n -2 ⋅4n ,则T n =4+4×42+7×43+⋯+3n -2 4n ①,4T n =42+4×43+7×44+⋯+3n -2 4n +1②,两式相减得:-3T n =4+3×42+3×43+3×44+⋯+3×4n -3n -2 4n +1=4+3×16-4n +11-4-3n -2 4n +1=-12+3-3n 4n +1,所以T n =4+n -1 4n +1【经典例题3】已知各项均为正数的等比数列a n 的前n 项和为S n ,且S 2=6,S 3=14.(1)求数列a n 的通项公式;(2)若b n =2n -1a n,求数列b n 的前n 项和T n .【答案】(1)a n =2n n ∈N * (2)T n =3-2n +32n 【解析】(1)设等比数列a n 的公比为q ,当q =1时,S n =na 1,所以S 2=2a 1=6,S 3=3a 1=14,无解.当q ≠1时,S n =a 11-q n 1-q ,所以S 2=a 11-q 21-q =6,S 3=a 11-q 31-q=14.解得a 1=2,q =2或a 1=18,q =-23(舍).所以a n =2×2n -1=2n n ∈N * .(2)b n =2n -1a n =2n -12n .所以T n =12+322+523+⋯+2n -32n -1+2n -12n ①,则12T n=122+323+524+⋯+2n -32n+2n -12n +1②,①-②得,12T n =12+222+223+224+⋯+22n -2n -12n +1=12+2122+123+124+⋯+12n -2n -12n +1=12+2×141-12n -1 1-12-2n -12n +1=32-2n +32n +1.所以T n =3-2n +32n.【练习1】已知数列a n 满足a 1=1,a n +1=2a n +1n ∈N ∗ .(1)求数列a n 的通项公式;(2)求数列n a n +1 的前n 项和S n .【答案】(1)a n =2n -1(2)S n =n -1 ⋅2n +1+2【解析】(1)由a n +1=2a n +1得:a n +1+1=2a n +1 ,又a 1+1=2,∴数列a n +1 是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.(2)由(1)得:n a n +1 =n ⋅2n ;∴S n =1×21+2×22+3×23+⋅⋅⋅+n -1 ⋅2n -1+n ⋅2n ,2S n =1×22+2×23+3×24+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1,∴-S n =2+22+23++2n-n ⋅2n +1=21-2n1-2-n ⋅2n +1=1-n ⋅2n +1-2,∴S n =n -1 ⋅2n +1+2.【练习2】已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n 的通项公式;(2)设b n =na n ,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =(n -1)⋅2n +1【解析】(1)令n =1得S 1=a 1=2a 1-1,∴a 1=1,当n ≥2时,S n -1=2a n -1-1,则a n =S n -S n -1=2a n -2a n -1,整理得a n =2a n -1,∴an a n -1=2,∴数列a n 是首项为1,公比为2的等比数列,∴a n =2n -1;(2)由(1)得b n =na n =n ⋅2n -1,则T n =1⋅20+2⋅21+3⋅22+⋅⋅⋅+n ⋅2n -1,2T n =1⋅21+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n ,两式相减得-T n =20+21+22+23+⋅⋅⋅+2n -1-n ⋅2n =1-2n1-2-n ⋅2n ,化简得T n =1-2n +n ⋅2n =(n -1)⋅2n +1.【练习3】已知数列a n 的前n 项和为S n ,且3S n =4a n -2.(1)求a n 的通项公式;(2)设b n =a n +1⋅log 2a n ,求数列b n 的前n 项和T n .【答案】(1)a n =22n -1(2)T n =409+6n -59×22n +3【解析】(1)当n =1时,3S 1=4a 1-2=3a 1,解得a 1=2.当n ≥2时,3a n =3S n -3S n -1=4a n -2-4a n -1-2 ,整理得a n =4a n -1,所以a n 是以2为首项,4为公比的等比数列,故a n =2×4n -1=22n -1.(2)由(1)可知,b n =a n +1⋅log 2a n =2n -1 ×22n +1,则T n =1×23+3×25+⋯+2n -1 ×22n +1,4T n =1×25+3×27+⋯+2n -1 ×22n +3,则-3T n =23+26+28+⋯+22n +2-2n -1 ×22n +3=23+26-22n +41-4-2n -1 ×22n +3=-403-6n -53×22n +3.故T n =409+6n -59×22n +3.【练习4】已知数列a n 满足a 1=1,a n +1=2n +1a na n +2n(n ∈N +).(1)求证数列2n a n 为等差数列;(2)设b n =n n +1 a n ,求数列b n 的前n 项和S n .【答案】(1)证明见解析 (2)S n =n -1 ⋅2n +1+2【解析】(1)由已知可得a n +12n +1=a n a n +2n ,即2n +1a n +1=2n a n +1,即2n +1a n +1-2n a n =1,∴2n a n 是等差数列.(2)由(1)知,2n a n =2a 1+n -1 ×1=n +1,∴a n =2nn +1,∴b n =n ⋅2nS n =1⋅2+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n2S n =1⋅22+2⋅23+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1相减得,-S n=2+22+23+⋅⋅⋅+2n-n⋅2n+1=21-2n1-2-n⋅2n+1=2n+1-2-n⋅2n+1∴S n=n-1⋅2n+1+2◆裂项相消法把数列的通项拆成相邻两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.在消项时要注意前面保留第几项,最后也要保留相对应的倒数几项.例如消项时保留第一项和第3项,相应的也要保留最后一项和倒数第三项.常见的裂项形式:(1)1n(n+k)=1k1n-1n+k;(2)1(2n-1)(2n+1)=1212n-1-12n+1;(3)1n+k+n=1k(n+k-n);(4)2n+1n2(n+1)2=1n2-1(n+1)2;(5)2n2n-12n+1-1=12n-1-12n+1-1;(6)2n(4n-1)n(n+1)=2n+1n+1-2nn;(7)n+1(2n-1)(2n+1)2n =1(2n-1)2n+1-1(2n+1)2n+2;(8)(-1)n(n+1)(2n+1)(2n+3)=14(-1)n2n+1-(-1)n+12n+3(9)(-1)nn-n-1=(-1)n(n+n-1)=(-1)n n-(-1)n-1n-1(10)1n(n+1)(n+2)=121n(n+1)-1(n+1)(n+2).(11)n⋅n!=n+1!-n!(12)kk+1!=1k!-1k+1!【经典例题1】已知正项数列a n中,a1=1,a2n+1-a2n=1,则数列1a n+1+a n的前99项和为( )A.4950B.10C.9D.14950【答案】C【解析】因为a2n+1-a2n=1且a21=1,所以,数列a2n是以1为首项,1为公差的等差数列,所以,a2n=1+n-1=n,因为数列a n为正项数列,则a n=n,则1a n+1+a n=1n+1+n=n+1-nn+1+nn+1-n=-n+n+1,所以,数列1a n+1+a n的前99项和为-1+2-2+3-⋯-99+100=10-1=9.故选:C.【经典例题2】数列a n 的通项公式为a n =2n +1n 2n +12n ∈N *,该数列的前8项和为__________.【答案】8081【解析】因为a n =2n +1n 2n +12=1n 2-1(n +1)2,所以S 8=1-122+122-132 +⋯+182-192 =1-181=8081.故答案为:8081.【经典例题3】已知数列a n 的前n 项和为S n =n 2,若b n =1a n a n +1,则数列{b n }的前n 项和为________.【答案】n 2n +1【解析】当n =1时,a 1=S 1=12=1,当n ≥2时,a n =S n -S n -1=n 2-n -1 2=2n -1,且当n =1时,2n -1=1=a 1,故数列a n 的通项公式为a n =2n -1,b n =1a n a n +1=1(2n -1)(2n +1)=1212n -1-12n +1 ,则数列{b n }的前n 项和为:121-13 +13-15 +15-17 +⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.故答案为:n2n +1【练习1】数列12n +1+2n -1的前2022项和为( )A.4043-12B.4045-12C.4043-1D.4045-1【答案】B 【解析】解:12n +1+2n -1=2n +1-2n -12n +1+2n -1 2n +1-2n -1=2n +1-2n -12记12n +1+2n -1 的前n 项和为T n ,则T 2022=123-1+5-3+7-5+⋯+4045-4043=124045-1 ;故选:B 【练习2】数列a n 的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列,又记b n =1a 2n +1⋅a 2n +3,数列b n 的前n 项和T n =______.【答案】n6n +9【解析】由对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列可得:2S n =a 2n +a n ,当n ≥2时可得2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n +a n -a 2n -1-a n -1,所以a 2n -a n -a 2n -1-a n -1=0,所以(a n +a n -1)(a n -a n -1-1)=0,由数列a n 的各项均为正数,所以a n -a n -1=1,又n =1时a 2n -a n =0,所以a 1=1,所以a n =n ,b n =1a 2n +1⋅a 2n +3=1(2n +1)(2n +3)=1212n +1-12n +3 ,T n =1213-15+15-17+⋯12n +1-12n +3 =1213-12n +3 =n 6n +9.故答案为:n6n +9.【练习3】12!+23!+34!+⋅⋅⋅+nn +1 !=_______.【答案】1-1n +1 !【解析】∵k k +1 !=k +1-1k +1 !=1k !-1k +1 !,∴12!+23!+34!+⋅⋅⋅+n n +1 !=1-12!+12!-13!+13!-14!+⋅⋅⋅+1n -1 !-1n !+1n !-1n +1 !=1-1n +1 !.故答案为:1-1n +1 !.【练习4】设数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n .(1)求a n 的通项公式;(2)求数列a n3n +1 的前n 项和T n .【答案】(1)a n =33n -2(2)T n =3n3n +1【解析】(1)解:数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n ,当n =1时,得a 1=3,n ≥2时,a 1+4a 2+⋯+(3n -5)a n -1=3(n -1),两式相减得:(3n -2)a n =3,∴a n =33n -2,当n =1时,a 1=3,上式也成立.∴a n =33n -2;(2)因为a n 3n +1=3(3n -2)(3n +1),=13n -2-13n +1,∴T n =11-14+14-17+⋯+13n -2-13n +1,=1-13n +1=3n3n +1.【练习5】已知数列a n 的前n 项和为S n ,且2S n =1-a n n ∈N ∗ .(1)求数列a n 的通项公式;(2)设b n =log 13a n ,C n =n +1-nb n b n +1,求数列C n 的前n 项和T n【答案】(1)a n =13n (2)T n =1-1n +1【解析】(1)当n =1时,2a 1=2S 1=1-a 1,解得:a 1=13;当n ≥2时,2a n =2S n -2S n -1=1-a n -1+a n -1,即a n =13a n -1,∴数列a n 是以13为首项,13为公比的等比数列,∴a n =13 n =13n .(2)由(1)得:b n =log 1313 n =n ,∴C n =n +1-n n n +1=1n -1n +1,∴T n =1-12+12-13+13-14+⋅⋅⋅+1n -1-1n +1n -1n +1=1-1n +1.【练习6】已知数列a n 中,2n a 1+2n -1a 2+⋯+2a n =n ⋅2n .(1)证明:a n 为等比数列,并求a n 的通项公式;(2)设b n =(n -1)a nn (n +1),求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =2n -1n ∈N *(2)2n n +1-1【解析】(1)解:2n a 1+2n -1a 2+⋯+2a n =n ⋅2n ,即为a 1+a 22+⋯+a n2n -1=n ·······①,又a 1+a 22+⋯+a n -12n -2=n -1,········②,①-②得a n2n -1=1,即a n =2n -1(n ≥2),又当n =1时,a 1=1=21-1,故a n =2n -1n ∈N * ;从而a n +1a n =2n2n -1=2n ∈N * ,所以a n 是首项为1,公比为2的等比数列;(2)由(1)得b n =(n -1)2n -1n (n +1)=2n n +1-2n -1n ,所以S n =212-201 +223-212 +⋯+2n n +1-2n -1n =2nn +1-1.【练习7】记S n 是公差不为零的等差数列a n 的前n 项和,若S 3=6,a 3是a 1和a 9的等比中项.(1)求数列a n 的通项公式;(2)记b n =1a n ⋅a n +1⋅a n +2,求数列b n 的前20项和.【答案】(1)a n =n ,n ∈N *(2)115462【解析】(1)由题意知a 23=a 1⋅a 9,设等差数列a n 的公差为d ,则a 1a 1+8d =a 1+2d 2,因为d ≠0,解得a 1=d又S 3=3a 1+3d =6,可得a 1=d =1,所以数列a n 是以1为首项和公差为1的等差数列,所以a n =a 1+n -1 d =n ,n ∈N *(2)由(1)可知b n =1n n +1 n +2 =121n n +1 -1n +1 n +2,设数列b n 的前n 和为T n ,则T n =1211×2-12×3+12×3-13×4+⋅⋅⋅+1n n +1 -1n +1 n +2=1212-1n +1 n +2,所以T 20=12×12-121×22 =115462所以数列b n 的前20和为115462【练习8】已知等差数列a n 满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N +).(1)求数列a n ,b n 的通项公式;(2)数列b n 的前n 项和为S n ,求S n .【答案】(1)a n =2n +1,b n =14n n +1(2)S n =n 4n +1【解析】(1)由题意,可设等差数列a n 的公差为d ,则a 1+2d =72a 1+10d =26,解得a 1=3,d =2,∴a n =3+2n -1 =2n +1;∴b n =1a 2n -1=12n +1 2-1=14n 2+4n =14n n +1 ;(2)∵b n =14n n +1=141n -1n +1 ,S n =141-12+12-13+⋯+1n -1n +1 =141-1n +1 =n 4n +1.【练习9】已知正项数列a n 的前n 项和为S n ,且4、a n +1、S n 成等比数列,其中n ∈N ∗.(1)求数列a n 的通项公式;(2)设b n =4S na n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =n +n2n +1【解析】(1)解:对任意的n ∈N ∗,a n >0,由题意可得4S n =a n +1 2=a 2n +2a n +1.当n =1时,则4a 1=4S 1=a 21+2a 1+1,解得a 1=1,当n ≥2时,由4S n =a 2n +2a n +1可得4S n -1=a 2n -1+2a n -1+1,上述两个等式作差得4a n =a 2n -a 2n -1+2a n -2a n -1,即a n +a n -1 a n -a n -1-2 =0,因为a n +a n -1>0,所以,a n -a n -1=2,所以,数列a n 为等差数列,且首项为1,公差为2,则a n =1+2n -1 =2n -1.(2)解:S n =n 1+2n -12=n 2,则b n =4S n a n a n +1=4n 22n -1 2n +1 =4n 2-1+12n -1 2n +1 =1+12n -1 2n +1=1+1212n -1-12n +1,因此,T n =n +121-13+13-15+⋯+12n -1-12n +1 =n +n2n +1.【练习10】已知S n 是数列a n 的前n 项和,a 1=1,___________.①∀n ∈N ∗,a n +a n +1=4n ;②数列S n n 为等差数列,且S nn 的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解:(1)求a n ;(2)设b n =a n +a n +1a n ⋅a n +1 2,求数列b n 的前n 项和T n .【答案】(1)条件选择见解析,a n =2n -1(2)T n =2n n +12n +12【解析】(1)解:选条件①:∀n ∈N ∗,a n +a n +1=4n ,得a n +1+a n +2=4n +1 ,所以,a n +2-a n =4n +1 -4n =4,即数列a 2k -1 、a 2k k ∈N ∗ 均为公差为4的等差数列,于是a 2k -1=a 1+4k -1 =4k -3=22k -1 -1,又a 1+a 2=4,a 2=3,a 2k =a 2+4k -1 =4k -1=2⋅2k -1,所以a n =2n -1;选条件②:因为数列S n n 为等差数列,且S nn 的前3项和为6,得S 11+S 22+S 33=3×S 22=6,所以S 22=2,所以S n n 的公差为d=S 22-S 11=2-1=1,得到Sn n =1+n -1 =n ,则S n =n 2,当n ≥2,a n =S n -S n -1=n 2-n -1 2=2n -1.又a 1=1满足a n =2n -1,所以,对任意的n ∈N ∗,a n =2n -1.