一种装箱问题的高效定位启发式算法

合集下载

2023年第三届长三角高校数学建模竞赛快递包裹装箱优化问题

2023年第三届长三角高校数学建模竞赛快递包裹装箱优化问题

2023年第三届长三角高校数学建模竞赛快递包裹装箱优化问题题目:快递包裹装箱优化问题一、问题描述随着电子商务的快速发展,快递行业也日益繁荣。

在快递包裹的打包和运输过程中,如何实现高效、节约和环保成为了亟待解决的问题。

本题将围绕快递包裹的装箱优化展开讨论。

二、问题分析1. 问题分析:首先,我们需要对题目的要求进行深入理解。

题目要求我们针对给定的快递包裹,设计一个装箱优化方案,以满足节约空间、提高运输效率以及环保等要求。

这涉及到的问题包括但不限于:如何合理安排包裹的空间布局,如何减少不必要的空间浪费,以及如何考虑环保因素等。

2. 数学建模:为了解决这个问题,我们可以采用数学建模的方法。

首先,我们需要对每个包裹的尺寸和重量进行测量和统计。

然后,我们可以使用线性规划或整数规划的方法来建立模型,以确定如何将包裹放入一个或多个箱子中,以便最大化利用空间并最小化运输成本。

在这个过程中,我们还需要考虑到环保因素,比如包装材料的可回收性和可降解性等。

3. 算法设计:在确定了数学模型后,我们需要设计相应的算法来求解这个问题。

我们可以采用启发式算法,如遗传算法、模拟退火算法或蚁群算法等,来寻找最优解或近似最优解。

这些算法可以在较短的时间内给出较为满意的解决方案。

4. 结果分析:最后,我们需要对算法的结果进行分析和评估。

我们可以比较优化后的装箱方案与原始方案在空间利用率、运输成本和环保方面的差异,以验证优化方案的有效性和优越性。

三、解决方案1. 数据收集:首先,我们需要收集相关的数据。

这包括每个快递包裹的尺寸、重量、价值以及箱子的尺寸、重量限制、成本等信息。

这些数据可以通过实际测量或从快递公司获取。

2. 建立模型:然后,我们使用数学建模的方法来建立装箱优化模型。

在这个模型中,我们可以定义决策变量(如每个箱子的尺寸和重量)、目标函数(如最大化空间利用率或最小化运输成本)和约束条件(如箱子的尺寸和重量限制)。

3. 算法设计:接下来,我们设计相应的算法来求解这个优化问题。

一种求解翻箱问题的启发式算法

一种求解翻箱问题的启发式算法

一种求解翻箱问题的启发式算法刘立强;梁承姬【摘要】在集装箱堆场,翻箱操作不可避免,为降低翻箱次数,提高作业效率,有必要找到一种有效的方法来解决这一问题。

在已知每个集装箱提箱顺序的前提下,如何安排翻箱作业顺序是典型的NP难问题。

为此提出了一种启发式算法,并通过算例实验与已有算法的结果进行对比,实验结果表明本文提出的算法较优。

【期刊名称】《河南科学》【年(卷),期】2012(000)012【总页数】4页(P1757-1760)【关键词】翻箱问题;集装箱堆场;启发式算法【作者】刘立强;梁承姬【作者单位】上海海事大学物流研究中心,上海 201306;上海海事大学物流研究中心,上海 201306【正文语种】中文【中图分类】U656.1+35集装箱港口一般采用多层堆垛的方式来提高堆场容量.在集装箱堆场中,垂直堆放的一列集装箱称为一个栈,并排堆放的若干个栈构成一个贝位,贝位中水平堆放的一排集装箱称为层,贝位中每个放置集装箱的空间称为箱位,如图1所示.由于龙门吊每次只能移动一个顶层箱子,如果先装船的箱压在后装船的箱下面,就会产生翻箱操作,则该后装船的集装箱被称为阻塞箱.在集装箱堆场作业中,翻箱操作通常是在同一贝位内进行,因为龙门吊小车的移动时间相对于龙门吊本身的移动时间可以忽略不计.翻箱问题的目标就是以最少的翻箱操作次数,使得整个贝位中没有阻塞箱,所有的高优先级集装箱都置于低优先级的集装箱上面.目前已有不少学者对翻箱问题做了大量研究.Kim和Kim等针对进口箱到达模式不同建立了以最小化期望翻箱量为目标的数学模型,并利用拉格朗日松弛和次梯度优化方法求出相应的最佳堆垛高度[1].Kim等以最小化装船时的翻箱次数为目标,利用动态规划和决策树的方法研究了出口集装箱的堆放策略问题[2].针对这一问题,郝聚民等提出了一种基于图搜索和模式识别的启发式方法[3],杨淑芹等提出了基于集装箱落箱顺序已知的启发式方法[4].Kim和Hong以最小化翻箱操作次数为目标,利用分支定界和启发式方法来求解[5].白治江等建立了一种堆场倒箱问题的整数规划模型[6].徐亚等对翻出箱的落箱位置的确定问题进行了研究,提出一种启发式算法H及其改进算法IH[7].Lee和Hsu以最小化翻箱量为目标,提出了整数规划模型并用启发式算法对翻箱路径进行优化[8].图1 集装箱堆垛图Fig.1 Layout of container yard1 问题描述集装箱根据发箱时间先后顺序可以分为不同的优先级,如果优先级高的集装箱压在优先级低的集装箱下面,需要先将上面集装箱移走才能提取下面的集装箱,由此产生集装箱的翻箱问题.如图2a所示,该贝位由4个栈组成,每个栈有4个箱位,一共有13个集装箱,3个空箱位.集装箱的优先级由高到低分为1~6个不同等级,1级为最高优先级.阴影标注的集装箱为阻塞箱,需要经过一系列的翻箱操作才能达到图2b所示的无阻塞箱状态.翻箱操作是将集装箱从一个栈移动到另一个栈,将其定义为(i,o),其中i代表初始栈号,o代表目标栈号,对栈的操作就是对栈的顶层集装箱进行操作.例如图2中的a状态经过如下翻箱操作达到b 状态:(3,1)→(3,0)→(2,3)→(0,2)→(0,3)→(2,0)→(1,0).图2 翻箱前后对比Fig.2 Contrast of before and after relocation2 启发式方法在集装箱堆场中,因为安全问题集装箱的堆存高度通常不能超过其额定堆存高度T,在进行翻箱操作时可选择的落箱位只能是尚未达到额定堆存高度的栈,称为备选栈.一个贝位内的集装箱发箱优先级为1到p,则优先级集合P={1,…,p};给定一个集装箱c,则根据其所在栈号sc和层号t c能确定其堆存位置,例如c(sc,t c);用p c表示该集装箱的发箱优先级,h(sc)表示c所在栈的实际堆垛箱数.L 是一个人工设定的阀值,L 的取值范围是 1<L<T;如果L≤h(sc)<T 则将栈sc称为高饱和栈,如果 h(sc)<L,sc称为低饱和栈,如果h(sc)=T则称sc 为满栈.算法过程如下:步骤1:将栈分类.把贝位中的栈分为三类,一类是栈中包含有阻塞箱,用集合W表示;第二类是不包含阻塞箱的栈,用集合R表示;第三类是空栈,用集合E表示.步骤2:填充高饱和栈.a)如果R非空,从R中选取一个堆垛层数最大的高饱和栈,该栈最上层的集装箱记作c,则该栈记作sc.b)从集合W各栈中选择一个集装箱c′(从各栈中选择就是从各栈的最上层集装箱中选择),使得pc′=pc,将c′移动到栈sc.重复该过程,直到栈sc达到最大堆垛高度T.如果有多个满足条件的c′,则选择堆垛高度最小的栈.c)如果栈sc还未达到最大堆垛高度而在W中已经没有满足条件的′,则选择满足条件的′,依此类推,将c′移动到栈sc,直到栈sc达到最大堆垛高度T.步骤3:填充低饱和栈.a)从集合R中任意选择一个低饱和栈,如果该栈已经被标记过,则重新选择,该栈最上层的集装箱记作c,则该栈记作sc.b)从集合W各栈中选择一个集装箱′,使得,将c′移动到栈sc.如果W中没有满足条件的′,则选择满足条件的′,将′移动到栈 sc.c)通过重复b)来判断栈sc是否能够成为高饱和栈,如果能则将所有满足条件的c′移动到栈sc,若不能则将其标记.d)重复a)~c),直至R中所有的低饱和栈被标记或者称为高饱和栈.步骤4:清空低饱和栈.将R中无法转为高饱和栈的低饱和栈清空.a)从R中选择堆垛层数最小的被标记过的低饱和栈,该栈最上层的集装箱记作c,则该栈记作sc.b)将集装箱c移到其它栈,如果在R中存在一个栈满足条件,并且若将c移动到栈可以使其成为一个高饱和栈,则执行f);否则执行c).c)将集装箱c移到其它栈,如果在W中存在一个栈满足条件将c移动到栈,然后执行f);否则执行d).d)如果 W 中不存在满足条件的栈则选择满足条件的栈将集装箱 c 移动到栈然后执行f);如果W中满足条件的栈也没有,则执行e).e)在 W 中选择满足条件的栈,将集装箱 c 移动到栈f)重复步骤4,直到sc为空栈.步骤5:填充空栈.将W中的集装箱填充到空栈.a)如果存在一个空栈 sc,从 W 中选择一个值最大的栈,将集装箱′移动到空栈 sc,若值最大的栈不止一个,则选择值最小的栈.b)从集合 W 中选择一个满足条件的集装箱c′,如果没有,则选择满足条件的集装箱如果满足条件的栈不止一个,则选择值最小的栈;将集装箱c′移动到栈sc.c)重复 b),直到或者3 算例分析为了验证本文中提出的启发式算法的有效性,将Lee和Hsu[8]中的两个算例应用本文提出的算法求解,并将结果与其进行对比.在算例1中,贝位内有6个栈,最大堆存高度为4,图3a为集装箱的初始堆垛状态,图3b为翻箱作业后的无阻塞箱状态.从图3a状态到图3b状态,需要经过以下9步翻箱作业:(4,2)→(1,5)→(1,2)→(0,1)→(4,1)→(3,1)→(4,3)→(5,4)→(5,4).图3 算例1Fig.3 Example 1在算例2中,贝位内有12个栈,最大堆存高度为5,图4a为集装箱的初始堆垛状态,图4b为翻箱作业后的目标状态.从图4a状态到图4b状态,需要进行以下35次翻箱作业:(5,0)→(3,1)→(3,11)→(5,3)→(9,3)→(10,3)→(4,3)→(8,3)→(5,7)→(1,5)→(1,5)→(8,5)→(6,5)→(2,5)→(6,1)→(7,1)→(7,1)→(10,7)→(6,10)→(2,10)→(4,10)→(9,10)→(8,10)→(9,6)→(2,6)→(7,6)→(2,9)→(7,2)→(7,9)→(4,9)→(11,9)→(11,9)→(7,8)→(4,7)→(11,7).图4 算例2Fig.4 Example 2本文求解的结果与Lee和Hsu[8]中的结果进行对比,如表1所示.可以看出,对于算例1,二者的翻箱次数相同,对于算例2,本文得出的翻箱次数较少.在进行算例2的实验过程中还发现阀值L的不同设定,对求解结果会有影响,具体的数值如表2所示.表1 算例结果比较(单位:次数)Tab.1 Contrastof the resultof examples本文 Lee和Hsu算例1 9 9算例2 35 47表2 阀值L的取值对结果的影响Tab.2 Influence of variety value of L阀值L结果(翻箱次数)4 36 2 35 3 374 总结翻箱作业是影响堆场作业效率的关键因素,为有效降低集装箱堆场的翻箱率,提高堆场作业效率,本文提出了一种启发式算法,通过对贝位内的栈进行分类,将不同种类的栈带入算法依次迭代,在迭代过程中优先考虑没有阻塞箱的高饱和栈,最终消除整个贝位内的阻塞箱.最后通过算例实验表明本文提出的方法较Lee和Hsu[8]的方法有一定的优越性.同时,本文提出的方法中,阀值L依据什么样的规则来设定还需要在将来做更深入的研究.【相关文献】[1]Kim K H,Kim H B.Segregating space allocation models for container inventories in port container terminals[J].International Journal of Production Economics,1999,59(1):415-423.[2]Kim K H,Park Y M,Ryu K R.Deriving decision rules to locate export containers in container yards[J].European Journal of Operational Research,2000,124(2):89-101.[3]郝聚民,纪卓尚,林焰.混合顺序作业堆场BAY优化模型[J].大连理工大学学报,2000,40(1):102-105.[4]杨淑芹,张运杰,王志强.集装箱堆场问题的一个数学模型及其算法[J].大连海事大学学报,2002(28):115-117.[5]Kim K H,Hong G P.A heuristic rule for relocating blocks[J].Computers and Operations Research,2006,33(4):940-954.[6]白治江,王晓峰.集装箱翻箱优化方案设计[J].水运工程,2008(4):57-61.[7]徐亚,陈秋双,龙磊,等.集装箱倒箱问题的启发式算法研究[J].系统仿真学报,2008,20(14):3666-3674.[8]Lee Y,Hsu N Y.An optimization model for the container pre-marshalling problem [J].Computer and Operations Research,2007,34(11):3295-3313.。

