聚甲基丙烯酸酯型降凝剂的作用机理和应用范围

聚甲基丙烯酸酯型降凝剂的作用机理和应用范围
聚甲基丙烯酸酯型降凝剂的作用机理和应用范围

聚甲基丙烯酸酯型(PMAs)降凝剂作用机理和应用范围报告机构:绥芬河市万丰源经贸有限责任公司时间:2012年4月17日

关键字:降凝剂,润滑油降凝剂,聚甲基丙烯酸酯型降凝剂,PMAs,降凝剂的作用机理,如何选用降凝剂,降凝剂的应用范围,降凝剂的生产工艺,降凝剂的基本结构

一、降凝剂发明和为什么要使用降凝剂

降凝剂的出现是在20世纪20年代末期,偶然发现了氯化石蜡与萘的缩合物具有降凝作用,并于1931年申请了第一个降凝剂专利;30年代相继出现了氯化石蜡和酚的缩合物、聚甲基丙烯酸酯等商品的降凝剂,40年代聚丙烯酰胺、烷基聚苯乙烯等,50年代发表了聚丙烯酸酯、马来酸酯-甲基丙烯酸长链烷基酯共聚物等,60年代发表了烯烃聚合物、醋酸乙酯-富马来酸酯共聚物等,70年代发表了α-烯烃共聚物、马来酸酐-醋酸乙酯共聚物等降凝剂专利。迄今为止发表有关降凝剂的专利已有数百篇,合成的降凝剂也有数十种之多,但作为产品使用和销售的不过十余种。其中常用的有烷基萘、聚酯类、聚烯烃类三大类。

我们大家知道,倾点是在规定的实验条件下,保持油品流动的最低温度,是汽车等机械在冬季能否启动的重要因素,在低温下,环烷基油由于粘度增加而失去流动性,称为粘度倾点,降凝剂对粘度倾点不起作用;而石蜡基油则由于析出蜡结晶形成网状结构而失去流动性,降凝剂就是降低油品的这种倾点。其实要想得到低倾点的润滑油有两种途径,一是对基础油进行深度加氢脱蜡,可以得到低倾点的基础油,这样油品的收率降低了,同时脱掉大量有用的正构烃,也有损

油品质量和对添加剂的感受性;二是进行适度的脱蜡后,再加降凝剂达到要求的倾点,这是一种比较经济可行的办法,也是目前润滑油调和企业比较采用的一种普遍手段。我们国家石蜡基润滑油比例较大,降凝问题比较突出,所以油品中一般需要加入一定剂量的降凝剂。

二、简单分析降凝剂的作用机理和使用性能区别

1、作用机理:首先我们要了解为什么含蜡油在低温下凝固?

含蜡油之所以在低温下失去流动性凝固,是由于低温下高熔点的固体烃也就是石蜡分子定向排列,形成针状或者片状结晶并相互联接,形成三维的网状结构,同时将低熔点的油通过吸附或溶剂化包于其中,致使整个油品失去流动性。

有关降凝作用机理的说法较多,但根据降凝剂在含蜡基础油成

蜡不同阶段所起的作用的不同,在当前比较公认的有晶核作用、吸附作用、共晶作用、吸附-共晶、增溶作用等。

1.1晶核作用

降凝剂在高于基础油析蜡温度下结晶析出,它起着晶核作用而成为蜡晶发育的中心,使基础油中的小蜡晶增多,从而不易产生大的蜡团。

1.2吸附作用

降凝剂吸附在已经析出的蜡晶晶核活动中心上,从而能改变蜡结晶的取向,减弱蜡晶间粘附作用。

1.3共晶作用

降凝剂在析蜡点下与蜡共同析出,从而改变蜡的结晶行为和取向性,并减弱蜡晶继续发育的趋向,蜡分子在降凝剂分子中烷基链上结晶。

当降凝剂分子中的碳链与蜡中碳链相等时,降凝效果最好。由于降凝剂分子结构的空间效应,并不是所有的侧链中的碳原子数参与共晶,仅有一部分参与共晶。因此,降凝剂分子中的烷基链长度必须大于蜡的碳链长度时,降凝效果较好。

上述三种降凝机理都可能存在,在蜡形成晶核时,降凝剂起晶核作用而产生降凝效果,在蜡晶增长阶段,吸附或共晶起作用,或者两者共同起作。

1.4 吸附-共晶作用

吸附-共晶理论,认为若降凝剂长链烃与基础油石蜡的正构烷烃碳数分布最集中的链相近,则在基础油冷却重结晶过程中,降凝剂与基础油中的蜡同时析出共晶或被吸附在蜡晶表面;个别的没有吸附降凝剂的蜡晶表面或其棱角成为结晶中心使蜡晶很快成长起来,当新生成的蜡晶又被降凝剂包围时,在它的棱角处又会重新长出新的蜡晶,结晶过程就是按照这种连锁方式进行地,外形呈多枝状的单晶晶体的连生体,形成树状结晶,从而降低基础油的凝点、粘度等流变参数,改善了原有的低温流动性能。在实际应用中, 很多人认为,吸附与共晶是同时发生的,吸附形成共晶。

1.5 增溶作用理论

增溶理论认为,降凝剂如同表面活性剂,加降凝剂后,增加了蜡在油品中的溶解度,使析蜡量减少,同时又增加了蜡的分散度,且由于蜡分散后的表面电荷的影响,蜡晶之间相互排斥,不容易聚结形成三维网状结构,而降低凝点。李永明等曾提出把吸附-共晶理论与改善蜡

的溶解性理论相结合,将会给降凝剂的作用机理更全面的解释,但尚未证实。由于基础油中石蜡和加入的降凝剂分子量分布范围都相当宽、降凝剂的分子结构多种多样,并且晶体成核和生长是一个连续过程,因此上述几种作用都有可能发生,究竟哪种(或几种) 作用机理起主导作用一直是人们研究和争论的热点问题。

下表为降凝剂对蜡结晶生长方向的调整

降凝剂图表1

2、使用性能:降凝剂机理认为:降凝剂是靠与蜡吸附或共晶来

改变蜡的结构和大小而起作用,因此降凝剂的化学结构对降凝效果有决定性的影响.

对聚合型的PMA(聚甲基丙烯酸酯)来说,侧链的平均碳数对降凝效果有决定性的意义,且对某些油品的降凝作用存在最佳侧链平均碳数,一般而言,降凝剂长烷基主链或长烷基侧链的碳数要与基础油

中蜡的碳数分布最集中范围内的平均碳数相匹配,才能有较好的降凝效果。由于一般基础油中蜡的碳数分布范围很宽,为了得到较好的匹配效果,降凝剂长链烷基也应有相应的碳数分布。同时降凝剂与蜡之间的匹配性不仅与降凝剂长链烷基的长度有关,即并不是指蜡的碳链长度与降凝剂长链烷基长度完全相一致或相近,而且还与降凝剂的分子量和体系的溶剂性质有关,具有长链基侧链的降凝剂,影响其降凝效果的主要是烷基侧链的长度,而降凝剂结构重复单元上长链烷基侧链数目的影响则要小很多。

我们就通过一个小实验,来看下酯的烷基侧链对降凝效果的影响我们分别合成了聚甲基丙烯酸十二、十四、十六、十八酯,调合成润滑油降凝剂分别用A、B、C、D表示,测得加剂前后150SN基础油的凝点如降凝剂图表2。

降凝剂图表2几种自聚物对150SN的降凝效果效果对比

从表2可知,聚甲基丙烯酸C12-18酯对石蜡基150 SN中性基础油都有一定的降凝效果。这些聚合物一般都具有梳状或鱼骨状的结构,而且侧链较长(大于C10)可在稍高于蜡晶析出的温度结晶析出作为晶核与润滑油中的正构烷烃蜡形成共晶,改变蜡晶的大小、形状,抑制蜡晶的生长,故能对润滑油起降凝作用。其中,降凝效果最好的是聚甲基丙烯酸十四酯。这是因为它的侧链碳数能够很好的与150SN润滑油基础油中的正构烷烃相匹配,故它对150SN基础油的降凝效果最好。

