导数及其应用PPT课件
合集下载
《导数及其应用》课件(复习课
存在性:在闭区间[a,b]上连续函 数f(x)在[a,b]上必有最大值与最 小值.
求最大(小)值的方法:函数f(x)在闭区间[a,b]上最值求 法:
1. 求出f(x)在(a,b)内的极值; 2. 将函数f(x)的极值与f(a),f(b)比较,其中较大的一个是最大值,
较小的一个是最小值.
例 6(05 北京 15)已知函数 f x x3 3x2 9x a . (Ⅰ)求 f x 的单调递减区间; (Ⅱ)若 f x 在区间2, 2 上的最大值为 20,求它在该
(II)由(I)知,
f
(x)
3mx2
6(m
1) x
3m
6
= 3m( x
1)
x
1
2 m
当 m 0 时,有1 1 2 ,当 x 变化时, f (x) 与 f (x) 的变化如下表: m
x
,1
2 m
1 2 m
1
2 m
,1
1
1,
f (x)
0
0
f (x)
极小值
极大值
故由上表知,当
m
0 时,
f
解: f/(x)=3x2- 1,
∴k= f/(1)=2
∴所求的切 线方程为:
y-2=2(x -1),
即 y=2x
例1.已经曲线C:y=x3x+2和点(1,2)求在点A处 的切线方程?
变式1:求过点A的切线方程?
解:变1:设切点为P(x0,x03-x0+2), k= f/(x0)= 3 x02-1,
∴切线方程为 y- ( x03-x0+2)=(3 x02-1)(x-x0)
又∵切线过点A(1,2) ∴2-( x03-x0+2)=( 3 x02-1)(1-x0) 化简得(x0-1)2(2 x0+1)=0,
《导数概念》课件
《导数概念》PPT课件
欢迎来到《导数概念》PPT课件!本课程将介绍导数的基本概念和应用,帮助 你深入理解这一重要数学概念。
什么是导数
导数是描述函数变化率的概念。它表示函数在特定点的切线斜率,是研究曲线变化的关键工具。
导数表示方式
导数可以表示为函数的微分形式或极限形式。微分写作dy/dx,而极限写作 lim[f(x+h)-f(x)]/h。
函数的导数
通过对函数求导数,我们可以得到函数的导函数,即函数的每个点的切线斜率函数。
常见函数的导数
常见函数如多项式、三角函数和指数函数都有特定的导数规律,了解这些规 律可以简化求导过程。
导数的几何意义
导数在几何中表示曲线的切线斜率。它可以帮助我们理解曲线的变化率和曲 线在特定点的性质。
导数定义的两种方法
导数可以通过函数的微分或极限定义。微分定义使用导数运算符,而极限定义使用导数的极限表达式。
左பைடு நூலகம்数和右导数
在某些函数不连续的情况下,左导数和右导数可以帮助我们确定导数的存在 性和特定点的切线斜率。
欢迎来到《导数概念》PPT课件!本课程将介绍导数的基本概念和应用,帮助 你深入理解这一重要数学概念。
什么是导数
导数是描述函数变化率的概念。它表示函数在特定点的切线斜率,是研究曲线变化的关键工具。
导数表示方式
导数可以表示为函数的微分形式或极限形式。微分写作dy/dx,而极限写作 lim[f(x+h)-f(x)]/h。
函数的导数
通过对函数求导数,我们可以得到函数的导函数,即函数的每个点的切线斜率函数。
常见函数的导数
常见函数如多项式、三角函数和指数函数都有特定的导数规律,了解这些规 律可以简化求导过程。
导数的几何意义
导数在几何中表示曲线的切线斜率。它可以帮助我们理解曲线的变化率和曲 线在特定点的性质。
导数定义的两种方法
导数可以通过函数的微分或极限定义。微分定义使用导数运算符,而极限定义使用导数的极限表达式。
左பைடு நூலகம்数和右导数
在某些函数不连续的情况下,左导数和右导数可以帮助我们确定导数的存在 性和特定点的切线斜率。
导数及其应用课件PPT
又因为函数在(0,+∞)上只有一个极大值点,所以函数在x=9处取得最大值.
解析答案
12345
4.某公司生产某种产品,固定成本为 20 000 元,每生产一单位产品,成本增
加 100 元,已知总收益 r 与年产量 x 的关系是 r=400x-21x2,0≤x≤400, 80 000, x>400,
则总利润最大时,年产量是( )
即当x为2.343 m,y为2.828 m时,用料最省.