集装箱堆场倒箱博弈启发式优化算法

集装箱堆场倒箱博弈启发式优化算法

实验表 明 , 方法与 目前 国 内外 文献 的 同类优 化 算 法相 比较 , 该 效果 明显 . 关键词 :集装 箱码 头 ; 场 ;博 弈模 型 ;启发 式算 法 ;倒 箱 堆
中 图分类 号 : 6 6 15 P 8 U 5 .3 ;T 1 文献 标 志码 : A
Ga e h urs i pt i a i n a g r t m o m e itc o i z to l o ih f r m
tr n la e rg r e si i e si a e p o e s Th i ewh n t e c so es p c p c n an r s r - e mi a r e a d d a nsd r n g m r c s . e t e h u tm r i k u o ti e s b a e rsi p i z to lo t m.I h smo l h uso r n h ui t e mo e ss l e y g me h u t o tmiai n a g r h i c i n t i de ,t e c t me sa d t e
求 解. 该模 型把 客 户和码 头看成博 弈过 程 中的局 中人 , 户取 走 集 装 箱 的 时 间作 为 局 中人 的策略 , 客
这些 策略 通过 电子信 息交换 传递 到码 头 , 头得 到客 户局 中人 的 策略 , 而得 到 集装 箱被取 走 的优 码 从 先级 ; 通过 建 立码 头局 中人 的效 用 函数 , 把倒 箱 优化 问题 转换 成 寻 求效 用 函数 最 大值 的 问题 . 真 仿
r s u fe i o t i e a d e h f n c n a n r y r s l
YI h n jn ,L asu IX n in e gu IB oh n ,L iqa g Z

用于集装箱配装问题的memetic算法

用于集装箱配装问题的memetic算法

用于集装箱配装问题的memetic算法
Memetic算法是一种启发式搜索算法,它结合了遗传算法和局部搜索算法的优点,在搜索过程中使用全局搜索和局部搜索来提高搜索效率。

Memetic算法可以用于解决集装箱配装问题,它可以提高配装效率,有效提高配装质量。

首先,需要将集装箱中的货物分类,根据货物的重量、体积、尺寸等信息,对货物进行分类,将货物放入不同的集装箱中。

其次,根据集装箱的容量,对货物进行安排,计算每一种货物在集装箱中的最佳放置位置,同时考虑货物之间的配置,以使集装箱中的货物尽可能多地摆放,以达到高效率的配置效果。

最后,根据配置的结果,使用局部搜索算法对货物的放置位置进行优化,使集装箱中的货物放置更加紧凑,从而最大限度地提高配置效率。

基于启发式算法的集装箱空箱调运

基于启发式算法的集装箱空箱调运
数不少 , 但是 其 中许多研究 的可行性 和可操 作性 不强 。 时值 为正 , 出口时 值为负 ; 为港 口 i 在第 个 决策期
2 0 年 ,I A等人Ⅲ 04 L J 研究一个港 口内的空箱调运 问题 , 内能够使 用 的空 箱量 ;Z‘ l 为港 口 i 每个决策期 内进 在

∑ 。 Z) 2 P‘ 1;Z‘ ( 为港 口 i 在每个 决策期 内出 口的空
为 Z 的分布 函数 , 中 l 其 ( ≤z ):
箱量 ; 2 尸 为 的概率密度 , 中 P =Z) 2z) 其 2 ( 2=p' , (
本文 在此基础 上 , 这个结论 运用于解 决多个 港 0 2 将 ≤Z≤ ;
在 世界海运服务业迅速 发展起来 , 并逐 渐走 向规范化 。 由于国际 贸易活动 的不 平衡性 , 同港 口之 间的集装 不
箱空 箱供需模式 并不相 同 。例如 , 中东地 区积 压大量
研究 假设如下 :1 集装箱规格 相 同, () 都是 2 英 尺 0
的空 箱 , 而在 以出 口为主 的港 口如香港 港却经 常面临 的标 准箱 ;2 调运 的空箱能 即刻 满足当前需求 ;3 如 () () 空箱短 缺 的问题 。在集 装箱需求港 , 运企业 为 了降 果进行 空箱调运后还 不能满足 当前 的需 求 , 航 必须租 箱。 低费用并 快速满 足托运人 的需求 , 必须成 功地从 供应
港 向需求 港调运空 箱 , 或从 租箱公 司租用空 箱 。
本文使用 的符号 : 为决策期 ; Ⅳ为港 口总数 ;  ̄ M3 J 空箱 总数 ;X 为港 口 i 在决策期 末 所拥有 的空箱数
近年来 , 运业有关集装箱空箱调运 问题的研究为 量 ; 为决策变量 , 口i 航 港 需进 口或 出口的空 箱量 , 口 进

高效求解三维装箱问题的剩余空间最优化算法

高效求解三维装箱问题的剩余空间最优化算法

高效求解三维装箱问题的剩余空间最优化算法一、本文概述随着物流、制造业和计算机科学的快速发展,三维装箱问题(Three-Dimensional Bin Packing Problem, 3D-BPP)已成为一个备受关注的研究热点。