(2)解:因为b n =a n +a n +1a n ⋅a n +1 2=4n 2n -1 22n +1 2=1212n -1 2-12n +1 2,所以T n =b 1+b 2+⋅⋅⋅+b n =12112-132+132-152+⋅⋅⋅+12n -1 2-12n +1 2 =121-12n +1 2 =2n n +1 2n +12.【过关检测】一、单选题1.S n=12+24+38+⋯+n2n=( )A.2n-n2n B.2n+1-n-22nC.2n-n+12n+1D.2n+1-n+22n【答案】B 【解析】由S n=12+24+38+⋯+n2n,得12S n=1×122+2×123+3×124+⋯+n⋅12n+1,两式相减得12S n=12+122+123+124+⋯+12n-n⋅12n+1=121-12n1-12-n12 n+1=1-12n-n⋅12 n+1=2n+1-n-22n+1.所以S n=2n+1-n-22n.故选:B.2.数列n⋅2n的前n项和等于( ).A.n⋅2n-2n+2B.n⋅2n+1-2n+1+2C.n⋅2n+1-2nD.n⋅2n+1-2n+1【答案】B【解析】解:设n⋅2n的前n项和为S n,则S n=1×21+2×22+3×23+⋯+n⋅2n, ①所以2S n=1×22+2×23+⋯+n-1⋅2n+n⋅2n+1, ②①-②,得-S n=2+22+23+⋯+2n-n⋅2n+1=21-2n1-2-n⋅2n+1,所以S n=n⋅2n+1-2n+1+2.故选:B.3.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则数列{nan}的前n项和为( )A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n【答案】D【解析】设等比数列{an}的公比为q,易知q≠1,所以由题设得S3=a11-q31-q=7S6=a11-q61-q=63 ,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以an=a1qn-1=2n-1,所以nan=n×2n-1.设数列{nan }的前n 项和为Tn ,则Tn =1×20+2×21+3×22+⋯+n ×2n -1,2Tn =1×21+2×22+3×23+⋯+n ×2n ,两式作差得-Tn =1+2+22+⋯+2n -1-n ×2n =1-2n1-2-n ×2n =-1+(1-n )×2n ,故Tn =1+(n -1)×2n .故选:D .4.已知等差数列a n ,a 2=3,a 5=6,则数列1a n a n +1的前8项和为( ).A.15B.25C.35D.45【答案】B 【解析】由a 2=3,a 5=6可得公差d =a 5-a 23=1 ,所以a n =a 2+n -2 d =n +1,因此1a n a n +1=1n +1 n +2 =1n +1-1n +2 ,所以前8项和为12-13 +13-14 +⋯+19-110 =12-110=25故选:B 5.已知数列a n 的前n 项和为S n ,S n +4=a n +n +1 2.记b n =8a n +1a n +2,数列的前n 项和为T n ,则T n 的取值范围为( )A.863,47 B.19,17C.47,+∞D.19,17【答案】A 【解析】因为数列a n 中,S n +4=a n +(n +1)2,所以S n +1+4=a n +1+n +2 2,所以S n +1+4-S n +4 =a n +1-a n +2n +3,所以a n =2n +3.因为b n =8a n +1a n +2,所以b n =82n +5 2n +7=412n +5-12n +7 ,所以T n =417-19+19-111+⋅⋅⋅+12n +5-12n +7=417-12n +7 .因为数列T n 是递增数列,当n =1时,T n =863,当n →+∞时,12n +7→0,T n →47,所以863≤T n <47,所以T n 的取值范围为863,47 .故选:A .6.已知数列满足a 1+2a 2+3a 3+⋯+na n =n 2,设b n =na n ,则数列1b n b n +1的前2022项和为( )A.40424043B.20214043C.40444045D.20224045【答案】D【解析】因为a 1+2a 2+3a 3+⋯+na n =n 2①,当n =1时,a 1=1;当n ≥2时,a 1+2a 2+3a 3+⋯+n -1 a n -1=(n -1)2②,①-②化简得a n =2n -1n ,当n =1时:a 1=2×1-11=1=1,也满足a n =2n -1n,所以a n =2n -1n ,b n =na n =2n -1,1b n b n +1=1(2n -1)(2n +1)=1212n -1-12n +1 所以1b n b n +1的前2022项和121-13+13-15+⋯+12×2022-1-12×2022+1 =121-12×2022+1 =20224045.故选:D .7.已知数列a n 满足a 1=1,且a n =1+a n a n +1,n ∈N *,则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=( )A.2021 B.20202021C.122021D.22021【答案】B 【解析】∵a n =1+a n a n +1,即a n +1=a n 1+a n ,则1a n +1=1+a n a n =1a n +1∴数列1a n是以首项1a 1=1,公差d =1的等差数列则1a n =1+n -1=n ,即a n =1n∴a n a n +1=1n n +1=1n -1n +1则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=1-12+12-13+...+12020-12021=20202021故选:B .8.等差数列a n 中,a 3=5,a 7=9,设b n =1a n +1+a n,则数列b n 的前61项和为( )A.7-3B.7C.8-3D.8【答案】C 【解析】解:因为等差数列满足a 3=5,a 7=9,所以d =a 7-a 37-3=1,所以a n =a 3+n -3 d =n +2,所以b n =1n +3+n +2=n +3-n +2,令数列b n 的前n 项和为S n ,所以数列b n 的前n 项和S n =4-3+5-4+⋯+n +3-n +2=n +3-3,所以S 61=8-3.故选:C .9.设数列n 22n -1 2n +1的前n 项和为S n ,则( )A.25<S 100<25.5B.25.5<S 100<26C.26<S 100<27D.27<S 100<27.5【答案】A 【解析】由n 2(2n -1)(2n +1)=14⋅4n 24n 2-1=141+14n 2-1 =141+121(2n -1)(2n +1)=14+1812n -1-12n +1,∴S n =n 4+181-13+13-15+⋅⋅⋅+12n -1-12n +1 =n 4+181-12n +1 =n (n +1)2(2n +1),∴S 100=100×1012(2×100+1)≈25.12,故选:A .10.已知数列a n 满足a n =1+2+4+⋯+2n -1,则数列2n a n a n +1 的前5项和为( )A.131B.163C.3031D.6263【答案】D 【解析】因为a n =1+2+4+⋯+2n -1=2n -1,a n +1=2n +1-1,所以2n a n a n +1=2n 2n -1 2n +1-1 =2n +1-1 -2n-1 2n -1 2n +1-1=12n -1-12n +1-1.所以2n a n a n +1 前5项和为121-1-122-1 +122-1-123-1 +⋯+125-1-126-1 =121-1-126-1=1-163=6263故选:D 11.已知数列a n 的首项a 1=1,且满足a n +1-a n =2n n ∈N * ,记数列a n +1a n +2 a n +1+2的前n 项和为T n ,若对于任意n ∈N *,不等式λ>T n 恒成立,则实数λ的取值范围为( )A.12,+∞ B.12,+∞C.13,+∞D.13,+∞【答案】C 【解析】解:因为a n +1-a n =2n n ∈N * ,所以a 2-a 1=21,a 3-a 2=22,a 4-a 3=23,⋯⋯,a n -a n -1=2n -1,所以a n -a 1=21+22+⋯+2n -1=21-2n -1 1-2=2n -2,n ≥2 ,又a 1=1,即a n =2n -1,所以a n +1=2n ,所以a n +1a n +2 a n +1+2 =2n 2n +1 2n +1+1=12n +1-12n +1+1,所以T n =121+1-122+1+122+1-123+1+⋯+12n +1-12n +1+1=13-12n +1+1<13所以λ的取值范围是13,+∞ .故选:C 12.在数列a n 中,a 2=3,其前n 项和S n 满足S n =n a n +12 ,若对任意n ∈N +总有14S 1-1+14S 2-1+⋯+14S n -1≤λ恒成立,则实数λ的最小值为( )A.1B.23C.12D.13【答案】C 【解析】当n ≥2时,2S n =na n +n ,2S n -1=n -1 a n -1+n -1 ,两式相减,整理得n -2 a n =(n -1)a n -1-1①,又当n ≥3时,n -3 a n -1=n -2 a n -2-1②,①-②,整理得n -2 a n +a n -2 =2n -4 a n -1,又因n -2≠0,得a n +a n -2=2a n -1,从而数列a n 为等差数列,当n =1时,S 1=a 1+12即a 1=a 1+12,解得a 1=1,所以公差d =a 2-a 1=2,则a n =2n -1,S n =na 1+n (n -1)2d =n 2,故当n ≥2时,14S 1-1+14S 2-1+⋯+14S n -1=122-1+142-1+⋯+12n 2-1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =121-12n +1 ,易见121-12n +1 随n 的增大而增大,从而121-12n +1 <12恒成立,所以λ≥12,故λ的最小值为12,故选:C .二、填空题13.已知正项数列{an }满足a 1=2且an +12-2an 2-anan +1=0,令bn =(n +2)an ,则数列{bn }的前8项的和等于__.【答案】4094【解析】由a 2n +1-2a 2n -a n a n +1=0,得(an +1+an )(an +1-2an )=0,又an >0,所以an +1+an >0,所以an +1-2an =0,所以an +1a n=2,所以数列{an }是以2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =n +2 a n =n +2 ⋅2n ,令数列{bn }的前n 项的和为Tn ,T 8=3×21+4×22+⋯+9×28,则2T 8=3×22+4×23+⋯+9×29,-T 8=6+22+23+⋯+28 -9×29=6+221-271-2-9×29=2-8×29=-4094,则T 8=4094,故答案为:4094.14.已知数列{an }的前n 项和为Sn ,且Sn =2an -2,则数列n a n的前n 项和Tn =__.【答案】2-n +22n.【解析】解:∵Sn =2an -2,∴Sn -1=2an -1-2(n ≥2),设公比为q ,两式相减得:an =2an -2an -1,即an =2an -1,n ≥2,又当n =1时,有S 1=2a 1-2,解得:a 1=2,∴数列{an }是首项、公比均为2的等比数列,∴an =2n ,n a n =n2n ,又Tn =121+222+323+⋯+n2n ,12Tn =122+223+⋯+n -12n +n 2n +1,两式相减得:12Tn =12+122+123+⋯+12n -n 2n +1=121-12n1-12-n2n +1,整理得:Tn =2-n +22n.故答案为:Tn =2-n +22n .15.将1+x n (n ∈Ν+)的展开式中x 2的系数记为a n ,则1a 2+1a 3+⋅⋅⋅+1a 2015=__________.【答案】40282015【解析】1+xn的展开式的通项公式为T k +1=C k n x k ,令k =2可得a n =C 2n =n n -12;1a n =2n n -1=21n -1-1n ;所以1a 2+1a 3+⋅⋅⋅+1a 2015=21-12 +212-13 +⋯+212014-12015=21-12015 =40282015.故答案为:40282015.16.数列a n 的前项n 和为S n ,满足a 1=-12,且a n +a n +1=2n 2+2nn ∈N * ,则S 2n =______.【答案】2n 2n +1【解析】由题意,数列{a n }满足a n +a n +1=2n 2+2n,可得a 2n -1+a 2n =2(2n -1)2+2(2n -1)=2(2n -1)(2n +1)=12n -1-12n +1,所以S 2n =11-13+13-15+⋯+12n -1-12n +1=1-12n +1=2n2n +1,故答案为:2n2n +1三、解答题17.已知数列a n 满足a 1=1,2a n +1a n +a n +1-a n =0.(1)求证:数列1a n 为等差数列;(2)求数列a n a n +1 的前n 项和S n .【答案】(1)证明见解析;(2)S n =n2n +1.【解析】(1)令b n =1a n ,因为b n +1-b n =1a n +1-1a n =a n -a n +1a n ⋅a n +1=2,所以数列b n 为等差数列,首项为1,公差为2;(2)由(1)知:b n =2n -1;故a n =12n -1;所以a n a n +1=12n -1 2n +1=1212n -1-12n +1 ;所以S n =a 1a 2+a 2a 3+⋯+a n a n +1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =n 2n +1;18.已知正项数列a n 的前n 项和为S n ,a n +1-a n =3n ∈N * ,且S 3=18.(1)求数列a n 的通项公式;(2)若b n =1a n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =n9n +9【解析】(1)∵a n +1-a n =3,∴数列a n 是以公差为3的等差数列.又S 3=18,∴3a 1+9=18,a 1=3,∴a n =3n .(2)由(1)知b n =13n ×3n +1=19×1n -1n +1 ,于是T n =b 1+b 2+b 3+⋅⋅⋅+b n =191-12 +12-13 +13-14 +⋅⋅⋅+1n -1n +1 =191-1n +1 =n 9n +919.已知数列a n 的首项为3,且a n -a n +1=a n +1-2 a n -2 .(1)证明数列1a n -2 是等差数列,并求a n 的通项公式;(2)若b n =-1 n an n +1,求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =1n+2(2)-1+-1 n1n +1【解析】(1)因为a n -a n +1=a n +1-2 a n -2 ,所a n -2 -a n +1-2 =a n +1-2 a n -2 ,则1a n +1-2-1a n -2=1,所以数列1a n -2 是以13-2=1 为首项,公差等于1的等差数列,∴1a n -2=1+n -1 =n ,即a n =1n+2;(2)b n =-1 n a n n +1=-1 n 1n n +1+2n +1 =-1 n 1n +1n +1 ,则S n =-1+12 +12+13 -13+14 +⋅⋅⋅+-1 n 1n +1n +1 =-1+-1 n 1n +1;综上,a n =1n +2,S n =-1+-1 n 1n +1 .20.已知数列a n 中,a 1=-1,且满足a n +1=2a n -1.(1)求证:数列a n -1 是等比数列,并求a n 的通项公式;(2)若b n =n +11-a n +1,求数列b n 的前n 项和为T n .【答案】(1)证明见解析,a n=-2n+1(2)T n=32-n+32n+1【解析】(1)解:对任意的n∈N∗,a n+1=2a n-1,所以a n+1-1=2a n-1,且a1-1=-2,所以数列a n-1是以-2为首项,2为公比的等比数列.所以a n-1=-2n,所以a n=-2n+1.(2)解:由已知可得b n=n+11-a n+1=n+12n+1,则T n=222+323+424+⋯+n+12n+1,所以,12T n=223+324+⋯+n 2n+1+n+12n+2,两式相减得12T n=222+123+⋯+12n+1-n+12n+2=12+181-12n-11-12-n+12n+2=34-1 2n+1-n+12n+2=34-n+32n+2,因此,T n=32-n+32n+1.21.已知等比数列a n,a1=2,a5=32.(1)求数列a n的通项公式;(2)若数列a n为正项数列(各项均为正),求数列(2n+1)⋅a n的前n项和T n.【答案】(1)a n=2n或a n=2·-2n-1;(2)T n=2+(2n-1)⋅2n+1.【解析】(1)等比数列a n的公比为q,a1=2,a5=32,则q4=a5a1=16,解得q=±2,所以当q=2时,a n=2n,当q=-2时,a n=2⋅(-2)n-1.(2)由(1)知,a n=2n,则有(2n+1)⋅a n=(2n+1)⋅2n,则T n=3×21+5×22+7×23+⋯+(2n+1)⋅2n,于是得2T n=3×22+5×23+⋯+(2n-1)⋅2n+(2n+1)⋅2n+1,两式相减,得-T n=6+2×(22+23+⋯+2n)-(2n+1)⋅2n+1=6+2×22×(1-2n-1)1-2-(2n+1)⋅2n+1=-2-(2n-1)⋅2n+1,所以T n=2+(2n-1)⋅2n+1.22.已知等差数列a n满足a1=1,a2⋅a3=a1⋅a8,数列b n的前n项和为S n,且S n=32b n.(1)求数列a n,b n的通项公式;(2)求数列a n b n的前n项和T n.【答案】(1)a n=1或a n=2n-1;b n=3n;(2)若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.【解析】(1)设等差数列a n的公差为d,∵a1=1,a2⋅a3=a1⋅a8,∴1+d1+2d=1+7d,化简得2d2-4d=0,解得:d=0或d=2,若d=0,则a n=1;若d=2,则a n=2n-1;由数列b n的前n项和为S n=32b n-32①,当n=1时,得b1=3,当n≥2时,有S n-1=32b n-1-32②;①-②有b n=32b n-32b n-1,即b nb n-1=3,n≥2,所以数列b n是首项为3,公比为3的等比数列,所以b n=3n,综上所述:a n=1或a n=2n-1;b n=3n;(2)若a n=1,则a n b n=b n=3n,则T n=3+32+⋯+3n=31-3n1-3=33n-12,若a n=2n-1,则a n b n=2n-13n,则T n=1×3+3×32+⋯+2n-1×3n③;③×3得3T n=1×32+3×33+⋯+2n-1×3n+1④;③-④得:-2T n=3+2×32+2×33+⋯+2×3n-2n-1×3n+1=3+2×32(1-3n-1)1-3-(2n-1)×3n+1整理化简得:T n=n-13n+1+3,综上所述:若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.。

