微积分之幂级数

合集下载

简明微积分函数展开为幂级数

简明微积分函数展开为幂级数
解: f (n)(x) ex,
f (n)(0) 1
n 0f(nn)! (0)xn n 0xnn!1
l lim| an1| lim(n1)!0 n an n 1
收敛半径 R 1 , n! l
收敛区间(为 ,)
对于任x、 何 (0有 1 限 ) 数
第五节 函数展开成幂级数
一、泰勒级数 二、函数展开成幂级数
一、泰勒级数
定义 如果f(x)在点x0的某邻域内具有任意阶导
数,则称幂级数
f(x0)f'(x0)(xx0)f''2(!x0)(xx0)2
f(nn)(!x0)(xx0)n
为f(x)在x0的泰勒级数.
(1)
当x0=0时,泰勒级数为:
得到展开式: e x 1 x x 2 x n ( x ) (6)
2 ! n !
间接展开法 利用一些已知的函数展开式、 幂级数运算(如四则运算、逐项求导、逐项积 分)以及变量代换等,将所给函数展开成幂级 数.
1 1qq2qn1 1q
(-1q1)
(c)利用公式(3)写出麦克劳林级数,
f(0 )f'(0 )xf"(0 )x 2 f(n )x n
2 !
n !
并求出收敛半径R;
(d如 ) 能证明在收敛 (-R区 , R间 )内,余项
Rn(x)0(n),则 (c步 ) 骤写出的幂 就是函f (数 x)的幂级数展. 开式
例 1将函 f(x) 数 ex展开 x的成 幂级
23
n
(1 x 1)
(11)
arctanx x 1x3 1 x5 (1)n1 x2n1
35
2n 1
收敛区间为 [-1,1]

幂级数展开在微积分中的应用

幂级数展开在微积分中的应用

幂级数展开在微积分中的应用微积分是数学中的一门重要学科,它研究的是变化和连续的性质,并广泛应用于科学、工程、经济学等领域。

在微积分中,幂级数展开是一种重要的工具,可以用于计算复杂函数的近似值,解决微积分问题,近似解方程等。

本文将介绍幂级数展开在微积分中的应用。

一、幂级数展开的基本概念在微积分中,幂级数展开是一种用无限项级数来逼近函数的近似方法。

幂级数展开可以将任意的函数表示为一系列多项式的和,其一般形式为:$$f(x)=\sum\limits_{n=0}^\infty a_n(x-x_0)^n$$其中 $a_n$ 是常数项,$x_0$ 是幂级数展开的中心点,$n$ 取遍整数。

当 $x=x_0$ 时,级数的和是 $a_0$;当 $x$ 离 $x_0$ 越远时,高次项的权重越小,这种逼近方法的精度也会越高。

二、1.计算函数的近似值幂级数展开可以将复杂函数表示为一系列简单的多项式的和,由此可以得到函数的近似值。

例如,对于 $\sin x$ 函数,可以将其幂级数展开为:$$\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots $$当 $x$ 很小的时候,可以截去高次项的部分,得到近似的表达式 $\sin x \approx x$。

这种方法在计算科学和工程中经常被使用,可以大大减少计算量。

2.解决微积分问题幂级数展开还可以用于解决微积分问题,如求导、积分等。

例如,对于 $\ln(1+x)$ 函数,可以将其幂级数展开为:$$\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots$$对其求导得:$$(\ln(1+x))'=\frac{1}{1+x}=1-x+x^2-x^3+\cdots $$这种方法可以用于求解高阶导数、不定积分等问题。

同时,幂级数展开还可以用于计算曲线的弧长、面积等。

幂级数

幂级数

k −1
=
1 在 x < 2 上成立, x2 1− 2
所以: f ( x ) = f ( 0 ) +

x
0
f ′ ( t ) dt = ∫
x
0
1 1 2+x , x < 2, dt = ln 2 t 2 2−x 1− 2 1 2 +1 = 2 ln ln 2 2 −1
最后我们求得:
∑ 2 ( 2k − 1) = f (1) =
则在 ( x0 − R, x0 + R ) 上,函数 S ( x ) 可导,且有:
S ′ ( x ) = ∑ nan ( x − x0 )
n =1