解析答案
题型二 面积、容积的最值问题 例2 如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形 栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽 度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的 尺寸(单位:cm),能使矩形广告面积最小?
反思与感悟
解析答案
跟踪训练1 某单位用木料制作如图所示的框架,框架的下部是边长分别为
x,y(单位:m)的矩形,上部是等腰直角三角形,要求框架的总面积为8 m2,
问:x,y分别是多少时用料最省?(精确到0.001 m)
解 依题意,有 xy+12·x·2x=8,∴y=8-x x42=8x-4x(0<x<4 2),
即当x为2.343 m,y为2.828 m时,用料最省.
解析答案
题型二 面积、容积的最值问题 例2 如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形 栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽 度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的 尺寸(单位:cm),能使矩形广告面积最小?
S′(x)=6x2-24x+16,
令
S′(x)=0,得
导数的概念-课件-导数的概念
导数在现代数学中的地位和作用
基本概念
导数是现代数学的基本概念之一,是研究函数性质和解决实际问题的 重要工具。
数学分析
导数是数学分析的重要分支,是研究函数的可微性、可导性和连续性 的基础。
应用领域
导数的应用领域非常广泛,不仅限于数学和物理领域,还涉及到工程 学、经济学和计算机科学等多个领域。
数学建模
导数的应用发展
物理学
工程学
导数在物理学的各个分支中都有广泛的应 用,如力学、电磁学、热学等。
在机械工程、航空航天工程、土木工程等 领域,导数被用于优化设计、控制工程和 流体力学等方面。
经济学
计算机科学
导数在经济学中被用于研究经济系统的变 化率和最优决策问题。
在计算机图形学、数值分析和机器学习等 领域,导数被用于计算图像处理、数据拟 合和模型训练等方面。
高阶导数在研究函数的极值、拐 点、曲线的形状等方面有重要应 用。
微分学基本定理
微分学基本定理的内容
微分学基本定理是导数与微分之间的关系,即函数在某点的导数 等于该函数在该点的切线的斜率。
微分学基本定理的推导
通过极限的概念和性质,利用切线斜率的定义推导出微分学基本定 理。
微分学基本定理的应用
微分学基本定理是微分学的基础,在研究函数的增减性、极值、曲 线的形状等方面有重要应用。
复合函数求导法则
若$y = f(u)$和$u = g(x)$都可导, 则复合函数$y = f[g(x)]$的导数为 $(y)' = u' cdot (u)' = u' cdot v'$。
隐函数的导数
由显函数表示的隐函数求 导
若由显函数$F(x, y) = 0$表示的隐函数为$y = f(x)$,则通过求偏导数$frac{partial F}{partial x}$和$frac{partial F}{partial y}$ ,可以得到隐函数$y = f(x)$的导数。
《导数定义》课件
2023
《导数定义》ppt课 件
REPORTING
2023
目录
• 导数定义 • 导数的计算 • 导数的应用 • 导数的历史发展
2023
PART 01
导数定义
REPORTING
导数的定义
总结词
导数的定义是函数在某一点的变化率 ,是函数在这一点附近的小范围内取 值的平均变化率的极限。
详细描述
导数定义为函数在某一点的变化率, 即函数在该点的切线斜率。具体来说 ,对于可微函数,其导数是函数值随 自变量变化的速率。
隐函数的导数
总结词
隐函数的导数是导数计算中的另一个重要内容,掌握隐函数的导数计算方法有助于解决实际问题。
详细描述
隐函数的导数是通过对隐函数求偏导数来得到的,其核心思想是利用偏导数和全微分的概念,将隐函 数转化为显函数,然后利用显函数的导数计算方法进行计算。