数列求和--裂项相消法(含解析)

数列求和--裂项相消法(含解析)

《数列求和--裂项相消法》考查内容:主要考查裂项相消法进行数列求和一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.数列{}n b 中,若()11n b n n =+,数列{}n b 的前n 项和n T ,则2020T 的值为( )A .20202021B .12021 C .12020D .199920202.11111447710(32)(31)n n ++++=⨯⨯⨯-+( )A .31+nn B .331nn + C .111n -+ D .1331n -+ 3.已知在等差数列{}n a 中,5=5a ,3=3a ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前2019项和是( ) A .20202019B .20192020C .20182019D .201920184.已知数列{}n a :112,233+,123444++,12345555+++,…,又1114n n n b a a +=⋅,则数列{}n b 的前n 项的和n S 为( ) A .1411n ⎛⎫-⎪+⎝⎭B .11421n ⎛⎫-⎪+⎝⎭C .111n -+ D .1121n -+ 5.已知222n a n n=+,则6S =( ) A .6956B .78C .6928D .7166.设数列2141n ⎧⎫⎨⎬-⎩⎭的前n 项和为n S ,则10S =( ) A .1021 B .2021 C .919D .18197.求和111112123123n +++++++++++的值为( )A .12n-B .111n -+ C .221n n -D .221n -+ 8.已知n a =*n N ∈.记数列{}n a 的前n 项和为n S ,则2020S =( )A1 B1C1D1-9.已知数列{}n a 为:12,1233+,123444++,12345555+++,…,那么数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为( ) A .1411n ⎛⎫-⎪+⎝⎭ B .11421n ⎛⎫- ⎪+⎝⎭C .111n -+ D .1121n -+ 10.已知函数()a f x x 的图象过点()4,2,令*1,(1)()n a n f n f n =∈++N .记数列{}n a 的前n 项和为n S ,则2021S =()A1-BCD111.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且20,2,n n n n a S a a n >=+∈*N ,1121(2)(2)n n n n n n b a a +++=++,对任意的*,n n N k T ∈>恒成立,则k 的最小值是( ) A .13B .12C .16D .112.已知数列{}n a ,对任意*n N ∈,总有123232n a a a na n +++⋯+=成立,设()128(1)41n n nb n a +=--,则数列{}n b 的前10项的和为( )A .2221B .4041C .2021D .4241二.填空题13.设数列{}n a 满足11a =,且()*11n n a a n n N +-=+∈,则数列1n a ⎧⎫⎨⎬⎩⎭前2020项的和为________.14.已知数列{}n a的通项公式为n a =,则数列{}n a 的前n 项和n S =__15.设正项数列{}n a 的前n 项和n S 满足2+1441n n S a n =--,*n N ∈,且2a ,5a ,14a 成等比数列,则1111++⋅⋅⋅++=______.16.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,n *∈N ,()()112122n n n n n n b a a +++=++,对任意的n *∈N ,n k T >恒成立,则k 的取值范围是_____.三.解答题(解答应写出文字说明、证明过程或演算步骤)17.已知数列{}n a 的前n 项和为n S ,且12a =,()()*21n n S n a n N =+∈.(1)求{}n a 的通项公式; (2)令()()1422n n n b a a +=++,求数列{}n b 的前n项和n T .18.已知等差数列{}n a 的前n 项和为n S ,且23a =,636S =. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足2142n n b a n =+-(*n N ∈),求数列{}n b 的前n 项和n T .19.正项数列{}n a 的前项和n S 满足:242n n n S a a =+,()*n ∈N,(1)求数列{}n a 的通项公式; (2)令()2212n nn b n a+=+,数列{}n b 的前n 项和为n T ,证明:对于任意的*n ∈N 都有564n T <.20.已知等差数列{}n a 中,13212a a +=,12421a a a +=+. (1)求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项和为n S ,证明:121112123n S S S n +++<+++.21.已知数列{}n a 满足15a =,2123n n a a n +=+-.(1)求证:数列{}22n a n n --为等比数列;(2)若数列{}n b 满足2nn n b a =-,求12111n nT b b b =++⋅⋅⋅+.22.在数列{}n a 中,1114,340n n a a a +=-+=. (1)证明:数列{}2n a -是等比数列.(2)设()()1(1)3131n nn n n a b +-=++,记数列{}n b 的前n 项和为n T ,若对任意的*,n n N m T ∈≥恒成立,求m 的取值范围.《数列求和--裂项相消法》解析1.【解析】因为111n b n n =-+, 所以20201111112020112232020202120212021…T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A 2.【解析】由题得1111()(32)(31)32313n n n n =-⨯-+-+所以11111447710(32)(31)n n ++++⨯⨯⨯-+11111111(1)34477103231n n =-+-+-++--+1113(1)=33133131n nn n n =-⨯=+++.故选:A. 3.【解析】设{}n a 的公差为d ,由5353a a =⎧⎨=⎩得114523a d a d +=⎧⎨+=⎩解得111a d =⎧⎨=⎩,则n a n =.则()1111n n a a n n +==+111n n -+. 故前2019项和2019111111112232018201920192020S =-+-++-+-12019120202020=-=,故选:B . 4.【解析】因为数列{}n a 为:12,1233+,123444++,12345555+++,… 所以(1)1232112n n n n n a n n +++++===++, 所以1111114(1)1n n n b a a n n n n +=⋅==-++, 所以{}n b 的前n 项和为11111111112233411n n n -+-+-++-=-++故选:C. 5.【解析】由题意()21221222n a n n n n n n ===-+++,所以612611111111111132435465768S a a a =++⋅⋅⋅+=-+-+-+-+-+-6.【解析】()()21111141212122121n n n n n ⎛⎫==- ⎪--+-+⎝⎭,因此,101111111012335192121S ⎛⎫=-+-++-= ⎪⎝⎭.故选:A. 7.【解析】()()1121121123112n n nn n n n ⎛⎫∴===- ⎪+++++++⎝⎭, 因此,111112123123n+++++++++++111111121222223341n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭1221211n n ⎛⎫=-=- ⎪++⎝⎭.故选:D.8.【解析】由题意na===所以20201S ==. 故选:D.9.【解析】因为数列{}n a 为:12,1233+,123444++,12345555+++,… 所以(1)1232112n n n n n a n n +++++===++,所以114114()(1)1n n a a n n n n +==-++ 所以11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为111111114(1)412233411n n n ⎛⎫-+-+-++-=- ⎪++⎝⎭故选:A10.【解析】由()42f =,可得42a =,解得12a =,则12()f x x =.∴1(1)()n a fn f n ===++,202111S ∴==,故选:D11.【解析】因为22n n n S a a =+,所以当2,n n N *≥∈时,21112n n n S a a ---=+,两由0n a > 知,10n n a a -+≠,从而110n n a a ---=,即当2,n n N *≥∈时,11n n a a --=,当1n =时,21112a a a =+,解得11a =或0(舍),则{}n a 首项为1,公差为1的等差数列,则()111n a n n =+-⨯=.所以112111(2)(21)221n n n n n n b n n n n +++==-++++++,则1211111111111 (366112213213)n n n n n T b b b n n n ++=+++=-+-++-=-<+++++,所以13k ≥.则k 的最小值是13.故选:A12.【解析】数列{}n a ,对任意*n N ∈,总有123232n a a a na n +++⋯+=成立. 当1n =时,12a =.当2n ≥时,()()123123121n a a a n a n -+++⋯+-=-. 又123232n a a a na n +++⋯+=,两式相减可得2n na =, 即2n a n=,当1n =时也成立. ()()()11122288(1)(1)(1)24141414n n n n n n b n a n n n+++=-=-=----⋅111212(1)1n n n +=-⎛⎫+ ⎪-+⎝⎭所以数列{}n b 的前10项的和为123101111111+1+335571921b b b b ⎛⎫⎛⎫⎛⎫⎛⎫+++=+-+++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 12012121=-=,故选:C 13.【解析】因为()*11n n a a n n N+-=+∈,所以1122321,1,2,...,2------=-=--=--=n n n n n n a a n a a n a a n a a , 左右分别相加得()()112234 (2)-+=++++=-n n n n a a ,所以2n n a +=,所以1211=2⎛⎫=-,所以20201111111140402 (2122320202021120212021)⎛⎫⎛⎫=-+-++-=-=⎪ ⎪⎝⎭⎝⎭S , 故答案为:4040202114.【解析】由题可知:n a =,则2n a =所以12n n S a a a =+++,则122n n S =++,所以112n S=,故答案为:11215.【解析】由2+1441n n S a n =--,可得21443(2)n n S a n n -=-+≥,以上两式相减可得:22144n n n a a a +=--,即222144(2)n n n n a a a a +=++=+,又∵{}n a 为正项数列,∴12n n a a +-=,由等差数列的定义可知数列{}n a 从第二项开始是公差为2的等差数列,又2a ,5a ,14a 成等比数列,所以22514a a a =,即()()2222624a a a +=+,∴23a =,∴()212n a n n =-≥,当1n =时,2112445S a a ==-,∴11a =,满足通项公式,∴21n a n =-,∴122320182019201920201111a a a a a a a a ++⋅⋅⋅++1111111201921335403740394039⎛⎫=⨯-+-+⋅⋅⋅+-= ⎪⎝⎭ 16.【解析】因为22n n n S a a =+,所以当2,n n N *≥∈时,21112n n n S a a ---=+, 两式相减得:22112n n n n n a a a a a --=+-- ,整理得,()()1101n n n n a a a a --+--=,由0n a > 知,10n n a a -+≠,从而110n n a a ---=,当1n =时,21112a a a =+,解得11a =或0(舍),则{}n a 首项为1,公差为1的等差数列, 则()111n a n n =+-⨯=.所以112111(2)(21)221n n n n n n b n n n n +++==-++++++,则121111111 (36611221)n n n n T b b b n n +=+++=-+-++-+++ 11311213n n +=<++-,所以13k ≥.故答案为:13k ≥. 17.【解析】(1)因为()()*21n n S n a n N=+∈,所以112n n S na --=()2n ≥,两式作差可得()()1212n n n a n a na n -=+-≥,整理得()()112n n n a na n -=-≥,则()121n n a nn a n -=≥-, 故()32112123222121n n n a a a na a n n a a a n -=⨯⨯⨯⨯=⨯⨯⨯⨯=≥-, 当1n =时,12a =满足上式,故2n a n =. (2)由(1)可知()()()()()()1441112222241212n n n b a a n n n n n n +====-++++++++,则1231111111123344512n n T b b b b n n ⎛⎫⎛⎫⎛⎫⎛⎫=++++=-+-+-++- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭. 112224nn n =-=++. 18.【解析】(1)设等差数列{}n a 的公差为d ,因为23a =,636S =,所以113656362a d a d +=⎧⎪⎨⨯+=⎪⎩,解得112a d =⎧⎨=⎩, 所以()()1112121n a a n d n n =+-=+-=-; (2)由题意()()()221114221212142n n b a n n n n n ===+-+--+-所以1231111111233557112121n n T b b b b n n ⎛⎫=+++⋅⋅⋅+=-+-+-⋅⋅⋅+ ⎪⎝-+⎭-11122121n n n ⎛⎫=-= ⎪++⎝⎭. 19.【解析】(1)解:∵正项数列{}n a 的前项和n S 满足:242n n n S a a =+,()*n ∈N ① 则211142n n n S a a ---=+,()2n ≥②①-②得()22114222n n n n n a a a a a n --=-+≥-即()2211222n n n n a a a a n --+=-≥即()()()()11122n n n n n n a a a a a a n ---+=+-≥ 又10n n a a ->+,12n n a a --=,()2n ≥.又12a =,所以数列{}n a 是以2为首项2为公差的等差数列.所以2n a n =. (2)证明:由于2n a n =,()2212n nn b n a +=+则()()2222111116422n n b n n n n ⎡⎤+==-⎢⎥++⎢⎥⎣⎦()()()222222222111111111111632435112n T n n n n ⎡⎤=-+-+-+⋅⋅⋅+-+-⎢⎥-++⎢⎥⎣⎦()()22221111115111621626412n T n n ⎡⎤⎛⎫=+--<+=⎢⎥ ⎪⎝⎭++⎢⎥⎣⎦. 20.【解析】(1)设数列{}n a 的公差为d ,由题意得()()111112212231a a d a a d a d ⎧++=⎪⎨++=++⎪⎩,解得12a =,3d =,故数列{}n a 的通项公式为()23131n a n n =+-=-.(2)由(1)知()2313222n n n n nS n -+=+=, 所以()231322n n n n n S n n +++=+=,所以()122113131nS n n n n n ⎛⎫==- ⎪+++⎝⎭,所以1211121111111232231n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦2121313n ⎛⎫=-< ⎪+⎝⎭. 21.【解析】(1)设22n n c a n n =-- ,2123n n a a n +=+-,则()()21121212n n n n a n n cc a n n++-+-+=-- ()2222222212222223n n n n a n n n n n a n n a a n nn -------===--+---, 所以{}22n a n n --是以2为首项,以2为公比的等比数列.(2)由(1)可得222nn a n n --=,所以222n n a n n =++所以()2222nn n b a n n n n =-=+=+,所以()1211111111324352n n T b b b n n =++⋅⋅⋅+=+++⨯⨯⨯+11111111111112324352112n n n n n n ⎛⎫=-+-+-+-+-+- ⎪--++⎝⎭()()211113512212412n n n n n n +⎛⎫=+--=⎪++++⎝⎭. 22.【解析】(1)证明:因为1340n n a a +-+=, 所以134n n a a +=-,所以()1232n n a a +-=-,即()*1232n n a n N a +-=∈-.因为114a =,所以1212a -=,故数列{}2n a -是以12为首项,3为公比的等比数列. (2)解:由(1)可得1212343n n n a --=⨯=⨯,即432n n a =⨯+,则()()()()()111(1)432(1)11(1)313131313131n n n n n n n n n n n n a b +++-⨯+-⎛⎫===-+ ⎪++++++⎝⎭. 当n 为偶数时,22311111111113131313131313131n n n n n T -+⎛⎫⎛⎫⎛⎫⎛⎫=--++++--++ ⎪ ⎪ ⎪ ⎪++++++++⎝⎭⎝⎭⎝⎭⎝⎭1111113131431n n ++=-+=-++++,因为111431n n T +=-++是递减的,所以13414n T -<≤-. 当n 为奇数时,22311111111113131313131313131n n n n n T -+⎛⎫⎛⎫⎛⎫⎛⎫=--++++++-- ⎪ ⎪ ⎪ ⎪++++++++⎝⎭⎝⎭⎝⎭⎝⎭1111113131431n n ++=--=--+++, 因为11031n +>+,所以14nT <-. 要使对任意的*,n n N m T ∈≥恒成立,只需()max n m T ≥,即314m ≥-, 故m 的取值范围是3,14⎡⎫-+∞⎪⎢⎣⎭.。

裂项相消法求和附答案

裂项相消法求和附答案

裂项相消法利用列项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,再就是通项公式列项后,有时需要调整前面的系数,使列项前后等式两边保持相等。

