广西南宁外国语学校2017届数学高考第一轮复习单元素质测试题——坐标系与参数方程(理科)
广西高考数学一轮复习 考点规范练56 坐标系与参数方程 文-人教版高三全册数学试题
考点规范练56 坐标系与参数方程一、基础巩固1.在平面直角坐标系xOy 中,已知直线l 的参数方程为{x =1+12x ,x =√32x (t 为参数),椭圆C 的参数方程为{x =cos x ,x =2sin x (θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.C 的普通方程为x 2+x 24=1.将直线l 的参数方程{x =1+12x ,x =√32x (t 为参数)代入x 2+x 24=1,得(1+12x )2+(√32x )24=1,即7t 2+16t=0,解得t 1=0,t 2=-167. 所以AB=|t 1-t 2|=167.2.在平面直角坐标系xOy 中,将曲线C 1:x 2+y 2=1上的所有点的横坐标伸长为原来的√3倍,纵坐标伸长为原来的2倍后,得到曲线C 2;以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程是ρ(2cos θ-sin θ)=6.(1)写出曲线C 2的参数方程和直线l 的直角坐标方程;(2)在曲线C 2上求一点P ,使点P 到直线l 的距离d 最大,并求出此最大值.由题意知,曲线C 2方程为(√3)2+(x 2)2=1,故曲线C 2的参数方程为{x =√3cos x ,x =2sin x(φ为参数).直线l 的直角坐标方程为2x-y-6=0. (2)设P (√3cos φ,2sin φ), 则点P 到直线l 的距离为d=√3cos √5=√5,故当sin(60°-φ)=-1时,d 取到最大值2√5,此时取φ=150°,点P 坐标是(-32,1).3.在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =cos x ,x =1+sin x (α为参数,α∈R ),在以坐标原点为极点,x 轴非负半轴为极轴的极坐标系中,曲线C 2:ρsin (x -π4)=√2. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程; (2)若曲线C 1和曲线C 2相交于A ,B 两点,求|AB|的值. 解 (1)由{x =cos x ,x =1+sin x ⇒{x =cos x ,x -1=sin x⇒x 2+(y-1)2=1,由ρsin (x -π4)=√2⇒√22ρsin θ-√22ρcos θ=√2⇒y-x=2, 即C 2:x-y+2=0.(2)∵直线x-y+2=0与圆x 2+(y-1)2=1相交于A ,B 两点, 又x 2+(y-1)2=1的圆心(0,1),半径为1,∴圆心到直线的距离d=√12+(-1)2=√22, ∴|AB|=2√12-(√22)2=√2.4.(2018全国Ⅱ,文22)在直角坐标系xOy 中,曲线C 的参数方程为{x =2cos x ,x =4sin x(θ为参数),直线l 的参数方程为{x =1+x cos x ,x =2+x sin x(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.曲线C 的直角坐标方程为x 24+x 216=1.当cos α≠0时,l 的直角坐标方程为y=tan α·x+2-tan α, 当cos α=0时,l 的直角坐标方程为x=1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t-8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0.又由①得t 1+t 2=-4(2cos x +sin x )1+3cos 2x,故2cos α+sin α=0,于是直线l 的斜率k=tan α=-2.5.在平面直角坐标系xOy 中,曲线C 1的参数方程为{x =4x 2,x =4x(t 为参数).在以坐标原点O 为极点,x轴正半轴为极轴建立的极坐标系中,曲线C 2的极坐标方程为ρcos (x +π4)=√22. (1)把曲线C 1的参数方程化为普通方程,C 2的极坐标方程化为直角坐标方程;(2)若曲线C 1,C 2相交于A ,B 两点,AB 的中点为P ,过点P 作曲线C 2的垂线交曲线C 1于E ,F 两点,求|PE|·|PF|的值.消去参数可得C 1:y 2=4x ,C 2:x-y-1=0.(2)设A (x 1,y 1),B (x 2,y 2),且AB 的中点为P (x 0,y 0),联立{x 2=4x ,x -x -1=0可得x 2-6x+1=0.∴x 1+x 2=6,x 1x 2=1,∴{x 0=x 1+x 22=3,x 0=2.∴AB 中垂线的参数方程为{x =3-√22x ,x =2+√22x(t 为参数). ①y 2=4x.②将①代入②中,得t 2+8√2t-16=0,∴t 1·t 2=-16.∴|PE|·|PF|=|t 1·t 2|=16.二、能力提升6.(2018全国Ⅰ,文22)在直角坐标系xOy 中,曲线C 1的方程为y=k|x|+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0. (1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.由x=ρcos θ,y=ρsin θ得C 2的直角坐标方程为(x+1)2+y 2=4.(2)由(1)知C 2是圆心为A (-1,0),半径为2的圆.由题设知,C 1是过点B (0,2)且关于y 轴对称的两条射线.记y 轴右边的射线为l 1,y 轴左边的射线为l 2,由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,A 到l 1所在直线的距离为2, 所以√2=2,故k=-43或k=0.经检验,当k=0时,l 1与C 2没有公共点;当k=-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点.当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为2, 所以√=2,故k=0或k=43,经检验,当k=0时,l 1与C 2没有公共点;当k=43时,l 2与C 2没有公共点.综上,所求C 1的方程为y=-43|x|+2. 7.已知直线C 1:{x =1+x cos x ,x =x sin x(t 为参数),圆C 2:{x =cos x ,x =sin x (θ为参数).(1)当α=π3时,求C 1被C 2截得的线段的长;(2)过坐标原点O 作C 1的垂线,垂足为A ,当α变化时,求点A 轨迹的参数方程,并指出它是什么曲线.当α=π3时,C 1的普通方程为y=√3(x-1),C 2的普通方程为x 2+y 2=1.联立方程组{x =√3(x -1),x 2+x 2=1,解得C 1与C 2的交点坐标为(1,0)与(12,-√32). 故C 1被C 2截得的线段的长为√(1-12)2+(0+√32)2=1.(2)将C 1的参数方程代入C 2的普通方程得t 2+2t cos α=0, 设直线C 1与圆C 2交于M ,N 两点,M ,N 两点对应的参数分别为t 1,t 2, 则点A 对应的参数t=x 1+x 22=-cos α,故点A 的坐标为(sin 2α,-cos αsin α).故当α变化时,点A 轨迹的参数方程为{x =sin 2x ,x =-sin x cos x(α为参数). 因此,点A 轨迹的普通方程为(x -12)2+y 2=14.故点A 的轨迹是以(12,0)为圆心,半径为12的圆.三、高考预测8.在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin 2θ=a cos θ(a>0),过点P (-2,-4)的直线l 的参数方程为{x =-2+√22x ,x =-4+√22x(t 为参数),直线l 与曲线C 相交于A ,B 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)若|PA|·|PB|=|AB|2,求a 的值.∵ρsin 2θ=a cos θ(a>0),∴ρ2sin 2θ=a ρcos θ(a>0),即y 2=ax (a>0).直线l 的参数方程消去参数t ,得普通方程为y=x-2.(2)将直线l 的参数方程代入曲线C 的直角坐标方程y 2=ax (a>0)中, 得t 2-√2(a+8)t+4(a+8)=0,设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=√2(a+8),t 1·t 2=4(a+8).∵|PA|·|PB|=|AB|2, ∴t 1·t 2=(t 1-t 2)2.∴(t 1+t 2)2=(t 1-t 2)2+4t 1·t 2=5t 1·t 2,即[√2(8+a )]2=20(8+a ),解得a=2或a=-8(不合题意,应舍去),∴a 的值为2.。
坐标系与参数方程典型例题含高考题----答案详细)
选修4-4《坐标系与参数方程》复习讲义一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:①了解参数方程,了解参数的意义. ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、基础知识归纳总结:1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下, 点P(x,y)对应到点)y ,x (P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。
3.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ。
有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。
极点O 的坐标为)R )(,0(∈θθ. 4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。
如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。
最新—2017高考全国卷ⅰ文科数学坐标系与参数方程汇编
新课标全国卷Ⅰ文科数学汇编坐标系与参数方程一、解答题【2017,22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l a .【2016,23】在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C .(Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【2015,23】在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(I )求1C ,2C 的极坐标方程; (II )若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.【2014,23】已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.【2013,23】已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【2012,23】已知曲线1C 的参数方程为⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ。
2017版高考数学一轮总复习第13章坐标系与参数方程高考AB卷理
【大高考】2017版高考数学一轮总复习 第13章 坐标系与参数方程高考AB 卷 理坐标系与极坐标1.(2016·全国Ⅰ,23)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsinθ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1.2.(2016·全国Ⅱ,23)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A 、B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 3.(2015·全国Ⅰ,23)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解 (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 为等腰直角三角形, 所以△C 2MN 的面积为12.参数方程4.(2016·全国Ⅲ,23)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标系方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解 (1)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. 5.(2013·全国Ⅱ,23)已知动点P ,Q 都在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+cos 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π).当α=π时,d =0,故M 的轨迹过坐标原点.坐标系与极坐标1.(2014·安徽,4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( ) A.14 B.214 C. 2D.22解析 由⎩⎪⎨⎪⎧x =t +1,y =t -3消去t 得x -y -4=0,C :ρ=4cos θ⇒ρ2=4ρcos θ,∴C :x 2+y 2=4x ,即(x -2)2+y 2=4,∴C (2,0),r =2. ∴点C 到直线l 的距离d =|2-0-4|2=2, ∴所求弦长=2r 2-d 2=2 2.故选D. 答案 D2.(2016·北京,11)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,则|AB |=________.解析 直线的直角坐标方程为x -3y -1=0,圆的直角坐标方程为x 2+y 2=2x ,即(x -1)2+y 2=1.圆心坐标为(1,0),半径r =1. 点(1,0)在直线x -3y -1=0上, 所以|AB |=2r =2. 答案 23.(2015·广东,14)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎪⎫22,7π4,则点A 到直线l 的距离为________. 解析 依题已知直线l :2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2和点A ⎝⎛⎭⎪⎫22,7π4可化为l :x -y +1=0和A (2,-2),所以点A 到直线l 的距离为d =|2-(-2)+1|12+(-1)2=522. 