2023
PAR学等。
导数的早期应用
物理学的应用
在研究速度、加速度、斜率等问 题中,导数发挥了关键作用。
经济学应用
在研究成本、收益、效用和供需 关系时,导数提供了重要的分析
工具。
工程学应用
在优化设计、控制理论和流体动 力学等领域,导数也有广泛应用
。
导数在现代数学中的地位
导数是微积分的重要组成部分, 是研究函数性质和变化率的关键
详细描述
导数具有一些重要的基本性质,如线性性质、常数性质、乘积法则、商的法则 和链式法则等。这些性质在研究函数的单调性、极值和曲线的形状等方面具有 广泛应用。
2023
PART 02
导数的计算
REPORTING
导数的四则运算
总结词
理解导数的四则运算法则是掌握导数计算的基础,包括加法、减法、乘法和除法 。
《导数定义》ppt课 件
REPORTING
2023
目录
• 导数定义 • 导数的计算 • 导数的应用 • 导数的历史发展
2023
PART 01
导数定义
REPORTING
导数的定义
总结词
导数的定义是函数在某一点的变化率 ,是函数在这一点附近的小范围内取 值的平均变化率的极限。
详细描述
导数定义为函数在某一点的变化率, 即函数在该点的切线斜率。具体来说 ,对于可微函数,其导数是函数值随 自变量变化的速率。
隐函数的导数
总结词
隐函数的导数是导数计算中的另一个重要内容,掌握隐函数的导数计算方法有助于解决实际问题。
详细描述
隐函数的导数是通过对隐函数求偏导数来得到的,其核心思想是利用偏导数和全微分的概念,将隐函 数转化为显函数,然后利用显函数的导数计算方法进行计算。
2023
PAR学等。
导数的早期应用
物理学的应用
在研究速度、加速度、斜率等问 题中,导数发挥了关键作用。
经济学应用
在研究成本、收益、效用和供需 关系时,导数提供了重要的分析
工具。
工程学应用
在优化设计、控制理论和流体动 力学等领域,导数也有广泛应用
。
导数在现代数学中的地位
导数是微积分的重要组成部分, 是研究函数性质和变化率的关键
详细描述
导数具有一些重要的基本性质,如线性性质、常数性质、乘积法则、商的法则 和链式法则等。这些性质在研究函数的单调性、极值和曲线的形状等方面具有 广泛应用。
2023
PART 02
导数的计算
REPORTING
导数的四则运算
总结词
理解导数的四则运算法则是掌握导数计算的基础,包括加法、减法、乘法和除法 。
《高等数学导数》课件
答案
2. 求下列函数的极值:
$f'(x) = 3x^2 - 6x + 2$,极值点为 $x=1 pm sqrt{2}$,极大值为 $f(1+sqrt{2}) = 1 + 2sqrt{2}$,极小值为 $f(1-sqrt{2}) = 1 - 2sqrt{2}$。
$f'(x) = ln x + 1$,极值点为 $x=1$,极大值为 $f(1) = 0$。
《高等数学导数》ppt 课件
contents
目录
• 导数的基本概念 • 导数的计算 • 导数的应用 • 导数的扩展 • 习题与答案
CHAPTER 01
导数的基本概念
导数的定义
总结词
导数是函数在某一点的变化率,表示 函数在该点的切线斜率。
详细描述
导数定义为函数在某一点附近取得的 最小变化率,即函数在这一点处的切 线斜率。导数的计算公式为lim(x→0) [f(x+h) - f(x)] / h,其中h趋于0。
2. 求下列函数的极值:
01
03 02
习题
$f(x) = frac{1}{x}$
$f(x) = e^x$
答案
01
1. 求下列函数的导数:
02
$y' = 2x + 2$
03
$y' = -frac{1}{x^2}$
答案
• $y' = \sin x + x \cdot \cos x$
答案
• $y' = e^x$
总结词
导数的四则运算在解决实际问题中具 有广泛的应用,例如在经济学、物理
学和工程学等领域。
详细描述
导数的四则运算法则是基于极限理论 推导出来的,通过这些法则,可以方 便地求出复杂函数的导数。
《几个常用函数的导数》ppt课件
THANKS
详细描述