另外降凝剂的降凝效果与基础油有密切的关系,同一个降凝剂对凝点或馏分组成不同的基础油,其降凝效果有显著差异,这也是我们常说的:降凝剂对油品的感受性问题。

三.PMAs 的基本结构

下图为聚甲基丙烯酸酯的典型结构:

降凝剂图表3

随侧链烷基长度的增加,PMAs 的溶解行为差异性逐渐体现出来。按照其单体侧链长度对溶解性的影响程度,可将侧链分为短,中,长三类。需要说明,图3中所示侧链结构为正构单体,如侧链含有异构单体,溶解行为显然并非如此,事实上,PAMs 较少使用异构化单塑料树脂 在大多数

润滑油中

不溶 降凝剂 平均碳分子

C11-C13.5

溶解指数异常

体,这和与其配伍的基础油很少含有异构化成分有关。

短侧链C1-C7单体,影响聚合物柔性,在多数矿物油中溶解性差,尤其是C1-C4单体,低温溶解性显著下降,对润滑油黏度的提升效果不明显,因此,在黏度指数改进剂的分子结构设计中,通常会有短侧链单体,如甲基丙烯酸基酯,甲基丙烯酸丁酯,甲基丙烯酸己酯。

中侧链C8-C13单体,增强聚合物在矿物油中的溶解性。作为添加剂使用的PAMs ,其油溶性和感受性是必须具备的性能,因此,中侧碳链单体PAMs 产品配方的必要组分。需要指出,非矿物油基础油,如含有磷酸酯类的基础油,由于基础油极性的增加,在匹配的PMAs 分子结构设计中,中侧链单体的碳数范围应适当下调。

长侧链C14-C18单体,能影响基础油中蜡组分的凝结作用,长侧链烷基和蜡烃基发生交互作用,调控蜡晶的生长行为,改进油品的流动性。过高烷基碳数的侧链单体,其溶解行为异常,尤其在低温条件下自身容易凝结析出,如聚C18酯在-9.4℃程凝胶化现象,因而在各类PAMs 润滑油添加剂较少使用。

四.聚甲基丙烯酸酯型降凝剂的生产工艺简单介绍

PMA 的合成工艺

高碳醇 水

硫酸铜

对苯二酚 碱渣 产品 稀释油引发剂

碱液 釜残 轻馏分

五、聚甲基丙烯酸酯型降凝剂的应用:

上世纪30年代,聚甲基丙烯酸酯工艺和产品专利问世,它是一种高效浅色降凝剂,对各种润滑油均有很好的降凝效果,同时还兼有改进粘度指数的作用。广泛应用于润滑油、柴油、和原油;作为分散型添加剂,通过共聚或接枝足够浓度的含氮或含氧乙烯基单体,极性单体沿着亲油聚合链形成亲水区域,可有效分散油品降解产生的有害物质,如漆膜或烟炱,可作为无灰分散剂,有效改善了润滑油的使用性能,并扩展了传统PMA的应用领域。作为降凝剂其烷基侧链的平均碳数要在12以上才有显著降凝效果,以C14酯,C16酯的效果最好。为了适应不同的脱蜡深度制取的各种粘度及倾点以及不同油源的润滑油,调整烷基侧链的平均碳数,即采用不同的碳数的醇搭配酯化,生产出系列的降凝剂产品来满足各种油品的降凝要求。

作为粘度指数改进剂来说,PMA的低温性能特别好,改进油品的粘度指数的效果好,氧化安定性好,但是增粘能力、热稳定性和低温机械剪切性能差,适合调配0W、5W和ATF使用.

当前的主流降凝剂当中国产聚α烯烃T803b、聚甲基丙烯酸酯PMA T602(产品质量与国外有差距)、聚富马酸酯T809A(产品质量与国外有差距)

六.进口PMAs降凝剂产品情况及选用降凝剂的建议

进口聚甲基丙烯酸酯型降凝剂主要是罗曼克斯的1-248,降凝效果好,性能稳定,不过近期有一种俄罗斯进口的KS 300,效果跟1-248

很接近,在市场上销售的也很好。具体我们做了几种主流进口降凝剂与国产降凝剂在国内主流基础油中的降凝效果对比数据

客户在选用降凝剂的时候,还要自己做试验,有时一种降凝剂在一种基础油中降凝效果突出,而加到最终调和后的润滑油中效果却不明显,这主要是国内很多调油厂在调和润滑油时不止使用一种基础油,而是多种基础油的组合,而且还会添加150BS来改善粘度,所以当遇到这种情况时,客户可以选择两种降凝剂复合添加到成品油中,效果会更加,不过首先要弄清楚哪种降凝剂适合于哪类润滑油,对症下药,事半功倍。

原油降凝剂作用机理

含蜡原油失去流动性缘于在低温下析出蜡晶,这些蜡晶大多呈板状或针状,互相结合在一起形成三维网目结构,并把低凝点的油分、油泥、胶质和沥青质等吸附在其周围,或包围在网状结构内形成蜡膏状物质,而使原油失去流动性。原油降凝剂的作用在于影响蜡晶的网目构造的发育过程,从而使原油的凝固点(倾点)降低。但必须指出,降凝剂不能抑制蜡晶析出,而只能改变蜡晶的形态。亦即加入降凝剂后,原油的浊点不会改变,只是蜡晶的形态变成了松散的蜡晶结构(Slack Wax),在施加一定的剪切力后,其网目结构易于破坏,或根本不形成网目结构,因而增加了原油的流动性,达到降低原油凝点的作用。 近几十年来,国内外有许多学者对降凝剂的作用机理进行过研究,目前公认的原油降凝剂的 作用原理是吸附与共晶理论。原油降凝剂改变蜡晶发育历程大致可分为三种类型: (1)晶核作用。原油降凝剂在高于原油浊点温度下结晶析出,它起着晶核的作用,并成为蜡晶发育的中心,使原油中的小蜡晶增多,从而不易形成大的蜡晶。 (2)吸附作用。原油降凝剂在略低于原油浊点的温度下析出,它被吸附在已经析出的蜡晶晶 核的活性中心,从而改变蜡晶的取向性,使其难于形成三维网目结构,并且减弱了蜡晶间的黏附作用。 (3)共晶作用。原油降凝剂在原油浊点温度下与蜡共同结晶析出,从而破坏蜡晶的结晶行为和取向性并减弱蜡晶继续发育的趋向。 添加降凝剂后蜡晶形态的改变情况,可利用馏分油进行显微镜观察。Lorensen等曾在-40℃低温下进行显微观察后证实,不含降凝剂的基础润滑油中的蜡晶呈20—150靘的针状结晶,加降凝剂后蜡晶变小、且形状也发生了变化。当然,加入不同的降凝剂其作用的形式也是不同的。如,使用烷芳族降凝剂时,蜡晶表面吸附了芳香族基团,而使蜡晶不再继续按原来的取向发展;而使用聚甲基丙烯酸酯类梳状结构聚合物降凝剂时,侧链的烷基与蜡形成共晶。此外,结晶的分枝随降凝剂浓度增加而增加,这是由于降凝剂对蜡晶发育的取向性起支配作用,从而使其不能形成牢固的三维网目结构。 近年来,对降凝剂作用机理的研究更加深入。王彪等在研究大庆原油和大港原油对降凝剂感受性的差异过程中发现,原油中加降凝剂后,在冷却过程中进行显微镜观察,如果蜡晶颗粒变大,该降凝剂即对该原油具有良好的降凝效果,反之则无降凝效果。实验所用的降凝剂F21为乙烯—醋酸乙烯(含少量磺酸盐)聚合物降凝剂,OEAM为马来酸酐和丙烯酸酯高碳醇酯类共聚物。作者认为造成这一现象的原因是由于原油的凝固过程包括蜡晶的形成、发育和蜡晶之间的凝胶化两个过程。加入降凝剂后如果能使蜡晶增大,在析出同样重量的蜡晶后体系中单位体积内蜡晶的表面能要比蜡晶颗粒小的不加降凝剂的体系要低。因而加降凝剂后的体系比较稳定,不易形成凝胶,从而降低了原油的凝固点。相反,所加入的降凝剂不能使蜡晶颗粒增大,体系的表面能无法降低,凝胶化过程也就不能推迟,所以这种降凝剂对这种原油不具有降凝效果。 梳状聚合物被广泛用做含蜡原油的降凝剂以改善低温流动性,这是目前所有降凝剂产品中最有价值的一类聚合物。Chichakli第一次用X射线衍射技术解释了降凝剂的作用机理,此后又有许多学者采用不同的技术手段研究了梳状聚合物与蜡晶的相互作用。Plate和