答案5224.(2015·北京,11)在极坐标系中,点⎝⎛⎭⎪⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离为________.解析 在平面直角坐标系下,点⎝⎛⎭⎪⎫2,π3化为(1,3),直线方程为:x +3y =6,∴点(1,3)到直线的距离为d =|1+3×3-6|2=|-2|2=1.答案 15.(2015·安徽,12)在极坐标系中,圆ρ=8sin θ上的点到直线θ=π3(ρ∈R )距离的最大值是________.解析 由ρ=8sin θ得x 2+y 2=8y ,即x 2+(y -4)2=16,由θ=π3得y =3x ,即3x-y =0,∴圆心(0,4)到直线y =3x 的距离为2,圆ρ=8sin θ上的点到直线θ=π3的最大距离为4+2=6. 答案 66.(2014·天津,13)在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________.解析 圆的直角坐标方程为x 2+y 2=4y ,直线的直角坐标方程为y =a ,因为△AOB 为等边三角形,则A (±a3,a ),代入圆的方程得a 23+a 2=4a ,故a =3.答案 37.(2014·湖南,11)在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.解析 曲线C 的普通方程为(x -2)2+(y -1)2=1,由直线l 与曲线C 相交所得的弦长|AB |=2知,AB 为圆的直径,故直线l 过圆心(2,1),注意到直线的倾斜角为π4,即斜率为1,从而直线l 的普通方程为y =x -1,从而其极坐标方程为ρsin θ=ρcos θ-1,即2·ρcos ⎝⎛⎭⎪⎫θ+π4=1.答案2·ρcos ⎝⎛⎭⎪⎫θ+π4=1 8.(2014·广东,14)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.解析 由ρsin 2θ=cos θ得ρ2sin 2θ=ρcos θ,其直角坐标方程为y 2=x ,ρsin θ=1的直角坐标方程为y =1,由⎩⎪⎨⎪⎧y 2=x ,y =1得C 1和C 2的交点为(1,1).答案 (1,1)9.(2013·湖北,16)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数,a >b >0),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为________. 解析 l 的直角坐标方程为x +y =m ,圆O 的直角坐标方程为x 2+y 2=b 2,由直线l 与圆O 相切,得m =±2b .从而椭圆的一个焦点为(2b ,0), 即c =2b ,所以a =3b ,则离心率e =c a =63. 答案6310.(2015·江苏,21)已知圆C 的极坐标方程为ρ2+22ρsin ⎝ ⎛⎭⎪⎫θ-π4-4=0,求圆C 的半径.解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝⎛⎭⎪⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0. 则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6,所以圆C 的半径为 6.11.(2014·辽宁,23)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程. 解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos ty =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0解得:⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.参数方程12.(2014·北京,3)曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上解析 曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的普通方程为(x +1)2+(y -2)2=1,该曲线为圆,圆心(-1,2)为曲线的对称中心,其在直线y =-2x 上,故选B. 答案 B13.(2014·江西,11(2))若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π4解析 ∵⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,∴y =1-x 化为极坐标方程为ρcos θ+ρsin θ=1,即ρ=1cos θ+sin θ.∵0≤x ≤1,∴线段在第一象限内(含端点),∴0≤θ≤π2.故选A.答案 A14.(2015·重庆,15)已知直线l的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析 直线l 的直角坐标方程为y =x +2,由ρ2cos 2θ=4得ρ2(cos 2θ-sin 2θ)=4,直角坐标方程为x 2-y 2=4,把y =x +2代入双曲线方程解得x =-2,因此交点为(-2,0),其极坐标为(2,π). 答案 (2,π)15.(2014·湖北,16)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.则C 1与C 2交点的直角坐标为________. 解析 曲线C 1为射线y =33x (x ≥0).曲线C 2为圆x 2+y 2=4.设P 为C 1与C 2的交点,如图,作PQ 垂直x 轴于点Q .因为tan ∠POQ =33,所以∠POQ =30°,又∵OP =2,所以C 1与C 2的交点P 的直角坐标为(3,1).答案 (3,1)16.(2013·陕西,15C)如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.解析 由三角函数定义知y x=tan θ(x ≠0),y =x tan θ,由x 2+y 2-x =0得,x 2+x 2tan2θ-x =0,x =11+tan 2θ=cos 2θ,则y =x tan θ=cos 2θtan θ= sin θcos θ,又θ=π2时,x =0,y =0也适合题意,故参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).答案 ⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数)17.(2013·重庆,15)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.解析 由极坐标方程ρcos θ=4,化为直角坐标方程可得x =4, 而由曲线参数方程消参得x 3=y 2,∴y 2=43=64,即y =±8,∴|AB |=|8-(-8)|=16. 答案 1618.(2015·福建,21(2))在平面直角坐标系xOy 中,圆C的参数方程为⎩⎪⎨⎪⎧x =1+3cos t ,y =-2+3sin t (t为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m (m ∈R ).①求圆C 的普通方程及直线l 的直角坐标方程; ②设圆心C 到直线l 的距离等于2,求m 的值.解 ①消去参数t ,得到圆C 的普通方程为(x -1)2+(y +2)2=9. 由2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m ,得ρsin θ-ρcos θ-m =0. 所以直线l 的直角坐标方程为x -y +m =0. ②依题意,圆心C 到直线l 的距离等于2, 即|1-(-2)+m |2=2,解得m =-3±2 2.19.(2015·湖南,16Ⅱ)已知直线l :⎩⎪⎨⎪⎧x =5+32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 解 (1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.② (2)将⎩⎪⎨⎪⎧x =5+32t ,y =3+12t 代入②式,得t 2+53t +18=0.设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知, |MA |·|MB |=|t 1t 2|=18.20.(2014·江苏,21C)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长. 解 将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝ ⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2.所以|AB |=|t 1-t 2|=8 2.。
2017届高考数学一轮复习坐标系与参数方程第一节坐标系课后作业
【创新方案】2017届高考数学一轮复习 坐标系与参数方程 第一节坐标系课后作业 理 选修4-41.在极坐标系中,求直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标.2.在极坐标系中,求曲线ρ=4cos ⎝ ⎛⎭⎪⎫θ-π3上任意两点间的距离的最大值.3.在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.4.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.5.(2016·贵州联考)已知在一个极坐标系中点C 的极坐标为⎝⎛⎭⎪⎫2,π3. (1)求出以C 为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形; (2)在直角坐标系中,以圆C 所在极坐标系的极点为原点,极轴为x 轴的正半轴建立直角坐标系,点P 是圆C 上任意一点,Q (5,-3),M 是线段PQ 的中点,当点P 在圆C 上运动时,求点M 的轨迹的普通方程.6.已知直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=4和圆C :ρ=2k cos ⎝ ⎛⎭⎪⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.答 案1.解:ρ(3cos θ-sin θ)=2化为直角坐标方程为3x -y =2,即y =3x -2. ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎪⎫2,π6.2.解:由ρ=4cos ⎝⎛⎭⎪⎫θ-π3可得ρ2=4ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=2ρcos θ+23ρsin θ,即得x 2+y 2=2x +23y ,配方可得(x -1)2+(y -3)2=4,该圆的半径为2,则圆上任意两点间距离的最大值为4.3.解:在ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32中令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0).因为圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4, 所以圆C 的半径PC =22+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.4.解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎪⎫θ+π4=22.5.解:(1)如图,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得,4+ρ2-4ρcos θ-π3=4,∴圆C 的极坐标方程为 ρ=4cos ⎝ ⎛⎭⎪⎫θ-π3. 作图如图所示.(2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α),又令M (x ,y ),由Q (5,-3),M 是线段PQ 的中点,得点M的轨迹的参数方程为⎩⎪⎨⎪⎧x =6+2cos α2,y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos α,y =sin α(α为参数),∴点M 的轨迹的普通方程为(x -3)2+y 2=1. 6.解:∵ρ=2k cos θ-2k sin θ, ∴ρ2=2k ρcos θ-2k ρsin θ,∴圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0, 即⎝ ⎛⎭⎪⎫x -22k 2+⎝ ⎛⎭⎪⎫y +22k 2=k 2, ∴圆心的直角坐标为⎝ ⎛⎭⎪⎫22k ,-22k .∵ρsin θ·22-ρcos θ·22=4, ∴直线l 的直角坐标方程为x -y +42=0, ∴⎪⎪⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |, 两边平方,得|k |=2k +3,∴⎩⎪⎨⎪⎧k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3,解得k =-1,故圆心C 的直角坐标为⎝ ⎛⎭⎪⎫-22,22.。
(全国通用)届高考数学一轮总复习第十七章坐标系与参数方程训练检测(PDF)理新人教B版【含答案】
������������
������������������������������������������������������������������������������������������������������������������������������������������
2
π 即 θ = ( ρɪR) 和 ρcos θ = 2. 2
6. 答案㊀
解析㊀ 直线与圆的直角坐标方程分别为 x - 3 y -1 = 0 和 x + y 2 = 2x,则该圆的圆心坐标为(1,0) ,半径 r = 1,圆心(1,0) 到直 | 1- 3 ˑ0-1 | 1+3
7π 得 A 点的直角坐标为(2,-2) ,从而点 A 到直线 由 A 2 2, 4
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
1 +( -1)
2
=
5 2 . 2
程后,计算圆心到直线的距离可得直线经过圆心, 从而可得 AB 即为直径.
思路分析㊀ 将直线与圆的极坐标方程分别化为直角坐标方
系中,曲线 C 1 和 C 2 的方程分别为 ρsin 2 θ = cos θ 和 ρsin θ = 1. 以
2017年全国卷高考数学复习专题——坐标系与参数方程