该问题涉及如何在有限的三维空间内,以最优的方式放置形状和大小各异的物体,以最大化空间利用率并减少浪费。

在实际应用中,如货物装载、仓库管理、集装箱运输等领域,高效求解三维装箱问题具有重大的经济价值和社会意义。

本文旨在研究三维装箱问题的剩余空间最优化算法,通过对现有算法的分析与改进,提出一种高效且实用的解决方案。

我们将对三维装箱问题进行详细定义和分类,阐述其在实际应用中的重要性和挑战性。

然后,我们将综述目前国内外在该领域的研究现状和进展,分析现有算法的优势和不足。

在此基础上,我们将提出一种基于启发式搜索和优化策略的剩余空间最优化算法,并通过实验验证其有效性和性能。

本文的主要贡献包括:1)对三维装箱问题进行系统性的分析和总结;2)提出一种新型的剩余空间最优化算法,以提高空间利用率和求解效率;3)通过实验验证所提算法的性能,并与其他先进算法进行比较和分析。

本文的研究成果将为三维装箱问题的求解提供新的思路和方法,有助于推动相关领域的理论研究和实际应用。

本文所提算法在实际应用中具有较高的推广价值,有望为物流、制造业等领域带来显著的经济效益和社会效益。

二、相关文献综述装箱问题,特别是三维装箱问题(3D Bin Packing Problem,3D-BPP),一直是计算机科学和运筹学领域研究的热点和难点。

随着物流、制造业等行业的快速发展,对装箱算法的效率和性能要求日益提高。

剩余空间最优化作为装箱问题中的一个重要目标,对于提高空间利用率、降低成本和减少浪费具有重要意义。

近年来,众多学者对三维装箱问题的剩余空间最优化算法进行了深入研究。

传统的启发式算法,如最先适应算法(First Fit)、最佳适应算法(Best Fit)和最差适应算法(Worst Fit)等,虽然简单直观,但在处理大规模或复杂装箱问题时往往效果不佳。

求解三维装箱问题的启发式分层搜索算法

求解三维装箱问题的启发式分层搜索算法

求解三维装箱问题的启发式分层搜索算法三维装箱问题,即是一种十分常见的运输与储存问题,可以帮助企业更加高效的运输和储存物品。

是指在一定的限制条件下,将一定数量的体积不一的物件放入有限的空间,使得所有物件的放置占满空间,运用有效的方法达到节约装箱空间的目的。

针对三维装箱问题,可以根据具体情况选择不同的解决方案,其中启发式分层搜索算法是一种有效的解决方法。

该算法将装箱过程分解为多个级别,搜索中使用分层技术来增加搜索效率,每层尝试放置一个物件,重复就近原则,直至所有物件都尝试放置完毕,再由最后一层开始,依次重新计算容器的体积,以此找出最优的放置方式。

启发式分层搜索算法的实施过程如下:
1. 首先,将箱子大小确定,假设为(l,w,h);
2. 然后,有序列出物件列表,其大小由(a,b,c)表示;
3. 开始从第一个物件开始放置,设定初始搜索层为1;
4. 逐层搜索,首先在最顶部的一层尝试放置,如果放置成功则进入下一层,如果放置失败则换位置再试;
5. 直至放置到最后一层或者条件达到,表示搜索过程结束;
6. 由下一层开始,重新回溯,依次计算容器内物件的体积,直至最后一层;
7. 最后,找出体积最小的装箱方式,即为最优解。

启发式分层搜索算法可以解决大多数三维装箱问题,但是存在一些局限性,例如在多层组合结构中,其计算时间会变得更长。

因此,根据实际情况,可以选择合适的算法解决三维装箱问题。

一种求解航空货代拼箱问题的启发式算法

一种求解航空货代拼箱问题的启发式算法

He rsi lo i m o o s l ain p o lm farc r o fr r e s u it ag r h frc n oi t rb e o i a g owad r c t d o
G n mio,GONG B n g n UIYu — a e — a g,CHE NG u mi g Yo — n
桂云苗 ,龚本 刚 ,程幼 明
( 安徽 工程 大学 管理 工程 学院 , 安徽 芜湖 2 10 ) 400

要 :为了有效求解大规模的航 空货代拼箱决策问题 , 在拼箱问题的混合整数规划模型基础上, 将模型转换
为集合覆盖问题 , 利用常用的拉格朗 日 松弛方法, 出了一个拼箱问题的启发式求解方法, 提 并给出了修正不可行 解的方法和拼箱组合空间调整方法。数值分析结果表明, 该启发式算法是有效可行的, 而且运算效率比较高, 与
最优 解 间误 差 比较 小。
关键词:交通管理 ;拼箱;航空货代 ;集合覆盖 ;启发式算法
中图分类 号 :T 3 16 P 0 . 文献标 志码 :A 文章 编号 :10 —6 5 2 1 ) 7 2 4 — 3 0 1 3 9 ( 0 0 —4 6 0 1
d i1 .9 9 ji n 10 -6 5 2 1 .7 0 1 o:0 3 6 /.s .0 13 9 .0 10 . l s
( oeeo ngmet n ier g, n a o t h i U i rt,W h n u 2 10 C ia C lg Ma a e n gnei A h i le nc nv sy u uA hi 40 0, hn ) l f E n P yc ei
Ab t a t I r e o s le r ait al r e s ae c ro c n oi ain p o lms t i p p r r n fr d te arc ro fr a d sr c : n o d rt ov e l i l l g —c l a g o s l t rb e , s a e a some h i a g o w r — sc y a d o h t e sc n o ia in p o lm owelk o n s t o e ig p o l m a e n mie tg rp o rmmig mo e a d u e a rn i n F o s l t r be t l— n w e v rn r b e b s d o x d i e e r ga d o c n n d l n s d L g a ga Rea ain t e eo e u sv e rs ca g rtm . n ic se h rb e f e s l s l t n d tr n t n a d s ta — l x t o d v lp ar c r ie h u it l o h a d d s u s d te p o lmso a i e ou i ee mi ai n e d o i i f b o o

求解装箱问题的启发式算法研究

求解装箱问题的启发式算法研究

personification heuristics,which is inspired by the daily
strategy
of
building wall in the 2D・packing
life.Similar
to
the personification heuristics for the

algorithm,we
based
transform
the 2D strip packing
problem into
problem.Then,for the 2D
on
knapsack
packing problem,we present
to pack
least
wasted
first strategy
等制造行业都有广泛应用。
与切割相对应的是填充(排样、布局)问题,随着超大规模集成电路的出现, 一块电路板中的元器件有成千上万个。怎么样合理地安排每个元器件在电路板上 的位置,最大化利用电路板的空间,即电路板的布局问题,成为集成电路版图设 计中的一个重要步骤。该问题也同样出现在报纸的排版中。 在数学的王国中,有一个问题一直困扰着人们,即“完美正方形”【2l的寻找。 所谓“完美正方形"是指可以用一些大小各不相同,并且边长为整数的小正方形 铺满的正方形,有趣的是,该问题也跟装箱问题有密切联系,事实上,21阶的 “完美正方形’’正是用大型电子计算机算出来的。 由此可见,装箱问题的应用非常广泛,研究该问题有着重要的实际意义。随 着应用领域的不同,装箱问题的目标和约束条件也不同,因此人们抽象出了一些 通用的数学模型并把该问题分成了很多类型来分别研究。装箱问题一般可描述如
and the newspaper