甲基丙烯酸

化学品安全技术说明书 化学品中文名:甲基丙烯酸; 异丁烯酸 化学品英文名:methacrylic acid; 2-methylpropenoic acid 企业名称: 生产企业地址: 邮编: 传真: 企业应急电话: 电子邮件地址: 技术说明书编码: √纯品混合物 有害物成分浓度CAS No. 甲基丙烯酸79-41-4 危险性类别:第8.1类酸性腐蚀品 侵入途径:吸入、食入、经皮吸收 健康危害:本品对鼻、喉有刺激性;高浓度接触可能引起肺部改变。对皮肤有刺激性,可致灼伤。眼接触可致灼伤,造成永久性损害。慢性影响可能引起肺、肝、 肾损害。对皮肤有致敏性,致敏后,即使接触极低水平的本品,也能引起皮 肤刺痒和皮疹。 环境危害:对环境有害。 燃爆危险:易燃,其蒸气与空气混合,能形成爆炸性混合物。容易自聚。 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗20~30分钟。如有不适感,就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗10~15分钟。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:用水漱口,给饮牛奶或蛋清。就医。

危险特性:其蒸气与空气可形成爆炸性混合物,遇明火、高热易引起燃烧爆炸。与氧化剂能发生强烈反应。若遇高热,可发生聚合反应,放出大量热量而引起容 器破裂和爆炸事故。 有害燃烧产物:一氧化碳。 灭火方法:用雾状水、抗溶性泡沫、干粉、二氧化碳灭火。 灭火注意事项及措施:消防人员必须穿全身耐酸碱消防服、佩戴空气呼吸器灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处 在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。 应急行动:消除所有点火源。根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。建议应急处理人员戴正压自给式呼吸器, 穿防静电、防腐服。穿上适当的防护服前严禁接触破裂的容器和泄漏物。尽 可能切断泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。小 量泄漏:用干燥的砂土或其它不燃材料吸收或覆盖,收集于容器中。大量泄 漏:构筑围堤或挖坑收容。用农用石灰(CaO)、碎石灰石(CaCO3)或碳酸氢钠 (NaHCO3)中和。用防爆、耐腐蚀泵转移至槽车或专用收集器内。 操作注意事项:密闭操作,加强通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴直接式防毒面具(半面罩),戴化学安全防护眼镜, 穿防酸碱工作服,戴橡胶耐酸碱手套。远离火种、热源,工作场所严禁吸烟。 使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧 化剂、胺类、碱类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相 应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害 物。 储存注意事项:通常商品加有阻聚剂。储存于阴凉、通风的库房。远离火种、热源。 包装要求密封,不可与空气接触。应与氧化剂、胺类、碱类分开存放,切忌 混储。不宜大量储存或久存。配备相应品种和数量的消防器材。储区应备有 泄漏应急处理设备和合适的收容材料。 接触限值: MAC(mg/m3): -PC-TWA(mg/m3): 70 PC-STEL(mg/m3): 140*TLV-C(mg/m3): - TLV-TWA(mg/m3): 20ppm TLV-STEL(mg/m3): 监测方法:无资料。 工程控制:生产过程密闭,加强通风。提供安全淋浴和洗眼设备。

甲基丙烯酸甲酯(MMA)

化学品中文名称:甲基丙烯酸甲酯 化学品英文名称:methyl methacrylate 中文名称2:α-甲基丙烯酸甲酯 英文名称2:methacrylic acid methyl ester 技术说明书编码:309 CAS No.:80-62-6 分子式:C5H8O2 分子量:100.12 第二部分:成分/组成信息回目录 有害物成分含量CAS No. 甲基丙烯酸甲酯80-62-6 第三部分:危险性概述回目录 危险性类别: 侵入途径: 健康危害:本品有麻醉作用,有刺激性。急性中毒:表现有粘膜刺激症状、乏力、恶心、反复呕吐、头痛、头晕、胸闷,可有急识障碍。慢性影响:体检发现接触者中血压增高、萎缩性鼻炎、结膜炎和植物神经功能障碍百分比增高。 环境危害: 燃爆危险:本品易燃,具刺激性。 第四部分:急救措施回目录 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐。就医。 第五部分:消防措施回目录 危险特性:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。在受热、光和紫外线的作用下易发生聚合,粘度逐渐增加,严重时整个容器的单体可全部发生不规则爆发性聚合。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。有害燃烧产物:一氧化碳、二氧化碳。 灭火方法:消防人员必须穿全身防火防毒服,在上风向灭火。遇大火,消防人员须在有防护掩蔽处操作。灭火剂:抗溶性泡沫、二氧化碳、干粉、砂土。用水灭火无效,但可用水保持火场中容器冷却。

缓凝外加剂缓凝作用的化学本质

缓凝外加剂缓凝作用的化学本质 L 前言 水泥与水的水化反应是造成砂浆和混凝土硬化的主要原因,可以人为地 加速或减缓水泥水化过程,加速或减缓水泥水化过程是通过加入外加剂来达到的。缓凝作用是解决混凝土坍落度经时损失的两个重要作用之一。要搞清无机、有机缓凝外加剂化学反应的同异和本质并非易事。笔者曾从官能团入手,对合成有机大分子高性能外加剂作了一些研究,将合成有机高性能外加剂大分子里的官能团分成主导、非主导两种。主导官能团以SO3H、COOH、“SO3H-COOH”三种型式存在,C00H主导缓凝作用。含羧基的小分子羟基有机酸如柠檬酸、酒石酸、葡萄糖酸等也有很好的缓凝作用,说明羧基是产生缓凝这个重要作用的重要原因。但羧基的存在不能解释有缓凝效果的天然大分子淀粉、纤维素等不含羧基亦有优良缓凝作用这个事实,同样不能解释天然小分子蔗糖、葡萄糖等不含羧基亦有缓凝作用的问题。因此,羧基不是产生缓凝作用的唯一的一个原因。 应当指出,主导官能团是指存在于合成有机大分子或小分子有机物里的 羧基或磺基官能团,它只是完整分子里的某个部分——特征部分。通过从一个完整分子特征结构部分去认识缓凝作用,并不是从完整分子的整体和立体结构上面去认识。这种以局部、平面结构为切人点的认识方法,会有局限性,自然就不能解释无羧基存在的碳水化合物及无官能团存在的无机化合物产生缓凝作用这个 普遍问题。 为了解决这个问题,笔者在主导官能团的基础上,从局部扩大到有机外 加剂分子的整体和立体结构和基团不同的空间排列上,全面完整地研究有机物产生缓凝作用的本质原因的同时,也研究无机缓凝剂的缓凝本质,从深层次了解有机、无机缓凝剂产生缓凝作用的共性,即可了解有机、无机缓凝剂是否有相同的作用原理,这种共同作用是什么。通过对不同品种有机无机缓凝剂作系统、全面的分析研究,冀图找到一个能解释无机、有机缓凝剂产生缓凝作用的通用的又完整的缓凝理论。