导数具有连续性、可加性、可乘性和链式法则等重要 性质。连续性指函数在某点的导数等于该点切线的斜 率;可加性指两个函数的和或差的导数等于两个函数 导数的和或差;可乘性指常数与函数的乘积的导数等 于该常数与函数导数的乘积;链式法则指复合函数的 导数等于复合函数内部函数的导数乘以外部函数的导 数。这些性质是导数计算的基础,有助于理解和掌握 导数的应用。
详细描述
函数的极值点是导数为零的点。在极值点处,函数的行为会发生显著变化。通过求导并找出导数为零 的点,我们可以确定函数的极值。此外,我们还可以使用二阶导数测试来确定极值是极大值还是极小 值。
04
导数的计算方法
定义法求导
总结词
通过极限定义来推导导数的计算方法 。
详细描述
定义法求导是导数的基本计算方法, 它基于极限的定义,通过求极限来得 到函数的导数。对于可导的函数,其 导数可以通过定义法直接计算。
02
常见函数的导数
一次函数的导数
1 2
3
一次函数形式
$y = ax + b$
导数公式
$f'(x) = a$
举例
$y = 2x + 3$,导数为$f'(x) = 2$
指数函数的导数
指数函数形式 导数公式 举例
$y = a^x$ $f'(x) = a^x ln a$ $y = e^x$,导数为$f'(x) = e^x$
03
导数的应用
利用导数求切线斜率
总结词
切线斜率是函数在某一点的导数值,它描述了函数在该点的变化率。
详细描述
在数学和物理中,切线斜率是函数图像在某一点的切线的斜率,它等于该点的导 数值。通过求导,我们可以找到切线的斜率,从而更好地理解函数在该点的行为 。
《导数的概念及应用》课件
以判断函数的单调性。
极值与导数的关系
总结词
导数的零点通常是函数的极值点,但需 满足一定的条件。在极值点处,导数的 符号发生变化。
VS
详细描述
如果一个函数在某一点的导数为零,且在 这一点的一阶导数存在,那么这个点可能 是函数的极值点。为了确定这一点是否为 极值点,需要检查该点两侧的导数符号是 否发生变化。如果导数的符号在这一点从 正变为负或从负变为正,则该点为极值点 。
曲线的凹凸性与导数的关系
总结词
二阶导数可以判断曲线的凹凸性。二阶导数 大于零的区间内,曲线是凹的;二阶导数小 于零的区间内,曲线是凸的。
详细描述
二阶导数描述了函数值随自变量变化的加速 度。当二阶导数大于零时,表示函数在该区 间内单调递增;当二阶导数小于零时,表示 函数在该区间内单调递减。因此,通过分析 二阶导数的正负,可以判断曲线的凹凸性。
详细描述
在流体动力学中,导数可以用来描述流体速度和压强的变化规律,以及流体流动的稳定性分析。在结构分析中, 导数可以用来计算结构的应力和应变,评估结构的强度和稳定性。在控制理论中,导数可以用来分析系统的动态 响应和稳定性,优化系统的性能和稳定性。
THANKS
感谢观看
极值的概念
函数在某点的极值表示该点附近函数值的大小变化情 况,极值可以是极大值或极小值。
导数与极值的关系
函数在极值点的导数等于零,通过求导可以找到极值 点。
极值问题的求解方法
利用导数等于零的条件,结合函数单调性判断,确定 极值点并计算出极值。
曲线的长度计算
曲线长度的概念
01
曲线长度表示曲线本身的长度,是几何学中的一个基本概念。
导数的几何意义
总结词
导数在几何上表示函数图像在某一点的切线斜率。
极值与导数的关系
总结词
导数的零点通常是函数的极值点,但需 满足一定的条件。在极值点处,导数的 符号发生变化。
VS
详细描述
如果一个函数在某一点的导数为零,且在 这一点的一阶导数存在,那么这个点可能 是函数的极值点。为了确定这一点是否为 极值点,需要检查该点两侧的导数符号是 否发生变化。如果导数的符号在这一点从 正变为负或从负变为正,则该点为极值点 。
曲线的凹凸性与导数的关系
总结词
二阶导数可以判断曲线的凹凸性。二阶导数 大于零的区间内,曲线是凹的;二阶导数小 于零的区间内,曲线是凸的。
详细描述
二阶导数描述了函数值随自变量变化的加速 度。当二阶导数大于零时,表示函数在该区 间内单调递增;当二阶导数小于零时,表示 函数在该区间内单调递减。因此,通过分析 二阶导数的正负,可以判断曲线的凹凸性。
详细描述