n −1
, ∫ S ( t ) dt = ∑
x x0
an n +1 ( x − x0 ) 。 n =0 n + 1

此定理也是由于一致收敛级数之性质而来的。 例4. 由幂级数
高等微积分讲义
第9讲
幂级数的定义与性质
∑a (x − x )
n =0 n 0 ∞ n
幂级数是指形如
的函数项级数, 由于形式相对简单因而其性质也较容易
研究清楚,并且具有一些一般函数项级数所没有的特殊性质。
1
对于级数
收敛性与收敛半径
∑a (x − x )
n =0 n 0

n
,令: lim n an x − x0
∑( x − x )
n=0
0

n
级数的收敛半径为 1,当 x − x 0 = ±1 时,级数均发散,所以级数的收敛区间 为 ( x0 − 1, x0 + 1)

例2. 考虑级数

幂级数经典课件

幂级数经典课件

收敛域的性 质:收敛域 是一个开区 间且包含原 点
收敛域的应 用:在函数 分析、微积 分等领域有 广泛应用
幂级数的收敛域的性质
收敛半径:幂级 数在收敛域内收 敛
收敛域:幂级数 在收敛域内收敛 且收敛半径为R
收敛半径的性质: 收敛半径R是幂级 数收敛域的半径
收敛域的性质:收 敛域是幂级数收敛 的区间且收敛半径 为R
幂级数的性质
收敛性:幂级数 是否收敛取决于 其收敛半径
解析性:幂级数 在其收敛半径内 解析
幂级数的和:幂级 数的和等于其收敛 半径内的解析函数
幂级数的展开:幂 级数可以展开为泰 勒级数或其他幂级 数形式
幂级数的收敛性
收敛性定义:幂级数在收敛区间内其部分和数列的极限存在 收敛性判别:使用比值判别法、根判别法、积分判别法等 收敛性应用:在函数逼近、数值分析、微分方程求解等领域有广泛应用 收敛性研究:幂级数的收敛性是数学分析中的重要课题有许多研究成果和理论
幂级数的求和的定义与性质
幂级数的求和: 将无穷多个幂 级数项相加得 到新的幂级数
求和的定义: 求和是指将无 穷多个幂级数 项相加得到新
的幂级数
求和的性质: 求和后的幂级 数具有与原幂 级数相同的收 敛半径和收敛

求和的应用: 求和在解决数 学问题、物理 问题等方面有
广泛应用
幂级数的求积的定义与性质
幂级数在解决初等数学问题中的应用
幂级数在微积分中的应用
幂级数在函数逼近中的应 用
幂级数在数值分析中的应 用
幂级数在概率论中的应用
幂级数的展开式的定义
幂级数:由无穷多个项组成的函数 展开式:将幂级数表示为无穷多个项的和 展开式形式:_0 + _1x + _2x^2 + ... 展开式的应用:在数学、物理、工程等领域广泛应用

微积分中的幂级数展开

微积分中的幂级数展开

微积分中的幂级数展开幂级数展开是微积分中的重要概念之一,它是将一个函数表示成一系列幂函数的和的形式,是微积分中对函数进行近似和研究的基础。

本文将从幂级数的基本概念和定义开始,进一步探讨幂级数展开的应用和实际意义。

一、\hspace{0.5em}幂级数的基本概念和定义幂级数是指由函数$f(x)$的幂次组成的无穷级数:$$f(x)=\sum_{n=0}^{\infty}a_nx^n=a_0+a_1x+a_2x^2+...+a_nx^n +...$$其中$a_n$称为幂级数$f(x)$的系数,也就是说,幂级数展开的核心就在于求解幂级数的系数。

对于幂级数的收敛性,我们需要使用柯西收敛原理。

具体地,如果序列$\{a_n\}$满足:$$\limsup\sqrt[n]{|a_n|}<1$$则幂级数的收敛半径为$R=\dfrac{1}{\limsup\sqrt[n]{|a_n|}}$。

幂级数在其收敛半径内的收敛性由黑格尔定理(或阿贝尔定理)给出:如果幂级数$f(x)$的收敛半径$R>0$,那么$f(x)$在$(-R,R)$内一致收敛;如果幂级数$f(x)$在某个点$x_0\neq 0$处发散,那么幂级数在所有点$x$处均发散。

二、\hspace{0.5em}幂级数展开的应用幂级数展开在数学中有着广泛的应用,下面将介绍一些具体的例子。

1.泰勒级数泰勒级数是指将一个函数$f(x)$在某一点$x=a$处展开的幂级数:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n$$其中$f^{(n)}(a)$表示$f(x)$在点$x=a$处的$n$阶导数。