萘系高效减水剂与聚羧酸系减水剂的性能比较.docx

萘系高效减水剂与聚羧酸系减水剂的性能比较 萘系高效减水剂与聚羧酸系减水剂的性能比较一、混凝土减水剂概述及作用机 理 减水剂是一种重要的混凝土外加剂,能够最大限度地降低混凝土水灰比,提高 混凝土的强度和耐久性。减水剂分为普通减水剂和高效减水剂,减水率大于5%小于 10%的减水剂称为普通减水剂,如松香酸钠、木质素磺酸钠和硬脂酸皂等 ; 减水率大于 10%的减水剂称为高效减水剂,如三聚氰胺系、萘系、氨基磺酸系、改性木质素磺酸系和聚羧酸系等。在众多高效减水剂中,具有梳形分子结构的聚羧酸系高效减水剂因其减水率高、坍落度保持性能良好、掺量低、不引起明显缓凝等优异性能,成为近年来国内外研究和开发的重点。 减水作用是表面活性剂对水泥水化过程所起的一种重要作用。减水剂是在不影 响混凝土工作性的条件下,能使单位用水量减少 ; 或在不改变单位用水量的条件 下,可改善混凝土的工作性 ; 或同时具有以上两种效果,又不显著改变含气量的外 加剂。目前,所使用的混凝土减水剂都是表面活性剂,属于阴离子表面活性剂。 水泥与水搅拌后,产生水化反应,出现一些絮凝状结构,它包裹着很多拌和水,从而降低了新拌混凝土的和易性 ( 又称工作性,主要是指新鲜混凝土在施工中,即 在搅拌、运输、浇灌等过程中能保持均匀、密实而不发生分层离析现象的性 能 ) 。施工中为了保持所需的和易性,就必须相应增加拌和水量,由于水量的增加 会使水泥石结构中形成过多的孔隙,从而严重影响硬化混凝土的物理力学性能,若 能将这些包裹的水分释放出来,混凝土的用水量就可大大减少。在制备混 凝土的过程中,掺入适量减水剂,就能很好地起到这样的作用。混凝土中掺入减水剂后,减水剂的憎水基团定向吸附于水泥颗粒表面,而亲水基团指向水溶 液,构成单分子或多分子层吸附膜。由于表面活性剂的定向吸附,使水泥胶粒表面

三羟甲基丙烷三甲基丙烯酸酯

三羟甲基丙烷三甲基丙烯酸酯 CAS 3290-92-4 分子量:338 性状:无色或微黄色透明液体,不溶于水,乙醇等,溶于芳烃有机溶剂。熔点:-25°C;沸点:>200°C 1mm;密度:1.06 g/mL at 25 °C(lit.);蒸气压:<0.01 mm Hg ( 20 °C);折射率:n20/D 1.472(lit.)。 质量指标 外观无色及淡黄色透明液体 色泽(Pt-Co)<50 酸值mgKOH/g <0.2 水份% <0.2 含量% >95 折光率nD25 1.468~1.478 粘度25℃cps 35~50 比重d425 1.060~1.070 用途 A.特种橡胶的助硫化活性剂 乙丙橡胶和三元乙丙橡胶、氯橡胶、硅橡胶、聚氨酯、乙烯/醋酸乙烯共聚物(EVA)、氯化聚乙烯弹性体(CPE)等特种橡胶,硫化都很困难,一般采用有机过氧化物(如DCP、BPO)进行硫化,若采用单一的有机过氧化物硫化,硫化时间过长,硫化不充分,难以保证良好的机械性能和物理性能。因此,必须添加TMPTMA作为助硫化剂,才能起到良好的效果。例如有机氟橡胶等,在用DCP进行硫化时,若添加剂1~4%TMPTMA 作为助硫化剂,不仅可大大缩短硫化时间,提高硫化度,减少DCP用量,而且还显著地提高制品的机械强度、耐磨性、耐溶剂和抗腐蚀性能等。在含氟橡胶的硫化过程中,TMPTMA分子中的双键不仅参与硫化交联化反应,而且还可以作卤化氢(HF、HCL等)的受体,吸收加工过程中释放出的卤化氢,从而不仅提高了制品质量,而且大大减少了硫化胶料的腐蚀性。含TMPTMA的胶料,混炼时有増塑效果,硫化后有増硬效果。 EVA、CPE弹性体交联参考配方如下: 原料组份配比(重量份) EVA(含VA10%)100 白碳黑30 DOP 5 碳黑10 硬脂酸1 DCP(含量40%)4-6 TMPTMA 5 EVA交联条件:30-50%混炼10分钟,150-160℃交联25-30分钟 CPE弹性体交联参考配方如下: 原料组份配比(重量份) CPE(含氯35%)100

缓凝剂技术简介

缓凝剂技术简介 缓凝剂是一种能延长混凝土凝结时间的外加剂。缓凝减水剂则是兼有缓凝和减水功能的外加剂。目的是用来调节新拌混凝土的凝结时间。缓凝剂可以根据要求使混凝土在较长时间内保持塑性,以便于浇筑成型或是延缓水化放热速率,减少因集中放热产生的温度应力造成混凝土的结构裂缝。 在流化混凝土中,缓凝剂可用来克服高效减水剂的坍落度损失,保证商品混凝土的施工质量。随着混凝土质量的提高以及高性能混凝土的问世,商品混凝土使用范围的不断扩大,缓凝减水剂及缓凝高效减水剂得到了日益广泛的应用。(一)缓凝剂品种与性能 ·缓凝剂主要用于延缓水泥的水化硬化速度,以使新拌混凝土在较长时间内保持塑性。目前在混凝土中使用的缓凝剂品种也较多。不同的缓凝剂其使用效果及作用机理也是不尽相同的。 ·按其生产来源分,可以分为工业副产品类及纯化学品类。 按其化学成分来分又可分为:无机盐类、羟基羧酸盐类、多羟基碳水化合物类、木质素磺酸盐类等。 按其化学成分分类如下: 1、无机盐类缓凝剂 最常用的无机盐类缓凝剂有磷酸盐、硼砂、硫酸锌、氟硅酸钠等。 磷酸盐是近年来研究较多的无机缓凝剂。磷酸(H3P04)并无明显的缓凝作用,某些磷酸盐则有较强的缓凝作用。如焦磷酸钠、二聚磷酸钠、三聚磷酸钠、磷酸二氢钾、磷酸二氢钠等。掺入磷酸盐会使水泥水化的诱导期延长,并且使硫酸钙的水化速度大大减缓。缓凝的机理主要是:磷酸盐与氢氧化钙反应在已生成的熟料相表面形成了“不溶性”的磷酸钙,从而阻碍了正常水化的进行。 出于性价比的综合考虑,在混凝土中使用较多的为三聚磷酸钠,其掺量在0.1%左右,根据工程要求及施工温度来确定适合掺量。 硼砂又名四硼酸钠,它的缓凝机理,主要是硼酸盐的分子与溶液中的钙离子形成络合物,从而抑制了氢氧化钙结晶的析出。络合物以在水泥颗粒表面形成一层无定形的阻隔层,从而延缓了水泥的水化与结晶析出。硼砂的掺量为水泥质量的1-2%。 其他的无机缓凝剂还有氟硅酸钠,主要用于耐酸混凝土。 硫酸锌具有一定的缓凝作用。但因无机盐类缓凝剂缓凝作用不稳定因此不常使用。 2、有机物类缓凝剂 有机物类缓凝剂是较为广泛使用的一大类缓凝剂,其中又可按其分子结构分成羟基羧酸盐类、糖类及其化合物、多元醇及其衍生物。 A、羟基羧酸盐类这是一类纯化工产品。由于其分子结构上含有一定数量的羟基(OH)和羧基(COOH)而得名。 其缓凝作用的机理:这些化合物的分子具有(OH)、(COOH),它们具有很强的极性,由于吸附作用,被吸附在水化物的晶核(晶胚)上,阻碍了结晶继续生长,主要是对硫酸钙水化物结晶转化过程延缓和推迟。缓凝剂的掺量在0.05-0.2%