(1)若是{a n }等差数列,则)11.(1111++-=n n n n a a d a a ,)11.(21122n ++-=n n n a a d a a (2)11111+-=+n n n n )( (3))11(1)(1k n n k k n n +-=+ (4))121121(2112)121+--=+-n n n n )(( (5)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n (6)n n n n -+=++111(7))(11n k n k k n n -+=++1.已知数列的前n 项和为, .(1)求数列的通项公式;(2)设,求数列的前n项和为.[解析] (1) ……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即,……………………………………5分故对2.已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+8.(Ⅰ)求公差d的值;(Ⅱ)若a1=1,设T n是数列{}的前n项和,求使不等式T n≥对所有的n∈N*恒成立的最大正整数m的值;[解析](Ⅰ)设数列{a n}的公差为d,∵ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅱ)由a1=1,d=2,得a n=2n-1,…………………………………………5分∴ =.…………………………………………6分∴ T n===≥,…………………………………………8分又∵ 不等式T n≥对所有的n∈N*恒成立,∴ ≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.∴ m的最大正整数值为6.……………………………………………………12分3.)已知各项均不相同的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n为数列的前n项和,求T2 012的值.[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),∴a1=2. (5分)故a n=n+1. (6分)(Ⅱ)==-,(8分)∴T n=-+-+…+-=-=. (10分)∴T2 012=. (12分)4.)已知数列{a n}是等差数列,-=8n+4,设数列{|a n|}的前n项和为S n,数列的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:≤T n<1.[答案] (1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d. (2分)∵-=8n+4,∴(a n+1+a n)(a n+1-a n)=d(2a1-d+2nd)=8n+4.当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20.解方程组得或(4分)经检验知,a n=2n或a n=-2n都满足要求.∴a n=2n或a n=-2n. (6分)(2)证明:由(1)知:a n=2n或a n=-2n.∴|a n|=2n.∴S n=n(n+1). (8分)∴==-.∴T n=1-+-+…+-=1-. (10分)∴≤T n<1. (12分)5.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(-1)n-1,求数列{b n}的前n项和T n.[答案] 查看解析[解析] (Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(Ⅱ)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+= .所以T n=6. 已知点的图象上一点,等比数列的首项为,且前项和(Ⅰ) 求数列和的通项公式;(Ⅱ) 若数列的前项和为,问的最小正整数是多少?[解析]解:(Ⅰ) 因为,所以,所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1的等差数列,,所以,当时,,所以. (6分)(Ⅱ) 由(Ⅰ) 得,(10分)由得,满足的最小正整数为72. (12分)7. 在数列,中,,,且成等差数列,成等比数列().(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅱ)证明:.[解析] (Ⅰ)由条件得,由此可得.猜测. (4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,.所以当时,结论也成立.由①②,可知对一切正整数都成立. (7分)(Ⅱ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8.已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求使成立的最小的正整数的值.[解析] (1)当时,,由, (1)分当时,∴是以为首项,为公比的等比数列.……………………4分故…………………6分(2)由(1)知,………………8分,故使成立的最小的正整数的值. ………………12分9. 己知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}的通项公式;(II)设T n为数列的前n项和,若T n≤¨对恒成立,求实数的最小值.[解析] 122. (Ⅰ)设公差为d. 由已知得……………………………3分解得,所以………………………………6分(Ⅱ),………………………………9分对恒成立,即对恒成立又∴的最小值为……………………………………………………………12分10. 已知数列前项和为,首项为,且,,成等差数列.(Ⅰ)求数列的通项公式;(II)数列满足,求证:,[解析] (Ⅰ)成等差数列, ∴,,当时,,两式相减得: .所以数列是首项为,公比为2的等比数列,. (6分)(Ⅱ) ,(8分),. (12分)11.等差数列{a n}各项均为正整数, a1=3, 前n项和为S n, 等比数列{b n}中, b1=1, 且b2S2=64, {}是公比为64的等比数列.(Ⅰ) 求a n与b n;(Ⅱ) 证明:++…+<.[答案] (Ⅰ) 设{a n}的公差为d, {b n}的公比为q, 则d为正整数,a n=3+(n-1) d,b n=q n-1.依题意有①由(6+d) q=64知q为正有理数, 又由q=知, d为6的因子1, 2, 3, 6之一, 解①得d=2, q=8.故a n=3+2(n-1) =2n+1, b n=8n-1.(Ⅱ) 证明:S n=3+5+…+(2n+1) =n(n+2) ,所以++…+=+++…+==<.12. 等比数列{a n}的各项均为正数, 且2a1+3a2=1, =9a2a6.(Ⅰ) 求数列{a n}的通项公式;(Ⅱ) 设b n=log3a1+log3a2+…+log3a n, 求数列的前n项和.[答案] (Ⅰ) 设数列{a n}的公比为q. 由=9a2a6得=9, 所以q2=.因为条件可知q>0, 故q=.由2a1+3a2=1得2a1+3a1q=1, 所以a1=.故数列{a n}的通项公式为a n=.(Ⅱ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-.所以数列的前n项和为-.13.等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60.(Ⅰ)求a n和b n;(Ⅱ)求++…+.[答案] (Ⅰ)设{a n}的公差为d,且d为正数,{b n}的公比为q,a n=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2.(4分)故a n=3+2(n-1)=2n+1,b n=2n-1.(6分)(Ⅱ)S n=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-.(12分)14.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1). 等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.(1)求数列{a n}的通项公式;(2)设数列的前n项和为M n,求证:≤M n<.[答案](1)∵T5=T3+2b5,∴b4+b5=2b5,即(a1-1)b4=0,又b4≠0,∴a1=1. n≥2时,a n=S n-S n-1=na n-(n-1)a n-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1).∵n-1≥1,∴a n-a n-1=4(n≥2),∴数列{a n}是以1为首项,4为公差的等差数列,∴a n=4n-3. (6分)(2)证明:∵==·,(8分)∴M n=++…+==<,(10分)又易知M n单调递增,故M n≥M1=.综上所述,≤M n<. (12分)。

裂项相消法求和附答案知识讲解

裂项相消法求和附答案知识讲解

裂项相消法求和附答案裂项相消法利用列项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,再就是通项公式列项后,有时需要调整前面的系数,使列项前后等式两边保持相等。

(1)若是{a n }等差数列,则)11.(1111++-=n n n n a a d a a ,)11.(21122n ++-=n n n a a d a a (2)11111+-=+n n n n )( (3))11(1)(1k n n k k n n +-=+ (4))121121(2112)121+--=+-n n n n )(( (5)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n (6)n n n n -+=++111(7))(11n k n k kn n -+=++1.已知数列的前n 项和为, .(1)求数列的通项公式;(2)设,求数列的前n 项和为.[解析] (1) ……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即, (5)分故对2.已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+8.(Ⅰ)求公差d的值;(Ⅱ)若a1=1,设T n是数列{}的前n项和,求使不等式T n≥对所有的n∈N*恒成立的最大正整数m的值;[解析](Ⅰ)设数列{a n}的公差为d,∵ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅱ)由a1=1,d=2,得a n=2n-1,…………………………………………5分∴=. (6)分∴ T n===≥,…………………………………………8分又∵不等式T n≥对所有的n∈N*恒成立,∴≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.∴ m的最大正整数值为6.……………………………………………………12分3.)已知各项均不相同的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n为数列的前n项和,求T2 012的值.[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),∴a1=2. (5分)故a n=n+1. (6分)(Ⅱ)==-,(8分)∴T n=-+-+…+-=-=. (10分)∴T2 012=. (12分)4.)已知数列{a n}是等差数列,-=8n+4,设数列{|a n|}的前n项和为S n,数列的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:≤T n<1.[答案] (1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d. (2分)∵-=8n+4,∴(a n+1+a n)(a n+1-a n)=d(2a1-d+2nd)=8n+4.当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20.解方程组得或(4分)经检验知,a n=2n或a n=-2n都满足要求.∴a n=2n或a n=-2n. (6分)(2)证明:由(1)知:a n=2n或a n=-2n.∴|a n|=2n.∴S n=n(n+1). (8分)∴==-.∴T n=1-+-+…+-=1-. (10分)∴≤T n<1. (12分)5.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(-1)n-1,求数列{b n}的前n项和T n.[答案] 查看解析[解析] (Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(Ⅱ)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+=. 所以T n=6. 已知点的图象上一点,等比数列的首项为,且前项和(Ⅰ) 求数列和的通项公式;(Ⅱ) 若数列的前项和为,问的最小正整数是多少?[解析]解:(Ⅰ) 因为,所以,所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1的等差数列,,所以,当时,,所以. (6分)(Ⅱ) 由(Ⅰ) 得,(10分)由得,满足的最小正整数为72. (12分)7. 在数列,中,,,且成等差数列,成等比数列().(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅱ)证明:.[解析] (Ⅰ)由条件得,由此可得.猜测. (4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,. 所以当时,结论也成立.由①②,可知对一切正整数都成立. (7分)(Ⅱ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8.已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求使成立的最小的正整数的值.[解析] (1)当时,,由,……………………1分当时,∴是以为首项,为公比的等比数列. (4)分故…………………6分(2)由(1)知,………………8分,故使成立的最小的正整数的值 (12)分9. 己知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}的通项公式;(II)设T n为数列的前n项和,若T n≤¨对恒成立,求实数的最小值.[解析] 122. (Ⅰ)设公差为d. 由已知得……………………………3分解得,所以………………………………6分(Ⅱ),………………………………9分对恒成立,即对恒成立又∴的最小值为 (12)分10. 已知数列前项和为,首项为,且,,成等差数列.(Ⅰ)求数列的通项公式;(II)数列满足,求证:,[解析] (Ⅰ)成等差数列, ∴,,当时,,两式相减得: .所以数列是首项为,公比为2的等比数列,. (6分)(Ⅱ) ,(8分),. (12分)11.等差数列{a n}各项均为正整数, a1=3, 前n项和为S n, 等比数列{b n}中, b1=1, 且b2S2=64, {}是公比为64的等比数列.(Ⅰ) 求a n与b n;(Ⅱ) 证明:++…+<.[答案] (Ⅰ) 设{a n}的公差为d, {b n}的公比为q, 则d为正整数,a n=3+(n-1) d,b n=q n-1.依题意有①由(6+d) q=64知q为正有理数, 又由q=知, d为6的因子1, 2, 3, 6之一, 解①得d=2, q=8.故a n=3+2(n-1) =2n+1, b n=8n-1.(Ⅱ) 证明:S n=3+5+…+(2n+1) =n(n+2) ,所以++…+=+++…+==<.12. 等比数列{a n}的各项均为正数, 且2a1+3a2=1, =9a2a6.(Ⅰ) 求数列{a n}的通项公式;(Ⅱ) 设b n=log3a1+log3a2+…+log3a n, 求数列的前n项和.[答案] (Ⅰ) 设数列{a n}的公比为q. 由=9a2a6得=9, 所以q2=.因为条件可知q>0, 故q=.由2a1+3a2=1得2a1+3a1q=1, 所以a1=.故数列{a n}的通项公式为a n=.(Ⅱ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-.所以数列的前n项和为-.13.等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60.(Ⅰ)求a n和b n;(Ⅱ)求++…+.[答案] (Ⅰ)设{a n}的公差为d,且d为正数,{b n}的公比为q,a n=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2.(4分)故a n=3+2(n-1)=2n+1,b n=2n-1.(6分)(Ⅱ)S n=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-.(12分)14.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1). 等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.(1)求数列{a n}的通项公式;(2)设数列的前n项和为M n,求证:≤M n<.[答案](1)∵T5=T3+2b5,∴b4+b5=2b5,即(a1-1)b4=0,又b4≠0,∴a1=1.n≥2时,a n=S n-S n-1=na n-(n-1)a n-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1).∵n-1≥1,∴a n-a n-1=4(n≥2),∴数列{a n}是以1为首项,4为公差的等差数列,∴a n=4n-3. (6分)(2)证明:∵==·,(8分)∴M n=++…+==<,(10分)又易知M n单调递增,故M n≥M1=. 综上所述,≤M n<. (12分)。

裂项相消法求和附答案解析.docx

裂项相消法求和附答案解析.docx

.裂项相消法利用列相消法求和,注意抵消后并不一定只剩下第一和最后一,也有可能前面剩两,后面剩两,再就是通公式列后,有需要整前面的系数,使列前后等式两保持相等。

( 1 )若是 {a n }等差数列,1 1 .( 11) ,1 1 .( 1 1 )a n a n 1 d a n a n 1a n a n 22d a n a n 2( 2 )111 n(n1) n n1( 3 )1k)1 ( 1n1)n(n k n k( 4 )1 1 (11)(2n 1()2n 1) 2 2n 1 2n 1( 5 )n(n12)1[1(n1] 1)( n2n(n 1)1)(n2)( 6 )1n1nn n1( 7 )11n k n) n n k(k1. 已知数列的前n和,.(1 )求数列的通公式;(2 ),求数列的前n和.[ 解析 ] (1)⋯⋯⋯⋯⋯①.,⋯⋯⋯⋯⋯②①②得 :即⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分在①中令, 有, 即,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分故2. 已知 {a n} 是公差 d 的等差数列,它的前n 和 S n, S4=2S 2 +8 .(Ⅰ)求公差 d 的;(Ⅱ)若 a 1 =1 , T n是数列 {} 的前 n 和,求使不等式T n≥所有的n ∈N* 恒成立的最大正整数m 的;[ 解析 ] (Ⅰ)数列{a n }的公差 d ,∵ S4 =2S 2 +8 ,即 4a 1 +6d=2(2a 1 +d) +8,化得:4d=8,解得 d=2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)由 a 1=1 , d=2 ,得 a n =2n-1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∴=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分.∴ T n ===≥ ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分又∵ 不等式n所有的 n ∈ N* 恒成立,T ≥∴ ≥,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分化得: m 2 -5m-6≤0 ,解得: -1 ≤m ≤6 .∴ m 的最大正整数 6 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分3.) 已知各均不相同的等差数列{a n } 的前四和S4 =14, 且 a 1 ,a3 ,a7成等比数列 . ( Ⅰ) 求数列 {a n } 的通公式 ;( Ⅱ)T n数列的前n和,求T2 012的.[ 答案 ] ( Ⅰ ) 公差 d, 由已知得(3 分)解得 d=1或d=0(舍去),∴a1=2. (5分)故 a n =n+1. (6分)( Ⅱ)==-,(8 分 ).∴T n= - + - + ⋯+ -= -=. (10 分 )∴T 2 012 =. (12分)4.) 已知数列 {a}是等差数列 ,- =8n+4, 数列 {|an |} 的前 n 和 S ,数列的前 nn n 和 T n .(1)求数列 {a n }的通公式 ;(2)求 : ≤T n <1.[ 答案 ] (1) 等差数列 {a n }的公差d,a n =a 1 +(n-1)d. (2分)∵- =8n+4,∴(a n+1 +a n )(a n+1 -a n )=d(2a 1 -d+2nd)=8n+4.当n=1,d(2a 1 +d)=12;当n=2,d(2a 1 +3d)=20.解方程得或(4 分)知 ,a n =2n或a n=-2n都足要求.∴a n =2n或a n=-2n. (6分)(2) 明 : 由 (1) 知 :a n =2n或a n=-2n.∴|a n |=2n..∴S n =n(n+1). (8分)∴ == -.∴T n=1- + - + ⋯+ -=1-. (10 分 )∴ ≤T n <1. (12分)5. 已知等差数列 {a n } 的公差2, 前 n 和 S n ,且 S1,S2 ,S4成等比数列 .( Ⅰ) 求数列 {a n } 的通公式 ;( Ⅱ) 令 b n =(-1)n-1,求数列 {b n }的前 n 和 T n .[ 答案 ] 看解析[ 解析 ] ( Ⅰ ) 因 S1 =a 1 ,S2=2a 1 +×2=2a1+2,S =4a1+×2=4a1+12,4由意得 (2a 1+2) 2 =a 1 (4a 1+12),解得 a 1 =1,所以 a n =2n-1.( Ⅱ)b n =(-1)n-1=(-1)n-1=(-1) n-1当 n 偶数 , T n =-=1-=.当 n 奇数 , T n =-.所以 T n =..+ ⋯ +-+ ⋯ -+++=1+=6.已知点的象上一点,等比数列的首,且前和( Ⅰ) 求数列和的通项公式;( Ⅱ) 若数列[ 解析 ] 解: (Ⅰ )因为的前项和为,问,所以的最小正整数,是多少?所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又所以数列所以所以,所以,所以构成一个首项为 1 ,公差为,当时,. ( 6 分),1 的等差数列,,,( Ⅱ) 由(Ⅰ ) 得,(10 分)由得,满足的最小正整数为 72.( 12 分)7. 在数列,中,,,且成等差数列,成等比数列() .(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅱ)证明:.[ 解析 ] (Ⅰ)由条件得,由此可得.猜测. ( 4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,.所以当时,结论也成立.由①②,可知对一切正整数都成立. ( 7 分)(Ⅱ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8. 已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求使成立的最小.的正整数的.[ 解析 ](1)当,,由,⋯⋯⋯⋯⋯⋯⋯⋯1分当,∴是以首,公比的等比数列.⋯⋯⋯⋯⋯⋯⋯⋯4分故⋯⋯⋯⋯⋯⋯⋯ 6 分(2 )由( 1 )知,⋯⋯⋯⋯⋯⋯ 8 分,故使成立的最小的正整数的.⋯⋯⋯⋯⋯⋯12分.9.己知各均不相等的等差数列 {a n } 的前四和 S4=14 ,且 a 1, a 3, a 7成等比数列.(I)求数列 {a n } 的通公式;( II ) T n数列的前n和,若T n≤¨ 恒成立,求数的最小.[ 解析 ] 122.解得(Ⅰ)公差 d. 由已知得⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯,所以3 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(Ⅱ),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分恒成立,即恒成立10.又∴的最小⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯已知数列前和,首,且,,成等差数列.12 分.(Ⅰ)求数列的通公式;( II )数列足,求:,[ 解析 ] (Ⅰ)成等差数列,∴,,当,,两式相减得:.所以数列是首,公比 2 的等比数列,.(6分)( Ⅱ),( 8 分),.( 12 分)11. 等差数列 {a n } 各均正整数, a 1 =3,前n和S n,等比数列{b n}中, b1=1,且b 2 S2 =64, {} 是公比64 的等比数列 .( Ⅰ) 求 a n与 b n ;( Ⅱ) 明 : + + ⋯ + <.. [ 答案 ] ( Ⅰ ){a n } 的公差d, {b n }的公比q, d 正整数 ,a n =3+(n-1) d,b n =q n-1.依意有①由(6+d) q=64知q正有理数,又由q=知, d 6 的因子 1, 2, 3, 6之一,解①得d=2, q=8.故 a n =3+2(n-1) =2n+1, b n =8n-1.( Ⅱ) 明 :S n =3+5+⋯+(2n+1) =n(n+2) ,所以+ + ⋯+ =+++ ⋯+==<.12.等比数列{a n}的各均正数, 且 2a 1+3a 2 =1,=9a 2a 6.( Ⅰ) 求数列 {a n }的通公式 ;( Ⅱ) b n =log 3 a 1+log3a 2 +⋯+log 3 a n ,求数列的前n和.[ 答案 ] ( Ⅰ ) 数列 {a n} 的公比q.由=9a 2 a 6得=9 , 所以 q 2=.因条件可知q>0,故q=..由 2a 1 +3a 2 =1 得 2a 1 +3a 1 q=1,所以a1=.故数列 {a n } 的通公式 a n=.( Ⅱ) b n =log 3 a 1+log3a 2 +⋯+log 3 a n=-(1+2+⋯+n)=-,故=-=-2,+ + ⋯+ =-2++ ⋯ +=-.所以数列的前 n 和 -.13. 等差数列 {a n } 的各均正数,a 1=3, 其前 n 和 S n ,{b n } 等比数列 ,b 1 =1, 且b 2 S2 =16,b3 S3 =60.( Ⅰ) 求 a n和 b n ;( Ⅱ) 求+ + ⋯ +.[ 答案 ] ( Ⅰ ) {a n }的公差d, 且 d 正数 ,{b n }的公比q,a n =3+(n-1)d,b n=q n-1 ,依意有 b 2 S2 =q ·(6+d)=16,b 3 S3 =q 2·(9+3d)=60,(2分).解得 d=2,q=2.(4分)故 a n =3+2(n-1)=2n+1,b n =2n-1.(6分)( Ⅱ)S n =3+5+⋯+(2n+1)=n(n+2),(8分)所以+ + ⋯+=+++ ⋯+=(10 分 )== -.(12 分 )14. 数列 {a n } 的前 n 和 S n足 :S n =na n -2n(n-1).等比数列{b n}的前n和T n,公比a 1 ,且 T5 =T 3 +2b 5 .(1)求数列 {a n }的通公式 ;(2) 数列的前n和M n,求:≤M n<.[ 答案 ](1) ∵T5 =T 3+2b 5 ,∴b 4+b 5=2b 5,即 (a 1 -1)b 4 =0, 又 b 4≠0, ∴a1 =1.n ≥2,a n =S n -S n-1 =na n -(n-1)a n-1 -4(n-1),即(n-1)a n-(n-1)a n-1 =4(n-1).∵n-1 ≥1, ∴a n -a n-1 =4(n≥2),.∴数列{a n }是以 1 首 ,4 公差的等差数列,∴a n =4n-3. (6分)(2) 明 : ∵==·,(8 分 )∴M n =++ ⋯+==< ,(10 分 )又易知 M n增 ,故 M n≥M 1=.上所述 , ≤M n < . (12分)。