泰勒级数可以用于求解函数的近似值,以及函数的性质和应用。

例如,我们可以通过泰勒级数在$x=0$处展开$\sin x$和$\cos x$,得到:$$\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...$$$$\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+...$$2.幂级数解微分方程通过对微分方程进行幂级数变换,我们可以得到幂级数解,并且可以在一定程度上揭示微分方程的一些性质和规律。

微积分常用公式及运算法则

微积分常用公式及运算法则

微积分常用公式及运算法则1.调和级数:调和级数为H(n)=1+1/2+1/3+...+1/n,其中n为正整数。

它是发散级数,在计算机科学和数学中都有重要应用。

2.多项式级数:多项式级数为f(x)=a0+a1x+a2x^2+a3x^3+...。

其中a0、a1、a2是常数系数,x是变量。

多项式级数可以直接求和,也可以使用其他方法进行求和。

3.幂级数:幂级数为f(x)=c0+c1(x-a)+c2(x-a)^2+c3(x-a)^3+...。

其中c0、c1、c2是常数系数,a是常数。

幂级数可以表示为基于常数系数和常数a的级数。

4.泰勒级数:在微积分中,泰勒级数是一种用函数的高阶导数来逼近函数的方法。

泰勒级数可以将函数表示为一个无限级数。

5.泰勒公式:泰勒公式是泰勒级数的具体表达形式。

泰勒公式可以将函数在其中一点的值表示为该点的函数值和函数的各阶导数值的线性组合。

6.均值定理:均值定理是微积分中的重要定理,它指出在其中一区间上,连续函数的平均变化率等于该区间内其中一点的瞬时变化率。

7.拉格朗日中值定理:拉格朗日中值定理是微积分中的一类中值定理,它指出在其中一区间上,连续函数的导数必在其中一区间内的其中一点等于函数在该区间两个端点的斜率。

8.柯西中值定理:柯西中值定理是微积分中的一类中值定理,它指出在其中一区间上,连续函数的导数必在其中一区间内的其中一点等于函数在该区间两个端点的斜率。

9.极值点:极值点是函数在其中一区间内的最大值点或最小值点。

极值点可以使用导数的符号和戴布尔不等式来判断。

10.弧长:弧长是曲线上的一段长度。

计算曲线的弧长可以使用微积分的方法,如积分的方法。

11.曲率:曲率是表示曲线弯曲程度的一个数值。

曲率可以使用导数和二阶导数计算。

12.方向角:方向角是表示曲线在其中一点的切线方向的角度。

方向角可以使用导数计算。

幂级数和函数的计算方法

幂级数和函数的计算方法

幂级数和函数的计算方法幂级数是一种重要的数学概念,它可以被表示为各项式系数和幂次的乘积,而幂级数函数则表示为各项式系数和自变量幂次的乘积。

计算幂级数和幂级数函数的方法可以分为以下几类。

一、按公式计算法若给出幂级数或幂级数函数的通项公式,则可以通过代入相关值计算出对应的函数值。

例如,当我们给出幂级数$e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...$ 前 $n$ 项和 $x$ 的值时,用公式可以直接计算 $e^x$ 的近似值。

二、按递推关系计算法递推公式是指通过前项计算后项的公式,例如$F_{n+2}=F_{n+1}+F_n$ 就是斐波那契数列的递推公式。

在计算幂级数和幂级数函数时,有些级数和函数也可以通过递推关系求解。

例如,许多常见的初等函数如正弦、余弦和指数函数都可以通过递推公式计算。

三、按微积分计算法微积分方法是计算幂级数和幂级数函数的常见方法之一。

该方法适用于通过对幂级数进行求导和积分来求解幂级数函数。

例如,通过对幂级数 $f(x)=\sum_{n=0}^{\infty}a_nx^n$ 求导,可以得到它的导函数$f'(x)=\sum_{n=1}^{\infty}na_n x^{n-1}$。