聚甲基丙烯酸酯型降凝剂的作用机理和应用范围

聚甲基丙烯酸酯型(PMAs)降凝剂作用机理和应用范围报告机构:绥芬河市万丰源经贸有限责任公司时间:2012年4月17日 关键字:降凝剂,润滑油降凝剂,聚甲基丙烯酸酯型降凝剂,PMAs,降凝剂的作用机理,如何选用降凝剂,降凝剂的应用范围,降凝剂的生产工艺,降凝剂的基本结构 一、降凝剂发明和为什么要使用降凝剂 降凝剂的出现是在20世纪20年代末期,偶然发现了氯化石蜡与萘的缩合物具有降凝作用,并于1931年申请了第一个降凝剂专利;30年代相继出现了氯化石蜡和酚的缩合物、聚甲基丙烯酸酯等商品的降凝剂,40年代聚丙烯酰胺、烷基聚苯乙烯等,50年代发表了聚丙烯酸酯、马来酸酯-甲基丙烯酸长链烷基酯共聚物等,60年代发表了烯烃聚合物、醋酸乙酯-富马来酸酯共聚物等,70年代发表了α-烯烃共聚物、马来酸酐-醋酸乙酯共聚物等降凝剂专利。迄今为止发表有关降凝剂的专利已有数百篇,合成的降凝剂也有数十种之多,但作为产品使用和销售的不过十余种。其中常用的有烷基萘、聚酯类、聚烯烃类三大类。 我们大家知道,倾点是在规定的实验条件下,保持油品流动的最低温度,是汽车等机械在冬季能否启动的重要因素,在低温下,环烷基油由于粘度增加而失去流动性,称为粘度倾点,降凝剂对粘度倾点不起作用;而石蜡基油则由于析出蜡结晶形成网状结构而失去流动性,降凝剂就是降低油品的这种倾点。其实要想得到低倾点的润滑油有两种途径,一是对基础油进行深度加氢脱蜡,可以得到低倾点的基础油,这样油品的收率降低了,同时脱掉大量有用的正构烃,也有损

油品质量和对添加剂的感受性;二是进行适度的脱蜡后,再加降凝剂达到要求的倾点,这是一种比较经济可行的办法,也是目前润滑油调和企业比较采用的一种普遍手段。我们国家石蜡基润滑油比例较大,降凝问题比较突出,所以油品中一般需要加入一定剂量的降凝剂。 二、简单分析降凝剂的作用机理和使用性能区别 1、作用机理:首先我们要了解为什么含蜡油在低温下凝固? 含蜡油之所以在低温下失去流动性凝固,是由于低温下高熔点的固体烃也就是石蜡分子定向排列,形成针状或者片状结晶并相互联接,形成三维的网状结构,同时将低熔点的油通过吸附或溶剂化包于其中,致使整个油品失去流动性。 有关降凝作用机理的说法较多,但根据降凝剂在含蜡基础油成 蜡不同阶段所起的作用的不同,在当前比较公认的有晶核作用、吸附作用、共晶作用、吸附-共晶、增溶作用等。 1.1晶核作用 降凝剂在高于基础油析蜡温度下结晶析出,它起着晶核作用而成为蜡晶发育的中心,使基础油中的小蜡晶增多,从而不易产生大的蜡团。 1.2吸附作用 降凝剂吸附在已经析出的蜡晶晶核活动中心上,从而能改变蜡结晶的取向,减弱蜡晶间粘附作用。 1.3共晶作用 降凝剂在析蜡点下与蜡共同析出,从而改变蜡的结晶行为和取向性,并减弱蜡晶继续发育的趋向,蜡分子在降凝剂分子中烷基链上结晶。

甲基丙烯酸羟丙酯

甲基丙烯酸羟丙酯 中文名称:甲基丙烯酸羟丙酯 英文名称:2-Hydroxypropyl methacrylate, mixture of isomers 中文别名: CAS RN.:27813-02-1 分子式:C7H12O3 物化性质: 密度 1.066 分子量: 144.17 沸点: 240℃(0.5 mmHg) 无色液体 沸点96℃(1.33kPa) ,57℃(66.7Pa) 相对密度1.066(25/16℃) 折光率1.4470 闪点96℃ 溶于一般有机溶剂,稍溶于水。 化工应用 主要用于制造有活性基团的羟基丙烯酸树脂。涂料工业与环氧树脂、二异氰酸酯、三聚氰胺甲醛树脂等配置,用于制造双组份涂料。油脂工业用作润滑油洗涤的添加剂。纺织工业用于制造织物的胶粘剂,分析化学中用作化学试剂。 甲基丙烯酸羟乙酯 甲基丙烯酸羟乙酯(HEMA) 甲基丙烯酸羟乙酯 一、产品介绍: 英文名称:2-Hydroxyethyl methacrylate 分子式(Formula):C6H10O3 分子量(Molecular Weight):130.14

CAS No.:868-77-9 二、质量指标(Specification) : 外观(Appearance):无色透明易流动液体 含量(Purity):99.50% 三、物化性质(Physical Properties) : 无色透明易流动液体。熔点-12℃,沸点95℃(1.333kPa),87℃(0.67kPa),71-73℃(0.267kPa),相对密度1.074(20/4℃),折射率1.4505,闪点(开杯)108℃。与水混溶,溶于普通有机溶剂。易聚合,一般商品含有阻聚剂,如100pp m对苯二酚或对苯二酚一甲醚。 四、用途(Useage) : 供制备热固性丙烯酸涂料丁苯橡胶乳液改性剂。丙烯酸改性聚氨酯涂料,水溶性电镀涂料粘合剂,纤维整理剂,纸品涂料,感光涂料及聚氯乙烯树脂改性剂等物质用的各种树脂,用途广泛。 五、保存条件: 阴凉处储存,集装箱避光存放与密闭容器,保持冷藏。商店低于4 ℃,避灯光。 六、应用领域: 塑料工业用于制造含活性羟基的丙烯酸树酯。涂料工业与环氧树脂、二异氰酸酯、三聚氰胺甲醛树脂等配置用于制取双组份涂料。油脂工业用作润滑油洗涤的添加剂。电子工业用作电子显微镜的脱水利。纺织工业用于制造织物的胶粘剂。分析化学中用作化学试剂。此外,还用于水混溶的包埋剂等。 七、市场现状: 日本三菱化学、台湾地区和中国大陆地区皆有生产。 】 丙烯酸羟乙酯 丙烯酸羟乙酯 2-Hydroxyethyl acrylate 分子式(Formula):C5H8O3 分子量(Molecular Weight):116.12 CAS No.:818-61-1 质量指标(Specification) 含量(Purity):优级 物化性质(Physical Properties) 密度 1.106 熔点-60°C 沸点210-215°C 折射率 1.449-1.451