裂项相消与错位相减求和(含答案解析)

裂项相消与错位相减求和(含答案解析)

=
1 4
(
1 n

1 n+1
),
所以Tn
=
1 4
(1

1 2
+
1 2

1 3
+

+
1 n

1 n+1
)
=
1 4
(1

1 n+1
)
=
n,
4(n+1)
即数列{bn}的前
n
项和Tn
=
n
4(n+1).
考点:等差数列的通项公式,前 n 项和公式。裂项求和
3.已知数列 an 的前 n 项和 Sn ,且满足: Sn 2an 2 , n N* .
1 2
Sn
4 ( 1 )4 2
[( 1 )3 2
(1)n5] 2
(5
n)
(1)n4 2
4 16
( 1 )3[1 ( 1 )n1]
2
2
1 1
(5
n)
(
1) 2
n4
64
16[1
( 1 )n1] 2
(5
n)
( 1 )n4 2
2
48
(n
3)
( 1 )n4 2
所以
Sn
96
n
3 25n
.
【点睛】
等比数列前 n 项积达到最大,主要是根据各项与 1 的大小进行比较;错位相减法进行求和时,要注意最后
试卷第 2页,总 13页
法;如果通项的符号有规律的出现,则用并项求和法.
5.已知数列an 满足 a1
1 4
,
an1

数列求和错位相减法,裂项相消法后附答案-精选.pdf

数列求和错位相减法,裂项相消法后附答案-精选.pdf

项相消求和,考查化简整理的运算能力,属于中档题.
11.已知数列 满足

,数列 满足
2 的等差数列.
(Ⅰ)求

的通项公式;
(Ⅱ)求
的前 n 项和 .
考查数列的分组求和和裂
,且
是公差为
【答案】(Ⅰ)

(Ⅱ)
【解析】
【分析】
(Ⅰ)利用等差数列以及等比数列的通项公式,转化求
{an}和 {bn} 的通项公式;
的前 项的和为 ,

( 1)求数列
的通项公式;
( 2)设
,记数列 的前 项和 ,求使得
. 恒成立时 的最小正整数 .
【分析】
( 1)先设设等差数列
的公差为 ,由

即可;
列出方程组求出首项和公差
( 2)由 (1)先求出 ,再由裂项相消法求数列的前 项和即可 .
【详解】
试卷第 3 页,总 7 页
解:( 1)设等差数列
裂项相消法在数列求和
中的应用,属于中档题型.裂项相消法是最难把握的求和方法之一,其原因是有时很难
找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:
(1)
;( 2 )
; ( 3)
;( 4)
;需注意裂项之后相消的过程
中容易出现丢项或多项的问题,导致计算结果错误
.
10.等差数列 的公差为正数,

.
(Ⅱ)


.
【点睛】 本题主要考查了
法的应用及等差数列概念,通项公式,还考查了数列裂项求和,属于
基础题。
9.已知等差数列
是递增数列,且


求数列 的通项公式;

数列裂项相消法求和专题讲解附答案(高中数学)

数列裂项相消法求和专题讲解附答案(高中数学)

微专题1 裂项相消法题型1 等差型数列求和d N n d a b b a d b a c n n n nn n n ,,,1111*∈=-⎪⎪⎭⎫ ⎝⎛-==为常数。

例1.已知等差数列{a n }的前n 项和为S n ,且a 2+a 5=25,S 5=55. (1) 求数列{a n }的通项公式; (2) 设a n b n =131-n ,求数列{b n }的前n 项和T n 。

方法总结:1.定义:如果一个数列的通项为“分式或根式”的形式,且能拆成结构相同的两式之差,通过累加将一些正、负项相互抵消,只剩首尾有限项的求和方法叫做裂项相消法.2.适用数列:d N n d a b b a d b a c n n n n n n n ,,,1111*∈=-⎪⎪⎭⎫ ⎝⎛-==为常数。

3.常见的裂项技巧: (1)⎪⎭⎫ ⎝⎛+-=+k n n k k n n 111)(1,特别地,当k =1时,111)1(1+-=+n n n n ; (2)⎪⎭⎫⎝⎛+--=+-=-12112121)12)(12(11412n n n n n ;(3)()()⎥⎦⎤⎢⎣⎡+-=++22222114121n n n n n 。

1.在等比数列{b n }中,已知b 1+b 2=43,且b 2+b 3=83. (1) 求数列{b n }的通项公式; (2) 若数列⎭⎬⎫⎩⎨⎧n a n 是首项为b 1,公差为b 2的等差数列,求数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和.题型2 “无理型”数列求和:()n k n kn k n -+=++11。

例2.若数列{a n }满足a 1=1,22+n a =a n +1(n ∈N *). (1)求证:数列{a n 2}是等差数列,并求出{a n }的通项公式; (2)若12++=n n n a a b ,求数列{b n }的前n 项和.方法总结:含有无理式常见的裂项有: (1)()n k n kn k n -+=++11。

专题36 运用裂项相消法求和(解析版)

专题36 运用裂项相消法求和(解析版)

专题36 运用裂项相消法求和把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常见的裂项技巧①1n (n +1)=1n -1n +1. ②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. ④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).一、题型选讲例1、(2020届山东省九校高三上学期联考)已知数列{}1n a +是等比数列,11a =且2a ,32a +,4a 成等差数列.(1)求数列{}n a 的通项公式; (2)设11n nn n n a a b a a ++-=,求数列{}n b 的前n 项和n S .【解析】(1)设数列{}1n a +的公比为q ,∵112a +=,∴22334121212a q a q a q +=⎧⎪+=⎨⎪+=⎩,∴22334212121a q a q a q =-⎧⎪=-⎨⎪=-⎩, ∵()32422a a a +=+, ∴()232212121q q q +=-+-, ∴2342222q q q +=+-, 即:()()224121q q q +=+, 解得:2q.∴11222n nn a -+=⋅=, ∴21nn a =-.(2)()()1121121212121n n n n n n b ++==-----, ∴1231n n n S b b b b b -=+++++122334111111212121212121⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11111121212121n n n n -+⎛⎫⎛⎫++-+- ⎪ ⎪----⎝⎭⎝⎭11112212121n n n +++-=-=--. 例2、(华南师大附中2021届高三综合测试)在①26,7753=+=a a a ;②63,371==S a ;③n n S n 22+=,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目. 已知S n 为等差数列}{n a 的前n 项和,若 . (1)求a n ; (2)令*)(112N n a b n n ∈-=,求数列}{n b 的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分. 【解析】:(1)若选择条件(1),在等差数列}{n a 中⎩⎨⎧=+=267753a a a ,⎩⎨⎧=+=+∴261027211d a d a ,解得⎩⎨⎧==231d a122)1(3)1(1+=-+=-+=∴n n d n a a n若选择条件(2),在等差数列}{n a 中⎪⎩⎪⎨⎧=⨯+==6326773171d a S a ,解得⎩⎨⎧==231d a 122)1(3)1(1+=-+=-+=∴n n d n a a n ;若选择条件(3),在等差数列}{n a 中a l =S l =3,当n ≥2时,a n =S n -S n -1=n 2+2n -[(n -l)2 +2(n -1)]= 2n +l ,a 1也符合, ∴a n =2n +1; (2)由(1)得)111(41)1(411)12(11122+-=+=-+=-=n n n n n a b n n ,)1(4)111(41)1113121211(4121+=+-=+-++-+-=+++=∴n n n n nb b b T n n例3、(江苏盐城中学2021届高三年级第三阶段检测数学试题)已知数列{}n a 的前n 项和nS满足2(2,)n n =+≥∈N ,且14a =.(1)求数列{}n a 的前n 项和n S 及通项公式n a ; (2) 记11n n n b a a +=⋅,n T 为{}n b 的前n 项和,求n T .【解析】(I)2=,∴数列为等差数列,2==,22(1)2n n =+-=,即24n S n =,当2n ≥时,22144(1)4(21)n n n a S S n n n -=-=--=-,又12a =也满足上式,∴4(21)n a n =-; (II)由(1)知,111116(21)(21)322121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,∴1111111323352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭, 111322116(21)n n n ⎛⎫=-= ⎪++⎝⎭ 例4、(2020届山东省德州市高三上期末)已知数列{}n a 的前n 项和为n S ,且0n a >,242n n n S a a =+.(1)求数列{}n a 的通项公式; (2)若11nn n S S b S S -=⋅,求数列{}n b 的前n 项和n T .【解析】(1)当1n =时,211142a a a =+,整理得2112a a =,10a >,解得12a =;当2n ≥时,242n n n S a a =+①,可得211142n n n S a a ---=+②,①-②得2211422n n n n n a a a a a --=-+-,即()()221120n n n n a a a a ----+=,化简得()()1120n n n n a a a a --+--=,因为0n a >,10n n a a -∴+>,所以12n n a a --=,从而{}n a 是以2为首项,公差为2的等差数列,所以()2212n a n n =+-=; (2)由(1)知()()()122122n n n a a n n S n n ++===+, 因为()11111111111212n n n n S S b S S S S n n n n -==-=-=--⋅++,1211111111112223212n n T b b b n n ⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=--+--+⋅⋅⋅+-- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭111111111112231212n n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+--=-- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 例5、(2020届山东省滨州市三校高三上学期联考)已知数列{}n a 的前n 项和n S满足2(2,)n n =+≥∈N ,且14a =.(1)求数列{}n a 的前n 项和n S ,及通项公式n a ; (2)记11n n n b a a +=⋅,n T 为{}n b 的前n 项和,求n T .【解析】(I2=,∴数列为等差数列,2==,22(1)2n n =+-=,即24n S n =,当2n ≥时,22144(1)4(21)n n n a S S n n n -=-=--=-,又12a =也满足上式,∴4(21)n a n =-; (II )由(1)知,111116(21)(21)322121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,∴1111111323352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭, 111322116(21)n n n ⎛⎫=-= ⎪++⎝⎭ 例6、(2020届山东省潍坊市高三上期末)已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【解析】 (1)设数列{}n a 的公差为d , 由题意知: ()1234114414+46102a a a a a d a d ⨯-+++==+= ① 又因为124,,a a a 成等比数列, 所以2214a a a =⋅,()()21113a d a a d +=⋅+,21d a d =,又因为0d ≠, 所以1a d =. ② 由①②得11,1a d ==, 所以n a n =,111b a ==,222b a == ,212b q b ==, 12n n b -∴= .(2)因为()111112211n n n c n n n n --⎛⎫=+=+- ⎪++⎝⎭,所以0111111122 (2)12231n n S n n -⎛⎫=++++-+-+⋅⋅⋅+- ⎪+⎝⎭1211121n n -=+--+ 121n n =-+ 所以数列{}n c 的前n 项和121nn S n =-+.例7、(2020届山东省泰安市高三上期末)已知等差数列{}n a 的前n 项和为254,12,16n S a a S +==. (1)求{}n a 的通项公式; (2)数列{}n b 满足141n n n b T S =-,为数列{}n b 的前n 项和,是否存在正整数m ,()1k m k <<,使得23k m T T =?若存在,求出m ,k 的值;若不存在,请说明理由.【解析】(1)设等差数列{}n a 的公差为d ,由2541216a a S +=⎧⎨=⎩得112512238a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,()*12121,n a n n n N ∴=+-=-∈;(2)()2122n n n S n n -=+⨯=,211114122121n b n n n ⎛⎫∴==- ⎪--+⎝⎭,1211111111111123352321212122121n n n T b b b n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥---+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ , 若23k m T T =,则()2232121k m k m =++,整理得223412m k m m=+-, 又1k m >>,2234121m m m m m ⎧>⎪∴+-⎨⎪>⎩,整理得222104121m m m m m ⎧-->⎪+-⎨⎪>⎩,解得11m <<+,又*m N ∈,2m ∴=,12k ∴=, ∴存在2,12m k ==满足题意.例8、【2020届河北省衡水中学全国高三期末大联考】在数列中,有.(1)证明:数列为等差数列,并求其通项公式; (2)记,求数列的前n 项和.【解析】(1)因为,所以当时,,上述两式相减并整理,得.又因为时,,适合上式,所以.从而得到,所以,所以数列为等差数列,且其通项公式为.(2)由(1)可知,.所以 .二、达标训练1、【2020届中原金科大联考高三4月质量检测】已知数列{a n }的前n 项和为S n ,且a n >0,4S n =a n 2+2a n .(1)求数列{a n }的通项公式; (2)若b n =S 1−S n S n ⋅S 1,求数列{b n }的前n 项和T n .{}n a ()2*1232n a a a a n n n +++⋯+=+∈N {}n a 11n n n b a a +=⋅{}n b n T ()2*1232n a a a a n n n +++⋯+=+∈N2n ≥212312((11))n a a a a n n -+++⋯+=--+21(2)n a n n =+≥1n =211213a =+⨯=()*21n a n n =+∈N 121n an -=-12n n a a --={}n a ()*12n N a n n +∈=111111(21)(23)22123n n n b a a n n n n +⎛⎫===- ⎪⋅+⋅+++⎝⎭12311111111123557792123n n T b b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11123233(23)n n n ⎛⎫=-= ⎪++⎝⎭【解析】(1)当n =1时,4a 1=a 12+2a 1,整理得a 12=2a 1,∵a 1>0,解得a 1=2; 当n ≥2时,4S n =a n 2+2a n ①,可得4S n−1=a n−12+2a n−1②,①-②得4a n =a n 2−a n−12+2a n −2a n−1,即(a n 2−a n−12)−2(a n +a n−1)=0,化简得(a n +a n−1)(a n −a n−1−2)=0,因为a n >0,∴a n +a n−1>0,所以a n −a n−1=2,从而{a n }是以2为首项,公差为2的等差数列,所以a n =2+2(n −1)=2n ; (2)由(1)知S n =n (a 1+a n )2=n (2+2n )2=n (n +1),因为b n =S 1−S n S n ⋅S 1=1S n−1S 1=1n (n+1)−12=1n−1n+1−12,∴T n =b 1+b 2+⋅⋅⋅+b n =(11−12)−12+(12−13)−12+⋅⋅⋅+(1n −1n +1)−12=(11−12)+(12−13)+⋅⋅⋅+(1n −1n+1)−12n =1−1n+1−12n .2、(2020届山东省临沂市高三上期末)设*n N ∈,向量(31,3)AB n =+,(0,32)BC n =-,n a AB AC =⋅. (1)试问数列{}1n n a a +-是否为等差数列?为什么?(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .【解析】(1)(31,31)AC AB BC n n =+=++,2(31)3(31)(31)(34)n a n n n n ∴=+++=++.1(34)(37)(31)(34)6(34)n n a a n n n n n +-=++-++=+,()()21118n n n n a a a a +++∴---=为常数, {}1n n a a +∴-是等差数列.(2)111133134n a n n ⎛⎫=- ⎪++⎝⎭, 1111111111347710313434341216n nS n n n n ⎛⎫⎛⎫∴=-+-++-=-= ⎪ ⎪++++⎝⎭⎝⎭. 3、(2020届山东省济宁市高三上期末)已知等差数列{}n a 满足246a a +=,前7项和728S =.(1)求数列{}n a 的通项公式;(2)设()()122121n n nn a a b +=++,求数列{}n b 的前n 项和n T .【解析】 (1)设等差数列{}n a 的公差为d ,由246a a +=可知33a =,前7项和728S =.44a ∴=,解得11,1a d ==.()111n a n n ∴=+-=.(2)()()()()1112211212121212121n n n n n n n n n a a b +++===-++++++ {}n b ∴前n 项和12n n T b b b =+++……12231111111212121212121n n +⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭111321n +=-+. 4、(2020届浙江省温州市高三4月二模)已知等差数列{},n a 和等比数列{}n b 满足:311249351,*,3,330.n b a b b N a a a b a b ==∈++==-(I )求数列{}n a 和{}n b 的通项公式;(II )求数列21n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和n S .【解析】 (I ) 311249351,3,330b a b a a a b a b ==++==-,故()224312331130d q q d q ⎧+=⎪⎨⎡⎤+-=-⎪⎣⎦⎩, 解得23d q =⎧⎨=⎩,故21n a n =-,13n n b -=.(II )()()()()22221111212141442121n n n n n a a n n n n n +===+⋅-⋅+--⋅+1111482121n n ⎛⎫=+- ⎪-+⎝⎭,故()21114821221n n n n S n n +⎛⎫=+-= ⎪++⎝⎭. 5、(南通市2021届高三年级期中学情检测)等比数列{}n a 的前n 项和为()*234,2,,4n S n N S S S ∈-成等差数列,且2341216a a a ++=.(1)求数列{}n a 的通项公式; (2)若2(2)log n an b n =-+,求数列1{}nb 的前n 项和n T . 【解析】(1)设等比数列{}n a 的公比为q ,由23424,,S S S -成等差数列知,423422S S S +-=,所以432a a =-,即12q =-. 又2341216a a a ++=,所以231111216a q a q a q ++=,所以112a =-,所以等差数列{}n a 的通项公式12nn a ⎛⎫=- ⎪⎝⎭.(2)由(1)知1()22(2)log(2)n nb n n n =-+=+所以11111(2)22n b n n n n ⎛⎫==- ⎪++⎝⎭所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和:11111111111224511233n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111112212n n ⎡⎤=+--⎢⎥++⎣⎦32342(1)(2)n n n +=-++ 所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和32342(1)(2)n n T n n +=-++ 6、(金陵中学2021届高三年级学情调研测试(一))已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S n 2=a n (S n -12).(1)求S n 的表达式;(2)设b n =S n2n +1,求数列{b n }的前n 项和T n . 【解析】:(1)因为S n 2=a n (S n -12),当n ≥2时,S n 2=(S n -S n -1)(S n -12),即2S n -1S n =S n -1-S n .①…………2分11 由题意得S n -1·S n ≠0,所以1S n -1S n -1=2,即数列{1S n }是首项为1S 1=1a 1=1,公差为2的等差数列.…………5分 所以1S n =1+2(n -1)=2n -1,得S n =12n -1. …………………………………………7分(2)易得b n =S n 2n +1=1(2n -1)(2n +1)……………………………8分 =12(12n -1-12n +1),……………………………10分 所以T n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12(1-12n +1) =n2n +1。