长三角高校数学建模竞赛快递包裹装箱优化问题

长三角高校数学建模竞赛快递包裹装箱优化问题

长三角高校数学建模竞赛快递包裹装箱优化问题随着电子商务的迅速发展,快递行业成为中国物流行业中的重要组成部分。

快递包裹的及时送达和安全运输是快递企业必须面对的重要挑战之一。

针对如何在有限的空间中最大化地装载包裹,优化装箱方案已成为快递企业的一项重要课题。

本文将重点讨论长三角高校数学建模竞赛中的快递包裹装箱优化问题。

快递包裹装箱问题涉及到如何在有限的空间中合理地摆放不同尺寸和重量的包裹,以便最大化地利用空间并保证包裹的安全运输。

在实际应用中,我们可以将快递箱视为一个三维的容器,而包裹则是不同形状和大小的物体。

装箱优化问题可以归结为如何在给定的容器和包裹条件下,找到最优的摆放方案,使得总体积最小化或者总重量最小化。

对于快递包裹装箱优化问题,我们可以采用数学建模的方法来解决。

首先,我们需要确定一个合适的目标函数,它可以衡量不同装箱方案的优劣。

对于总体积最小化的问题,我们可以将目标函数定义为所有包裹体积的和。

对于总重量最小化的问题,我们可以将目标函数定义为所有包裹重量的和。

在确定目标函数之后,我们可以建立一个数学模型来描述这个优化问题。

在数学模型中,我们需要定义相关的变量和约束条件。

变量可以表示每个包裹的位置和方向,而约束条件则可以限制包裹之间的相互位置以及与容器的边界的关系。

例如,我们可以定义一个二维数组来表示容器的布局,其中每个元素表示一个位置,0表示空位置,1表示有包裹。

我们还可以引入一些约束条件来控制包裹的位置和方向,例如,每个包裹的底部必须在一个平面上,不能旋转等。

在实际应用中,我们可以采用启发式算法来求解这个优化问题。

启发式算法是一种基于经验和直觉的求解方法,它可以在合理的时间内找到一个较好的解。

常见的启发式算法包括遗传算法、模拟退火算法和禁忌搜索算法等。

这些算法都可以通过不断地调整包裹的位置和方向来搜索最优解。

快递包裹装箱优化问题是一个复杂而实际的问题,它涉及到多个变量和约束条件。

通过数学建模和启发式算法,我们可以找到一个较好的装箱方案,以最大化地利用空间并保证包裹的安全运输。

自动化码头出口箱箱位分配优化超启发式算法

自动化码头出口箱箱位分配优化超启发式算法

自动化码头出口箱箱位分配优化超启发式算法
黄子钊;庄子龙;滕浩;秦威;秦涛;邹鹰
【期刊名称】《计算机集成制造系统》
【年(卷),期】2022(28)8
【摘要】针对实际场景下的自动化码头集装箱堆场出口箱箱位分配问题,考虑到三维码放、场桥接力和多箱区协同等特性,并以降低任务的不均衡性和后续的翻箱率为优化目标,构建了自动化码头出口箱箱位分配数学规划模型。

为了提高求解质量,开发了一种基于强化学习的超启发式方法,该方法将具有不同特征的启发式算法和智能算法作为低层启发式策略,采用新颖的基于策略的强化学习方法作为高层决策方法,并使用深度学习更高效地提取状态中的隐藏模式。

最后,根据洋山四期自动化集装箱堆场历史数据设计了算例,并将所提算法与常规智能算法进行了对比,证明了所提算法的有效性和优越性,同时表明所提算法能够提高堆场作业效率,为自动化集装箱堆场提供决策支持。

【总页数】14页(P2619-2632)
【作者】黄子钊;庄子龙;滕浩;秦威;秦涛;邹鹰
【作者单位】上海交通大学机械与动力工程学院;上海海勃物流软件有限公司;上海国际港务(集团)股份有限公司
【正文语种】中文
【中图分类】U691.3
【相关文献】
1.集装箱堆场出口箱箱位分配多目标优化模型
2.集装箱堆场出口箱箱位分配优化模型及算法
3.一种自动化集装箱码头出口箱进箱选位算法
4.考虑出口箱进出场及预翻箱的箱位分配与场桥调度协同优化
5.集装箱码头失约集卡出口箱落箱位选择优化
因版权原因,仅展示原文概要,查看原文内容请购买。

二维装箱问题的启发式算法研究

二维装箱问题的启发式算法研究

二维装箱问题的启发式算法研究
二维装箱问题是一个经典的组合优化问题,目标是将一组矩形物体尽可能紧密地排列在一个矩形容器中,使得填充率最大。

在实际应用中,例如运输和仓储物流中的货物装载、电路板布局等领域都会涉及到二维装箱问题。

启发式算法是一种基于经验和直觉的近似解决问题的方法。

对于二维装箱问题,常用的启发式算法包括贪心算法、禁忌搜索算法、模拟退火算法等。

贪心算法是最简单和常用的启发式算法之一。

它按照某种规则逐步将物体放入容器中,每次选择最优的放置位置。

例如,可以按照物体的面积或者长宽比进行排序,然后依次将物体放入容器中。

贪心算法简单快速,但是无法保证得到全局最优解。

禁忌搜索算法则在贪心算法的基础上引入了一定的随机性。

它通过交换或移动已放置的物体来寻找更好的放置方案。

算法中会设置一个禁忌列表,记录一些不可行的移动或交换操作,以防止算法陷入局部最优解。

禁忌搜索算法可以在较短时间内得到相对优秀的解,但是计算复杂度较高。

模拟退火算法则是一种全局优化算法,它通过模拟固体退火过程的物理过程来搜索全局最优解。

算法通过接受劣解的策略,逐渐降低温度,使得系统从高能态逐渐转移到低能态,最终达到全局最优解。

模拟退火算法可以在全局范围内搜索解空间,并且有较高的概率找到最优解,但是计算复杂度相对较高。

除了以上三种算法,还有很多其他启发式算法可以用于解决二维装箱问题,如遗传算法、粒子群优化算法等。

对于特定的问题,可以根据问题的特点和实际需求选择合适的算法进行研究和应用。

集装箱堆场分配问题的启发式方法研究的开题报告

集装箱堆场分配问题的启发式方法研究的开题报告

集装箱堆场分配问题的启发式方法研究的开题报告一、研究背景随着国际贸易的不断发展,集装箱运输逐渐成为全球贸易的主要形式之一。

集装箱堆场是集装箱运输链中不可缺少的重要环节,其合理的分配方法对于提高货运效率、降低成本、保证货物安全具有重要意义。

目前,集装箱堆场的分配问题主要通过数学模型进行建模和求解。

但现有的求解方法在计算复杂度和精度方面均存在一定的局限性,难以适应复杂的现实情况。

因此,开展集装箱堆场分配问题的启发式方法研究,对于解决实际问题具有十分积极的意义。

二、研究目的本研究旨在通过对集装箱堆场分配问题进行研究,提出一种比较有效的启发式方法,并在此基础上制定相应的实施方案,帮助企业更好地解决集装箱堆场分配问题,提高其物流效率。

三、研究内容本研究的主要内容包括以下三个方面:1. 集装箱堆场分配问题的建模与分析:分析集装箱堆场分配问题的特点,建立相应的数学模型,探究其优化问题。

2. 启发式算法研究:分析现有的启发式算法,综合各种算法的优缺点,提出一种较为有效的启发式算法,并对算法进行优化。

3. 算法实现与方案制定:通过软件开发工具,实现上述算法,进一步优化算法流程,同时制定相应的实施方案,为企业解决集装箱堆场分配问题提供科学依据。

四、研究意义本研究的实施,将为企业提高集装箱堆场的运作效率、降低物流成本、提高货物安全提供可靠的决策依据,同时为相关领域的研究提供有益的参考和借鉴。

五、研究方法本研究将采用理论分析、案例分析和实证分析相结合的方法,分别进行集装箱堆场分配问题的建模、设计算法和实现算法,并进行相应的实验验证。

六、预期结果本研究预期结果具体包括以下几个方面:1. 以启发式算法为基础,建立高效的集装箱堆场分配模型,并提供较为准确的计算结果;2. 研究并制定出可行的实施方案,对企业集装箱堆场分配问题进行定量分析,为企业决策提供参考;3. 实现相应的算法,并通过实验验证优化算法的可行性和有效性,为相关领域提供有益的参考和借鉴。

求解装箱问题的启发式算法研究

求解装箱问题的启发式算法研究

二十年前有一天,一位荷兰数学家布鲁京(N.G.de Bruijn)发现,他七岁的儿子没有法子把27块大小是1 ×2 ×4的木块迭成一个每边长是6的立方体。

后来他把研究的结果,先以问题方式发表在一份匈牙利期刊上,又写成一篇论文「用砖块来填满匣子」,发表在1969年1月份的美国数学月刊上。

若是一块砖的长、宽、高可写成a ×ab ×abc(这里a、b、c都是正整数),则布鲁京称之为和谐(harmonic)砖块。

其中1 ×2 ×4的砖块(见图一)又称为标准(canonical)砖,因为它不但是满足和谐条件的最简单例子,而且又非常像砌墙用的实际砖头。

布鲁京证明一批大小为a ×ab ×abc的和谐砖块能正好完全填满一个匣子的充分及必要条件,是匣子的大小必须呈(ax)×(aby)×(abcz)形式,其中x、y、z 都是整数。

布鲁京的结果可以推广到高维数的欧几里得空间,以及二维空间(即平面)。

在平面上,1 ×2的长方形纸牌若可填满一个大的长方形,则此长方形最少有一边是偶数。

现在回到布鲁京的小孩所面临的难题。

由于6不能被4除尽,根据布鲁京定理,这个难题是不能解的;不过有没有简单的证明呢?让我们先看另一个比较简单的类似问题:把边长为8的正方形纸板斜对角上的两个方格子(面积各为1)剪去后,能否用31块1 ×2的小纸牌填满呢?不能,证明如下:把原先纸板上的64个小方格涂以两种不同的颜色,使相邻两格颜色不同。