缓凝剂概述

<三>缓凝剂概述 缓凝剂是一种能推迟水泥水化反应,从而延长混凝土的凝结时间,使新拌混凝土较长时间保持塑性。方便浇注,提高施工效牢,同时对混凝土后期各项性能不会造成不良影响的外加剂。目前.木质素硫磺盐是产量较大、应用较为广泛的缓凝剂。除此以外,糖蜜类、羟基羧酸类以及少数无机盐类缓凝剂也得到了普遍使用。因此。结合缓凝剂的不同种类,论述了缓凝荆的缓凝作用机理。 1缓凝剂的种类 缓凝剂的种类按其化学成可分为无机缓凝剂和有机缓凝剂两大类。 1.1无机缓凝剂 (1)磷酸盐、偏磷酸盐类缓凝剂磷酸盐、偏磷酸盐类缓凝剂是近年来研究较多的无机缓凝剂。正磷酸(H,P00的缓凝作用并不大,但各种磷酸盐的缓凝作用却较强。在相同掺量情况下,磷酸盐类缓凝刺中缓凝作用最强的是焦磷酸钠(№:P如7)。 (2)硼砂(Na:BJ畴·10H20)色粉末状结晶物质。吸湿性强,易溶于水和甘油,水溶液呈弱碱性.在干燥的空气中易缓慢风化。 (3)氟硅酸钠(NaZi瞄白色结晶物质,密度2.689·tin4,微溶于水.不溶于乙醇,有腐蚀性。一般掺量为水泥用量的0.1%-0.2%。 1.2有机缓凝剂 有机缓凝剂按其官能团的不同可分为木质紊磺酸盐、羟基羧酸及其盐、多元醇及其衍生物、糖类及碳水化合物等。 (1)羟基羧酸、氨基羧酸及其盐此类缓凝剂的分子结构中含有羟基,羧酸基或氨基,常见的此类缓凝剂有柠檬酸、葡萄糖酸、水杨酸等及其盐。此类缓凝剂的缓凝效果较强,掺量一般为水泥用量的O.05%--O.2%。 (2)多元醇及其衍生物多元醇及其衍生物的缓凝作用较稳定,特别是在使用温度变化时仍有较好的稳定性。其中一元醇缓凝作用较小.但随烷基的增加。表面话性增强;二元醇中的乙二醇基本没有缓凝作用,丙二醇以后的二元醇缓凝作用逐渐增强;丙三醇缓凝作用很强,甚至可以使水泥水化作用完全停止。此类缓凝剂掺量一般为水泥用量的0.05%-0.2%之间。 (3)糖类 葡萄糖、蔗糖及其衍生物和糖蜜及其衍生物.由于原料广泛、价格低廉,同时具有一定的缓凝作用。因此使用也较为广泛。其掺量一般为胶凝材料用量的O.1%-0.3%。 2缓凝剂的作用机理 2.1无机缓凝剂作用机理 水泥浆体凝聚过程的发展取决于水泥矿物的组成和胶体粒子问的相互作用.同时也取决于水泥浆体中电解质的存在状态。如果胶体粒子之间存在相当强的斥力,水泥凝胶体系将是稳定的.否则将产生凝聚。电解质能在水泥矿物颗粒表面构成双电层,并阻止粒子的相互结合。当电解质过龟时,双电层被压缩,粒子问的引力强,水泥凝胶体开始凝聚。绝大多数无机缓凝剂都是电解质盐类,可以在水溶液中电离出带电离子。阳离子的置换能力随其电负性的大小、离子半径以及离子浓度不同而变化。而同价数的离子的凝聚作用取决于它的离子半

聚羧酸减水剂使用注意事项

聚羧酸高效减水剂作为我国第三代减水剂的代表,其较之以木钙为代表的第一代减水剂和以萘系为代表的第二代减水剂,有着高减水率、高保坍性、高增强等优点。特别适用于配制高耐久性、大流动度、高保坍、高强度以及清水混凝土工程。但其对混凝土原材料的品质及生产工艺要求较高,对集料的含泥量尤为敏感,因此在实际使用过程中还应有所注意。 1、聚羧酸减水剂依然存在与水泥适应性的问题,对于个别水泥会出现减水率偏低,坍损较大的现象,因此当水泥适应性不好时应当进行混凝土试配调整外加剂掺量,以达到最佳效果。另外水泥的细度和储存时间也会影响聚羧酸减水剂的使用效果。在生产中应杜绝使用热水泥,如果使用热水泥与聚羧酸减水剂拌合后,表现出混凝土的初始坍落度更容易出来,但外加剂的保坍效果会减弱,有可能出现混凝土坍落度的迅速损失。 2、聚羧酸减水剂对原材料的变化较为敏感,当砂、石材料以及掺合料如粉煤灰、矿粉等原材料的质量发生较大变化时,将对掺聚羧酸减水剂的混凝土性能有一定影响,应重新以变化后的原材料进行试配试验以调整掺量达到最佳效果。 3、聚羧酸减水剂对于集料的含泥量特别敏感,含泥量过大会降低聚羧酸减水剂的性能。因此使用聚羧酸减水剂时应严格控制集料的品质。当集料含泥量增加时应提高使用聚羧酸减水剂的掺量。 4、聚羧酸减水剂因减水率较高,其混凝土坍落度对用水量特别敏感。因此在使用过程中必须严格控制混凝土的用水量。一旦超量时,混凝土会出现离析、泌水、板结及含气量过大等不良现象 5、使用聚羧酸减水剂在混凝土的生产过程中宜适量增加搅拌时间(一般比传统外加剂高一倍),这样聚羧酸减水剂的空间位阻能力能更容易的发挥,便于生产中对混凝土坍落度的控制。(搅拌时间不够,很可能出现送到工地现场混凝土的坍落度要比在搅拌站控制的混凝土坍落度偏大)。。 6、随着春季的来临,昼夜温差变化较大,在生产控制上应随时注意混凝土的坍落度变化情况及时的调整外加剂用量(做到低温低掺,高温高掺的原则)。 7、聚羧酸外加剂在试配(生产中)时,当只达到基本掺量,混凝土的初始工作性能得到满足,但混凝土经时损失会较大;因此在试配(生产)时,应适当提高掺量(即达到饱和掺量),才能解决坍落度损失较大的问题。 8、当降低胶凝材料用量后,在生产过程中,应更严格保证水胶比。如出现坍落度损失较大的情况,只能通过增加外加剂掺量和二次添加外加剂的方法,勿通过加水的方法解决,否则易造成强度的明显下降。 9、聚羧酸减水剂为高减水率,高分散性产品,在生产控制中更多的应以混凝土的流动性指标(扩展度)来衡量混凝土的工作性,坍落度只能作为一个参考值。 10、混凝土的强度主要由水胶比在决定,聚羧酸减水剂具有高减水率的特点,很容易降低生产配合比中的用水量,从而达到降低水胶比的目的,来降低混凝土的综合成本。生产中因原材料的波动比试验试配大,为更好的发挥聚羧酸减水剂产品的性能,生产中应随时根据原材料情况、环境温度变化等对混凝土工作性的影响,及时调整外加剂掺量。 11、聚羧酸减水剂不可与萘系减水剂混合使用,使用聚羧酸减水剂时必须将使用过萘系减水剂的搅拌机和搅拌车冲洗干净,否则可能会导致聚羧酸减水剂失去减水效果。 12、聚羧酸减水剂应避免与铁制材料长期接触。由于聚羧酸减水剂产品常呈现酸性,与铁制品长期接触会发生缓慢反应,甚至使其色泽变深、变黑,导致产品性能下降。建议采用聚乙烯塑料桶或不锈钢桶储存,以保证其性能稳定性。

原油降凝剂种类概述

原油降凝剂种类概述 摘要:在我国原油处理中,常使用降凝剂,原油降凝剂的作用是降低原油粘度,使原油在开采和运输过程中,减少阻力,增产增效。本文总结回顾了原油降凝剂的发展历程,详细介绍了各类原油降凝剂及其特点。 关键词:降凝剂发展历程特点 我国原油大部分属于高含蜡原油,蜡含量高达l5%~37%,个别原油蜡含量高达40%以上,且大部分集中在润滑油馏分内。此外,原油还含有胶质和沥青质等多种组分,给石油的开采和运输带来很多困难。如原油中含的水分就必须脱除,否则不仅影响后加工,也会增大运输负荷。由于原油的这种复杂组成,使得当温度降到某一值时,原油开始析出微小的晶粒,随着温度不断下降,蜡晶逐渐增多,最终形成结晶而失去流动性。由此可见,降低原油凝固点和改善其流动性能有着很重要的意义。为改善含蜡原油的流动性,采用了热处理、添加减阻剂、稀释、水悬浮等多种输送方法,但这些方法普遍存在能耗大、设备投资和管理费用高,且停输后再启动困难等问题。从降低能耗和生产成本、提高管道运行的安全性角度,向原油中添加合成化学降凝剂,是实现原油常温乃至低温输送的最简便、有效的方法。化学添加剂是通过降低原油凝固点、降低其粘度或减少其流动阻力来改进原油流动性的。 目前,最受瞩目的方法是加入降凝剂降低原油的凝点,增加其流动性。原油降凝剂是原油流动改性剂的一个重要组成部分,又称为低温流动改进剂。它们是一类能够降低石油及油品凝固点,改善其低温流动性的物质。近年来,用原油降凝剂来改善含蜡原油流变性的化学改性技术越来越受重视。 1 原油降凝剂的种类 含蜡原油失去流动性的原因是由于在低温下析出蜡晶,这些蜡晶大多呈板状或针状,并且相互结合在一起形成三维网目构造,把低凝点的油分、胶质、沥青质、污泥、水等吸附并包在里面,形成蜡膏状物质,而使原油失去流动性。降凝剂的作用是影响蜡晶形态和网目构造的发育过程,改变原油中蜡晶的尺寸和形状,阻止蜡晶形成三维空间网络结构。但是,降凝剂不能抑制蜡晶的析出,只能