在流体动力学中,导数可以用来描述流体速度和压强的变化规律,以及流体流动的稳定性分析。在结构分析中, 导数可以用来计算结构的应力和应变,评估结构的强度和稳定性。在控制理论中,导数可以用来分析系统的动态 响应和稳定性,优化系统的性能和稳定性。
THANKS
感谢观看
极值的概念
函数在某点的极值表示该点附近函数值的大小变化情 况,极值可以是极大值或极小值。
导数与极值的关系
函数在极值点的导数等于零,通过求导可以找到极值 点。
极值问题的求解方法
利用导数等于零的条件,结合函数单调性判断,确定 极值点并计算出极值。
曲线的长度计算
曲线长度的概念
01
曲线长度表示曲线本身的长度,是几何学中的一个基本概念。
导数的几何意义
总结词
导数在几何上表示函数图像在某一点的切线斜率。
《导数的几何意义》课件
热量与温度
在热传导问题中,导数的几何意义可以帮助 理解热量在物体中的传递和分布。温度是热 量的度量,而物体中的温度梯度(即温度随
位置的变化率)可以用导数来表示。
经济问题
要点一
供需关系
在经济学中,导数可以用来分析供需关系的变化。需求函 数或供给函数的导数可以描述价格与需求量或供给量之间 的变化率,帮助理解市场的均衡状态和价格调整机制。
隐函数求导
方法
通过对方程两边求导来求解隐函数的导数。
注意事项
在求导过程中,需要保持方程两边的等价关 系,并注意复合函数的求导法则。
04
导数在实际问题中的应用
物理问题
速度与加速度
在物理学中,导数被广泛应用于描述物体的 运动状态。速度是位置函数的导数,表示物 体在单位时间内通过的距离;而加速度是速 度函数的导数,表示物体速度变化的快慢。
02 导数可以用来求解微分方程,通过对方程进行求 导和积分,可以得到微分方程的解。
03 微分方程是描述物理现象的重要工具,通过求解 微分方程,可以了解物理现象的变化规律。
THANKS
感谢观看
信号处理
在信号处理和图像处理中,导数起着关键作用。信号的强度随时间的变化率可以用导数 来描述,而图像的边缘和轮廓可以通过求导来检测。此外,导数还可以用于图像的锐化
和模糊处理等操作。
05
导数的扩展知识
高阶导数
01
定义
高阶导数是函数导数的连续函数 ,表示函数在某一点的n阶导数 。
02
03
应用
计算方法
导数的性质
总结词
导数具有一些基本的性质,如可加性、可乘性、链式法则等。
详细描述
导数具有可加性、可乘性和链式法则等基本性质。这些性质是导数运算的基础,有助于理解和计算复杂的导数表 达式。
导数的应用课件
02
导数在函数中的应用
Chapter
函数的单调性
总结词
导数可以用于判断函数的单调性 ,通过导数的正负来判断函数在 某区间内的增减性。
详细描述
如果函数在某区间内的导数大于0 ,则函数在此区间内单调递增; 如果导数小于0,则函数在此区间 内单调递减。
函数的极值
总结词
导数可以用于求函数的极值,当导数 由正变为负或由负变为正时,函数在 此点取得极值。
06
导数在其他领域的应用
Chapter
在化学反应速率中的应用
总结词
导数在化学反应速率中的应用主要表现在反 应速率的计算和反应机理的研究上。
详细描述
在化学反应中,反应速率是描述反应快慢的 重要参数。通过导数的计算,可以精确地描 述反应速率随温度、压力、浓度等条件的变 化情况,进而研究反应的动力学特征和机理 。导数分析有助于深入理解化学反应的本质 ,为优化反应条件和提高产率提供理论支持 。
速度与加速度
速度
瞬时速度是物体在某一时刻或经过某一位置时的速度,它由物体运动的距离和时间的比值定义。导数可以用来计 算瞬时速度,通过求位移函数的导数,得到瞬时速度的表达式。
加速度
加速度是速度的变化率,表示物体运动的快慢和方向。导数可以用来计算加速度,通过求速度函数的导数,得到 加速度的表达式。
斜抛运动
05
导数在经济学中的应用
Chapter
边际分析
01
边际成本
导数可以用来计算边际成本,即生产某一数量的产品所需增加或减少的
成本。通过导数分析,企业可以确定生产某一数量的产品时,成本增加
或减少的速度。
02
边际收益
导数还可以用来计算边际收益,即销售某一数量的产品所增加或减少的
导数及其应用讲导数在不等式中的应用课件pptx