7.裂项相消法求和

7.裂项相消法求和

3.
设 bn
=
(n
+
2
1)(n
+
2)
,记数列
{bn
}
的前
n
项和为
Tn
,求使
Tn
£
24 25
成立的 n 的最大值.
答案:48
解析: bn
=
(n
2
+1)(n
+
2)
=
2 n +1
-
n
2 +
2
, Tn
=
b1
+ b2
+ + bn
=
2
1 - 1 + 1 - 1 ++ 1 - 1
23 34
n +1 n + 2
∴ S6
+ a6
-
S4
- a4
=
S5
+ a5
- S6
- a6
,化简得 4a6
=
a4 ,设等比数列{an} 的公比为 q ,则 q2
=
a6 a4
=
1, 4
( ) ∵ an > 0 n Î N*
,∴
q
>
0 ,∴ q
=
1 2
,∴
an
=

1
n-1
=
2
1
n-2
.
2
( )( ) (2)由(1)得: bn
=
log 1 a2n-1
已知数列 {an} 的通项为 an
=
lg
n
+ n
1
,若其前
n
项和为

裂项相消法求和附答案

裂项相消法求和附答案

裂项相消法利用列项相消法求与时,应注意抵消后并不一定只剩下第一项与最后一项,也有可能前面剩两项,后面剩两项,再就就是通项公式列项后,有时需要调整前面得系数,使列项前后等式两边保持相等。

(1)若就是{a n}等差数列,则,(2)(3)(4)(5)(6)(7)1、已知数列得前n项与为, .(1)求数列得通项公式;(2)设,求数列得前n项与为.[解析] (1)……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即,……………………………………5分故对2、已知{an}就是公差为d得等差数列,它得前n项与为Sn,S4=2S2+8.(Ⅰ)求公差d得值;(Ⅰ)若a1=1,设T n就是数列{}得前n项与,求使不等式Tn≥对所有得nⅠN*恒成立得最大正整数m得值;[解析](Ⅰ)设数列{a n}得公差为d,Ⅰ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅰ)由a1=1,d=2,得an=2n-1,…………………………………………5分Ⅰ=.…………………………………………6分Ⅰ T n===≥,…………………………………………8分又Ⅰ 不等式Tn≥对所有得nⅠN*恒成立,Ⅰ ≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.Ⅰ m得最大正整数值为6.……………………………………………………12分3、)已知各项均不相同得等差数列{a n}得前四项与S4=14,且a1,a3,a7成等比数列、(Ⅰ)求数列{an}得通项公式;(Ⅰ)设T n为数列得前n项与,求T2 012得值、[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),Ⅰa1=2、(5分)故an=n+1、(6分)(Ⅰ)==-,(8分)ⅠT n=-+-+…+-=-=、(10分)ⅠT2 012=、(12分)4、)已知数列{an}就是等差数列,-=8n+4,设数列{|an|}得前n项与为S n,数列得前n项与为Tn、(1)求数列{a n}得通项公式;(2)求证:≤Tn<1、[答案](1)设等差数列{an}得公差为d,则an=a1+(n-1)d、(2分)Ⅰ-=8n+4,Ⅰ(a n+1+an)(a n+1-an)=d(2a1-d+2nd)=8n+4、当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20、解方程组得或(4分)经检验知,a n=2n或an=-2n都满足要求、Ⅰa n=2n或a n=-2n、(6分)(2)证明:由(1)知:an=2n或a n=-2n、Ⅰ|an|=2n、ⅠS n=n(n+1)、(8分)Ⅰ==-、ⅠT n=1-+-+…+-=1-、(10分)Ⅰ≤Tn<1、(12分)5、已知等差数列{an}得公差为2,前n项与为Sn,且S1,S2,S4成等比数列、(Ⅰ)求数列{a n}得通项公式;(Ⅰ)令bn=(-1)n-1,求数列{b n}得前n项与Tn、[答案]查瞧解析[解析](Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以an=2n-1、(Ⅰ)b n=(-1)n-1=(-1)n-1=(-1)n-1、当n为偶数时,T n=-+…+-=1-=、当n为奇数时,T n=-+…-+++=1+=、所以T n=6、已知点得图象上一点,等比数列得首项为,且前项与(Ⅰ)求数列与得通项公式;(Ⅰ) 若数列得前项与为,问得最小正整数就是多少?[解析]解:(Ⅰ)因为,所以,所以,,,又数列就是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1得等差数列,,所以,当时,,所以、(6分)(Ⅰ)由(Ⅰ)得,(10分)由得,满足得最小正整数为72、(12分)7、在数列,中,,,且成等差数列,成等比数列()、(Ⅰ)求,,及,,,由此归纳出,得通项公式,并证明您得结论;(Ⅰ)证明:、[解析](Ⅰ)由条件得,由此可得、猜测、(4分)用数学归纳法证明:①当时,由上可得结论成立、②假设当时,结论成立,即,那么当时,、所以当时,结论也成立、由①②,可知对一切正整数都成立、(7分)(Ⅰ)因为、当时,由(Ⅰ)知、所以、综上所述,原不等式成立、(12分)8、已知数列得前项与就是,且.(Ⅰ)求数列得通项公式;(Ⅰ)设,,求使成立得最小得正整数得值.[解析](1)当时,,由, ……………………1分当时,Ⅰ就是以为首项,为公比得等比数列.……………………4分故…………………6分(2)由(1)知,………………8分,故使成立得最小得正整数得值、………………12分9、己知各项均不相等得等差数列{an}得前四项与S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}得通项公式;(II)设Tn为数列得前n项与,若T n≤¨对恒成立,求实数得最小值.[解析] 122、(Ⅰ)设公差为d、由已知得……………………………3分解得,所以………………………………6分(Ⅰ),………………………………9分对恒成立,即对恒成立又Ⅰ得最小值为 (2)10、已知数列前项与为,首项为,且,,成等差数列、(Ⅰ)求数列得通项公式;(II)数列满足,求证:,[解析](Ⅰ)成等差数列,Ⅰ,,当时,,两式相减得: 、所以数列就是首项为,公比为2得等比数列,、(6分)(Ⅰ),(8分),、(12分)11、等差数列{an}各项均为正整数,a1=3, 前n项与为Sn,等比数列{b n}中,b1=1,且b2S2=64,{}就是公比为64得等比数列、(Ⅰ) 求a n与b n;(Ⅰ) 证明:++…+<、[答案](Ⅰ)设{a n}得公差为d,{b n}得公比为q,则d为正整数,a n=3+(n-1)d,b n=qn-1、依题意有①由(6+d) q=64知q为正有理数,又由q=知,d为6得因子1, 2,3,6之一,解①得d=2, q=8、故a n=3+2(n-1)=2n+1, bn=8n-1、(Ⅰ) 证明:S n=3+5+…+(2n+1)=n(n+2) ,所以++…+=+++…+==<、12、等比数列{an}得各项均为正数, 且2a1+3a2=1,=9a2a6、(Ⅰ) 求数列{a n}得通项公式;(Ⅰ)设bn=log3a1+log3a2+…+log3an, 求数列得前n项与、[答案] (Ⅰ) 设数列{a n}得公比为q、由=9a2a6得=9,所以q2=、因为条件可知q>0, 故q=、由2a1+3a2=1得2a1+3a1q=1, 所以a1=、故数列{a n}得通项公式为an=、(Ⅰ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-、所以数列得前n项与为-、13、等差数列{an}得各项均为正数,a1=3,其前n项与为Sn,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60、(Ⅰ)求a n与bn;(Ⅰ)求++…+、[答案] (Ⅰ)设{a n}得公差为d,且d为正数,{bn}得公比为q,an=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2、(4分)故a n=3+2(n-1)=2n+1,bn=2n-1、(6分)(Ⅰ)Sn=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-、(12分)14、设数列{an}得前n项与S n满足:S n=na n-2n(n-1)、等比数列{bn}得前n项与为T n,公比为a1,且T5=T3+2b5、(1)求数列{an}得通项公式;(2)设数列得前n项与为Mn,求证:≤M n<、[答案](1)ⅠT5=T3+2b5,Ⅰb4+b5=2b5,即(a1-1)b4=0,又b4≠0,Ⅰa1=1、n≥2时,a n=S n-S n-1=na n-(n-1)an-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1)、Ⅰn-1≥1,Ⅰan-a n-1=4(n≥2),Ⅰ数列{a n}就是以1为首项,4为公差得等差数列,Ⅰan=4n-3、(6分)(2)证明:Ⅰ==·,(8分)ⅠM n=++…+==<,(10分)又易知Mn单调递增,故M n≥M1=、综上所述,≤Mn<、(12分)。

(完整版)裂项相消法求和附答案

(完整版)裂项相消法求和附答案

裂项相消法利用列项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,再就是通项公式列项后,有时需要调整前面的系数,使列项前后等式两边保持相等。