由于剪去的两个格子颜色一样,剩下的纸板不可能用31个纸牌填满,因为每块小纸牌所填入的两格颜色不一样之故。

利用类似的方法可以把六阶(指每边长为6)立方体分为27个二阶小立方体,使任两个相邻的颜色都不同(见图二)。

任一块标准砖所占有的8个格子必然是4黑4白,但大立方体中黑格子比白格子多8个,所以最多只能放入26块砖头。

求解三维装箱问题的启发式正交二叉树搜索算法

求解三维装箱问题的启发式正交二叉树搜索算法

d i me ns i o na l c o nt a i ne r l o a d i ng p r ob l e m. Fi r s t l y a l l bo xe s a r e c o mpo s e d i n t o mu l t i pl e g oo d — s t r i ps . Th e bo xe s i n e a c h go o d — s t r i p a r e a r r a ng e d a l on g a v e r t i c a l l i ne . Th e n a bi na r y t r e e i s c r e a t e d .
中图法分类号 T P 3 0 1 D OI 号 1 0 . 1 1 8 9 7 / S P . J . 1 0 1 6 . 2 0 1 5 . 0 1 5 3 0
A He u r i s t i c Or t ho g o n a l Bi na r y Tr e e S e a r c h Al g o r i t h m f o r
Ea c h t r e e n o d e i n t h e t r e e i s a c o n t a i n e r - l o a d i n g p l a n wh i l e t h e r o o t n o d e d e n o t e s a n e mp t y o n e .
第3 8 卷
第 8 期





V o1 . 38 No .8 Au g. 20 15
2 0 1 5年 8月
CHI NES E J OURNAL OF COM PUTERS
求解 三维 装箱 问题 的启 发 式 正 交二 叉树 搜 索算 法

多种物品三维装箱问题的一种启发式算法

多种物品三维装箱问题的一种启发式算法

多种物品三维装箱问题的一种启发式算法
对于多种物品三维装箱问题,搜索空间一般较大,而基于传统方
法(特别是精确方法)求解这类问题通常需要大量的时间,以至于不
能满足实际应用的要求。

因此,启发式算法在求解多种物品三维装箱
问题的过程中具有重要的作用。

SCAN算法是一种常用的启发式算法,它是基于贪心策略来求解多物品三维装箱问题的算法。

该算法的基本思想是,由具体的装箱实例
出发,按照某种明确的规则,先后从装箱实例中考察每个物品,将最
符合要求的物品装入箱内,然后再考察下一个实例,直到装满装箱。

SCAN算法一般分为4个步骤,即初始化、装箱、检查和更新。

在初始化阶段,根据物品信息初始化装箱信息,包括目标箱体尺寸、物
品数量和尺寸等。

在装箱阶段,用从大到小的顺序按贪心策略选取物品,使得剩余空间尽可能的充分利用,直到当前箱子装满。

在检查阶段,如果装好的物品数量不足以装满箱子,则转入第四步,更新阶段,在更新阶段,以当前的装箱解集状态为基础,在满足贪心规则的前提下,继续搜索,使得箱内能够装满更多的物品。

总的来说,SCAN算法具有高效、适用性强等优点,可以有效求解多种物品三维装箱问题。

同一尺寸货物三维装箱问题的一种启发式算法

同一尺寸货物三维装箱问题的一种启发式算法

同一尺寸货物三维装箱问题的一种启发式
算法
一种启发式算法解决三维装箱问题
三维装箱问题是一个重要的应用,一般用于解决在规定的空间尺
寸内有效地将货物装箱的关键难题。

近年来,有许多尝试使用启发式
方法来解决这个问题,例如高斯层级搜索法,遗传算法,粒子群算法,密度优化法等等。

这些方法可以有效地解决三维装箱问题,但是其解
决方案仍然不能完全满足实际应用场景,特别是当实际空间环境非常
复杂的情况下,各种解决方案能力不强,无法很好地利用可用的空间。

在此背景下,笔者提出了一种启发式算法来解决相同尺寸货物三
维装箱问题。

该算法的基本思想是:首先根据实际需求将所有货物按
照大小分类,然后取货物中的一个较大的货物,放在空间的中心位置,然后再取货物中的一个较小的货物,放在此货物的正上方,接着以此
类推,继续取货物,尽可能多地填充到空间中,直到覆盖整个空间。

此外,该算法还具有搜索容错性,即若发现在当前位置放置货物后没
有足够的余量,则可以开启备用的搜索策略,尝试从另一个方向开始搜索。

总之,笔者提出的一种启发式算法,可以有效解决相应货物尺寸的三维装箱问题。

这一算法可以有效充分利用可用空间,避免在空间搜索中过度耗时,更好地满足现实应用场景中的复杂要求。

同时,在发现某个位置放置货物后余量不足时,该算法也具有良好的搜索容错能力,可以有效找到另一种更优的解决方案。

一种基于启发式模型的装箱方法及系统[发明专利]

一种基于启发式模型的装箱方法及系统[发明专利]

专利名称:一种基于启发式模型的装箱方法及系统专利类型:发明专利
发明人:刘坤,张翔
申请号:CN202111651749.9
申请日:20211231
公开号:CN113998477A
公开日:
20220201
专利内容由知识产权出版社提供
摘要:本发明公开了一种基于启发式模型的装箱方法及系统,属于控制系统的技术领域。

基于当前的工位状态将所述数据库划分为空工位集、满箱工位集和半箱工位集;构建动态路径优化模型,在执行空箱码垛指令、满箱拆垛指令或装箱指令时选用所述构建动态路径优化模型选用对应的最佳路径。

本发明自动完成空箱码垛、满箱拆垛以及半箱装箱的流程,空箱码垛时通过计算最佳路径执行指令,在完成空箱码垛和满箱拆垛的同时还确保了箱体在转移的过程中与其他工位的箱体不发生撞击;在完成半箱装箱时,考虑路径的同时还将产品的类型作为因素之一,提前进行识别,规避了同一个箱体内部出现至少两种型号的产品。

提高码垛、拆跺效率及准确率。

申请人:南京尚景智造科技有限公司
地址:210000 江苏省南京市中国(江苏)自由贸易试验区南京片区研创园浦滨路211号基因大厦B 幢24楼
国籍:CN
代理机构:南京泰普专利代理事务所(普通合伙)
代理人:姜露露
更多信息请下载全文后查看。

一种求解集装箱装载问题的启发式算法

一种求解集装箱装载问题的启发式算法

一种求解集装箱装载问题的启发式算法
陈端兵;黄文奇;尚明生;傅彦
【期刊名称】《计算机科学》
【年(卷),期】2008(35)8
【摘要】所谓集装箱装载问题,就是将若干大小不同的长方体盒子装进一个大小已知的长方体容器,其目标是最大化容器的积裁率.对这一问题,国内外学者利用不同的哲学思想,提出了诸如遗传算法、模拟退火算法等求解算法.本文提出一种求解此问题的基于最大穴度优先原则的启发式算法.算法中使用了两个重要的策略:最大穴度原则和最小边度原则.用一些公开的算例对算法性能进行了实算测试,测试结果表明:算法所得结果的容器积载率高,是求解集装箱装载问题的有效算法.
【总页数】4页(P145-148)
【作者】陈端兵;黄文奇;尚明生;傅彦
【作者单位】电子科技大学计算机学院,成都,610054;华中科技大学计算机学院,武汉,430074;电子科技大学计算机学院,成都,610054;电子科技大学计算机学院,成都,610054
【正文语种】中文
【中图分类】TP3
【相关文献】
1.集装箱装载矩形货物的一种启发式算法 [J], 刘霞;吕汉兴
2.一种新的求解集装箱装载问题算法 [J], 李会序;王雪梅
3.同类货物集装箱装载问题的启发式算法 [J], 孙洪礼;王周敬
4.求解圆柱形物品装载问题的递归启发式算法 [J], 杨莹;赵新芳;崔耀东
5.集装箱装载的一种启发式算法 [J], 阎威武;邵惠鹤;田雅杰
因版权原因,仅展示原文概要,查看原文内容请购买。

一种求解航空货代拼箱问题的启发式算法

一种求解航空货代拼箱问题的启发式算法

一种求解航空货代拼箱问题的启发式算法桂云苗;龚本刚;程幼明【期刊名称】《计算机应用研究》【年(卷),期】2011(28)7【摘要】为了有效求解大规模的航空货代拼箱决策问题,在拼箱问题的混合整数规划模型基础上,将模型转换为集合覆盖问题,利用常用的拉格朗日松弛方法,提出了一个拼箱问题的启发式求解方法,并给出了修正不可行解的方法和拼箱组合空间调整方法.数值分析结果表明,该启发式算法是有效可行的,而且运算效率比较高,与最优解间误差比较小.%In order to solve realistically large-scale cargo consolidation problems,this paper transformed the air cargo forward-ers consolidation problem to well-known set covering problem based on mixed integer programming model and used Lagrangian Relaxation to develop a recursive heuristic algorithm, and discussed the problems of feasible solution determination and set ad-justment. Tested a numerical experiment. The results show that the algorithm is feasible with high computing efficiency, and the generated solutions is very close to optimal solution.【总页数】4页(P2446-2448,2451)【作者】桂云苗;龚本刚;程幼明【作者单位】安徽工程大学管理工程学院,安徽芜湖241000;安徽工程大学管理工程学院,安徽芜湖241000;安徽工程大学管理工程学院,安徽芜湖241000【正文语种】中文【中图分类】TP301.6【相关文献】1.一种有效求解厌恶设施选址问题的混合启发式算法 [J], 袁文燕;闫白鹭;吴军;李健2.一种求解带宽限制的中位问题的启发式算法∗ [J], 陈丽丰; 金忠3.一种求解图论中最大独立集问题的启发式算法 [J], 冯云4.一种求解柔性资源约束前摄性项目调度问题的启发式算法 [J], 马咏;何正文;江波;王能民5.一种求解两级累计式车辆路径问题的两阶段启发式算法 [J], 何继天;许维胜;曾正洋因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