2017年全国卷高考数学复习专题——坐标系与参数方程考点一坐标系与极坐标1.(2014安徽,4,5分)以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是x=t+1,y=t-3(t为参数),圆C的极坐标方程是ρ=4cos θ,则直线l被圆C截得的弦长为( )A.14B.214C.2D.22答案 D2.(2014湖南,11,5分)在平面直角坐标系中,倾斜角为π4的直线l与曲线C:x=2+cosα,y=1+sinα(α为参数)交于A,B两点,且|AB|=2,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是. 答案2ρcos θ+π4=13.(2014广东,14,5分)(坐标系与参数方程选做题)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为.答案(1,1)4.(2014天津,13,5分)在以O为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a相交于A,B两点.若△AOB是等边三角形,则a的值为.答案 35.(2014重庆,15,5分)已知直线l的参数方程为x=2+t,y=3+t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ= .答案56.(2014陕西,15C,5分)(坐标系与参数方程选做题)在极坐标系中,点2,π6到直线ρsin θ-π6=1的距离是.答案 17.(2014辽宁,23,10分)选修4—4:坐标系与参数方程将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C的参数方程;(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.解析(1)设(x1,y1)为圆上的点,在已知变换下变为C上点(x,y),依题意,得x=x1, y=2y1,由x12+y12=1得x2+y22=1,即曲线C的方程为x2+y24=1.故C的参数方程为x=cos t,y=2sin t(t为参数).(2)由x2+y24=1,2x+y-2=0解得x=1,y=0或x=0,y=2.不妨设P1(1,0),P2(0,2),则线段P1P2的中点坐标为12,1,所求直线斜率为k=12,于是所求直线方程为y-1=12 x-12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 即ρ=34sinθ-2cosθ.考点二参数方程8.(2014北京,3,5分)曲线x=-1+cosθ,y=2+sinθ(θ为参数)的对称中心( )A.在直线y=2x上B.在直线y=-2x上C.在直线y=x-1上D.在直线y=x+1上答案 B9.(2014江西,11(2),5分)(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段y=1-x(0≤x≤1)的极坐标方程为( )A.ρ=1cosθ+sinθ,0≤θ≤π2B.ρ=1cosθ+sinθ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2 D.ρ=cos θ+sin θ,0≤θ≤π4答案 A10.(2014湖北,16,5分)选修4—4:坐标系与参数方程已知曲线C1的参数方程是x=t,y=3t3(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为.答案(3,1)11.(2014课标Ⅰ,23,10分)选修4—4:坐标系与参数方程已知曲线C:x 24+y 29=1,直线l:x =2+t ,y =2-2t(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A,求|PA|的最大值与最小值.解析 (1)曲线C 的参数方程为 x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x+y-6=0.(2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为 d= 55|4cos θ+3sin θ-6|. 则|PA|=dsin 30°=2 55|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为22 55.当sin(θ+α)=1时,|PA|取得最小值,最小值为2 55.12.(2014课标Ⅱ,23,10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈ 0,π2 . (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l:y= 3x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解析 (1)C 的普通方程为(x-1)2+y 2=1(0≤y≤1).可得C 的参数方程为 x =1+cos t ,y =sin t(t 为参数,0≤t≤π).(2)设D(1+cos t,sin t).由(1)知C 是以G(1,0)为圆心,1为半径的上半圆. 因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t= 3,t=π3. 故D 的直角坐标为 1+cosπ 3,sin π3 ,即 32,32. 13.(2014江苏,21C,10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为x =1- 22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A,B 两点,求线段AB 的长.解析将直线l的参数方程x=1-22t,y=2+22t代入抛物线方程y2=4x,得2+2 2t2=41-22t,解得t1=0,t2=-82.所以AB=|t1-t2|=82.14.(2014福建,21(2),7分)选修4—4:坐标系与参数方程已知直线l的参数方程为x=a-2t,y=-4t(t为参数),圆C的参数方程为x=4cosθ,y=4sinθ(θ为参数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.解析(1)直线l的普通方程为2x-y-2a=0,圆C的普通方程为x2+y2=16.(2)因为直线l与圆C有公共点,故圆C的圆心到直线l的距离d=5≤4,解得-25≤a≤25.。
2017届高三数学人教版A版数学(理)高考一轮复习教案:选修4-4 坐标系与参数方程 Word版含答案
选修4-4 坐标系与参数方程 1.坐标系与极坐标 (1)理解坐标系的作用.(2)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标与直角坐标的互化.(3)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示图形时选择坐标系的意义.2.参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.知识点一 极坐标系 1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,点O 叫作极点,自极点O 引一条射线Ox ,Ox 叫作极轴;再选定一个长度单位、一个角度单位及其正方向,这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫作点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫作点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫作点M 的极坐标,记作M (ρ,θ). 2.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0).易误提醒1.极坐标方程与直角坐标方程的互化易错用互化公式.在解决此类问题时考生要注意两个方面:一是准确应用公式,二是注意方程中的限制条件.2.在极坐标系下,点的极坐标不唯一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π),(-ρ,π+θ+2k π)(k ∈Z )表示同一点的坐标.[自测练习]1.设平面上的伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,则在这一坐标变换下正弦曲线y=sin x 的方程变为________.解析:由⎩⎪⎨⎪⎧ x ′=12x ,y ′=3y .知⎩⎪⎨⎪⎧x =2x ′,y =13y ′.代入y =sin x 中得y ′=3sin 2x ′. 答案:y ′=3sin 2x ′2.点P 的直角坐标为(1,-3),则点P 的极坐标为________.解析:因为点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3,所以点P 的极坐标为⎝⎛⎭⎫2,-π3. 答案:⎝⎛⎭⎫2,-π3 3.(2015·高考北京卷)在极坐标系中,点⎝⎛⎭⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离为________.解析:点⎝⎛⎭⎫2,π3的直角坐标为(1,3),直线ρ(cos θ+3sin θ)=6的直角坐标方程为x +3y -6=0,所以点(1,3)到直线的距离d =|1+3×3-6|1+3=1.答案:1知识点二 参数方程 参数方程的概念一般地,在平面直角坐标系中,如果曲线C 上任意一点P 的坐标x ,y 是某个变数t 的函数⎩⎪⎨⎪⎧ x =f (t ),y =g (t ),并且对于t 的每一个允许值,由函数式⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点P (x ,y )都在曲线C 上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )叫作这条曲线的参数方程,变数t 叫作参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫作普通方程.易误提醒1.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致,否则不等价. 2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义,且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.[自测练习]4.在平面直角坐标系中,曲线C :⎩⎨⎧x =2+22t ,y =1+22t ,(t 为参数)的普通方程为________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0.答案:x -y -1=05.在平面直角坐标系xOy 中,过椭圆⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线截椭圆所得的弦长为________. 解析:椭圆的普通方程为x 24+y 23=1,则右焦点的坐标为(1,0).直线的普通方程为x -2y+2=0,过点(1,0)与直线x -2y +2=0平行的直线方程为x -2y -1=0,由⎩⎪⎨⎪⎧x 24+y 23=1,x -2y -1=0,得4x 2-2x -11=0,所以所求的弦长为1+⎝⎛⎭⎫122×⎝⎛⎭⎫122-4×⎝⎛⎭⎫-114=154.答案:154考点一 曲线的极坐标方程|1.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为:x 2+y 2=x +y , 即x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎫1,π2. 2.(2016·长春模拟)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2.(1)将圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4. 因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2. 所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎫θ+π4=22.直角坐标化为极坐标的关注点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ∈[0,2π)的值.考点二 曲线的参数方程|1.已知曲线C 1:⎩⎪⎨⎪⎧ x =-4+cos t ,y =3+sin t ,(t 为参数)曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ.(θ为参数)(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t (t 为参数)的距离的最小值. 解:(1)曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M ⎝⎛⎭⎫-2+4cos θ,2+32sin θ.曲线C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|,从而当cos θ=45,sin θ=-35时,d 取最小值855.2.已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ.(θ为参数)直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|.则|P A |=d sin 30°=255|5sin(θ+α)-6|, 其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.参数方程化为普通方程,主要用“消元法”消参,常用代入法、加减消元法、利用三角恒等式消元等.在参数方程化为普通方程时,要注意保持同解变形.考点三 极坐标方程、参数方程的综合应用|(2015·高考全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos αy =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.[解] (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2016·昆明模拟)在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O为极点,以x轴正半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cos θ.(1)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(2)若曲线C与直线l相交于不同的两点M、N,求|PM|+|PN|的取值范围.