(1)若是{a n }等差数列,则)11.(1111++-=n n n n a a d a a ,)11.(21122n ++-=n n n a a d a a(2)11111+-=+n n n n )( (3))11(1)(1kn n k k n n +-=+(4))121121(2112)121+--=+-n n n n )(((5)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n(6)n n n n -+=++111(7))(11n k n kkn n -+=++ 1.已知数列的前n 项和为, .(1)求数列的通项公式;(2)设,求数列的前n 项和为.[解析] (1) ……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即,……………………………………5分故对2.已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+8.(Ⅰ)求公差d的值;(Ⅰ)若a1=1,设T n是数列{}的前n项和,求使不等式T n≥对所有的nⅠN*恒成立的最大正整数m的值;[解析](Ⅰ)设数列{a n}的公差为d,Ⅰ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅰ)由a1=1,d=2,得a n=2n-1,…………………………………………5分Ⅰ =.…………………………………………6分Ⅰ T n===≥,…………………………………………8分又Ⅰ 不等式T n≥对所有的nⅠN*恒成立,Ⅰ ≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.Ⅰ m的最大正整数值为6.……………………………………………………12分3.)已知各项均不相同的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅰ)设T n为数列的前n项和,求T2 012的值.[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),Ⅰa1=2. (5分)故a n=n+1. (6分)(Ⅰ)==-,(8分)ⅠT n=-+-+…+-=-=. (10分)ⅠT2 012=. (12分)4.)已知数列{a n}是等差数列,-=8n+4,设数列{|a n|}的前n项和为S n,数列的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:≤T n<1.[答案] (1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d. (2分)Ⅰ-=8n+4,Ⅰ(a n+1+a n)(a n+1-a n)=d(2a1-d+2nd)=8n+4.当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20.解方程组得或(4分)经检验知,a n=2n或a n=-2n都满足要求.Ⅰa n=2n或a n=-2n. (6分)(2)证明:由(1)知:a n=2n或a n=-2n.Ⅰ|a n|=2n.ⅠS n=n(n+1). (8分)Ⅰ==-.ⅠT n=1-+-+…+-=1-. (10分)Ⅰ≤T n<1. (12分)5.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅰ)令b n=(-1)n-1,求数列{b n}的前n项和T n.[答案] 查看解析[解析] (Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(Ⅰ)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+=.所以T n=6. 已知点的图象上一点,等比数列的首项为,且前项和(Ⅰ) 求数列和的通项公式;(Ⅰ) 若数列的前项和为,问的最小正整数是多少?[解析]解:(Ⅰ) 因为,所以,所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1的等差数列,,所以,当时,,所以. (6分)(Ⅰ) 由(Ⅰ) 得,(10分)由得,满足的最小正整数为72. (12分)7. 在数列,中,,,且成等差数列,成等比数列().(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅰ)证明:.[解析] (Ⅰ)由条件得,由此可得.猜测. (4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,.所以当时,结论也成立.由①②,可知对一切正整数都成立. (7分)(Ⅰ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8.已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅰ)设,,求使成立的最小的正整数的值.[解析] (1)当时,,由,……………………1分当时,Ⅰ是以为首项,为公比的等比数列.……………………4分故…………………6分(2)由(1)知,………………8分,故使成立的最小的正整数的值.………………12分9. 己知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}的通项公式;(II)设T n为数列的前n项和,若T n≤¨对恒成立,求实数的最小值.[解析] 122.(Ⅰ)设公差为d. 由已知得……………………………3分解得,所以………………………………6分(Ⅰ),………………………………9分对恒成立,即对恒成立又Ⅰ的最小值为……………………………………………………………12分10. 已知数列前项和为,首项为,且,,成等差数列.(Ⅰ)求数列的通项公式;(II)数列满足,求证:,[解析] (Ⅰ)成等差数列, Ⅰ,,当时,,两式相减得:.所以数列是首项为,公比为2的等比数列,.(6分)(Ⅰ) ,(8分),.(12分)11.等差数列{a n}各项均为正整数, a1=3, 前n项和为S n, 等比数列{b n}中, b1=1, 且b2S2=64, {}是公比为64的等比数列.(Ⅰ) 求a n与b n;(Ⅰ) 证明:++…+<.[答案] (Ⅰ) 设{a n}的公差为d, {b n}的公比为q, 则d为正整数,a n=3+(n-1) d,b n=q n-1.依题意有①由(6+d) q=64知q为正有理数, 又由q=知, d为6的因子1, 2, 3, 6之一, 解①得d=2, q=8. 故a n=3+2(n-1) =2n+1, b n=8n-1.(Ⅰ) 证明:S n=3+5+…+(2n+1) =n(n+2) ,所以++…+=+++…+==<.12. 等比数列{a n}的各项均为正数, 且2a1+3a2=1, =9a2a6.(Ⅰ) 求数列{a n}的通项公式;(Ⅰ) 设b n=log3a1+log3a2+…+log3a n, 求数列的前n项和.[答案] (Ⅰ) 设数列{a n}的公比为q. 由=9a2a6得=9, 所以q2=.因为条件可知q>0, 故q=.由2a1+3a2=1得2a1+3a1q=1, 所以a1=.故数列{a n}的通项公式为a n=.(Ⅰ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-.所以数列的前n项和为-.13.等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60.(Ⅰ)求a n和b n;(Ⅰ)求++…+.[答案] (Ⅰ)设{a n}的公差为d,且d为正数,{b n}的公比为q,a n=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2.(4分)故a n=3+2(n-1)=2n+1,b n=2n-1.(6分)(Ⅰ)S n=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-.(12分)14.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1). 等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.(1)求数列{a n}的通项公式;(2)设数列的前n项和为M n,求证:≤M n<.[答案](1)ⅠT5=T3+2b5,Ⅰb4+b5=2b5,即(a1-1)b4=0,又b4≠0,Ⅰa1=1. n≥2时,a n=S n-S n-1=na n-(n-1)a n-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1).Ⅰn-1≥1,Ⅰa n-a n-1=4(n≥2),Ⅰ数列{a n}是以1为首项,4为公差的等差数列,Ⅰa n=4n-3. (6分)(2)证明:Ⅰ==·,(8分)ⅠM n=++…+==<,(10分)又易知M n单调递增,故M n≥M1=.综上所述,≤M n<. (12分)。

高考数学(理)之数列 专题08 数列的求和(裂项相消法求和)(解析版)

高考数学(理)之数列 专题08 数列的求和(裂项相消法求和)(解析版)

数列08 数列的求和(裂项相消法求和)一、具体目标:1.掌握等差、等比数列的求和方法; 2.掌握等非差、等比数列求和的几种常见方法.考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述:求数列前n 项和的基本方法(1)直接用等差、等比数列的求和公式求和; 等差:11()(1)22n n n a a n n S na d +-==+; 等比:11(1)(1)(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩公比是字母时需要讨论.(理)无穷递缩等比数列时, (2)掌握一些常见的数列的前n 项和公式:()21321+=++++n n n Λ; n n n +=++++22642Λ; 2531n n =++++Λ;()()61213212222++=++++n n n n Λ;()2333321321⎥⎦⎤⎢⎣⎡+=++++n n n Λ(3)倒序相加法求和:如果一个数列{}na ,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法.(4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =⋅,其中{}n a 、{}n b qa S -=11【考点讲解】中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合.2.关注相减的项数及没有参与相减的项的保留.(5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.通项公式为a n =,,n n b n c n ⎧⎪⎨⎪⎩为奇数为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.形如:n n b a +其中⎪⎩⎪⎨⎧是等比数列是等差数列nn b a ,()()⎩⎨⎧∈=∈-==**N k k n n g N k k n n f a n ,2,,12, (6)合并求和:如求22222212979899100-++-+-Λ的和.(7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项:111;(1)1n n n n =-++ 1111;(21)(21)22121n n n n ⎛⎫=- ⎪-+-+⎝⎭ 1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦;n n n n -+=++111.1.【2019年优选题】+⨯411+⨯741Λ+⨯1071=+-+)13)(23(1n n ( )A.13+n nB.131++n nC.1312+-n n D.1322+-n n 【解析】本题运用的是裂项相消法将每项裂开两项后相加,中间的项是互为相反数相加和为零. 原式=13)1311(31)]131231()7141()411[(31-=+-=+--++-+-n nn n n Λ. 【答案】A2.【2019年优选题】设数列ΛΛΛΛ,11,,321,211++++n n 的前n 项和为n S ,则n S 等于( )A .n n -+1 B.n n ++1 C.11-+nD.11++n【真题分析】【解析】本题考查的是裂项相消法求和,本题是在每项的分母有理化的同时,将每一项转化为两项后,再相加,中间项相消. 因为n n n n -+=++111.所以11321211+++++++=n n S n ΛΛn n n n -++--++-+-=112312Λ11-+=n【答案】C3.【2019年优选题】._______321132112111=+++++++++++nΛΛ 【解析】本题考点是求数列通项及裂项相消法求和.∵12112()123(1)1n a n n n n n ===-++++++L12111211131212112+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-++-+-=n n n n n S n Λ. 【答案】12+n n4.【2017年高考全国II 卷理数】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑___________. 【解析】设等差数列的首项为1a ,公差为d ,由题意有1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,解得111a d =⎧⎨=⎩ , 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=, 裂项可得12112()(1)1k S k k k k ==-++, 所以1111111122[(1)()()]2(1)223111nk kn S n n n n ==-+-++-=-=+++∑L . 【答案】21n n + 5.【2018年高考天津卷理数】设{}n a 是等比数列,公比大于0,其前n 项和为()n S n *∈N ,{}n b 是等差数列. 已知11a =,322a a =+,435a b b =+,5462a b b =+.(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n S 的前n 项和为()n T n *∈N , (i )求n T ;(ii )证明221()22()(1)(2)2n nk k k k T b b n k k n +*+=+=-∈+++∑N . 【解析】本小题主要考查等差数列的通项公式,等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.满分13分.(1)设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=. 因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d +=由5462a b b =+, 可得131316,b d += 从而11,1,b d == 故.n b n =所以,数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(2)(i )由(1),有122112nn n S -==--,故 1112(12)(21)22212n nnkkn n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )证明:因为11212()(222)222(1)(2)(1)(2)(1)(2)21k k k k k k+k T +b b k k k k k k k k k k k k ++++--++⋅===-++++++++,所以,324321221()2222222()()()2(1)(2)3243212n n n nk k k k T b b k k n n n ++++=+=-+-++-=-+++++∑L . 6.【2017年高考全国III 卷】设数列{}n a 满足123(21)2n a a n a n +++-=L .(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.【解析】(1)因为a 1+3a 2+…+(2n −1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n −3)a n−1 =2(n −1). 两式相减得(2n −1)a n =2,所以a n =22n−1 (n ≥2).又由题设可得a 1=2,从而{a n }的通项公式为a n =22n−1.(2)记{a n2n+1}的前n 项和为S n ,由(1)知a n2n+1 = 2(2n+1)(2n−1)=12n−1−12n+1.则 S n = 11− 13+ 13− 15+…+12n−1−12n+1=2n2n+1.【答案】(1)122-=n a n ;(2)122+n n.1.数列{}n a 的前n 项和为n S ,若5)1(1S n n a n ,则+=等于 ( )A.1B.56C.16D.130【解析】因为111)1(1+-=+=n n n n a n,所以⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=61515141413131212115S6561161515141413131212115=-=-+-+-+-+-=S .【答案】B 2.)13)(23(1741411+-++⨯+⨯n n Λ等于 ( ) A.2231n n -+ B.2131n n -+ C.131n n ++ D.31nn + 【解析】1111()(32)(31)33231n a n n n n ==--+-+111111111:()(1)31447323133131n nS n n n n =-+-++-=-=-+++L【答案】D3.数列{}n a 满足12121n n a n n n =++++++L ,12n n n b a a +=又,求数列{}nb 的前n 项和. 【解析】因为1(12)12=+++=+L n n a n n ,又128(1)+==+n n n b a a n n = 118(1-+n n ) 12111111188()()()811223111n n b b b n n n n ⎡⎤⎡⎤+++=-+-++-=-=⎢⎥⎢⎥+++⎣⎦⎣⎦L L 所以. 【模拟考场】4.数列为等差数列,为正整数,其前项和为,数列为等比数列,且,数列是公比为64的等比数列,. (1)求;(2)求证. 【解析】(1)设的公差为,的公比为,则为正整数,,依题意有①由知为正有理数,故为的因子之一, 解①得.故(2)∴5.已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前;(2)若数列}1{,3),(}{11nn n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n . 【解析】(1)设等差数列}{n a 的公差为d ,则⎩⎨⎧+=+=+21111)5()20(,60156d a d a a d a 解得⎩⎨⎧==.5,21a d32+=∴n a n .)4(2)325(+=++=n n n n S n(2)由).,2(,111*--+∈≥=-∴=-N n n a b b a b b n n n n n n{}n a n a n n S {}n b 113,1a b =={}n a b 2264b S =,n n a b 1211134n S S S +++<L {}n a d {}n b q d 3(1)n a n d =+-1n n b q -=1363(1)22642(6)64n n nda d n d ab q q b q S b d q +++-⎧====⎪⎨⎪=+=⎩(6)64d q +=q d 61,2,3,62,8d q ==132(1)21,8n n n a n n b -=+-=+=35(21)(2)n S n n n =++++=+L 121111111132435(2)n S S S n n +++=++++⨯⨯⨯+L L 11111111(1)2324352n n =-+-+-++-+L 11113(1)22124n n =+--<++112211121112,()()()(1)(14)3(2).3,n n n n n n n n b b b b b b b b a a a b n n n n b -----≥=-+-++-+=++++=--++=+=L L 当时对也适合))(2(*∈+=∴N n n n b n ).211(21)2(11+-=+=∴n n n n b n )211123(21)2114121311(21+-+-=+-++-+-=n n n n T n Λ )2)(1(4532+++=n n n n6.已知n S 是数列{n a }的前n 项和,并且1a =1,对任意正整数n ,241+=+n n a S ;设Λ,3,2,1(21=-=+n a a b n n n ).(I )证明数列}{n b 是等比数列,并求}{n b 的通项公式; (II )设}log log 1{,32212++⋅=n n n n n C C T b C 为数列的前n 项和,求n T . 【解析】(I )),2(24,2411≥+=∴+=-+n a S a S n n n n Θ 两式相减:),2(4411≥-=-+n a a a n n n*),(2)2(2,2)(42,2),2)((41111121111N n b a a b a a a a a b a a b n a a a n n n n n n n n n n n n n n n n ∈=-=--=-=∴-=∴≥-=∴++++++++-+,21=∴+nn b b }{n b ∴是以2为公比的等比数列, ,325,523,24,2112121121=-==+=∴+=+-=b a a a a a a a b 而Θ*)(231N n b n n ∈⋅=∴-(II ),231-==n n n b C ,)1(12log 2log 1log log 11222212+=⋅=⋅∴+++n n C C n n n n 而,111)1(1+-=+n n n n .111)111()4131()3121()211(+-=+-++-+-+-=∴n n n T n Λ7.已知数列{}a n :ΛΛΛ,2133323122211nn n n ++++++,,,, ①求证数列{}a n 为等差数列,并求它的公差. ②设()N n a a b n n n ∈=+11,求……++++n b b b 21的和。

专题07 数列求和-错位相减、裂项相消(解析精编版)

专题07 数列求和-错位相减、裂项相消(解析精编版)