An efficient placement heuristic for three-dimensional rectangular packingKun He,Wenqi HuangÃSchool of Computer Science and Technology,Huazhong University of Science and Technology,Wuhan430074,Chinaa r t i c l e i n f oAvailable online28April2010Keywords:Cutting and packingThree-dimensionRectangular packingContainer loadingHeuristica b s t r a c tBy embodying the spirit of‘‘gold corner,silver side and strawy void’’directly on the candidate packingplace such that the searching space is reduced considerably,and by utilizing the characteristic ofweakly heterogeneous problems that many items are in the same size,afit degree algorithm(FDA)isproposed for solving a classical3D rectangular packing problem,container loading problem.Experiments show that FDA works well on the complete set of1500instances proposed by Bischoff,Ratcliff and Davies.Especially for the800difficult strongly heterogeneous instances among them,FDAoutperforms other algorithms with an average volume utilization of91.91%,which to our knowledge is0.45%higher than current best result just reported in2010.&2010Elsevier Ltd.All rights reserved.1.IntroductionCutting and packing problems are representative combinationaloptimization problems with many important applications in theindustry.This paper addresses the problem of loading a subset ofthree-dimensional(3D)rectangular items into a3D rectangularcontainer,such that the total volume of the packed items is maxi-mized,i.e.the container’s wasted volume is minimized.A layout iscalled feasible,if each packed item is located orthogonally andcompletely in the container and there is no overlapping betweenany two items.This problem is an NP-hard problem,whose1Ddegradation,the0–1knapsack problem,is still NP-hard.This3D rectangular packing problem is also called thecontainer loading problem,because the most common andimportant application of this problem is to load rectangularcargoes into containers,vehicles or ships in the transportationindustry.There are some additional considerations that would betaken into account in the real world[1,2],among which theorientation constraint and the stability constraint are the mostimportant ones.In our opinion,if there is an efficient approach tosolve the basic problem that has no additional constraints,then itis not difficult to make the approach adapted to problemsconsidering some additional ones.Since the orientation constraint has been widely considered bythe researchers,and it has been accepted by the famous BRbenchmarks[1],we take the orientation constraint into accountthat one or two sides of the items may not be used as the height.This situation usually happens when cargoes are boxes full of oilor wine.We do not concern the stability constraint for thefollowing reasons:(1)Stability constraint is not considered aswidely as the orientation one and the stability criteria isinconsistent in the literature.In some cases it requires that eachitem is fully supported,or partially supported with at least a givenpercentage;in other cases it requires that the gravity center ofeach item falls over an underlying item or over the bottom of thecontainer.(2)Stability could become a consequence of the highcargo compactness when the container’s volume utilization ishigh enough.(3)Foam rubber or other stuffing could be used tofill the small empty spaces left,as what has been done in somefreight companies.Many efficient algorithms have been proposed for solving thisclassical3D packing problem.The most prevalent approach iswall building or layering[1,3–9],first proposed by George andRobinson in1980[3].In the past thousand years,people usuallystart packing goods from the bottom and build up the packingin layers,inserting each goods such that it is contiguous withwhat is already packed.Inspired by these human’s experience,thewall building or layering method usually opens a new layeror wall with a width equals to some item dimension,then eachlayer isfilled up by a number of horizontal strips,and each stripis packed in a greedy way.Another efficient approach widelyadopted by the researchers is block arrangement[10–12],firstproposed by Bortfeldt and Gehring in1998[10],which bindsitems of the same or similar size into a larger rectangular block todo the tentative packing.By utilizing the block arrangementmethod,Parren˜o proposed an approach that always places acolumn or layer built by same size items into a maximal space,thelargest empty parallelepiped spaces[13,14].Above approaches allutilized the characteristic of the weakly heterogeneous instancesthat many items are in the same size.Therefore,the solutionqualities are in a downtrend when the problems become moreContents lists available at ScienceDirectjournal homepage:/locate/caorComputers&Operations Research0305-0548/$-see front matter&2010Elsevier Ltd.All rights reserved.doi:10.1016/j.cor.2010.04.015ÃCorresponding author.Tel.:+862787543018;fax:+862787545004.E-mail addresses:brooklet60@(K.He),wqhuangwh@(W.Huang).Computers&Operations Research38(2011)227–233and more strongly heterogeneous,i.e.same size items become less and less.In2009,inspired by an old proverb‘‘Gold corner,silver side and strawy void’’,and improved by a new observation‘‘Maximum value in diamond cave’’,Huang and He proposed a caving degree approach(CDA)whose key issue is to pack an outside item into a corner or even a cave in the container such that the item is as compact and close as possible with other items[2,15].Differs from other approaches,CDA is especially good at strongly heterogeneous instances.But unfortunately the searching space of the CDA is quite large because it searches all corners where three orthogonal surfaces of different items meet at each iteration step,and the computation of caving degree is time-consuming for each candidate placement.Above drawback becomes a main barrier if people want to get higher volume utilization within a reasonable time.In this paper,we make improvements on the CDA,largely decrease the searching space by just considering a corner nearest to the edges of the container as the candidate packing place.This strategy embodies the nature of‘‘gold corner,silver side and strawy void’’directly.Besides,the scope of action space in the caving degree approach is modified to be a much smaller and appropriate one in this paper,which simplifies the evaluation of different placements.Furthermore,same size items are bound into different blocks,andfit degree is defined to judge which blockfit the action space best.Experiments show that thefit degree approach(FDA)not only largely speeded up the computa-tion,markedly improved the solution’s quality,but also inherited the advantage of the CDA on the strongly heterogeneous problems.2.Thefit degree algorithmThefit degree algorithm(FDA)contains two phases:the constructive phase and the local search phase.Wefirst introduce FDA’s improvement strategies on the CDA and define several important conceptions used by the FDA.2.1.Improvement strategiesThe caving degree approach(CDA)[2,15]searches all corners, unoccupied space where three surfaces of different items meet,at each iteration step.We can see an example for a2D problem in Fig.1.There are10corners,marked from1to10.For each corner, CDA pseudo places an outside item into the corner and computes the caving degree to evaluate how compact and close the packing item is to other items already in.The more the caving degree is, the more the place looks like a cave for the packing item.This procedure is time-consuming for the reason that each corner should be checked.So in the new algorithm,we just take one corner as the candidate packing place at each iteration step. Then,which corner should we select?Here we comply with the proverb‘‘gold corer,silver side and strawy void’’directly,and try to select a corner nearest to the edges of the container,i.e.farthest to the center of the container,such that items are placedfirst to the corners of the container,then to the sides of the container and last to the center of the container.In Fig.1,we will only take corner6as the candidate packing place at current iteration. Detailed method on how to select a candidate corner will be described later in this section.When placing an item into a corner for the CDA,then aligned with the k pasted surfaces(two surfaces are called pasted if their coinciding area is larger than0)and their normal directions (pointing to the space the packing item is in),an action space is enclosed in the container[2].For example for the2D problem in Fig.2(a),suppose item i is tentative packed in corner6,then the action space of this corner-occupying action(COA)is shown in the dotted rectangle.When computing the caving degree of this action,items intersecting the action space need to be considered (surfaces of the container can be regarded as sixflat items, respectively).The caving degree C i of a COA is as shown in Eq.(1). Firstly,it is decided by paste number k i for how many surfaces of other items the packing item pastes;then it is decided by the minimum distance d i between the packing item and other items that intersect the action space but do not paste the item(l i,w i,h i are the lengths of the three dimensions for the packing item),and lastly,it is decided by pasted ratio r i for how proportion the surface area of the packing item be pasted.C i¼100k iþ10ad iþr i¼100k iþ10expÀd i3ffiffiffil ipw i h i!