解:(1)直线l的参数方程:⎩⎪⎨⎪⎧x=4+t cos αy=2+t sin α(t为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴C:x2+y2=4x.(2)直线l的参数方程:⎩⎪⎨⎪⎧x=4+t cos αy=2+t sin α(t为参数),代入x2+y2=4x,得t2+4(sin α+cos α)t+4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t1+t2=-4(sin α+cos α),t1t2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t1<0,t2<0.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4(sin α+cos α)=42sin⎝⎛⎭⎫α+π4,由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4,∴22<sin⎝⎛⎭⎫α+π4≤1,故|PM|+|PN|的取值范围是(4,4 2 ].33.直线参数方程中参数t几何意义的应用【典例】 已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θy =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|P A |·|PB |的值.[思维点拨] (1)根据条件写出l 的参数方程及化曲线C 为标准方程. (2)利用t 的几何意义求解|P A |·|PB |的值. [解] (1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎨⎧x =3+12ty =5+32t (t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0, 设t 1,t 2是方程的两个根,则t 1t 2=-3, 所以|P A ||PB |=|t 1||t 2|=|t 1t 2|=3.[方法点评] 过定点M 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t为参数)该参数t 经常用在直线截圆锥曲线的距离问题中,解题时通常过某定点作一直线与圆锥曲线相交于A ,B 两点,所求问题与定点到A ,B 两点的距离有关.解题时主要应用定点在直线AB 上,利用参数t 的几何意义,结合根与系数的关系进行处理,巧妙求出问题的解.[跟踪练习] (2016·大庆模拟)在平面直角坐标系xOy 中,已知直线l 经过点P ⎝⎛⎭⎫12,1,倾斜角α=π6.在极坐标系(与直角坐标系xOy 取相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4. (1)写出直线l 的参数方程,并把圆C 的极坐标方程化为直角坐标方程; (2)设l 与圆C 相交于A ,B 两点,求|P A |+|PB |的值.解:(1)直线l 的参数方程为⎩⎨⎧x =12+t cos π6,y =1+t sin π6,(t 为参数),即⎩⎨⎧x =12+32t ,y =1+12t ,(t 为参数).由ρ=22cos ⎝⎛⎭⎫θ-π4得:ρ=2cos θ+2sin θ, ∴ρ2=2ρcos θ+2ρsin θ,∴x 2+y 2=2x +2y , 故圆C 的直角坐标方程为(x -1)2+(y -1)2=2. (2)把⎩⎨⎧x =12+32t y =1+12t (t 为参数)代入(x -1)2+(y -1)2=2得t 2-32t -74=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=32,t 1t 2=-74, ∴|P A |+|PB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=312.A 组 考点能力演练1.(1)化圆的直角坐标方程x 2+y 2=r 2(r >0)为极坐标方程; (2)化曲线的极坐标方程ρ=8sin θ为直角坐标方程.解:(1)将x =ρcos θ,y =ρsin θ代入x 2+y 2=r 2,得ρ2cos 2 θ+ρ2sin 2 θ=r 2,ρ2(cos 2 θ+sin 2 θ)=r 2,ρ=r .所以,以极点为圆心、半径为r 的圆的极坐标方程为ρ=r (0≤θ<2π).(2)法一:把ρ=x 2+y 2,sin θ=yρ代入ρ=8sin θ,得x 2+y 2=8·y x 2+y 2,即x 2+y 2-8y =0.法二:方程两边同时乘以ρ,得ρ2=8ρsin θ,即x 2+y 2-8y =0.2.(2016·济宁模拟)已知直线l :ρsin ⎝⎛⎭⎫θ-π4=4和圆C :ρ=2k cos ⎝⎛⎭⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.解:∵ρ=2k cos θ-2k sin θ, ∴ρ2=2kρcos θ-2kρsin θ,∴圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0,即⎝⎛⎭⎫x -22k 2+⎝⎛⎭⎫y +22k 2=k 2, ∴圆心的直角坐标为⎝⎛⎭⎫22k ,-22k .∵ρsin θ·22-ρcos θ·22=4,∴直线l 的直角坐标方程为x -y +42=0,∴⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |,两边平方,得|k |=2k +3,∴⎩⎪⎨⎪⎧ k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3, 解得k =-1,故圆心C 的直角坐标为⎝⎛⎭⎫-22,22. 3.在极坐标系中,曲线C 的方程为ρ2=31+2sin 2 θ,点R ⎝⎛⎭⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值及此时P 点的直角坐标.解:(1)∵x =ρcos θ,y =ρsin θ, ∴曲线C 的直角坐标方程为x 23+y 2=1,点R 的直角坐标为R (2,2). (2)设P (3cos θ,sin θ),根据题意可得|PQ |=2-3cos θ,|QR |=2-sin θ, ∴|PQ |+|QR |=4-2sin (θ+60°), 当θ=30°时,|PQ |+|QR |取最小值2, ∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝⎛⎭⎫32,12.4.(2016·长春模拟)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,已知点P 的直角坐标为(1,-5),点C 的极坐标为⎝⎛⎭⎫4,π2,若直线l 过点P ,且倾斜角为π3,圆C 的半径为4.(1)求直线l 的参数方程和圆C 的极坐标方程.(2)试判断直线l 与圆C 的位置关系.解:(1)直线l 的参数方程为⎩⎨⎧x =1+t cos π3,y =-5+t sin π3,(t 为参数),即⎩⎨⎧x =1+12t ,y =-5+32t ,(t为参数).由题知C 点的直角坐标为(0,4),圆C 的半径为4,∴圆C 方程为x 2+(y -4)2=16,将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入得,圆C 的极坐标方程为ρ=8sin θ. (2)由题意得,直线l 的普通方程为3x -y -5-3=0,圆心C 到l 的距离为d =|-4-5-3|2=9+32>4,∴直线l 与圆C 相离.5.倾斜角为α的直线l 过点P (8,2),直线l 和曲线C :⎩⎨⎧x =42cos θ,y =2sin θ,(θ为参数)交于不同的两点M 1,M 2.(1)将曲线C 的参数方程化为普通方程,并写出直线l 的参数方程; (2)求|PM 1|·|PM 2|的取值范围.解:(1)曲线C 的普通方程为x 232+y 24=1,直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α,(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32, 整理得(8sin 2 α+cos 2 α)t 2+(16cos α+32sin α)t +64=0,由Δ=(16cos α+32sin α)2-4×64(8sin 2 α+cos 2 α)>0,得cos α>sin α,故α∈⎣⎡⎭⎫0,π4, ∴|PM 1||PM 2|=|t 1t 2|=641+7sin 2 α∈⎝⎛⎦⎤1289,64. B 组 高考题型专练1.(2015·高考广东卷改编)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,求点A 到直线l 的距离. 解:由2ρsin ⎝⎛⎭⎫θ-π4=2得2ρ⎝⎛⎭⎫22sin θ-22cos θ=2,所以y -x =1,故直线l 的直角坐标方程为x -y +1=0,而点A ⎝⎛⎭⎫22,7π4对应的直角坐标为A (2,-2),所以点A (2,-2)到直线l :x -y +1=0的距离为|2+2+1|2=522.2.(2015·高考全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0, 解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.3.(2015·高考湖南卷)已知直线l :⎩⎨⎧x =5+32t ,y =3+12t ,(t 为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 解:(1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(2)将⎩⎨⎧x =5+32t ,y =3+12t ,代入②,得t 2+53t +18=0,设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义知,|MA |·|MB |=|t 1t 2|=18.4.(2015·高考陕西卷)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t ,(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P ⎝⎛⎭⎫3+12t ,32t ,又C (0,3),则|PC |=⎝⎛⎭⎫3+12t 2+⎝⎛⎭⎫32t -32=t 2+12, 故当t =0时,|PC |取得最小值, 此时,P 点的直角坐标为(3,0).。
2017年广西南宁市高考数学一模试卷(理科) 有答案
2017年广西南宁市高考数学一模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x2+5x>0},B={x|﹣3<x<4},则A∩B等于()A.(﹣5,0)B.(﹣3,0)C.(0,4) D.(﹣5,4)2.已知复数z满足=(a∈R),若z的虚部为﹣3,则z的实部为()A.﹣1 B.1 C.3 D.53.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在()A.第3组B.第4组C.第5组D.第6组4.已知数列{a n}满足:=,且a2=2,则a4等于()A.﹣ B.23 C.12 D.115.已知角θ的终边过点(2sin2﹣1,a),若sinθ=2sin cos,则实数a等于()A.﹣B.﹣C.±D.±6.执行如图的程序框图,若输入k的值为3,则输出S的值为()A.10 B.15 C.18 D.217.已知非零向量、满足|﹣|=|+2|,且与的夹角的余弦值为﹣,则等于()A.B.C.D.28.如果实数x,y满足约束条件,则z=3x+2y+的最大值为()A.7 B.8 C.9 D.119.如图是某几何体的三视图,则该几何体的体积为()A.12 B.15 C.18 D.2110.已知函数f(x)=设m>n≥﹣1,且f(m)=f(n),则m•f(m)的最小值为()A.4 B.2 C.D.211.已知双曲线C:﹣=1(a>0,b>0)的左焦点为F(﹣c,0),M、N在双曲线C上,O是坐标原点,若四边形OFMN为平行四边形,且四边形OFMN的面积为cb,则双曲线C的离心率为()A.B.2 C.2 D.212.已知函数f(x)=﹣x2﹣6x﹣3,g(x)=2x3+3x2﹣12x+9,m<﹣2,若∀x1∈[m,﹣2),∃x2∈(0,+∞),使得f(x1)=g(x2)成立,则m的最小值为()A.﹣5 B.﹣4 C.﹣2D.﹣3二、填空题(共4小题,每小题5分,满分20分)13.(+3)(﹣)5的展开式中的常数项为.14.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2)是抛物线C上一点,圆M与y轴相切且与线段MF相交于点A,若=2,则p=.15.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细.在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M,现将该金杖截成长度相等的10段,记第i段的重量为a i(i=1,2,…,10),且a1<a2<…<a10,若48a i=5M,则i=.16.在长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为3的正方形,AA1=3,E是线段A1B1上一点,若二面角A﹣BD﹣E的正切值为3,则三棱锥A﹣A1D1E外接球的表面积为.三、解答题17.在△ABC中,角A,B,C所对的边分别为a,b,c,且accosB﹣bccosA=3b2.(1)求的值;(2)若角C为锐角,c=,sinC=,求△ABC的面积.18.某中学是走读中学,为了让学生更有效率利用下午放学后的时间,学校在本学期第一次月考后设立了多间自习室,以便让学生在自习室自主学习、完成作业,同时每天派老师轮流值班.在本学期第二次月考后,高一某班数学老师统计了两次考试该班数学成绩优良人数和非优良人数,得到如下2×2列联表:的前提下认为设立自习室对提高学生成绩有效;(2)设从该班第一次月考的所有学生的数学成绩中任取2个,取到优良成绩的个数为X,从该班第二次月考的所有学生的数学成绩中任取2个,取到优良成绩的个数为Y,求X与Y的期望并比较大小,请解释所得结论的实际意义.下面的临界值表供参考:(参考公式:K2=,其中n=a+b+c+d)19.如图,在四棱锥A﹣BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.(1)若F是AD的中点,求证:EF∥平面ABC;(2)若AD=DE,求BE与平面ACE所成角的正弦值.20.已知F1(﹣c,0)、F2(c、0)分别是椭圆G: +=1(0<b<a<3)的左、右焦点,点P(2,)是椭圆G上一点,且|PF1|﹣|PF2|=a.