四、按解析方法计算法解析方法是求解幂级数和幂级数函数的一种重要方法。

它通过将幂级数或幂级数函数展开为复数函数的形式,然后利用复函数的各种解析方法来求解幂级数或幂级数函数。

广义柯西公式是解析方法中的一个重要概念,它描述了对于一个幂级数,我们可以通过沿着一个简单闭曲线的路径来计算它的积分。

五、按迭代方法计算法迭代方法在计算幂级数和幂级数函数时也是一种可行的方法。

该方法通过逐步改变幂级数的项数来得到逼近幂级数函数的近似值。

在应用迭代方法时,应注重要选择合适的迭代策略,并采用精度控制方法,以使接近幂级数函数的误差控制在一定范围内。

以上是常见的计算幂级数和幂级数函数的方法,每种方法均有其适用范围和优势。

幂级数展开式常用公式 csdn

幂级数展开式常用公式 csdn

幂级数展开式常用公式一、概述幂级数展开是微积分中非常重要的一个概念,它在数学、物理、工程等领域都有着广泛的应用。

在实际问题中,往往需要根据实际情况来拟定幂级数展开式,以便进行进一步的分析和计算。

本文将介绍一些幂级数展开式的常用公式,以帮助读者更好地理解和应用这一重要的数学工具。

二、常见的幂级数展开式1. $e^x$的幂级数展开式可以利用泰勒公式得到$e^x$的幂级数展开式:$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$这个幂级数在实际计算中有着广泛的应用,特别是在微积分和概率论中。

2. $\sin x$的幂级数展开式$\sin x$函数的幂级数展开式为:$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$3. $\cos x$的幂级数展开式$\cos x$函数的幂级数展开式为:$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$4. $\ln(1 + x)$的幂级数展开式$\ln(1 + x)$函数的幂级数展开式为:$$\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$5. $(1 + x)^\alpha$的幂级数展开式当$\alpha$为实数时,$(1 + x)^\alpha$的幂级数展开式为:$$(1 + x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \cdots$$这个幂级数展开式在概率论和统计学中有着广泛的应用。