þr ið1ÞSo in Fig.2(a),when computing the minimum distance d i,we need to consider distances between item i and{item a,b,e,f,g,the right side and the bottom side of the container}.But in fact, we could shrink the action space like as shown in Fig.2(b).Fig.1.Corners in the caving degree approach.Fig. 2.Shrinkage on the action space:(a)action space in the caving degree approach and(b)action space in thefit degree approach.yer arrangement strategy:(a)one layer yx-arrangement and(b)two layers yx-arrangement.K.He,W.Huang/Computers&Operations Research38(2011)227–233 228When computing the minimum distance d i ,we only need to consider the distance between item i and {the bottom side and the right side of the action space}.In this way the computation is simplified markedly.Another main modification is that instead of placing one item at each iteration step,we bind same size items into one or several layers to do the tentative packing.For example in Fig.3,suppose there are 12items in the same size,if we want to place them to corner 6in the horizontal orientation,and if we first try to place as many items as possible in the y direction,then there are two possible arrangements:one layer arrangement and two layers arrangement,as shown in Fig.3(a)and (b).This strategy tries to utilize the characteristic of weakly heterogeneous problems to get higher volume utilizations.2.2.DefinitionsSome important conceptions used in the FDA are defined in this subsection.Items in the same size are bound into a larger cuboid block which is built by one layer or several layers,and fit degree is defined to evaluate that to what degree the packing block fit the candidate action space.Definition 1.(A CTION S PACE ).At current iteration,placing a dummy cuboid into the container orthogonally and without overlapping,and the size of the cuboid is large enough such that each of its surfaces pastes at least one item already in (two surfaces are called pasted if the coinciding area is larger than 0),then the empty space it occupies is called an action space.The six surfaces of the container can be regarded as six flat items.Then in Fig.2(b)for the 2D problem,the dotted rectangle space is an action space with its upper,lower,left and right sides pasting at least one item.There are some other action spaces for current iteration,as shown with dotted rectangles in Fig.4.An action space has eight corners for the 3D problem,each having a different corner direction,as shown in Fig.5.Note that this conception of corner is different from what is defined for the caving degree approach.In fact,it contains the one for the CDA.For example in Fig.2(b),the 4corners of current action space contain corner 2,6,and 7in Fig.1,but its lower-right corner is a new one that is not considered in the CDA.Definition 2.(D ISTANCE V ECTOR OF A C ORNER ).Suppose the distance in the x ,y ,z directions between a corner and its corresponding corner of the container,which has the same corner direction,is d x ,d y and d z ,and then a nondecreasing order of d x ,d y and d z is called the distance vector of this corner,marked as (d 1,d 2,d 3).Two distance vectors can be compared in the lexicographical order.For example if d a ¼(1,2,8)and d b ¼(2,2,3),then d a o d b .Definition 3.(C ANDIDATE C ORNER OF AN A CTION S PACE ).A corner with the minimum distance vector is the candidate corner of this action space.In case of a tie,a corner with smaller corner direction is selected.For example in the 2D problem of Fig.6,the distance vectors of corner 1,2,3and 4are (d y 1,d x 1),(d x 2,d y 2),(d y 3,d x 3)and (d y 4,d x 4).Therefore,corner 1is the candidate corner for this action space.Definition 4.(C ORNER O CCUPYING A CTION ,COA).It is an action that places a cuboid block,bound by outside items of the same size,into an action space such that one of the block’s vertices coincides with the space’s candidate corner,and it satisfies the problem’s constraints.The size of the block is decided by the following factors:(1)Which action space is selected (the candidate corner isdetermined then);(2)Which size of item is selected (the number of outside items inthis size is determined then);(3)For an item in size (l ,w ,h ),there are six possible itemorientations whose dimensions on x ,y ,and z axes are (l ,w ,h ),(l ,h ,w ),(w ,l ,h ),(w ,h ,l ),(h ,l ,w ),(h ,w ,l );We need to select one feasible orientation;(4)There are six types of arrangements for binding same sizeitems into larger blocks,marked as xyz ,yxz ,xzy ,zxy ,yzx and zyx .Here xyz means that we first try to bind as many items as possible in the x direction,and then in the y direction;if the maximal number that we could bind in the z direction is k ,then items in the z direction could be 1,2to k ,corresponding to one layer arrangement,two layers arrangement,and k layers arrangement.So,the block is determined by the type of arrangements and how many layers in the third dimension for this type.For example for the 2D action space shown in Fig.3,the candidate corner is corner 6,and there are 12outside items of the same size.If we place them in the horizontal orientation,then the yx arrangement is as shown in Fig.3,and the xy arrangement is as shown in Fig.7.Note that the fifth arrangement shown in Fig.7is as the same as that shown in Fig.3(b),and we just need to consider it for one time.ad efcb gadefcb gFig.4.Some action spaces at current iteration.Fig.5.Corners and corner directions.Fig.6.Distance vector of the corners.K.He,W.Huang /Computers &Operations Research 38(2011)227–233229So,there are many different COAs at current iteration.Then,which COA should we select to do?Fit degree is defined to evaluate different placements.Definition 5.(A VERAGE O CCUPATION ).The average occupation of a corner-occupying action is as shown in Eq.(2).Here L i ,W i ,H i are the three dimensions of the action block,the cuboid block being packed into the action space.L D ,W D ,H D are the three dimensions of the action space,and n i is the total number of items bound in the block.u i ¼1ffiffiffiffin i 3p L i W i H iL D W D H Dð2ÞSo,(L i W i H i )/(L D W D H D )is the volume utilization of the action space,and coefficient (n i )À1/3is used to balance the volume utilization and the bind number n i .For bind number n i ¼n x Ân y Ân z where n x ,n y or n z means the bind number in x ,y or z direction,coefficient (n i )À1/3means the average bind number in one direction.Here we give an example to show the specific impacts of coefficient (n i )À1/3.If action a could place a block bound by 8items into an action space and achieves a volume utilization of 60%for the action space,and action b could place a block bound by 27items into the action space and achieves a volume utilization of 75%,then the average occupations for action a and action b are 0.6/81/3¼30%and 0.75/271/3¼25%,respectively.Thus action a has the larger average occupation,even though its volume utilization is lower.However,if the volume utilization of action a is just 40%,then its average occupation is 0.4/81/3¼20%,and in this case action b has the larger average occupation.Table 1shows the specific impact of the coefficient (n i )À1/3for this example.Definition 6.(F IT D EGREE ).The fit degree of a corner-occupying action is as shown in Eq.(3),where paste number k i means how many surfaces of the block are pasted by the surfaces of the action space,other-paste number p i means the number of other blocks pasting with the action block (the six surfaces of the container are regarded as six special blocks),u i means the average occupation,and paste ratio r i equals the block’s pasted area with the action space divided by the block’s total surface area.F i ¼/k i ,p i ,u i ,r i Sð3ÞFit degree is defined to describe that to what extend the packing block fit the action space.Note that paste number and paste ratio is different from what is defined in the caving degree approach.Firstly,the observation unit is blocks instead of single items.Secondly,the relation is between the packing block and the action space.Thirdly,we use the volume utilization of the action space to replace the function of minimum distance d i .Above strategies not only simplify the computation but also embody how compact and close the packing block is to other blocks already in.Two fit degrees can be compared in the lexicographical order.The larger the fit degree is,the better the placement is.2.3.The constructive phaseBased on above definitions,the constructive FDA can be described as follows.It is a greedy algorithm that attempts to produce good placements by always examining an action space nearest to the edge of the container and then placing a rectangular block that best fit the space.So,the whole packing procedure is from the edge to the center.The constructive FDA:1.At current iteration step,select an action space based on following parameters of the action space in a lexicographic order:(a)distance vector of the candidate corner:smaller is better (b)volume:larger is better(c)coordinate x ,y ,z of the lower-left-near corner:smaller isbetter(d)coordinate x ,y of the upper-right-far corner:smaller isbetter2.If there is no feasible COA for this action space,then go to step 1to select the next action space;3.A best COA is selected to do based on some parameters of the action block in a lexicographic order:(a)fit degree:larger is better(b)volume of one item in the block:larger is better (c)length of the long side for one item:larger isbetterFig.7.The possible xy arrangements.Table 1–1/3K.He,W.Huang /Computers &Operations Research 38(2011)227–233230(d)length of the short side for one item:larger is better(e)coordinate x,y,z of the lower-left-near corner:smaller isbetter(f)coordinate x,y,z of the upper-right-far corner:smaller isbetter(g)item orientation number:smaller is better4.Repeat1–3,until all outside items have been packed into thecontainer without overlapping,or none of the remainders could be packed in.The constructive algorithm always selects a remote action space and does a corner-occupying action with the largestfit degree.At step1,rules(2)–(4)break tie to select a unique action space,so the candidate corner to befilled is determined too.At step2,rules (2)–(4)determine the size of the outside item,rule(7)determines the item orientation,rules(5)and(6)determine the three dimensions of the block,and so the type of arrangements and how many layers in the third dimension are determined too.Above rules break tie to make the algorithm deterministic.2.4.The local search phaseThe local search FDA observes the top N COAs that have better developing foreground than the remainders,and selects one action with the best pseudo utilization to do.Definition7.