甲基丙烯酸甲酯结构式

甲基丙烯酸甲酯结构式 甲基丙烯酸甲酯,无色液体,易挥发,易燃。熔点为-48℃,沸点100-101℃,24℃(4.3kPa),相对密度0.9440(20/4℃),折射率1.4142,闪点(开杯)10℃,蒸气压(25.5℃)5.33kPa。溶于乙醇、乙醚、丙酮等多种有机溶剂,微 溶于乙二醇和水。在光、热、电离辐射和催化剂存在下易聚合。 CAS号:80-62-6 中文名称:甲基丙烯酸甲酯 英文名称:Methyl methacrylate;Methacrylic acid,methyl ester 别名:异丁烯酸甲酯;牙托水;有机玻璃单体 分子式:C5H8O2;CH2C(CH3)COOCH3 外观与性状:无色易挥发液体, 并具有强辣味 分子量:100.12 蒸汽压:5.33kPa/25℃ 闪点:10℃ 熔点:-50℃ 沸点:101℃ 溶解性:微溶于水,溶于乙醇等稳定性:稳定 用途:是有机玻璃单体。用于制造其他树脂、塑料、涂料、粘合剂、 润滑剂、木材和软木的浸润剂、电机线圈的浸透剂、纸张上光剂、印染助 剂和绝缘灌注材料。 危险标记:7(易燃液体) 主要用途:用作有机玻璃的单体,也用于制 造其它树脂、塑料、涂料、粘合剂、润滑剂 苯乙烯结构式 苯乙烯是用苯取代乙烯的一个氢原子形成的有机化合物,乙烯基的电子与苯环共轭,不溶于水,溶于乙醇、乙醚中,暴露于空气中逐渐发生聚合及氧化。工业上是合成树脂、离子交换树脂及合成橡胶等的重要单体芳烃的一种。分子式 C8H8,结构简式C6H5CH=CH2 。存在于苏合香脂(一种天然香料)中。无色、有特殊香气的油状液体。熔点-30.6℃,沸点145.2℃,相对密度 0.9060(20/4℃),折光率1.5469,黏度0.762 cP at 68 °F。不溶于水(<1%),能与乙醇、乙醚等有机溶剂混溶。苯乙烯在室温下即能缓慢聚合,要加阻

缓凝剂对混凝土性能的影响_

缓凝剂对混凝土性能的影响 摘要:混凝土凝结硬化快慢决定于水化反应的快慢。加入缓凝剂,水泥水化反应变慢,混凝土凝结时间变长,有关混凝土性能也将随之发生变化。当缓凝剂掺量过大,水泥反应时间过长,导致有未反应的水泥内核,直接导致混凝土相关性能的降低甚至损失。当掺量过少时,缓凝剂未起到相应的作用,混凝土缓凝失败。当缓凝剂和其他外加剂共用时,将使混凝土某些性能得到强化,更好适应工程应用。 关键词:混凝土性能缓凝剂缓凝作用 1缓凝剂的工作原理分析 1-1水泥水化反应过程 水泥的水化反应主要是四种主要熟料矿物与水反应,即硅酸三钙的水化、硅酸二钙的水化、铝酸三钙的水化和铁铝酸四钙的水化。四种矿物熟料主要水化产物为钙矾石、CSH凝胶、羟钙石。反应过程中,铝酸三钙C3A水化速度最快、水化热最多,但是对水泥石抗压强度贡献低。铁铝酸四钙C4AF水化速度快、水化热中等,同样对水泥石抗压强度贡献低,但是水泥石抗折强度主要来源。硅酸三钙C3S 水化速度快、水化热多,对水泥石早期强度贡献大。硅酸二钙C2S 水化速度慢、水化热少,对水泥石后期强度贡献大。 1-2缓凝剂的缓凝机理 由文献1、文献5可知,对缓凝剂作用机理的认识主要存在四种理论: 吸附理论、络合物生成理论、沉淀理论和Ca( OH) 2 结晶理论。 吸附理论认为大多数有机缓凝剂具有表面活性, 能在水泥颗粒的固液界面吸附, 改变了水泥颗粒表面的亲水性, 形成一层可抑制水泥水化的缓凝剂膜层, 从而导致混凝土凝结时间的延长。络合物生成理论认为缓凝剂分子可以与水泥水化生成的Ca2+ 形成络盐, 在水泥水化初期控制了液相中Ca2+ 离子浓度, 阻止水泥水化相的形成, 产生缓凝作用。比如三聚磷酸钠能与Ca2+ 生成稳定的络合物, 在水泥水化初始阶段, 阻碍了水化产物Aft 的形成, 抑制了水化产物CSH 的结晶成长, 延缓了C3 S 和C3A 的水化。沉淀理论认为有机或无机缓凝剂通过在水泥颗粒表面形成一层不溶性的薄层, 阻止水泥颗粒与水的接触, 因而延缓了水泥的水化, 起到缓凝作用。Ca( OH ) 2 结晶成核抑制理论认为缓凝剂通过吸附在Ca( OH ) 2 晶核上, 抑制Ca( OH) 2 结晶继续生长而产生缓凝作用。

聚甲基丙烯酸甲酯

聚甲基丙烯酸甲酯(PMMA)大量供应化妆品用PMMA微粉PMMA塑料的性能简介: 聚甲基丙烯酸甲酯PMMA 又叫有机玻璃。压克力。顾名思义, 因良好的光学透明性而著名。它不但具有很高的透光率(92%),而且机械强度高。重量轻、耐紫外线老化优良的电性能等特点。PMMA的不足之处是表面硬度不够、耐热性差、冲击强度不高,尤其对缺口冲击敏感等。改性后的PMMA其性能变得更加优异。 性质:非晶体聚合物,92%光线穿透率,热变性温度介于74°C~102°C 间。 优点:1、高光学透明性;2、耐候性佳;3、刚性佳;4、易染色。 用途:灯罩、窗玻璃、标示牌、光学透镜、硬式隐形眼镜、汽车零件。PMMA塑料的用途简介: 广泛用于:光学仪器:制作各种光学镜片,如眼镜、放大镜、各种透镜以及激光扫描控制的慢转录像带等。 文具及日用品:制作各种制图用具、示教模型、标示防护罩,灯具、各种笔杆、纽扣、发夹、糖果盒、肥皂盒、各种容器及其它日用装饰品。建筑方面:室内外照明及非照明信号显示、天花板照明设备,高级装饰品(如雕塑品等)、家具、隔板材料等。太阳能集热器的外罩、室内紫外灯操作的日关浴床,可制作彩色有机玻璃浴缸、脸盆等。其它方面:可用作医疗器械,如假肢、假牙、医用导光的基本原料。还可作无机硅玻璃的代替品。用于宇宙器械、指示灯罩、表面覆盖板、汽车及摩托的挡风玻璃。

化妆品用PMMA微粉 中文名称:聚甲基丙烯酸甲酯 产品描述: 1.具有优异的吸油性能,可以较好地吸收皮脂、汗液等皮肤分泌物;2.高折射率的特点使入射光线产生散射,淡化面部明暗对比,实现遮瑕效果; 3.球形的构造赋予化妆品良好的滑爽性和优异的柔滑手感; 4.用于含有有机溶剂(乙醇等)的液体化妆品中具有良好的分散性和稳定性; 5.透明的特性可使部分光线透过,降低面部的苍白感,达到自然的效。物化性质: 外观:白色微粉末 组成:PMMA交联体 平均粒径:约5.5~8.5μm 加热减量:2.0%以下 pH值:5.0~7.5 产品应用: 肤感滑爽,铺展性极佳,广泛适用于高端粉饼、眼影、腮红、BB霜、防晒霜、洗发水等化妆品产品的生产。 供应PMMA台湾奇美CM205耐热级、能耐高温 供应PMMA台湾奇美CM207中流动性耐热性 供应PMMA台湾奇美CM211高流动性