幂级数的知识点

幂级数的知识点

幂级数是数学中非常重要的概念之一,它在许多领域都有广泛的应用,例如物理学、工程学和计算机科学等。

本文将通过逐步思考的方式介绍幂级数的基本概念、性质和应用。

1. 幂级数的定义幂级数是一种形式为∑(an⋅x^n)的级数,其中an是一系列常数,x是变量。

幂级数可以看作是多项式的无穷级数形式,每一项的系数an和变量的幂次n可能会随着n的增大而变化。

2. 幂级数的收敛性为了讨论幂级数的性质和应用,我们首先需要了解收敛性的概念。

对于给定的幂级数,如果存在一个实数r,使得当|x| < r时级数收敛,而当|x| > r时级数发散,那么我们称r为幂级数的收敛半径。

收敛半径是幂级数的一个重要性质,决定了级数的收敛范围。

3. 幂级数的求和幂级数的求和是一个重要的问题。

对于给定的幂级数,我们可以使用不同的方法来计算它的和,例如直接求和、利用级数的性质进行变换和利用数值计算方法等。

其中,直接求和方法常用于某些特殊的幂级数,而其他方法则更多地用于一般情况下的求和问题。

4. 幂级数的性质幂级数具有许多重要的性质,这些性质对于理解幂级数的行为和应用非常有帮助。

其中一些重要的性质包括线性性质、微分性质和积分性质。

这些性质可以简化对幂级数的操作和计算,使得我们能够更加灵活地应用幂级数解决问题。

5. 幂级数的应用幂级数在数学和其他领域中有广泛的应用。

其中一些应用包括: - 在数学分析中,幂级数可以用于表示和逼近函数。

- 在物理学中,幂级数可以用于描述物体的运动和力学性质。

- 在工程学中,幂级数可以用于建模和解决差分方程和微分方程。

- 在计算机科学中,幂级数可以用于设计算法和优化问题求解过程。

6. 幂级数的扩展除了普通的幂级数之外,还有其他一些相关的概念和扩展形式。

例如,幂级数可以推广为形式为∑(an⋅(x-c)^n)的幂级数,其中c是常数。

这种形式的幂级数称为幂级数的泰勒级数形式,它在函数逼近和微积分等领域有广泛的应用。

微积分第5节幂级数展开式

微积分第5节幂级数展开式

f ( x) n f (k)( x0 )
k0 k !
x x0
k
f (n1) ( ) n1 !
x x0 k ,
介于x, x0之间 .
f x任意可导 f ( x)
f (n)( x0 )
n0 n!
x x0
n.
2
函数展开方法之一:直接法
ex n ex e x xn
n0 n !
(1)n
x 2n
1 x2 x4 ,
x (,)
n0
(2n) !
2! 4!
9
解法2 (cos 2 x) sin2x (1)n (2x)2n1 ,
n0
(2n 1) !
两边从 0 到 x 积分,得
x (,)
cos2 x 1 1 (1)n (2x)2n2
2 n0
(2n 2) !
0 n0
n0
2n 1
故 f (x)
x
(1)n
x 2n1 dx
(1)n
x 2n 2
0 n0
2n 1
n0
(2n 1)(2n 2)
(1)n1
x2n
, (1 x 1)
n1
2n(2n 1)
13
例10. 将 f ( x) 1 展开成x 1的幂级数. 4+x

4
1
x
5
1 x
1
1 5
n0
n0
k n1
f
n
(
x)
n1
ak
x x0
k
n
an
x x0
n
n
ak
x x0
k n
k0
kn1