(1)求椭圆G的方程;(2)设直线l与椭圆G相交于A、B两点,若⊥,其中O为坐标原点,判断O到直线l的距离是否为定值?若是,求出该定值,若不是,请说明理由.21.已知函数f(x)=x﹣alnx,(a∈R).(1)讨论函数f(x)在定义域内的极值点的个数;(2)设g(x)=﹣,若不等式f(x)>g(x)对任意x∈[1,e]恒成立,求a的取值范围.请考生在第22、23题中任选一题作答,如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.[选修4-5:不等式选讲]23.设实数x,y满足x+=1.(1)若|7﹣y|<2x+3,求x的取值范围;(2)若x>0,y>0,求证:≥xy.2017年广西南宁市高考数学一模试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x2+5x>0},B={x|﹣3<x<4},则A∩B等于()A.(﹣5,0)B.(﹣3,0)C.(0,4) D.(﹣5,4)【考点】交集及其运算.【分析】求出关于A的解集,从而求出A与B的交集.【解答】解:∵A={x||x2+5x>0}={x|x<﹣5或x>0},B={x|﹣3<x<4},∴A∩B={x|0<x<4},故选:C.2.已知复数z满足=(a∈R),若z的虚部为﹣3,则z的实部为()A.﹣1 B.1 C.3 D.5【考点】复数代数形式的乘除运算.【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由z的虚部为﹣3求得a值,则答案可求.【解答】解:∵=,∴=(2+ai)(1﹣i)=2+a+(a﹣2)i,∴a﹣2=﹣3,即a=﹣1.∴实部为2+a=2﹣1=1.故选:B.3.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在()A .第3组B .第4组C .第5组D .第6组 【考点】频率分布直方图.【分析】根据频率分布直方图求出前4组的频数为22,且第四组的频数8,即可得到答案. 【解答】解:由图可得,前第四组的频率为(0.0375+0.0625+0.075+0.1)×2=0.55, 则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8, 故中位数落在第4组, 故选:B4.已知数列{a n }满足: =,且a 2=2,则a 4等于( )A .﹣B .23C .12D .11 【考点】等比数列的通项公式.【分析】数列{a n }满足:=,可得a n +1+1=2(a n +1),利用等比数列的通项公式即可得出.【解答】解:∵数列{a n }满足: =,∴a n +1+1=2(a n +1),即数列{a n +1}是等比数列,公比为2.则a 4+1=22(a 2+1)=12,解得a 4=11. 故选:D .5.已知角θ的终边过点(2sin 2﹣1,a ),若sinθ=2sin cos ,则实数a 等于( )A .﹣B .﹣C .±D .±【考点】任意角的三角函数的定义.【分析】利用二倍角公式化简,再利用正弦函数的定义,建立方程,即可得出结论.【解答】解:2sin 2﹣1=﹣cos=﹣,2sincos =﹣,∵角θ的终边过点(2sin2﹣1,a),sinθ=2sin cos,∴=﹣,∴a=﹣,故选B.6.执行如图的程序框图,若输入k的值为3,则输出S的值为()A.10 B.15 C.18 D.21【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的n,S的值,当n=5,S=15时,不满足条件S<kn=15,退出循环,输出S的值为15,即可得解.【解答】解:模拟程序的运行,可得k=3,n=1,S=1满足条件S<kn,执行循环体,n=2,S=3满足条件S<kn,执行循环体,n=3,S=6满足条件S<kn,执行循环体,n=4,S=10满足条件S<kn,执行循环体,n=5,S=15此时,不满足条件S<kn=15,退出循环,输出S的值为15.故选:B.7.已知非零向量、满足|﹣|=|+2|,且与的夹角的余弦值为﹣,则等于()A.B.C.D.2【考点】平面向量数量积的运算.【分析】由向量的平方即为模的平方.可得•=﹣2,再由向量的夹角公式:cos<,>=,化简即可得到所求值.【解答】解:非零向量、满足|﹣|=|+2|,即有(﹣)2=(+2)2,即为2+2﹣2•=2+4•+42,化为•=﹣2,由与的夹角的余弦值为﹣,可得cos<,>=﹣==,化简可得=2.故选:D.8.如果实数x,y满足约束条件,则z=3x+2y+的最大值为()A.7 B.8 C.9 D.11【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移直线,得到最优解,求出斜率的最值,即可求z的最大值.【解答】解:作出不等式对应的平面区域(阴影部分),由u=3x+2y,平移直线u=3x+2y,由图象可知当直线u=3x+2y经过点A时,直线u=3x+2y的截距最大,此时u最大.而且也恰好是AO的连线时,取得最大值,由,解得A(1,2).此时z的最大值为z=3×1+2×2+=9,故选:C.9.如图是某几何体的三视图,则该几何体的体积为()A.12 B.15 C.18 D.21【考点】棱柱、棱锥、棱台的体积.【分析】由已知中的三视图可得:该几何体是一个长宽高分别为4,3,3的长方体,切去一半得到的,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个长宽高分别为4,3,3的长方体,切去一半得到的,其直观图如下所示:其体积为:×4×3×3=18,故选:C10.已知函数f (x )=设m >n ≥﹣1,且f (m )=f (n ),则m•f (m )的最小值为( )A .4B .2C .D .2【考点】函数的最值及其几何意义;分段函数的应用.【分析】做出f (x )的图象,根据图象判断m 的范围,利用基本不等式得出最小值. 【解答】解:做出f (x )的函数图象如图所示:∵f (m )=f (n ),m >n ≥﹣1, ∴1≤m <4,∴mf (m )=m (1+)=m +≥2.当且仅当m=时取等号.故选:D .11.已知双曲线C :﹣=1(a >0,b >0)的左焦点为F (﹣c ,0),M 、N 在双曲线C 上,O 是坐标原点,若四边形OFMN 为平行四边形,且四边形OFMN 的面积为cb ,则双曲线C 的离心率为( )A .B .2C .2D .2【考点】双曲线的简单性质.【分析】设M (x 0,y 0),y 0>0,由四边形OFMN 为平行四边形,四边形OFMN 的面积为cb ,由x 0=﹣,丨y 0丨=b ,代入双曲线方程,由离心率公式,即可求得双曲线C 的离心率.【解答】解:双曲线C :﹣=1(a >0,b >0)焦点在x 轴上,设M (x 0,y 0),y 0>0,由四边形OFMN 为平行四边形,∴x 0=﹣,四边形OFMN 的面积为cb ,∴丨y 0丨c=cb ,即丨y 0丨=b ,∴M (﹣,b ),代入双曲线可得:﹣=1,整理得:,由e=,∴e 2=12,由e >1,解得:e=2,故选D .12.已知函数f (x )=﹣x 2﹣6x ﹣3,g (x )=2x 3+3x 2﹣12x +9,m <﹣2,若∀x 1∈[m ,﹣2),∃x 2∈(0,+∞),使得f (x 1)=g (x 2)成立,则m 的最小值为( )A .﹣5B .﹣4C .﹣2D .﹣3【考点】函数的最值及其几何意义.【分析】利用导数先求出函数g (x )的最小值,再根据函数f (x )的图象和性质,即可求出m 的最小值【解答】解:∵g (x )=2x 3+3x 2﹣12x +9, ∴g′(x )=6x 2+6x ﹣12=6(x +2)(x ﹣1),则当0<x <1时,g′(x )<0,函数g (x )递减, 当x >1时,g′(x )>0,函数g (x )递增, ∴g (x )min =g (1)=2,∵f(x)=﹣x2﹣6x﹣3=﹣(x+3)2+6≤6,作函数y=f(x)的图象,如图所示,当f(x)=2时,方程两根分别为﹣5和﹣1,则m的最小值为﹣5,故选:A二、填空题(共4小题,每小题5分,满分20分)13.(+3)(﹣)5的展开式中的常数项为40.【考点】二项式定理的应用.【分析】把(﹣)5按照二项式定理展开,可得(+3)(﹣)5的展开式中的常数项.【解答】解:(+3)(﹣)5 =(+3)(﹣•2x+•4﹣•8x﹣2+•16﹣•32x ﹣5),故展开式中的常数项为•4=40,故答案为:40.14.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2)是抛物线C上一点,圆M与y轴相切且与线段MF相交于点A,若=2,则p=2.【考点】抛物线的简单性质.【分析】设M到准线的距离为|MB|,则|MB|=|MF|,利用=2,得x0=p,即可得出结论.【解答】解:设M到准线的距离为|MB|,则|MB|=|MF|,∵=2,∴x0=p,∴2p2=8,∵p>0,∴p=2.故答案为2.15.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细.在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M,现将该金杖截成长度相等的10段,记第i段的重量为a i(i=1,2,…,10),且a1<a2<…<a10,若48a i=5M,则i=6.【考点】等差数列的通项公式.【分析】由题意知由细到粗每段的重量成等差数列,记为{a n}且设公差为d,由条件和等差数列的通项公式列出方程组,求出a1和d值,由等差数列的前n项和公式求出该金杖的总重量M,代入已知的式子化简求出i的值.【解答】解:由题意知由细到粗每段的重量成等差数列,记为{a n},设公差为d,则,解得a1=,d=,所以该金杖的总重量M==15,因为48a i=5M,所以48[+(i﹣1)×]=25,即39+6i=75,解得i=6,故答案为:6.16.在长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为3的正方形,AA1=3,E是线段A1B1上一点,若二面角A﹣BD﹣E的正切值为3,则三棱锥A﹣A1D1E外接球的表面积为35π.【考点】球的体积和表面积.【分析】如图所示,求出三棱锥A﹣A1D1E外接球的直径为,问题得以解决.【解答】解:过点E作EF∥AA1交AB于F,过F作FG⊥BD于G,连接EG,则∠EGF为二面角A﹣BD﹣E的平面角,∵tan∠EGF=3,∴=3,∵EF=AA1=3,∴FG=1,则BF==B 1E,∴A1E=2,则三棱锥A﹣A1D1E外接球的直径为=,则其表面积为35π,故答案为:35π三、解答题17.在△ABC中,角A,B,C所对的边分别为a,b,c,且accosB﹣bccosA=3b2.(1)求的值;(2)若角C为锐角,c=,sinC=,求△ABC的面积.【考点】正弦定理.【分析】(1)根据余弦公式求出a2=4b2,根据正弦定理求出的值即可;(2)求出cosC的值,得到=以及==2,求出a,b的值,求出三角形的面积即可.【解答】解:(1)∵accosB﹣bccosA=3b2,∴﹣=3b2,∴a2﹣b2=3b2,∴a2=4b2,∴=4,∴=2;(2)若角C为锐角,sinC=,∴cosC>0,∴cosC==,∴=,∴=①,由(1)得,==2②,联立①②得:b=,a=2,∴S=absinC=•2•=2.18.某中学是走读中学,为了让学生更有效率利用下午放学后的时间,学校在本学期第一次月考后设立了多间自习室,以便让学生在自习室自主学习、完成作业,同时每天派老师轮流值班.在本学期第二次月考后,高一某班数学老师统计了两次考试该班数学成绩优良人数和非优良人数,得到如下2×2列联表:的前提下认为设立自习室对提高学生成绩有效;(2)设从该班第一次月考的所有学生的数学成绩中任取2个,取到优良成绩的个数为X,从该班第二次月考的所有学生的数学成绩中任取2个,取到优良成绩的个数为Y,求X与Y的期望并比较大小,请解释所得结论的实际意义.下面的临界值表供参考:(参考公式:K2=,其中n=a+b+c+d)【考点】独立性检验的应用;离散型随机变量的期望与方差.【分析】(1)求出K2,与临界值比较,即可得出能在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;(2)求出期望,即可得出结论.【解答】解:(1)由题意,K2==>7.879,∴能在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;(2)X的取值为0,1,2,则P(X=0)==,P(X=1)==,P(X=2)==,∴E(X)=0×=.Y的取值为0,1,2,则:P(Y=0)==,P(Y=1)==,P(Y=2)==,E(Y)==.也即EX<EY,其实际含义即表明设立自习室有效.19.如图,在四棱锥A﹣BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.(1)若F是AD的中点,求证:EF∥平面ABC;(2)若AD=DE,求BE与平面ACE所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(1)取DB中点G,连结EG、FG.证面EGF∥平面ABC,即可得EF∥平面ABC.(2)以点D为原点,建立如图所示的直角坐标系D﹣xyz,则A(0,0,),E(0,,0),B(2,0,0),C(,,0).求出平面ACE的法向量即可【解答】证明:(1)取DB中点G,连结EG、FG.∵F是AD的中点,∴FG∥AB.∵BD=2CE,∴BG=CE.∵∠DBC=∠BCE∴E、G到直线BC的距离相等,则BG∥CB,∵EG∩FG=G∴面EGF∥平面ABC,则EF∥平面ABC.解:(2)以点D为原点,建立如图所示的直角坐标系D﹣xyz,设EC=1,则DB=2,取BC中点C,则EG∥BC,∴BC=3,∵AD=DE,则A(0,0,),E(0,,0),B(2,0,0),C(,,0).,.设平面ACE的法向量,,令y=1,则,|cos|=.∴BE与平面ACE所成角的正弦值为:20.已知F1(﹣c,0)、F2(c、0)分别是椭圆G: +=1(0<b<a<3)的左、右焦点,点P(2,)是椭圆G上一点,且|PF1|﹣|PF2|=a.(1)求椭圆G的方程;(2)设直线l与椭圆G相交于A、B两点,若⊥,其中O为坐标原点,判断O到直线l的距离是否为定值?若是,求出该定值,若不是,请说明理由.【考点】椭圆的简单性质.【分析】(1)根据椭圆的定义,求得丨PF1丨=a=3|PF2|,根据点到直线的距离公式,即可求得c的值,则求得a的值,b2=a2﹣c2=4,即可求得椭圆方程;(2)当直线l⊥x轴,将直线x=m代入椭圆方程,求得A和B点坐标,由向量数量积的坐标运算,即可求得m的值,求得O到直线l的距离;当直线AB的斜率存在时,设直线方程,代入椭圆方程,由韦达定理及向量数量积的坐标运算,点到直线的距离公式,即可求得O到直线l的距离为定值.【解答】解:(1)由椭圆的定义可知:|PF1|+|PF2|=2a.由|PF1|﹣|PF2|=a.