聚羧酸减水剂的研究现状及发展趋势

聚羧酸减水剂的研究现状及发展趋势 摘要:聚羧酸减水剂的研发和推广是混凝土材料科学中的一个研究热点,推动着混凝土材料向高强、高性能化不断发展。论文主要针对国内、外对聚羧酸系高效减水剂的应用情况,分析聚羧酸减水剂的作用机理,通过总结当前研究与应用中存在的主要问题,对将来的发展趋势进行了展望。 关键词:聚羧酸;减水剂;现状;发展趋势 减水剂是一种重要的混凝土外加剂,是水泥混凝土必不可少的组成部分[1]。近年来,高性能混凝土在我国工程建设中发挥了重要作用[2,3],如聚羧酸系减水剂。其保坍性能优异、与水泥适应性良好,但因其价格昂贵,应用范围受到一定的限制[4]。从某种意义上说,目前各国在混凝土技术上的差距最重要的特征就是外加剂,尤其是高性能减水剂的发展水平。而新型多功能聚羧酸系高性能减水剂的开发则是目前研究的热点[5,6],发展迅猛[7],其应用越来越广泛[8,9],成为公认的配制高性能混凝土不可或缺的一种重要材料。 1、聚羧酸减水剂的分类 为了更好的满足市场需求,应该更系统地开发聚羧酸系列产品。根据不同的分类方式,聚羧酸减水剂有不同的分类。 1.1根据化学结构分类 聚羧酸减水剂化学上可以分为两类,以主链为甲基丙烯酸,侧链为羧酸基团MPEG(Methoxy polyethylene glycol),聚酯型结构。另外一种为主链为聚丙烯酸,侧链为Vinyl alcohol polyethylene glycol,聚醚型结构。 1.2根据使用情况分类 聚羧酸减水剂根据使用情况可被分为标准型、缓凝型、早强型、保坍型、减缩型、降粘型[10]。目前,各类产品还未发展完善,有待进一步提高。 2、聚羧酸减水剂的研究情况 2.1 国内研究情况 国内对聚羧酸减水剂的研究大多数偏向于分子结构设计、化学合成,而对减水剂作用下水泥水化的机理研究甚少[12~14]。只有少量用作坍落度损失控制剂与萘系减水剂复合使用,而且可供合成聚羧酸类减水剂的原料也极为有限。国内原材料单甲氧基聚乙二醇MPEG供应不足,MPEG国内没有商业化,必须依靠进口[15]。也有研究人员用聚乙二醇(PEG)代替MPEG,但是由于在制备过程中双官能度的PEG容易产生交联,使得产品性能较差,质量不稳定。可以说从减水剂原料到生产工艺降低成本提高性能等许多方面都仅仅是处于刚起步阶段[16]。 2.2 国外研究情况 在国外,聚羧酸类减水剂的研究已有相当长的历史其应用技术已经成熟[17],20世纪80年代起,国内外就开始积极研发非萘系减水剂。目前,日本、德国等国家生产的聚羧酸系减水剂质量稳定,用量已占到其国内减水剂总量的60%以上[18]。 3、聚羧酸减水剂的特点

新型超缓凝剂性能研究及作用机理探讨_唐玉超

新型超缓凝剂性能研究及作用机理探讨 唐玉超1,陈良2,罗作球2,袁启涛2,王婵1 (1. 中建商品混凝土有限公司,湖北武汉 430000;2. 中建商品混凝土天津有限公司,天津 300457) [摘 要]保坍缓凝剂的研究是近年来国内外混凝土技术研究的几个热点之一。自主设计研发的混凝土超缓凝剂保坍、缓凝效果优良,一定程度上可改善混凝土和易性,提高混凝土 28d 抗压强度,降低水泥水化最高温升,减少混凝土收缩。特别适用于大体积、超大超长桩基等对混凝土水化温升、凝结时间及收缩有特殊要求的工程。微观分析表明,超缓凝剂严重抑制了水泥中 C 3S 和 C 3 A 两种主要矿物的早期水化,但是对水泥中后期水化无明显影响。 [关键词]还原剂;聚羧酸减水剂;合成研究 Performance research and mechanism investigate of new super-retarding agent Tang Yuchao1, Chen Liang2, Luo Zuoqiu2,Yuan Qitao2, Wang Chan1 ( 1. China Construction Ready Mixed Concrete Co.,Ltd, Wuhan 430000, Hubei,China; 2. China Construction Ready Mixed Concrete Tian Jin Co.,Ltd., Tianjin 300457, China) Abstract: The study of concrete slump retarder is one of several hot spots at home and abroad in recent years. Concrete super-retarding agent designed and developmented independently has excellent slump-retaining and retarding effect. New concrete super-retarding agent improves the workability of concrete, improves the compressive strength, reduces the maximum temperature rise of cement hydration, reduces shrinkage of concrete helped to improve concrete volume stability, especially for large volume, long oversized pile of concrete and other concrete which has special requirements to hydration temperature, setting time and shrinkage. Microscopic analysis shows that new concrete super-retarding agent inhibites severely the early hydration of two main mineral C 3S and C 3 A of cement but has no signi? cant effect on the post-hydration. Keywords: reducing agent; polycarboxylate superplasticizer; research of synthesis 0 引言 混凝土超缓凝剂是一种能够在长时间内任意调节混凝土凝结时间,但不影响混凝土后期强度的外加剂。这种外加剂主要用于在长时间干燥、高温环境下施工的混凝土工程,以及其他要求混凝土保持长时间塑性的工程[1]。目前世界上研究和使用此种缓凝剂较多的是美国、日本、南非等国家和地区。混凝土超缓凝剂是一种跨国公司开发并被技术垄断的一种新型的具有优良施工性能的混凝土外加剂,目前在国内还没有同类产品[2]。 目前,国内外应用的混凝土保塑缓凝剂分为两大类,无机类和有机类。无机类主要包括硼砂、氧化锌、磷酸盐和偏磷酸盐等。无机保塑缓凝剂的作用机理在于在水泥颗粒表面形成一层难溶性的膜,阻碍水泥水化过程。无机盐类保塑缓凝剂的缓凝作用表现得不够稳定,因而较少使用[3]。有机类主要包括木质素磺酸盐、羟基羧酸(盐)、糖类及碳水化合物、多元醇及其衍生物等。有机保塑缓凝剂中,特别是各种羟基羧酸及其盐类,如酒石酸、柠檬酸、苹果酸、水杨酸、葡萄糖酸及它们的盐是常用的保塑缓凝剂,它们往往与促凝剂或速凝剂一起复合用于快凝快硬水泥的调凝,其中以葡萄糖酸盐的效果最佳[4]。但目前这些缓凝剂均存在一些缺陷:一是适用范围小,只能在较短时间内保持混凝土塑性,当掺量超过一定值后,混凝土会出现不凝、强度下降等问题;二是缓凝剂与目前广泛应用的各类减水剂、水泥品种适应性较差。传统混凝土缓凝剂已不能满足社会发展的需要。 针对传统超缓凝剂的不足,本文从水泥水化机理研究,确定可以延缓水泥水化的分子构型,通过目标反应物的优选、合成工艺控制与优化,制备出混凝土新型超缓凝剂。混凝土新型超缓凝剂合成方式简单,反应条件缓和,绿色无污染;原材料广泛易获取,成本低廉。 1 原材料与试验方法 1.1 原材料 水泥:采用 P·O42.5 水泥,密度 3.1g/cm3,比表面积3500cm2/g,标准稠度用水量 26%,安定性采用沸煮法合格,初凝时间 213min,终凝时间 325min,3d 抗压强度 27.5MPa,28d 抗压强度 49.2MPa。水泥氯离子及碱含量合格。 粉煤灰:采用Ⅰ级粉煤灰,其特点是含碳量低、需水量小。细度 10.3%,烧失量 2.6%,需水量比为 93%,Cl- 含量

相关文档
最新文档