专题07 数列求和-错位相减、裂项相消答案◆错位相减法【经典例题1】【答案】(1)()12n n a n -*=∈N ; (2)222n nn T +=-. 【解析】(1)因为111,1n n a S a +==-.所以121S a =-,解得22a =.当2n ≥时,11n n S a -=-, 所以11n n n n n a S S a a -+=-=-,所以12n n a a +=,即12n na a +=. 因为212a a =也满足上式,所以{}n a 是首项为1,公比为2的等比数列,所以()12n n a n -*=∈N .(2)由(1)知12nn a +=,所以2n n n b =,所以2311111232222nn T n ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…①2311111112(1)22222n n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭…②①-②得231111111222222n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=++++-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11112211212nn n +⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-⨯ ⎪⎝⎭-11122n n ⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭,所以222n nn T +=-. 【经典例题2】【答案】(1)32n a n =-,14n n b -= (2)()1414n n T n +=+-【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由题意得:13312a d +=,解得:3d =, 所以()13132n a n n =+-=-,由2312b =得:24b =,所以214a q a ==,所以14n n b -= (2)()1324n n n n c a b n +==-⋅,则()2344474324n n T n =+⨯+⨯++-①,()2341444474324n n T n +=+⨯+⨯++-②,两式相减得:()23413434343434324n n n T n +-=+⨯+⨯+⨯++⨯--()()111164433241233414n n n n n +++-=+⨯--=-+--,所以()1414n n T n +=+-【经典例题3】【答案】(1)()*2n n a n =∈N (2)2332n nn T +=-【解析】(1)设等比数列{}n a 的公比为q ,当1q =时,1n S na =,所以2126S a ==,31314S a ==,无解.当1q ≠时,()111n n a q S q -=-,所以()()21231316,1114.1a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩解得12a =,2q 或118a =,23q =-(舍).所以()1*222n n n a n -=⨯=∈N .(2)21212n n n n n b a --==.所以231135232122222n n nn n T ---=+++++①,则234111352321222222n nn n n T +--=+++++②, ①-②得,2341112222212222222n n n n T +-=+++++-234111111212222222nn n +-⎛⎫=+++++- ⎪⎝⎭1111111213234221222212-++⎛⎫- ⎪-+⎝⎭=+⨯-=--n n n n n .所以2332n n n T +=-.【练习1】【答案】(1)21nn a =- (2)()1122n n S n +=-⋅+【解析】(1)由121n n a a +=+得:()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,21n n a ∴=-.(2)由(1)得:()12nn n a n +=⋅;()1231122232122n n n S n n -∴=⨯+⨯+⨯+⋅⋅⋅+-⋅+⋅,()23412122232122n n n S n n +=⨯+⨯+⨯+⋅⋅⋅+-⋅+⋅,()()2311121222222212212n n n n n n S n n n +++-∴-=++++-⋅=-⋅=-⋅--,()1122n n S n +∴=-⋅+.【练习2】【答案】(1)12n na (2)(1)21n n T n =-⋅+【解析】(1)令1n =得11121S a a ==-,∴11a =,当2n ≥时,1121n n S a --=-,则1122n n n n n a S S a a --=-=-, 整理得12n n a a -=,∴12nn a a -=,∴数列{}n a 是首项为1,公比为2的等比数列,∴12n na ;(2)由(1)得12n n n b na n -==⋅,则01211222322n n T n -=⋅+⋅+⋅+⋅⋅⋅+⋅,12321222322nn T n =⋅+⋅+⋅+⋅⋅⋅+⋅,两式相减得0123112222222212n n nn n T n n ---=++++⋅⋅⋅+-⋅=-⋅-,化简得122(1)21n n nn T n n =-+⋅=-⋅+.【练习3】【答案】(1)212n n a -= (2)234065299n n n T +-=+⨯ 【解析】(1)当1n =时,1113423S a a =-=,解得12a =.当2n ≥时,()113334242n n n n n a S S a a --=-=---,整理得14n n a a -=,所以{}n a 是以2为首项,4为公比的等比数列,故121242n n n a --=⨯=.(2)由(1)可知,()2112log 212n n n n b a a n ++=⋅=-⨯,则()35211232212n n T n +=⨯+⨯++-⨯,()572341232212n n T n +=⨯+⨯++-⨯, 则()368222332222212n n n T n ++-=++++--⨯()62432323224065*********n n n n n +++--=+--⨯=--⨯-.故234065299n n n T +-=+⨯. 【练习4】【答案】(1)证明见解析 (2)()1122n n S n +=-⋅+【解析】(1)由已知可得1122n n n n n a a a ++=+,即11221n n n n a a ++=+,即11221n nn n a a ++-=,2n n a ⎧⎫∴⎨⎬⎩⎭是等差数列. (2)由(1)知,()122111n n n n a a =+-⨯=+,21n n a n ∴=+,2nn b n ∴=⋅231222322=⋅+⋅+⋅+⋅⋅⋅+⋅n n S n()23121222122n n n S n n +=⋅+⋅+⋅⋅⋅+-⋅+⋅相减得,()23111121222222222212n n n n n n n S n n n ++++--=+++⋅⋅⋅+-⋅=-⋅=--⋅-()1122n n S n +∴=-⋅+◆裂项相消法【经典例题1】【答案】C 【解析】因为2211n n a a +-=且211a =,所以,数列{}2n a 是以1为首项,1为公差的等差数列,所以,211na n n =+-=,因为数列{}n a 为正项数列,则n a n 则()()1111111n n n nn n a an n n nn n ++-==-+++++++-11n n a a +⎧⎫⎨⎬+⎩⎭的前99项和为1223991001019--+=-=.故选:C.【经典例题2】【答案】8081【解析】因为()22222111(1)1n n a n n n n +==-++, 所以822222111111801()()1223898181S =-+-++-=-=.故答案为:8081.【经典例题3】【答案】21n n +【解析】当1n =时,21111a S ===, 当2n ≥时,()221121n n n a S S n n n -=-=--=-,且当1n =时,1211n a -==,故数列{}n a 的通项公式为21n a n =-,111111(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭, 则数列{}n b 的前n 项和为:1111111113352215721n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎝⎭⎣-⎭⎦11122121n n n ⎡⎤=-=⎢⎥++⎣⎦.故答案为:21n n +【练习1】【答案】B 【解析】()()21212121212121212121n n n n n n n n n n +--+--==++-++-+--记2121n n ⎨++-⎩的前n 项和为n T , 则(20221315375404540432T =+)1404512=;故选:B【练习2】【答案】69n n +【解析】由对于任意的*N n ∈,总有n a ,n S ,2n a 成等差数列可得:22n n n S a a =+, 当2n ≥时可得21112n n n S a a ---=+,所以22111222n n n n n n n a S S a a a a ---=-=+--,所以22110n n n n a a a a -----=,所以11()(1)0n n n n a a a a --+--=,由数列{}n a 的各项均为正数,所以11n n a a --=,又1n =时20n n a a -=,所以11a =,所以n a n =,212311111()(21)(23)22123n n n b a a n n n n ++===-⋅++++,1111111111()()235572123232369n nT n n n n =-+-+-=-=++++.故答案为:69n n +. 【练习3】【答案】()111!n -+【解析】()()()11111!1!!1!k k k k k k +-==-+++,()()()12311111111112!3!4!1!2!2!3!3!4!1!!!1!n n n n n n ∴+++⋅⋅⋅+=-+-+-+⋅⋅⋅+-+-+-+()111!n =-+.故答案为:()111!n -+.【练习4】【答案】(1)332n a n =-(2)331=+n nT n 【解析】(1)解:数列{}n a 满足124(32)3n a a n a n +++-=,当1n =时,得13a =,2n ≥时,1214(35)3(1)n a a n a n -+++-=-,两式相减得:(32)3n n a -=,∴332n a n =-, 当1n =时,13a =,上式也成立.∴332n a n =-; (2)因为331(32)(31)n a n n n =+-+113231n n =--+, ∴11111114473231n T n n =-+-++--+1313131nn n =-=++.【练习5】【答案】(1)13n na =(2)11n T n =+【解析】(1)当1n =时,111221a S a =-=,解得:113a =;当2n ≥时,1122211n n n n n a S S a a --=-=--+,即113n n a a -=,∴数列{}n a 是以13为首项,13为公比的等比数列,1133nn n a ⎛⎫∴== ⎪⎝⎭. (2)由(1)得:131log 3nn b n ⎛⎫== ⎪⎝⎭,()111n n n C n n n n +-∴==++1122334111n T n n n n n ∴=⋅⋅⋅=-++ 【练习6】【答案】(1)证明见解析;()1*2n n a n -=∈N (2)211nn -+【解析】(1)解:1122222n n n n a a a n -+++=⋅,即为21122nn a a a n -+++=·······①, 又1212122n n a a a n --+++=-,········②, ①-②得112nn a -=,即12(2)n n a n -=,又当1n =时,11112a -==,故()1*2n n a n -=∈N ;从而()*11222nn n n a n a +-==∈N , 所以{}n a 是首项为1,公比为2的等比数列; (2)由(1)得11(1)222(1)1n n n n n b n n n n---==-++,所以1021122222221321-⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭n n n S n n 211=-+n n . 【练习7】【答案】(1)n a n =,*N n ∈ (2)115462【解析】(1)由题意知2319a a a =⋅,设等差数列{}n a 的公差为d ,则()()211182a a d a d +=+,因为0d ≠,解得1a d =又31336S a d =+=,可得11a d ==,所以数列{}n a 是以1为首项和公差为1的等差数列, 所以()11n a a n d n =+-=,*N n ∈ (2)由(1)可知()()()()()1111122112n b n n n n n n n ⎛⎫==- ⎪ ⎪+++++⎝⎭, 设数列{}n b 的前n 和为n T ,则()()()1111111212232334112n T n n n n ⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪⨯⨯⨯⨯+++⎝⎭ ()()1112212n n ⎛⎫=- ⎪ ⎪++⎝⎭, 所以20111115222122462T ⎛⎫=⨯-=⎪⨯⎝⎭ 所以数列{}n b 的前20和为115462【练习8】【答案】(1)21n a n =+,()141n b n n =+ (2)()41n n S n =+【解析】(1)由题意,可设等差数列{}n a 的公差为d ,则112721026a d a d +=⎧⎨+=⎩,解得13a =,d =2,∴()32121n a n n =+-=+;∴()()222111114441211n nb a n n n n n ====-+++-; (2)∴()11114141n b n n n n ⎛⎫==- ⎪++⎝⎭,()1111111111422314141n n S n n n n ⎛⎫⎛⎫=-+-+⋯+-=-=⎪ ⎪+++⎝⎭⎝⎭. 【练习9】【答案】(1)21n a n =- (2)21n nT n n =++ 【解析】(1)解:对任意的N n *∈,0n a >,由题意可得()224121n n n n S a a a =+=++.当1n =时,则211114421a S a a ==++,解得11a =,当2n ≥时,由2421n n n S a a =++可得2111421n n n S a a ---=++,上述两个等式作差得2211422n n n n n a a a a a --=-+-,即()()1120n n n n a a a a --+--=,因为10n n a a ->+,所以,12n n a a --=,所以,数列{}n a 为等差数列,且首项为1,公差为2,则()12121n a n n =+-=-. (2)解:()21212n n n S n +-==,则()()()()()()2214441111111121212121212122121n n n n S n n b a a n n n n n n n n +-+⎛⎫====+=+- ⎪-+-+-+-+⎝⎭, 因此,11111112335212121n nT n n n n n ⎛⎫=+-+-++-=+ ⎪-++⎝⎭. 【练习10】【答案】(1)条件选择见解析,21n a n =- (2)()()22121n n n T n +=+【解析】(1)解:选条件①:n *∀∈N ,14n n a a n ++=,得1241n n a a n ,所以,()24144n n a a n n +-=+-=,即数列{}21k a -、{}()2N k a k *∈均为公差为4的等差数列,于是()()21141432211k a a k k k -=+-=-=--,又124a a +=,23a =,()()224141221k a a k k k =+-=-=⋅-,所以21n a n =-; 选条件②:因为数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,且n S n ⎧⎫⎨⎬⎩⎭的前3项和为6,得3122361232S S S S ++=⨯=,所以222S=,所以n S n ⎧⎫⎨⎬⎩⎭的公差为2121121S S d =-=-=',得到()11nS n n n=+-=,则2n S n =,当2n ≥,()221121n n n a S S n n n -=-=--=-.又11a =满足21n a n =-,所以,对任意的N n *∈,21n a n =-. (2)解:因为()()()()()12222214111221212121n n n n n a a nb a a n n n n ++⎡⎤+===-⎢⎥⋅-+-+⎢⎥⎣⎦, 所以()()122222*********213352121n n T b b b n n ⎡⎤=++⋅⋅⋅+=-+-+⋅⋅⋅+-⎢⎥-+⎢⎥⎣⎦ ()()()222111122121n n n n ⎡⎤+=-=⎢⎥++⎢⎥⎣⎦.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

裂项相消法利用列项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面剩两项,再就是通项公式列项后,有时需要调整前面的系数,使列项前后等式两边保持相等。

(1)若是{a n }等差数列,则)11.(1111++-=n n n n a a d a a ,)11.(21122n ++-=n n n a a d a a (2)11111+-=+n n n n )((3))11(1)(1k n n k k n n +-=+(4))121121(2112)121+--=+-n n n n )(((5)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n(6)n n n n -+=++111(7))(11n k n k k n n -+=++1.已知数列的前n 项和为, .(1)求数列的通项公式;(2)设,求数列的前n 项和为.[解析] (1) ……………①时, ……………②①②得:即……………………………………3分在①中令, 有, 即,……………………………………5分故对2.已知{a n}是公差为d的等差数列,它的前n项和为S n,S4=2S2+8.(Ⅰ)求公差d的值;(Ⅱ)若a1=1,设T n是数列{}的前n项和,求使不等式T n≥对所有的n∈N*恒成立的最大正整数m的值;[解析](Ⅰ)设数列{a n}的公差为d,∵ S4=2S2+8,即4a1+6d=2(2a1+d) +8,化简得:4d=8,解得d=2.……………………………………………………………………4分(Ⅱ)由a1=1,d=2,得a n=2n-1,…………………………………………5分∴ =.…………………………………………6分∴ T n===≥,…………………………………………8分又∵ 不等式T n≥对所有的n∈N*恒成立,∴ ≥,…………………………………………10分化简得:m2-5m-6≤0,解得:-1≤m≤6.∴ m的最大正整数值为6.……………………………………………………12分3.)已知各项均不相同的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设T n为数列的前n项和,求T2 012的值.[答案] (Ⅰ)设公差为d,由已知得(3分)解得d=1或d=0(舍去),∴a1=2. (5分)故a n=n+1. (6分)(Ⅱ)==-,(8分)∴T n=-+-+…+-=-=. (10分)∴T2 012=. (12分)4.)已知数列{a n}是等差数列,-=8n+4,设数列{|a n|}的前n项和为S n,数列的前n项和为T n.(1)求数列{a n}的通项公式;(2)求证:≤T n<1.[答案] (1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d. (2分)∵-=8n+4,∴(a n+1+a n)(a n+1-a n)=d(2a1-d+2nd)=8n+4.当n=1时,d(2a1+d)=12;当n=2时,d(2a1+3d)=20.解方程组得或(4分)经检验知,a n=2n或a n=-2n都满足要求.∴a n=2n或a n=-2n. (6分)(2)证明:由(1)知:a n=2n或a n=-2n.∴|a n|=2n.∴S n=n(n+1). (8分)∴==-.∴T n=1-+-+…+-=1-. (10分)∴≤T n<1. (12分)5.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列. (Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(-1)n-1,求数列{b n}的前n项和T n.[答案] 查看解析[解析] (Ⅰ)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(Ⅱ)b n=(-1)n-1=(-1)n-1=(-1)n-1.当n为偶数时,T n=-+…+-=1-=.当n为奇数时,T n=-+…-+++=1+=.所以T n=6. 已知点的图象上一点,等比数列的首项为,且前项和(Ⅰ) 求数列和的通项公式;(Ⅱ) 若数列的前项和为,问的最小正整数是多少[解析]解:(Ⅰ) 因为,所以,所以,,,又数列是等比数列,所以,所以,又公比,所以,因为,又,所以,所以,所以数列构成一个首项为1,公差为1的等差数列,,所以,当时,,所以. (6分)(Ⅱ) 由(Ⅰ) 得,(10分)由得,满足的最小正整数为72. (12分)7. 在数列,中,,,且成等差数列,成等比数列().(Ⅰ)求,,及,,,由此归纳出,的通项公式,并证明你的结论;(Ⅱ)证明:.[解析] (Ⅰ)由条件得,由此可得.猜测. (4分)用数学归纳法证明:①当时,由上可得结论成立.②假设当时,结论成立,即,那么当时,.所以当时,结论也成立.由①②,可知对一切正整数都成立. (7分)(Ⅱ)因为.当时,由(Ⅰ)知.所以.综上所述,原不等式成立. (12分)8.已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求使成立的最小的正整数的值.[解析] (1)当时,,由,……………………1分当时,∴是以为首项,为公比的等比数列.……………………4分故…………………6分(2)由(1)知,………………8分,故使成立的最小的正整数的值. ………………12分9. 己知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(I)求数列{a n}的通项公式;(II)设T n为数列的前n项和,若T n≤¨对恒成立,求实数的最小值.[解析] 122. (Ⅰ)设公差为d. 由已知得……………………………3分解得,所以………………………………6分(Ⅱ),………………………………9分对恒成立,即对恒成立又∴的最小值为 (12)分10. 已知数列前项和为,首项为,且,,成等差数列.(Ⅰ)求数列的通项公式;(II)数列满足,求证:,[解析] (Ⅰ)成等差数列, ∴,,当时,,两式相减得: .所以数列是首项为,公比为2的等比数列,. (6分)(Ⅱ) ,(8分),. (12分)11.等差数列{a n}各项均为正整数, a1=3, 前n项和为S n, 等比数列{b n}中, b1=1, 且b2S2=64, {}是公比为64的等比数列.(Ⅰ) 求a n与b n;(Ⅱ) 证明:++…+<.[答案] (Ⅰ) 设{a n}的公差为d, {b n}的公比为q, 则d为正整数,a n=3+(n-1) d,b n=q n-1.依题意有①由(6+d) q=64知q为正有理数, 又由q=知, d为6的因子1, 2, 3, 6之一, 解①得d=2, q=8.故a n=3+2(n-1) =2n+1, b n=8n-1.(Ⅱ) 证明:S n=3+5+…+(2n+1) =n(n+2) ,所以++…+=+++…+==<.12. 等比数列{a n}的各项均为正数, 且2a1+3a2=1, =9a2a6.(Ⅰ) 求数列{a n}的通项公式;(Ⅱ) 设b n=log3a1+log3a2+…+log3a n, 求数列的前n项和.[答案] (Ⅰ) 设数列{a n}的公比为q. 由=9a2a6得=9, 所以q2=.因为条件可知q>0, 故q=.由2a1+3a2=1得2a1+3a1q=1, 所以a1=.故数列{a n}的通项公式为a n=.(Ⅱ) b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-,故=-=-2,++…+=-2++…+=-.所以数列的前n项和为-.13.等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,{b n}为等比数列,b1=1,且b2S2=16,b3S3=60.(Ⅰ)求a n和b n;(Ⅱ)求++…+.[答案] (Ⅰ)设{a n}的公差为d,且d为正数,{b n}的公比为q,a n=3+(n-1)d,b n=q n-1,依题意有b2S2=q·(6+d)=16,b3S3=q2·(9+3d)=60,(2分)解得d=2,q=2.(4分)故a n=3+2(n-1)=2n+1,b n=2n-1.(6分)(Ⅱ)S n=3+5+…+(2n+1)=n(n+2),(8分)所以++…+=+++…+=(10分)==-.(12分)14.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1). 等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.(1)求数列{a n}的通项公式;(2)设数列的前n项和为M n,求证:≤M n<.[答案](1)∵T5=T3+2b5,∴b4+b5=2b5,即(a1-1)b4=0,又b4≠0,∴a1=1.n≥2时,a n=S n-S n-1=na n-(n-1)a n-1-4(n-1),即(n-1)a n-(n-1)a n-1=4(n-1).∵n-1≥1,∴a n-a n-1=4(n≥2),∴数列{a n}是以1为首项,4为公差的等差数列,∴a n=4n-3. (6分)(2)证明:∵==·,(8分)∴M n=++…+==<,(10分)又易知M n单调递增,故M n≥M1=.综上所述,≤M n<. (12分)。

相关文档
最新文档