∴丨PF1丨=a=3|PF2|,则=3,化简得:c2﹣5c+6=0,由c<a<3,∴c=2,则丨PF1丨=3=a,则a=2,b2=a2﹣c2=4,∴椭圆的标准方程为:;(2)由题意可知,直线l不过原点,设A(x1,x2),B(x2,y2),①当直线l⊥x轴,直线l的方程x=m,(m≠0),且﹣2<m<2,则x1=m,y1=,x2=m,y2=﹣,由⊥,∴x1x2+y1y2=0,即m2﹣(4﹣)=0,解得:m=±,故直线l的方程为x=±,∴原点O到直线l的距离d=,②当直线AB的斜率存在时,设直线AB的方程为y=kx+n,则,消去y整理得:(1+2k2)x2+4knx+2n2﹣8=0,x1+x2=﹣,x1x2=,则y1y2=(kx1+n)(kx2+n)=k2x1x2+kn(x1+x2)+n2=,由⊥,∴x1x2+y1y2=0,故+=0,整理得:3n2﹣8k2﹣8=0,即3n2=8k2+8,①则原点O到直线l的距离d=,∴d2=()2==,②将①代入②,则d2==,∴d=,综上可知:点O到直线l的距离为定值.21.已知函数f(x)=x﹣alnx,(a∈R).(1)讨论函数f(x)在定义域内的极值点的个数;(2)设g(x)=﹣,若不等式f(x)>g(x)对任意x∈[1,e]恒成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(1)先求导,再分类讨论,得到函数的单调区间,从而求出函数的极值点的个数;(2)由题意,只要求出函数f(x)min>0即可,利用导数和函数的最值的关系,进行分类讨论,即可得到a的范围.【解答】解:(1)f(x)=x﹣alnx,(x>0),f′(x)=1﹣=,①a≤0时,f′(x)>0,f(x)递增,f(x)无极值;②a>0时,令f′(x)>0,解得:x>a,令f′(x)<0,解得:0<x<a,∴f(x)在(0,a)递减,在(a,+∞)递增,f(x)有1个极小值点;(2)若不等式f(x)>g(x)对任意x∈[1,e]恒成立,>0在[1,e]恒成立,令h(x)=f(x)﹣g(x),即h(x)最小值则h(x)=x﹣alnx+(a∈R),∴h′(x)=1﹣﹣=,①当1+a≤0,即a≤﹣1时,在[1,e]上为增函数,f(x)min=f(1)=1+1+a>0,解得:a>﹣2,即﹣2<a≤﹣1,当a>﹣1时①当1+a≥e时,即a≥e﹣1时,f(x)在[1,e]上单调递减,∴f(x)min=f(e)=e+﹣a>0,解得a<,∵>e﹣1,∴e﹣1≤a<;②当0<1+a≤1,即﹣1<a≤0,f(x)在[1,e]上单调递增,∴f(x)min=f(1)=1+1+a>0,解得a>﹣2,故﹣2<a<﹣1;③当1<1+a<e,即0<a<e﹣1时,f(x)min=f(1+a),∵0<ln(1+a)<1,∴0<aln(1+a)<a,∴f(1+a)=a+2﹣aln(1+a)>2,此时f(1+a)>0成立,综上,﹣2<a<时,不等式f(x)>g(x)对任意x∈[1,e]恒成立.请考生在第22、23题中任选一题作答,如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)对于曲线C:由ρ=4cosθ可得ρ2=4ρcosθ,坐标化即可,对于l,消去t整理可得;(2)由(1)可知圆和半径,可得弦心距,进而可得弦长,可得面积.【解答】解:(1)对于曲线C:由ρ=4cosθ,得ρ2=4ρcosθ,∴x2+y2=4x.对于l:由(t为参数),消去t可得,化为一般式可得;(2)由(1)可知C为圆,且圆心为(2,0),半径为2,∴弦心距,∴弦长,∴以PQ为边的圆C的内接矩形面积[选修4-5:不等式选讲]23.设实数x,y满足x+=1.(1)若|7﹣y|<2x+3,求x的取值范围;(2)若x>0,y>0,求证:≥xy.【考点】不等式的证明;绝对值不等式的解法.【分析】(1)根据题意,由x+=1,则y=4﹣4x,则|7﹣y|<2x+3,可得|4x+3|<2x+3,解可得x的范围,即可得答案;(2)根据题意,由基本不等式可得1=x+≥2=,即≤1,用作差法分析可得﹣xy=(1﹣),结合的范围,可得﹣xy≥0,即可得证明.【解答】解:(1)根据题意,若x+=1,则4x+y=4,即y=4﹣4x,则由|7﹣y|<2x+3,可得|4x+3|<2x+3,即﹣(2x+3)<4x+3<2x+3,解可得﹣1<x<0;(2)证明:x>0,y>0,1=x+≥2=,即≤1,﹣xy=(1﹣),又由0<≤1,则﹣xy=(1﹣)≥0,即≥xy.。
2017版高考数学一轮总复习第13章坐标系与参数方程模拟创新题理
【大高考】2017版高考数学一轮总复习 第13章 坐标系与参数方程模拟创新题 理一、选择题1.(2016·河北石家庄调研)在极坐标系中,过点⎝⎛⎭⎪⎫2,π2且与极轴平行的直线方程是( )A.ρ=2B.θ=π2C.ρcos θ=2D.ρsin θ=2解析 先将极坐标化成直角坐标表示,⎝⎛⎭⎪⎫2,π2化为(0,2),过(0,2)且平行于x 轴的直线为y =2,再化成极坐标表示,即ρsin θ=2.故选D. 答案 D 二、填空题2.(2016·郑州调研)在平面直角坐标系下,曲线C 1:⎩⎪⎨⎪⎧x =2t +2a ,y =-t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =2sin θ,y =1+2cos θ(θ为参数),若曲线C 1,C 2有公共点,则实数a 的取值范围是________. 解析 曲线C 1的直角坐标方程为x +2y -2a =0,曲线C 2的直角坐标方程为x 2+(y -1)2=4,圆心为(0,1),半径为2, 若曲线C 1,C 2有公共点,则有圆心到直线的距离|2-2a 2|12+22≤2, 即|a -1|≤5,∴1-5≤a ≤1+5, 即实数a 的取值范围是[1-5,1+5]. 答案 [1-5,1+5]3.(2014·临川二中模拟)在直角坐标系xOy中,曲线C 1参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),在极坐标系(与直角坐标系xOy 相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,曲线C 2的方程为ρ(cos θ-sin θ)+1=0,则曲线C 1与C 2的交点个数为________.解析 ∵曲线C 1参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α,∴x 2+(y -1)2=1,是以(0,1)为圆心,1为半径的圆. ∵曲线C 2的方程为ρ(cos θ-sin θ)+1=0,∴x -y +1=0.在坐标系中画出圆和直线的图形,观察可知有2个交点. 答案 24.(2014·汕头调研)在极坐标系中,ρ=4sin θ是圆的极坐标方程,则点A ⎝⎛⎭⎪⎫4,π6到圆心C 的距离是________.解析 将圆的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+y 2-4y =0,圆心坐标为(0,2).又易知点A ⎝⎛⎭⎪⎫4,π6的直角坐标系为(23,2),故点A 到圆心的距离为(0-23)2+(2-2)2=2 3. 答案 23创新导向题极坐标方程与普通方程的互化求解问题5.(2016·南昌模拟)已知极坐标的极点在平面直角坐标系的原点O 处,极轴与x 轴的非负半轴重合,且长度单位相同.直线l 的极坐标方程为:2ρsin ⎝⎛⎭⎪⎫θ-π4=10,曲线C :⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),其中α∈[0,2π). (1)试写出直线l 的直角坐标方程及曲线C 的普通方程; (2)若点P 为曲线C 上的动点,求点P 到直线l 距离的最大值.解 (1)∵2ρsin ⎝⎛⎭⎪⎫θ-π4=10,∴ρsin θ-ρcos θ=10,直线l 的直角坐标方程:x -y +10=0.曲线C :⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),消去参数可得曲线C 的普通方程:x 2+(y -2)2=4.(2)由(1)可知,x 2+(y -2)2=4的圆心(0,2),半径为2. 圆心到直线的距离为:d =|1×0-1×2+10|12+(-1)2=42,点P 到直线l 距离的最大值:42+2. 极坐标,直角坐标及直线参数方程综合求解问题6.在直角坐标系xOy 中以O 为极点,x 轴非负半轴为极轴建立坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点,已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.解 (1)圆C 1,直线C 2的直角坐标方程分别为x 2+(y -2)2=4,x +y -4=0,解⎩⎪⎨⎪⎧x 2+(y -2)2=4,x +y -4=0得⎩⎪⎨⎪⎧x =0,y =4或⎩⎪⎨⎪⎧x =2,y =2, ∴C 1与C 2交点的极坐标为⎝⎛⎭⎪⎫4,π2.⎝ ⎛⎭⎪⎫22,π4.(2)由(1)得,P 与Q 点的坐标分别为(0,2),(1,3),故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab2+1,∴⎩⎪⎨⎪⎧b2=1,-ab 2+1=2,解得a =-1,b =2.专项提升测试 模拟精选题一、填空题7.(2015·湖北孝感模拟)已知曲线C 的参数方程为⎩⎨⎧x =2cos t ,y =2sin t(t 为参数),曲线C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,则l 的极坐标方程为________.解析 ⎩⎨⎧x =2cos t ,y =2sin t ,两边平方相加得x 2+y 2=2,∴曲线C 是以(0,0)为圆心,半径等于2的圆.C 在点(1,1)处的切线l 的方程为x +y =2,令x =ρcos θ,y =ρsin θ,代入x +y =2,并整理得ρcos θ+ρsin θ=2. 答案 ρcos θ+ρsin θ=28.(2014·陕西西安八校联考)已知点P (x ,y )在曲线⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数,θ∈R )上,则yx的取值范围是________.解析 消去参数θ得曲线的标准方程为(x +2)2+y 2=1, 圆心为(-2,0),半径为1. 设y x=k ,则直线y =kx ,即kx -y =0,当直线与圆相切时,圆心到直线的距离d =|-2k |k 2+1=1,即|2k |=k 2+1,平方得4k 2=k 2+1,k 2=13,解得k =±33,由图形知k 的取值范围是-33≤k ≤33, 即y x的取值范围是⎣⎢⎡⎦⎥⎤-33,33. 答案 ⎣⎢⎡⎦⎥⎤-33,33 二、解答题9.(2016·洛阳模拟)在平面直角坐标系中,直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+22t ,y =-2+22t (其中t为参数).现以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=2cos θ.(1)写出直线l 和曲线C 的普通方程;(2)已知点P 为曲线C 上的动点,求P 到直线l 的距离的最大值. 解 (1)由题,直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+22t ,y =-2+22t (其中t 为参数).消去直线l 参数方程中的参数t 得直线l 普通方程为y =x +2. 又由曲线C 的极坐标方程为ρ=2cos θ,得ρ2=2ρcos θ, 由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得曲线C 的直角坐标方程为x 2+y 2-2x =0.(2)曲线C 的极坐标方程为ρ=2cos θ可化为(x -1)2+y 2=1, 设与直线l 平行的直线为y =x +b , 当直线l 与曲线C 相切时,有|1+b |2=1,即b =-1± 2.于是当b =-1-2时,P 到直线l 的距离达到最大,最大值为两平行线的距离即|2-(-1-2)|2=322+1.(或先求圆心到直线的距离为322,再加上半径1,即为P 到直线l 距离的最大值322+1).创新导向题极坐标方程,参数方程,普通方程的综合应用问题10.极坐标系与直角坐标系xOy 有相同的长度单位,以原点为极点,以x 轴非负半轴为极轴,已知曲线C 1的极坐标方程为ρ=4cos θ,曲线C 2的参数方程为⎩⎪⎨⎪⎧x =m +t cos α,y =t sin α(t 为参数,0≤α<π),射线θ=φ,θ=φ+π4,θ=φ-π4与曲线C 1交于(不包括极点O )三点A 、B 、C .(1)求证:|OB |+|OC |=2|OA |;(2)当φ=π12时,B ,C 两点在曲线C 2上,求m 与α的值.(1)证明 依题意,|OA |=4cos φ,|OB |=4cos ⎝ ⎛⎭⎪⎫φ+π4,|OC |=4cos ⎝ ⎛⎭⎪⎫φ-π4, 则|OB |+|OC |=4cos ⎝ ⎛⎭⎪⎫φ+π4+4cos ⎝ ⎛⎭⎪⎫φ-π4=22(cos φ-sin φ)+22(cos φ+sin φ)=42cos φ=2|OA |.(2)解 当φ=π12时,B ,C 两点的极坐标分别为⎝⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫23,-π6.化为直角坐标为B (1,3),C (3,-3).C 2是经过点(m ,0),倾斜角为α的直线,又经过点B ,C 的直线方程为y =-3(x -2),故直线的斜率为-3, 所以m =2,α=2π3.。
2017年高三数学(文)最新模拟调研试题精选分项汇编(第02期)专题15选修部分Word版含解析