介绍函数极值点的定义和 求解方法,为利用导数求 解极值点提供基础。
方法总结
总结利用导数求解函数极 值点的常用方法,如求导 、判断导数为零的点等。
案例分析
通过典型案例演示如何利 用导数求解极值点。
04
导数的实际应用举例
利用导数求解利润最大化问题
利润函数
首先明确利润函数,即销售收入减去成本和税金 ,通常表示为x的函数。
举例
以y=x^4为例,求该函数的凹凸性和 拐点。该函数的导数为y'=4x^3,在 区间(-oo,0)上,y'<0;在区间(0,)上 ,y'>0。因此,函数在区间(-oo,0)上 单调递减,在区间(0,)上单调递增, 故函数在x=0处存在极值点,且该极 值点不是函数的极值点,故函数在 x=0处有拐点
利用导数求解函数的单调性和区间
利用导数求不等式的解
利用导数可以求出一些不等式的解。例如,利 用导数可以求出一些函数的极值点和转折点等 。
利用导数解决一些实际问题
利用导数可以解决一些实际问题,例如,利用 导数可以求出一些最优化的方案,以及利用导 数解决一些经济和金融问题等。
02
导数的定义和性质
导数的定义
函数f在点x0处可导
指当自变量x在点x0处有增量△x时,相应的函数值f(x0+△x)和f(x0)之差 △y=f(x0+△x)-f(x0)可表示为△y=A△x+o(△x),其中A是与△x无关的常数
利用导数求解函数的极值和最值
总结词
导数的值为0的点可能是函数的极值点或最值点。
详细描述
利用导数求解函数的极值和最值
06
总结与回顾
本章主要内容总结
了解了导数的定义和计算方法 学习了不等式的性质和证明方法
方法总结
总结利用导数求解函数极 值点的常用方法,如求导 、判断导数为零的点等。
案例分析
通过典型案例演示如何利 用导数求解极值点。
04
导数的实际应用举例
利用导数求解利润最大化问题
利润函数
首先明确利润函数,即销售收入减去成本和税金 ,通常表示为x的函数。
举例
以y=x^4为例,求该函数的凹凸性和 拐点。该函数的导数为y'=4x^3,在 区间(-oo,0)上,y'<0;在区间(0,)上 ,y'>0。因此,函数在区间(-oo,0)上 单调递减,在区间(0,)上单调递增, 故函数在x=0处存在极值点,且该极 值点不是函数的极值点,故函数在 x=0处有拐点
利用导数求解函数的单调性和区间
利用导数求不等式的解
利用导数可以求出一些不等式的解。例如,利 用导数可以求出一些函数的极值点和转折点等 。
利用导数解决一些实际问题
利用导数可以解决一些实际问题,例如,利用 导数可以求出一些最优化的方案,以及利用导 数解决一些经济和金融问题等。
02
导数的定义和性质
导数的定义
函数f在点x0处可导
指当自变量x在点x0处有增量△x时,相应的函数值f(x0+△x)和f(x0)之差 △y=f(x0+△x)-f(x0)可表示为△y=A△x+o(△x),其中A是与△x无关的常数
利用导数求解函数的极值和最值
总结词
导数的值为0的点可能是函数的极值点或最值点。
详细描述
利用导数求解函数的极值和最值
06
总结与回顾
本章主要内容总结
了解了导数的定义和计算方法 学习了不等式的性质和证明方法
导数在实际生活中的应用教学课件
数值模拟与仿真
数值模拟
导数可以用于数值模拟中的偏微分方程求解,例如在物理学、化学和生物学 等领域中,利用导数求解偏微分方程可以模拟自然现象的规律。
计算机仿真
导数可以用于计算机仿真中的参数优化和模型验证,例如在金融、交通和生 态等领域中,利用导数进行参数优化和模型验证可以提高仿真结果的准确性 和可靠性。
2023
《导数在实际生活中的应 用教学课件》
目录
• 导数概述 • 导数在物理中的应用 • 导数在经济学中的应用 • 导数在工程中的应用 • 导数的进一步应用
01
导数概述
导数的定义
1 2
定义
导数是函数值随自变量变化的速度,即函数在 某一点的导数表示函数在这一点变化率的大小 。
数学表达
如果函数y = f(x)在x = x0处可导,则称f'(x0)为 函数f(x)在x0处的导数。
稳定性
在船舶设计中,导数可以帮助分析船体的稳定性。例如,通过分析船体的重心以 及浮力的变化,利用导数可以确定最优的船体设计以实现稳定的航行。