(P SEUDO U TILIZATION).At current iteration step,do a COA and pseudo execute the constructive FDA,and then thefinal volume utilization of the container is called the pseudo utilization of this COA.So,each COA has corresponding pseudo utilization.Starting from the beginning when there is no item in the container,the local search FDA executes as follows:The local search FDA:(1)At current iteration step,select an action space according tothe rules in step1of the constructive FDA;(2)If there is no feasible COA for this action space,then go to step1to select the next action space;(3)Sort all COAs according to the rules in step3of theconstructive FDA,and compute the pseudo utilization for each of the top N actions;(4)A COA with the largest pseudo utilization is selected to do,incase of a tie,select one sorted on the front;(5)Repeat1–4,until all outside items have been packed into thecontainer without overlapping,or none of the remainders could be packed in;(6)Output the best placement result that has the highest volumeutilization.The larger the value of N is,the longer the running time is,and the higher the volume utilization tends to be.putational resultsWe evaluate the performance of the proposed heuristic via computational experiments.The above algorithms were coded and compiled in Java2Platform(Standard Edition,(J2SE)V1.5.0_14)and were run sequentially on a PC with Intel(R)Xeon(R)2.33GHz CPU.Test instances are1500problems generated by Bischoff,Ratcliff and Davies[1,5],called BR benchmarks by other researchers.The whole set of instances comprises15classes of instances,classified depending on the number of items in different sizes,each class consisting of100instances.With respect to the item types vary from3for BR1to100for BR15, the instances vary from weakly heterogeneous to strongly heterogeneous,i.e.same size items become less and less. Generally speaking,BR1to BR7are taken as the weakly heterogeneous groups,and BR8to BR15are taken as the strongly heterogeneous groups.parisons with other algorithmsAlgorithms having computed all the1500BR instances include H_BR[1],H_B_al[4],GA_GB[16],TS_BG[10],HGA_BG[6], PGA_GB[7],GRASP[9],GRASP’[13]and VNS[14].In addition, there are some other algorithms having computed at least one group of the instances:PTS_B_al[11],PH_M_al[8]and H_B[17] for the weakly heterogeneous groups BR1to BR7and CDA[2]for the strongly heterogeneous groups BR8to BR15.Table2shows the average volume utilization on each of the15 BR classes for above algorithms and for the local search FDA (N¼100).The average volume utilizations on three groups,BR1to BR7,BR8to BR15and BR1to BR15,are shown at the bottom of the table.As for the average utilization on all the1500instances, PGA_GB proposed by Gehring and Bortfeldt held the highest record of88.97%since2002[7],until Parren˜o et al.reported new results in2008[13]and2010[14]successively.To our knowledge,current best result reported in the literature is 92.89%achieved by Parren˜o et al.in2010[14].As for the weakly heterogeneous group,PH_M_al proposed by Mack et al. held the highest record of93.78%since2004,until Parren˜o et al. achieved an average utilization of94.53%in2010[14].As for the strongly heterogeneous group,Gehring and Bortfeldt reported a result of87.69%in2002[7],we reported a result of87.97%in 2009[2],and current best result reported in the literature was achieved by Parren˜o et al.in2010with an average utilization of 91.46%[14].Taking FDA into account,current highest volume utilizations for each class and each group appear in bold in Table2.As can be seen from Table2,FDA achieved an average volume utilization of 91.91%on the strongly heterogeneous group,which is0.45% higher than current best result.Moreover,each value that FDA obtained on each of the8strongly heterogeneous classes is also higher than current best result.3.2.Detailed computational results on the FDAIn this subsection,we report some detailed computational results on the FDA.We tested the constructive FDA and the local search FDA with parameter N¼30,50and100such that FDA could get high volume utilizations within reasonable times. Through a small-scale test,we found that if parameter N was set to the number of all candidate actions,the utilization was just 0.02%higher than that of N¼100,but the running time increased by three times.Therefore,we did not do any computation using a parameter larger than100.The detailed results are shown in Table3.As a reference, utilizations of the constructive VNS and the local search VNS are also listed.Values for each class and each group for the constructive FDA appear in bold if they are higher than that of the constructive VNS.Also,values for the local search FDA(N¼30, 50or100)appear in bold if they are higher than that of the local search VNS.At the constructive phase,the average utilization of FDA on BR1to BR15is86.77%,which is0.19%higher than that of the compared one.FDA was run on a2.33GHz PC,while VNS was run on a 1.5GHz PC.The average running time of the constructive FDA is0.34s,which is very short.Although Parren˜oK.He,W.Huang/Computers&Operations Research38(2011)227–233231et al.did not report the running time on their constructive VNS,it can be inferred from their algorithm’s description that it is also very short.Another point we could find from Table 3is that almost each value of the FDA is higher than that of the compared one.Furthermore,differs from the VNS,the average utilization of the constructive FDA on the strongly heterogeneous groups,BR8to BR15,is higher than what was obtained on the weakly heterogeneous groups,BR1to BR7.This is a salient feature of FDA,since most of other algorithms usually obtain lower utilizations when the problems become more and more heterogeneous.At the local search phase,the average utilizations of VNS on BR1to BR7,BR8to BR15,and BR1to BR15are 94.53%,91.46%and 92.89%,with the average running times of 28,531and 296s,respectively.Set parameter N to 30,within similar running time,FDA obtained an average utilization of 92.40%on BR1to BR15,which is 0.49%lower than that of the VNS.However,the average utilization that FDA obtained on the strongly heterogeneous group is 91.67%,which is 0.21%higher.It can be observed from the table that the larger the value of parameter N was,the higher the utilization FDA obtained,and the longer the time was.Finally,FDA got higher utilizations on each of the strongly heterogeneous class when N was set to 100.In summary,the average utilizations of FDA on BR1to BR7,BR8to BR15,and BR1to BR15are 93.53%,91.91%and 92.67%,with the average running times of 10,1178and 633s,respectively.Table 3Detailed computational results on the 1500BR instances.Problem set (number of item types)Constructive Local search Constructive FDA FDA (N ¼30)FDA (N ¼50)FDA (N ¼100)VNS (%)VNS (%)Utilization (%)Time (s)Utilization (%)Time (s)Utilization (%)Time (s)Utilization (%)Time (s)Weakly heterogeneous BR1(3)84.3494.9385.320.0192.430.6492.70 1.1292.92 1.16BR2(5)85.6195.1985.960.0193.30 1.3293.72 2.3493.93 2.54BR3(8)85.8194.9987.270.0293.57 2.6293.71 4.2693.71 5.14BR4(10)87.0794.7187.090.0293.50 3.9393.54 6.3293.687.66BR5(12)86.4694.3387.250.0293.41 5.4393.609.1293.7310.38BR6(15)88.2194.0487.000.0493.317.993.5613.5793.6316.66BR7(20)85.9693.5387.190.0493.0213.493.0921.9993.1429.54Strongly heterogeneous BR8(30)85.9692.7886.810.0692.6832.8692.7849.8192.9282.94BR9(40)86.2392.1987.190.1192.1660.0892.2894.2492.49160.77BR10(50)85.7291.9286.890.2592.04121.7292.21188.8992.24298.95BR11(60)85.8591.4686.840.2591.71180.0891.89274.9991.91497.79BR12(70)85.1891.2086.650.8291.60302.5291.65540.1691.83861.37BR13(80)85.4091.1186.830.8791.37475.7191.45749.0891.561775.79BR14(90)84.8790.6486.68 1.0090.99748.9291.171205.6791.302218.17BR15(100)85.4190.3886.59 1.5590.842060.4390.882752.5291.023531.71Average (1–7)85.8794.5386.720.0293.22 5.0493.428.3993.5310.44Average (8–15)86.2091.4686.810.6191.67497.7991.79731.9291.911178.44Average (1–15)85.5892.8986.770.3492.40267.8492.55394.2792.67633.37Table 2Comparisons with other algorithms (%).ProblemH_BR [1](1995)H_B_al [4](1995)GA_GB [16](1997)TS_BG [10](1998)HGA_BG [6](2001)PGA_GB [7](2002)PTS_B_al [11](2003)PH_M_al [8](2004)GRASP [9](2005)H_B [17](2006)CDA [2](2008)a GRASP’[13](2008)VNS [14](2010)FDA (2010)BR1(3)83.3781.7686.7792.6387.8188.1093.5293.7089.0789.39–93.2794.9392.92BR2(5)83.5781.7088.1292.7089.4089.5693.7794.3090.4390.26–93.3895.1993.93BR3(8)83.5982.9888.8792.3190.4890.7793.5894.5490.8691.08–93.3994.9993.71BR4(10)84.1682.6088.6891.6290.6391.0393.0594.2790.4290.90–93.1694.7193.68BR5(12)83.8982.7688.7890.8690.7391.2392.3493.8389.5791.05–92.8994.3393.73BR6(15)82.9281.5088.5390.0490.7291.2891.7293.3489.7190.70–92.6294.0493.63BR7(20)82.1480.5188.3688.6390.6591.0490.5592.5088.0590.44–91.8693.5393.14BR8(30)80.1079.6587.5287.1189.7390.26––86.13–88.4191.0292.7892.92BR9(40)78.0380.1986.4685.7689.0689.50––85.08–88.1490.4692.1992.49BR10(50)76.5379.7485.5384.7388.4088.73––84.21–87.9089.8791.9292.24BR11(60)75.0879.2384.8283.5587.5387.87––83.98–87.8889.3691.4691.91BR12(70)74.3779.1684.2582.7986.9487.18––83.64–87.9289.0391.2091.83BR13(80)73.5678.2383.6782.2986.2586.70––83.54–87.9288.5691.1191.56BR14(90)73.3777.4082.9981.3385.5585.81––83.25–87.8288.4690.6491.30BR15(100)73.3875.1582.4780.8585.2385.48––83.21–87.7388.3690.3891.02AVG(1–7)83.3781.9788.3091.2690.0690.4392.6593.7889.7390.55–92.9494.5393.53AVG(8–15)75.5578.5984.7183.5587.3487.69––84.13–87.9789.3991.4691.91AVG(1–15)79.2080.1786.3987.1588.6188.97––86.74––91.0592.8992.67aCDA was published online in 2008.K.He,W.Huang /Computers &Operations Research 38(2011)227–233232。

相关文档
最新文档