一.坐标系与参数方程1.【广西南宁二中、柳州高中、玉林高中2017届高三8月联考,231】(本小题满分10分)选修4-4:坐标系与参数方程已知直线1:x t l y =⎧⎪⎨=⎪⎩(t 为参数),圆221:((2)1C x y +-=,以坐标原点为极点,x 轴的正半轴为极轴建立直角坐标系.(1)求圆1C 的极坐标方程,直线1l 的极坐标方程;(2)设1l 与1C 的交点为,M N ,求1C MN ∆的面积.【答案】(1)1C的极坐标方程为2cos 4sin 60ρθρθ--+=,直线1l 的极坐标方程为3πθ=(ρ∈R );(2)4.考点:1、参数方程与极坐标方程的互化;2、直角坐标方程与极坐标方程的互化;3、三角形的面积公式.2.【河北省衡水中学2017届高三上学期第三次调研,23】本小题满分10分)选修4-4:坐标系与参数方程已知直线l的参数方程为22x m t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,且曲线C 的左焦点F 在直线l 上.(1)若直线l 与曲线C 交于,A B 两点,求FA FB 的值;(2)求曲线C 的内接矩形的周长的最大值.【答案】(1)2;(2)16. 考点:3.【湖北黄石2017届高三9月调研,23】(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,0,2πρθθ⎡⎤=∈⎢⎥⎣⎦. (1)求C 的参数方程;(2)设点D 在C 上,C 在D处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.【答案】(1)1cos sin x t y t =+⎧⎨=⎩(t 为参数,0t π≤≤)(2)32⎛ ⎝⎭考点:极坐标方程化为直角坐标方程,直线与圆相切4.【江西南昌市2017届上学期摸底,23】(本小题满分10分)选修4-4:坐标系与参数方程 将圆224x y +=每一点的横坐标保持不变,纵坐标变为原来的12倍,得到曲线C . (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求:过线段12P P 的中点且与l 垂直的直线的极坐标方程. 【答案】(1)2x cost y sint =⎧⎨=⎩(t 为参数).(2)342cos sin ρθθ=- 【解析】考点:椭圆参数方程,极坐标与之间坐标互化5.【河北衡水中学2017届高三摸底联考,23】本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的参数方程为:12(12x t t y t ⎧=-+⎪⎪⎨⎪=⎪⎩为参数), 曲线C 的极坐标方程为:4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)设直线l 与曲线C 相交于,P Q 两点, 求PQ 的值.【答案】(1) 曲线C 的直角坐标方程为()2224x y -+=, l的普通方程为+10x =.试题分析:(1) 在极坐标方程两边同乘以ρ,利用极坐标与直角坐标的互化公式即可将曲线C 的极坐标方考点:1.极坐标与直角坐标的互化;2,参数方程与普通方程的互化;3.直线参数方程参数的几何意义.6.【广东珠海市2017届上学期调研测试(1),23】(本小题满分10分)选修4-4:坐标系与参数方程已知在直角坐标系xOy 中,曲线C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的方程为sin()4πρθ+=. (1)求曲线C 在极坐标系中的方程;(2)求直线l 被曲线C 截得的弦长.【答案】(1)4cos ρθ=;(2)试题分析:(1)先将曲线C 的参数方程化为普通方程22(2)4x y -+=,再将cos sin x y ρθρθ=⎧⎨=⎩代入方程2240x y x +-=即可;(2)直线方程与圆方程联立,求出交点坐标,再利用两点间距离公式即可得弦长.试题解析:(1)曲线C 的普通方程为22(2)4x y -+=,考点:1、参数方程化为普通方程;2、直角坐标方程化极坐标方程及两点间距离公式.7.【河北唐山市2017届高三摸底考试,23】(本小题满分10分)选修4-4:坐标系与参数方程以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程是2ρ=.矩形ABCD 内接于曲线 1C ,,A B 两点的极坐标分别为2,6π⎛⎫ ⎪⎝⎭和52,6π⎛⎫ ⎪⎝⎭.将曲线1C 上所有点的横坐标不变,纵坐标缩短为原来的一半,得到曲线2C .(1)写出,C D 的直角坐标及曲线2C 的参数方程;(2)设M 为2C 上任意一点,求2222MA MB MC MD +++的取值范围.【答案】(Ⅰ)C (-3,-1)、D (3,-1);曲线C 2的参数方程为⎩⎨⎧x =2cos θ,y =sin θ(θ为参数);(Ⅱ).试题分析:(Ⅰ)直接由极坐标与直角坐标互化公式即可得出曲线1C 的直角坐标方程和点,C D 的直角坐标;(Ⅱ)直接将点M 的参数方程代入|MA |2+|MB |2+|MC |2+|MD |2,化简并得出所求的结果即可.试题解析:(Ⅰ)由A (3,1)、B (-3,1)得C (-3,-1)、D (3,-1);曲线C 2的参数方程为⎩⎨⎧x =2cos θ,y =sin θ(θ为参数).(Ⅱ)设M (2cos θ, sin θ),则|MA |2+|MB |2+|MC |2+|MD |2=(2cos θ-3)2+(sin θ-1)2+(2cos θ+3)2+(sin θ-1)2+(2cos θ+3)2+(sin θ+1)2+(2cos θ-3)2+(sin θ+1)2=16cos 2θ+4sin 2θ+16=12cos 2θ+20,则所求的取值范围是. 考点:1. 直线的参数方程;2.圆的极坐标方程;3.直线与圆的位置关系.8.【河北邯郸市2017届高三9月联考,23】(本小题满分10分)选修4-4:坐标系与参数方程已知圆C 的极坐标方程为4cos 2sin ρθθ=-,直线l 的参数方程为5cos sin x t y t αα=+⎧⎨=⎩(t 为参数).若直线l 与圆C 相交于不同的两点P ,Q .(Ⅰ)写出圆C 的直角坐标方程,并求圆心的坐标与半径; (Ⅱ)若弦长4PQ =,求直线l 的斜率.【答案】(Ⅰ)()()22215x y -++=;圆心为()2,1-;;(Ⅱ)0k =或34k =.考点:1. 直线的参数方程;2.圆的极坐标方程;3.直线与圆的位置关系.【方法点睛】本题考查圆的极坐标方程与直线的参数方程、直线与圆的位置关系,以及考查逻辑四维能力、等价转化能力、运算求解能力.(1)化极坐标方程为直角坐标方程主要是利用公式222,cos ,sin x y p x p y ρθθ=+==来完成;(2)在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题,通常将极坐标方程与参数方程均化为直角坐标方程来解决.9.【湖南永州市2017届高三第一次模拟,23】(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系下,直线1:x l y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,以x 轴为非负半轴为极轴,取相同长度单位建立极坐标系,曲线C 的极坐标方程为4cos 0ρθ-=.(Ⅰ)写出直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,求AB 的值.【答案】(Ⅰ)直线l :10x y --=,曲线C :()2224x y -+=;(Ⅱ)14||=AB .考点:极坐标与参数方程(互化)、直线参数几何意义.二.不等式选讲1.【广西南宁二中、柳州高中、玉林高中2017届高三8月联考,24】(本小题满分10分)选修4-5:不等式选讲 已知函数()23f x x x =+-,215()32(1)4g x x m x =-++; (1)求不等式()6f x ≤的解集;(2)若对任意的[1,1]x ∈-,()()g x f x ≥,求m 的取值范围.【答案】(1){13}x x -≤≤;(2)[1,1]-.考点:1、绝对值不等式的解法;2、不等式恒成立问题;3、函数的最值.2.【河北省衡水中学2017届高三上学期第三次调研,24】(本小题满分10分)选修4-5:不等式选讲已知0x R ∃∈使不等式12x x t ---≥成立.(1)求满足条件的实数t 的集合T ;(2)若1,1m n >>,对t T ∀∈,不等式23log log m n t ≥恒成立,求m n +的最小值.【答案】(1){}|1T t t =≤;(2)6.考点:1、绝对值不等式的解法;2、基本不等式.3.【湖北黄石2017届高三9月调研,24】(本小题满分10分)选修4-5:不等式选讲 已知函数()13f x x x =-++.(1)解不等式()8f x ≥;(2)若不等式()23f x a a <-的解集不是空集,求实数a 的取值范围. 【答案】(1){}|5,3x x x ≤≥或(2)()(),14,-∞-+∞【解析】 试题分析:(1)利用绝对值定义,将不等式转化为三个不等式组,最后求它们交集得解集(2)不等式()23f x a a <-的解集不是空集,等价于()2min 3f x a a <-,因此根据绝对值三角不等式求()13f x x x =-++的最小值:()134f x x x =-++≥,再解不等式234a a ->得实数a 的取值范围.考点:绝对值定义,绝对值三角不等式【名师点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.4.【江西南昌市2017届上学期摸底,24】(本小题满分10分)选修4-5:不等式选讲 设函数3()|21|||2f x x x =--+. (1)解不等式()0f x <;(2)若0x R ∃∈,使得20()35f x m m +<,求实数m 的取值范围. 【答案】(1)1562x -<<(2)123m -<< 【解析】 试题分析:(1)根据绝对值定义,将不等式等价转化为三个不等式组,最后求并集得原不等式解(2)不等式有解问题,一般转化为对应函数最值问题,即2min ()53f x m m <-,根据绝对值定义,将函数转化为分段函数,求各段最小值的最小值即可得:当12x =时,函数1()22f =-小,最后解不等式2532m m ->-考点:绝对值定义【名师点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.5.【河北衡水中学2017届高三摸底联考,24】(本小题满分10分)选修4-5:不等式选讲 已知函数()()223,12f x x a x g x x =-++=-+.(1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得()()12f x g x =成立, 求实数a 的取值范围.【答案】(1) {}|24x x -<<;(2)(][),51,-∞--+∞.考点:1.含绝对值不等式的解法;2.含绝对值函数值域的求法.6.【河北衡水中学2017届上学期一调,23】(本小题满分10分)选修4-5:不等式选讲 已知函数()|2|,,()|21|f x x a a a R g x x =-+∈=-.(1)若当()5g x ≤时,恒有()6f x ≤,求a 的最大值;(2)若当x R ∈时,恒有()()3f x g x +≥,求a 的取值范围.【答案】(1)a 的最大值1;(2)[2,)+∞.【解析】试题分析:(1)由()523g x x ≤⇔-≤≤,()633f x a x ≤⇔-≤≤,即可求解实数a 的最大值;(2)依据题意,利用绝对值不等式,可得()()|1|f x g x a a +≥-+,由此可求得a 的取值范围.试题解析:(1)()5|21|5521523g x x x x ≤⇔-≤⇔-≤-≤⇔-≤≤;()6|2|662633f x x a a a x a a a x ≤⇔-≤-⇔-≤-≤-⇔-≤≤.依题意有,32,1a a -≤-≤.故a 的最大值为1. ...6分(2)()()|2|21||221||1|f x g x x a x a x a a a a a +=-+-+≥--++≥-+,当且仅(2)(21)0x a x --≥当时等号成立.解不等式|1|3a a -+≥,得a 的取值范围是[2,)+∞ ...10分考点:绝对值不等式.7.【广东珠海市2017届上学期调研测试(1),24】(本小题满分10分)选修4-5:不等式选讲已知函数()|21|||2f x x x =+--.(1)解不等式()0f x ≥;(2)若存在实数x ,使得()||f x x a ≤+,求实数a 的取值范围.【答案】(1)(,3][1,)-∞-+∞;(2)3a ≥-.考点:1、绝对值不等式的解法;2、基本不等式求最值及不等式恒成立问题.8.【河北唐山市2017届高三摸底考试,24】(本小题满分10分)选修4-5:不等式选讲 已知函数()11f x x mx =++-.(1)若1m =,求()f x 的最小值,并指出此时x 的取值范围;(2)若()2f x x ≥,求m 的取值范围.【答案】(1);(2)(-∞,-1]∪[1,+∞).考点:1.含绝对值的不等式的解法;2.集合的包含关系.9.【河北邯郸市2017届高三9月联考,24】(本小题满分10分)选修4-5:不等式选讲 设()10f x x x =++.(Ⅰ)求()15f x x +≤的解集M ;(Ⅱ)当a b M ∈,时,求证:525a b ab ++≤.【答案】.(Ⅰ)[]5,5M =-;(Ⅱ)详见解析.【解析】试题分析:(Ⅰ)直接将其进行分三种情况讨论并分别解出求解集即可得出所求的结果;(Ⅱ)首先将问题“525a b ab +≤+”转化为“()()222525a b ab +≤+”,然后将其进行变形并结合已知即可得出所证明的结果.试题解析:(Ⅰ)由()15f x x ≤+()15f x x ≤+得:150,10,1015x x x x x +≥⎧⎪≤-⎨⎪---≤+⎩或150,100,1015x x x x x +≥⎧⎪-<<⎨⎪-++≤+⎩或150,0,1015x x x x x +≥⎧⎪≥⎨⎪++≤+⎩,考点:1.含绝对值的不等式的解法;2.集合的包含关系.【方法点睛】本题考查绝对值不等式的解法、比较法的应用、绝对值的性质及零点分段法的应用,并考查逻辑四维能力、等价转化能力、运算求解能力.(1)零点分段法是求绝对值不等式解集的常用方法;(2)一般在证明不等式的题目中,首先考虑用比较法,它是最基本的不等式的证明方法,比较法一般有“作差比较法”和“作商比较法”,用得较多的是“作差比较法”,其中在变形过程中往往要用到配方、因式分解、通分等计算方法.10.【湖南永州市2017届高三第一次模拟,24】(本小题满分10分)选修4-5:不等式选讲 已知函数()f x x a =-.(Ⅰ)若1a =,解不等式:()41f x x ≥--;(Ⅱ)若()1f x ≤的解集为[]02,,()11002a m n m n +=>>,,求mn 的最小值. 【答案】(Ⅰ)(1][3)-∞-+∞,,;(Ⅱ)2.【解析】试题分析:(Ⅰ)当1a =时,不等式为12x -≥,解得∈x (1][3)-∞-+∞,,;(Ⅱ)由()1f x ≤的解集为[]02,,得10112a a a -=⎧⇒=⎨+=⎩,由基本不等式可求得2mn ≥(当且仅当11122m n ==即21m n ==,时取等号).试题解析:(Ⅰ)当1a =时,不等式为141x x -≥--,即12x -≥, ∴12x -≥或12x -≤-,即3x ≥或1x ≤-,考点:绝对值不等式、基本不等式.。
高考数学压轴专题桂林备战高考《坐标系与参数方程》单元汇编及答案
数学高考《坐标系与参数方程》试题含答案一、131.若点P 的直角坐标为()1,3-,则它的极坐标可以是( ) A .52,3π⎛⎫ ⎪⎝⎭B .42,3π⎛⎫ ⎪⎝⎭C .72,6π⎛⎫ ⎪⎝⎭D .112,6π⎛⎫⎪⎝⎭ 【答案】A 【解析】 【分析】设点P 的极坐标为()(),02ρθθπ≤<,计算出ρ和tan θ的值,结合点P 所在的象限求出θ的值,可得出点P 的极坐标. 【详解】设点P 的极坐标为()(),02ρθθπ≤<,则()22132ρ=+-=,3tan 31θ-==-. 由于点P 位于第四象限,所以,53πθ=,因此,点P 的极坐标可以是52,3π⎛⎫⎪⎝⎭,故选:A. 【点睛】本题考查点的直角坐标化极坐标,要熟悉点的直角坐标与极坐标互化公式,同时还要结合点所在的象限得出极角的值,考查运算求解能力,属于中等题.2.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。