05
导数的进一步应用
最优控制与决策
最优控制
导数可以用于求解最优控制问题,例如在工程、经济和金融 等领域中的最优控制策略,以实现系统性能的最优。
决策分析
导数可以用于决策分析中的最优选择问题,例如在风险评估 和预测分析中,利用导数求解最优投资组合或最优路径选择 等。
边际成本与边际收益
边际成本
导数可以用来描述成本的变化率,即边际成本。在经济学中 ,边际成本是指增加一单位产量所增加的成本。通过导数, 我们可以分析不同生产规模下的边际成本,从而优化生产决 策。
边际收益
与边际成本相对应,导数也可以用来描述收益的变化率,即 边际收益。在经济学中,边际收益是指增加一单位产量所增 加的收益。通过导数,我们可以分析不同生产规模下的边际 收益,从而优化销售决策。
《导数的应用举例》课件
导数的未来发展前景
导数在数学、物理、工程等领域的应用将更加广泛 导数在机器学习、人工智能等领域的应用将逐渐增多 导数在金融、经济等领域的应用将逐渐深入 导数在教育、科普等领域的应用将逐渐普及
感谢您的观看
汇报人:
导数与极值
导数在几何中的应用:求曲线的斜 率、切线、拐点等
极值的判断:利用导数判断函数在 某点处的极值
添加标题
添加标题
添加标题
添加标题
极值的定义:函数在某点处的导数 为0,且该点两侧的导数符号相反
极值的应用:求函数的最大值和最 小值,解决实际问题
导数在物理中的 应用
导数与速度、加速度
导数与速度:导 数是描述函数在 某一点处变化率 的概念,可以用 于描述物体在某 一点的速度。
添加标题
导数是函数在某一点的瞬时变化率
导数是函数在某一点的微分值
导数的性质
导数是函数在某一点的切线斜率
导数是函数在某一点的局部线性近 似
添加标题
添加标题
添加标题
添加标题
导数是函数在某一点的瞬时变化率
导数是函数在某一点的局部线性逼 近
导数与函数关系
导数描述了函数在某一点的 变化率
导数是函数的局部线性逼近
导数与最优化问题
导数在经济学中的应用:求解最优化问题 导数在经济学中的应用:求解边际效益 导数在经济学中的应用:求解边际成本 导数在经济学中的应用:求解边际利润
导数在其他领域 的应用举例
导数与计算机科学中的算法优化
导数在计算机科学中的作用:优化算法,提高计算效率 导数在算法优化中的应用:梯度下降法、牛顿法等 导数在机器学习中的应用:神经网络、深度学习等 导数在图像处理中的应用:图像平滑、边缘检测等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
__
s 1 v 2 g g ( t ) t 2
O s(2) s(2+t)
(1)将 Δ t=0.1代入上式,得: __
v 2.05g 20.5m / s.
s
(2)__ 将 Δ t=0.01代入上式,得:
( 3)当t 0,2 t 2,
__
v 2.005g 20.05m / s.
小结:
• 1.函数的平均变化率
f x
f(x2 ) f ( x1 ) x2 x1
• 2.求函数的平均变化率的步骤: (1)求函数的增量Δf=Δy=f(x2)-f(x1);
(2)计算平均变化率
f x
f(x2 ) f ( x1 ) x2 x1
练习:
• 过曲线y=f(x)=x3上两点P(1,1)和Q (1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1 时割线的斜率. K=3Δx+(Δx)2=3+3×0.1+(0.1)2=3.31
它说明在第2(h)附近,原油 温度大约以3 0C/H的速度下降; 在第6(h)附近,原油温度大 约以5 0C/H的速度上升。
应用:
• 例3.质量为10kg的物体,按照s(t)=3t2+t+4的 规律做直线运动, (1)求运动开始后4s时物体的瞬时速度;
1 0 0.62(dm / L)
• 当V从1增加到2时,气球半径增加了 r (2) r (1) 0.16(dm 显然 气球的平均膨胀率为 r (2) r (1)
2 1 0.16(dm / L)0.62>0.16
思考?
• 当空气容量从V1增加到V2时,气球的平 均膨胀率是多少?
从而平均速度 v 的极限为: __ s v lim v lim 2 g 20m / s. s t 0 t 0 t 即物体在时刻t0=2(s)的瞬时速度等于20(m/s). 当时间间隔Δ t 逐渐变小时,平均速度就越接近 t0=2(s) 时的瞬时速度v=20(m/s).
作业:
• 第二教材P67 A 1、2、4,B 5
3.1.2 导数的概念
• 在高台跳水运动中,平均速度不能反映他在 这段时间里运动状态,需要用瞬时速度描 述运动状态。我们把物体在某一时刻的速 度称为瞬时速度.
又如何求 瞬时速度呢?
如何求(比如,
当Δt趋近于0时,平均 t=2时的)瞬时速度? 速度有什么变化趋势?
导数的定义:
从函数y=f(x)在x=x0处的瞬时变化率是:
应用:
1 2 s gt 其 例1 物体作自由落体运动,运动方程为: 2 2
中位 移单位是m,时间单位是s,g=10m/s .求: (1) 物体在时间区间[2,2.1]上的平均速度; (2) 物体在时间区间[2,2.01]上的平均速度; (3) 物体在t=2(s)时的瞬时速度.
3.1.1变化率问题
• 问题1 气球膨胀率
我们都吹过气球回忆一下吹气球的过程,可 以发现,随着气球内空气容量的增加,气球的半径增 加越来越慢.从数学角度,如何描述这种现象呢?
我们来分析一下:
• 气球的体积V(单位:L)与半径r 4 3 (单位:dm)之间的函数关系是 V (r ) r
3 3V 3 • 如果将半径r表示为体积V的函数,那么 r (V ) 4 • 当V从0增加到1时,气球半径增加了 r (1) r (0) 0.62(dm) 气球的平均膨胀率为 r (1) r (0)
应用:
• 例2 将原油精练为汽油、柴油、塑胶等各种不同 产品,需要对原由进行冷却和加热。如果第 x(h) 时,原由的温度(单位:0C)为 f(x)=x27x+15(0≤x≤8).计算第2(h) 和第6(h)时,原由 温度的瞬时变化率,并说明它们的意义。
关键是求出:
f x3 x f 再求出lim x x 0
r (V2 ) r (V1 ) V2 V1
问题2 高台跳水
在高台跳水运动中,运动员相对于水面的高 度h(单位:米)与起跳后的时间t(单位:秒)存 在函数关系 h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地 描述其运动状态?
请计算
0 t 0.5和1 t 2时的平均速度v :
通过列表看出平均速度的变化趋势
:
瞬时速度?
• 我们用
t 0
lim h(2 t ) h(2) 13.1
t
表示 “当t=2, Δt趋近于0时,平均速度趋于确定值 -13.1”. • 那么,运动员在某一时刻t0的瞬时速度?
h(t0 t ) h(t0 ) lim t 0 t
这里Δx看作是对于x1的一 个“增量”可用x1+Δx代 替x2 同样Δf=Δy==f(x2)-f(x1)
则平均变化率为
f • 观察函数f(x)的图象
f(x2 ) f ( x1 ) 平均变化率 y x2 x1 f(x )
2
Y=f(x) x2-x1 f(x2)-f(x1)
请计 0 t 0.5和1 t 2时的平均速度v : 算
平均速度不能反映他在这段时间里运动状态,
需要用瞬时速度描述运动状态。
平均变化率定义:
f(x ) f ( x ) 2 1 上述问题中的变化率可用式子 表示 x2 x1
称为函数f(x)从x1到x2的平均变化率
• 若设Δx=x2-x1, Δf=f(x2)-f(x1)
B
表示什么?
f(x1)
A x x1 x2
直线AB的斜 率
O
做两个题吧!
• 1 、已知函数f(x)=-x2+x的图象上的一点A(1,-2)及临近一点B(-1+Δx,-2+Δy),则 Δy/Δx=( )D A 3 B 3Δx-(Δx)2 C 3-(Δx)2 D 3-Δx
• 2、求y=x2在x=x0附近的平均速度。 2x0+Δx
第三章 导数及其应用
微积分主要与四类问题的处理相关:
• 一、已知物体运动的路程作为时间的函数, 求物体在任意时刻的速度与加速度等; • 二、求曲线的切线; • 三、求已知函数的最大值与最小值; • 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函 数增减、变化快慢、最大(小)值等问题 最一般、最有效的工具。