【详解】 由题意知将代入,得,解得,因为,所以.故选:D 。
【点睛】本题考查参数方程与普通方程之间的转化,参数方程化普通方程一般有以下几种消参方法:①加减消元法;②代入消元法;③平方消元法。
消参时要注意参数本身的范围,从而得出相关变量的取值范围。
3.在平面直角坐标系xOy 中,曲线C 的参数方程为3sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l的方程为4x y +=,则曲线C 上的点到直线l 的距离的最小值是( ) A .22B 2C .1D .2【答案】B 【解析】 【分析】设曲线C 上任意一点的坐标为()3,sin θθ,利用点到直线的距离公式结合辅助角公式可得出曲线C 上的点到直线l 的距离的最小值. 【详解】设曲线C 上任意一点的坐标为()3,sin θθ,所以,曲线C 上的一点到直线l 的距离为2sin 43cos sin 4322d πθθθ⎛⎫+- ⎪+-⎝⎭==42sin 2πθ⎛⎫-+ ⎪⎝⎭= 当()232k k Z ππθπ+=+∈时,d 取最小值,且min 22d == B. 【点睛】本题考查椭圆参数方程的应用,考查椭圆上的点到直线距离的最值问题,解题时可将椭圆上的点用参数方程表示,利用三角恒等变换思想求解,考查运算求解能力,属于中等题.4.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩,(t 为参数),曲线C 的方程为4cos 02πρθθ⎛⎫= ⎪⎝⎭剟,(2,0)C 直线l 与曲线C 相交于A B ,两点,当ABC ∆的面积最大时,tan α=( )A .23B .142C .73D .147【答案】D【解析】 【分析】先将直线直线l 与曲线C 转化为普通方程,结合图形分析可得,要使ABC ∆的面积最大,即要ACB ∠为直角,从而求解出tan α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017届数学高考第一轮复习单元素质测试题——坐标系与参数方程(理科)(考试时间120分钟,满分150分)姓名_______评价_______一、选择题(本大题共12小题,每小题5分,共60分.以下给出的四个备选答案中,只有一个正确)1.(10湖南理3)极坐标方程cos ρθ=和参数方程1,23x t y t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线2.(11北京理3)在极坐标系中,圆θρsin 2-=的圆心的极坐标系是( )A .(1,)2πB .(1,)2π-C . (1,0)D .(1,π) 3.(14北京理3)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上 4.(14安徽理4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为( )A .14B .214C .2D .22 5.(08重庆理4)已知函数13x x -+M ,最小值为m ,则mM 的值为( ) A .14B .12C 2D 3 6.(11安徽理5)在极坐标系中,点)3,2(π到圆θρcos 2=的圆心的距离为( )A .2B .942π+C .912π+D .37.(10上海16)直线l 的参数方程是)(221R t ty tx ∈⎪⎩⎪⎨⎧-=+=,则l 的方向向量可以是( )A .(1,2)B .(2,1)C .(2-,1)D .(1,2-)8.(10安徽理7)设曲线C 的参数方程为⎩⎨⎧+-=+=θθsin 31cos 32y x (θ为参数),直线l 的方程为023=+-y x ,则曲线C 到直线l 的距离为10107的点的个数为( ) A .1 B .2C .3D .49.(13安徽理7)在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为( ) A .)(0R ∈=ρθ和2cos =θρ B .)(2R ∈=ρπθ和2cos =θρC .)(2R ∈=ρπθ和1cos =θρ D .)(0R ∈=ρθ和1cos =θρ10.(10重庆文8)若直线y x b =-与曲线2cos ,sin x y θθ=+⎧⎨=⎩([0,2)θπ∈)有两个不同的公共点,则实数b 的取值范围为( )A .(22,1)-B .[22,22]+C .(,22)(22,)-∞++∞D .(22,22)+11.(10重庆理8)直线233+=x y 与圆心为D 的圆))2,0[(,sin 31,cos 33πθθθ∈⎪⎩⎪⎨⎧+=+=y x 交于A 、B 两点,则直线AD 与BD 的倾斜角之和为( )A .π67B .π45C .π34D .π3512.(14江西理11)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标方程为( )A .1,0cos sin 2πρθθθ=≤≤+B .1,0cos sin 4πρθθθ=≤≤+C .cos sin ,02πρθθθ=+≤≤D .cos sin ,04πρθθθ=+≤≤二、填空题(本大题共4小题,每小题5分,共20分,把答案填在对应题号后的横线上)13.(14广东理14)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为 .14.(12天津理12)己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作l 的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p .15.(13广东理14)已知曲线C 的参数方程为⎪⎩⎪⎨⎧==ty t x sin 2cos 2(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_______________. 16.(15湖北理16)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为0)cos 3(sin =-θθρ,曲线C 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=-=t t y tt x 11(t 为参数),l 与C 相交于A ,B 两点,则=|AB | .三、解答题(本大题共7小题,每小题10分,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(15新课标全国Ⅰ23)在直角坐标系xOy 中,直线1C :2-=x ,圆2C : 1)2()1(22=-+-y x ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M 、N ,求△C 2MN 的面积.18.(13新课标全国Ⅰ23)已知曲线C 1的参数方程为⎪⎩⎪⎨⎧+=+=ty t x sin 55,cos 54(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为θρsin 2=. (Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).19.(14新课标全国Ⅰ23)已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.20.(15新课标全国Ⅱ23)在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩ (t 为参数,且0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ==(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.21.(13新课标全国Ⅱ23)已知动点P ,Q 都在曲线⎪⎩⎪⎨⎧==ty tx C sin 2cos 2:(t 为参数)上,对应参数分别为α=t 与α2=t (πα20<<),M 为PQ 的中点. (Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.22.(14新课标全国Ⅱ23)在直角坐标系xOy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:32l y x =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.23.(16新课标全国Ⅲ23)在直角坐标系xOy 中,曲线1C 的参数方程为⎪⎩⎪⎨⎧==ααsin cos 3y x (α为参数),以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为22)4sin(=+πθρ.(Ⅰ)写出1C 的普通方程和2C 的直角坐标系方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求|PQ |的最小值及此时P 的直角坐标.2017届数学高考第一轮复习单元素质测试题——坐标系与参数方程(文科)(参考答案)一、选择题答题卡: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABBDCDCBBDBA二、填空题13. (1,1) . 14. 2 . 15.)4sin(202sin cos πθρθρθρ+==-+或. 16. 52.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.解:(Ⅰ)1C :2-=x ,极坐标方程为2cos -=θρ;2C :1)2()1(22=-+-y x ,1)2sin ()1cos (22=-+-∴θρθρ,即04cos 2sin 4cos sin 2222=+--+θρθρθρθρ.故2C 的极坐标方程04cos 2sin 42=+--θρθρρ.(Ⅱ)直线3C 的直角坐标方程为0=-y x ,1)2,1(2=r C ,,)2,1(2C 到直线3C 的距离222|21|=-=d , 221122||22=-=-=d r MN , 21222||212=⨯=⋅=∴∆d MN S MNC . 解法二:直线3C 的直角坐标方程为x y =,代入1)2()1(22=-+-y x 解得M(1,1),N(2,2), ∴C 2M ⊥C 2N .2121||||212222==⋅=∴∆r N C M C S MN C . 18.解:(Ⅰ)曲线C 1的普通方程为25)5()4(22=-+-y x ,25)5sin ()4cos (22=-+-∴θρθρ,即016cos 8sin 10cos sin 2222=+--+θρθρθρθρ.故的极坐标方程016cos 8sin 102=+--θρθρρ.(Ⅱ)曲线C 2的直角坐标方程为1)1(22=-+y x ,⎪⎩⎪⎨⎧⋯⋯⋯⋯⋯⋯⋯⋯=-+⋯⋯⋯=+--+)2(02)1(0161082222y y x y x y x )1()2(-,得01688=-+y x ,2+-=∴y x . (3)把(3)代入(2)得,02)44(22=-++-y y y y ,即0232=+-y y ,2121==∴y y ,.从而0121==x x ,.1C 与2C 交点的直角坐标为)1,1(和)2,0(,极坐标为)4,2(π和)2,2(π.19.解:(Ⅰ)曲线C 的参数方程为⎪⎩⎪⎨⎧==θθsin 3,cos 2y x (θ为参数,[)πθ2,0∈)⎪⎩⎪⎨⎧⋯⋯⋯-=⋯⋯⋯⋯+=)2(22)1(2t y t x , )2(2)1(+⨯,得62=+y x ,故直线l 的普通方程为062=-+y x . (Ⅱ)设)sin 3,cos 2(θθP ,则点P 到直线l 的距离5|6)sin(5|5|6sin 3cos 4|-+=-+=ϕθθθd ,其中53cos ,54sin ==ϕϕ. 作PB ⊥l 于B ,根据题意,得|6)sin(5|522||2||-+===ϕθd PB PA ,N O xC 2(1,2)yr d M l O x ydP AB当1)sin(-=+ϕθ时,5522|65|52||max =--=PA ; 当1)sin(=+ϕθ时,552|65|52||min =-=PA . 20.解:(Ⅰ)2C :1)1(22=-+y x ,即0222=-+y y x ; (1)3C :3)3(22=+-y x ,即03222=-+x y x . (2))(2)1(-,得0232=-y x ,x y 3=.………………(3) 把(3)代入(2)并整理,得03242=-x x ,23021==∴x x ,. 从而01=y ,232=y . 故2C 与3C 交点的直角坐标)0,0(和)23,23(; (Ⅱ)1C 的极坐标方程为παρραρ<≤≠∈=0)0,(,R ,),cos 32(),,sin 2(ααααB A ∴.|cos 32sin 2|||αα-=AB|,)3sin(|4|cos 23sin 21|4πααα-=-=4||max =∴AB .21.解:(Ⅰ)设点M 的坐标为),(y x ,根据题意知,P 、Q 两点的坐标分别是)sin 2,cos 2(αα和)2sin 2,2cos 2(αα.αααααααα2sin sin 22sin 2sin 2,2cos cos 22cos 2cos 2+=+=+=+=∴y x .故M 的轨迹的参数方程为⎪⎩⎪⎨⎧+=+=αααα2sin sin 2cos cos y x ,(α为参数,πα20<<).(Ⅱ)222)2sin (sin )2cos (cos αααα+++=d,cos 22)2cos(22)2sin sin 22cos cos 2()2cos 2(sin )cos (sin 2222ααααααααααα+=-+=+++++=αcos 22+=∴d (πα20<<). 当πα=时,0=d ,所以M 的轨迹过坐标原点.22.解:(Ⅰ)半圆C 的直角坐标方程为)10(1)1(22≤≤=+-y y x ,所以半圆C 的参数方程为⎪⎩⎪⎨⎧=+=θθsin cos 1y x ,(θ为参数,πθ≤≤0). (Ⅱ))0,1(C ,设)sin ,cos 1(θθ+D ,则直线CD 的斜率θθθtan 1cos 10sin =-+-=k ,根据题意得3tan =θ,3πθ=,23sin ,21cos ==∴θθ.故点D 的坐标为)23,23(.23.解:(Ⅰ)1C 的普通方程为1322=+y x .2C :22)4sincos 4cos(sin =+πθπθρ,即22)cos sin (22=+θρθρ, 所以2C 的直角坐标系方程为04=-+y x .(Ⅱ)设)sin ,cos 3(ααP ,则P 到2C 的距离|2)3sin(|22|2cos 23sin 21|22|4sin cos 3|-+=-+=-+=παααααd , 当1)3sin(=+πα,即Z k k k ∈+=+=+,26,223ππαπππα时,=min |PQ |2m in =d .此时P 的直角坐标为)21,23(.lO C(1,0) xy)sin ,cos 1(θθ+D。