微积分之幂级数

微积分之幂级数

注意:对于级数1nn u∞=∑,当1nn u∞=∑收敛时,1nn u∞=∑绝对收敛.例 证121(1)(21)n n n -∞=--∑绝对收敛:令12(1)(21)n n u n --=-,则 222211111,(21)[(1)]n n u n n n n n ∞===≤-+-∑收敛⇒1n n u ∞=∑收敛故 原级数绝对收敛.§ 幂级数教学目的:弄清幂级数的相关概念;掌握幂级数收敛半径、收敛区间、 收敛域定义与求法;掌握幂级数的性质,能灵活正确运用性质 求幂级数的和函数.重难点:掌握幂级数收敛半径、收敛区间、收敛域概念与求法;掌握幂 级数的性质,能灵活正确运用性质求幂级数的和函数,以及常 数项级数的和. 教学方法:启发式讲授 教学过程:一、函数项级数的概念1.【定义】设 ),(,),(),(21x u x u x u n 是定义在区间I 上的函数,则++++=∑∞=)()()()(211x u x u x u x u nn n称为定义在区间I 上的(函数项)无穷级数. 2.收敛域(1) 收敛点I x ∈0—— 常数项级数∑∞=10)(n nx u 收敛;(2) 发散点I x ∈0——常数项级数∑∞=10)(n nx u 发散;(3) 收敛域D —— 函数项级数∑∞=1)(n nx u的所有收敛点形成的集合D ;(4) 发散域G ——∑∞=1)(n nx u的发散点的全体构成的集合G .3.和函数)(x S —— ∑∞==1)()(n n x u x S , D x ∈.若函数项级数∑∞=1)(n nx u在收敛域内每一点都对应于)(x S 的一个函数值,则称)(x S 为函数项级数∑∞=1)(n nx u的和函数.4.余项)(x r n —— )()()(x S x S x r n n -=, ∑==nk kn x ux S 1)()(, D x ∈.注: ①只有在收敛域D 上, )(x r n 才有意义; ② 0)(lim =∞→x r n n , D x ∈.二、幂级数及其收敛半径和收敛域 1.【定义】形如nn nx x a )(0∑∞=-的函数项级数称为0()x x -的幂级数.(也称为一般幂级数),其中 012,,,.,n a a a a 为常数,称为幂级数的系数.当00=x 时,∑∞=0n nn xa 称为x 的幂级数(也称为标准幂级数), 其中常数n a (0,1,2,n =)称为幂级数的系数.结论:对于级数nn nx x a )(0∑∞=-,作代换0t x x =-可以将一般幂级数化为标准幂级数n nn a t∞=∑,所以我们只研究标准幂级数敛散性的判别方法.∑∞=0n nn xa 的收敛域:此级数的全体收敛点的集合.显然: D x ∈0(收敛域),即幂级数总在0x x =点处收敛.例如: ∑∞=0n nx , ∑∞=-0!)1(n nn x 均为幂级数.显然:∑∞=0n nx的收敛域)1,1(-=D ,其发散域),1[]1,(+∞--∞= G .且和函数,11)(0xx x S n n -==∑∞= 1||<x .此结论可当公式使用. 2.级数的收敛域 把级数∑∞=0n nn xa 的各项取绝对值得正项级数nnn a x∞=∑,记 1lim n n na l a +→∞=,则 11lim n n n n n a x l x a x ++→∞=;于是由比值判别法知 (1)若1,(0)l x l <≠,即1x R l <=,∑∞=0n nn x a 绝对收敛.(2) 若1l x >,即1x R l >=,∑∞=0n n n x a 发散.(3) 若1l x =,即1x R l ==,比值法失效,∑∞=0n n n x a 敛散另行判定.(4)若0l =,即01l x =<,此时对任意x ,∑∞=0n nn xa 收敛.上述分析显示级数∑∞=0n nn xa 在一个以原点为中心,从R -到R 的区间内绝对收敛,区间(,)R R -称为幂级数的收敛区间,1R l=为收敛半径.若级数∑∞=0n nn xa 仅在点0x =收敛,则规定0R =,级数的收敛域为0x =例如 级数20!12!!nn n n xx x n x ∞==+++++∑由于 11lim lim lim 1(0)(1)!nn n n n n nx un x x u n x +-→∞→∞→∞==>≠-n !, ∴ 级数收敛域为 0x =或 {0};独点集. 若∑∞=0n nn xa 对任意x 都收敛,则R =+∞,级数的收敛域为(,)-∞+∞.当0R <<+∞时,要讨论级数在x R =±处的敛散性才能确定收敛域.此时收敛域可能是下列区间之一:),,(R R -),,[R R -],,(R R -].,[R R - 3.【阿贝尔定理】(补充)设∑∞=0n nn xa 的收敛域为D ,则(1)若D x ∈0且00x ≠, 则对||||0x x <∀,∑∞=0n nn xa 收敛且绝对收敛.(2) 若D x ∉0, 则 对||||0x x >∀,有D x ∉即级数∑∞=0n nn xa 发散.证明: (1) D x ∈0⇒∑∞=0n n n xa 收敛,由∑∞=00n n n xa 收⇒00()nn a x n →→∞0>∃===>M 0||(0nn a x M M ≤>的常数) ||||0x x <===>0000||||n nn nn n x x a x a x M x x ≤=⋅≤,因10<x x , 从而 00nn x M x ∞=∑收敛,⇒正项级数∑∞=0||n nn x a 收敛⇒∑∞=0n nn x a 收敛⇒D x ∈即对||||0x x <∀,∑∞=0n n n x a 收敛且绝对收敛.(2) D x ∉0,假若有D x ∈1满足||||01x x >)1(由==>∑∞=0n nn xa 收敛⇒D x ∈0矛盾. 所以||||0x x >∀,有∑∞=0n n n x a 发散,即D x ∉.注意:(1) 若D x ∈0, 则 00(||,||)x x D -⊂(收敛域), )0(0≠x ; (2) 若D x ∉0, 则 00(,||)(||,)x x G -∞-+∞⊂(发散域).4.【定理】若幂级数∑∞=0n n n x a 系数满足条件 1limn n na l a +→∞=或lim ||n n n a l →∞=(l 为常数或∞),则(1) 当0l <<+∞时, 则1R l=; (2) 当0l =时, 则R =+∞. (3)当l =+∞时, 则0R =. 常用公式: 1lim+∞→=n n n a a R ,1lim n n n R a →∞=.例如: 幂级数∑∞=0n nx的收敛半径1=R ,1x =±时,级数发散,故其敛区与敛域均为(1,1)-. 例1 求幂级数11(1)nn n x n∞-=-∑的收敛半径与收敛域. 解 (1) 级数的通项为 11(1)n n a n-=- 1lim+∞→=n n n a a R 11lim =+=∞→n n n .(2) 当1=x 时, 级数为∑∞=-1)1(n nn 收敛;当1-=x 时, 级数为∑∞=11n n 发散.故收敛区间(敛区)是()1,1-,收敛域为]1,1(-(敛域).例2(1) 求幂级数∑∞=0!n nn x 的收敛半径与收敛域.解: 1!n a n =⇒1lim +∞→=n n n a a R +∞=+=+=∞→∞→)1(lim !)!1(limn n n n n , 故 收敛区间和收敛域均是 ),(+∞-∞. (2) 求幂级数∑∞=0!n nxn 的收敛半径.解: !na n =⇒1lim +∞→=n n n a a R 011lim )!1(!lim =+=+=∞→∞→n n n n n . 练习:求幂级数110(1)n n n x ∞--=-∑的收敛半径与收敛域.提示:1lim11nn n a R R a →∞+==⇒=,又1x =时级数发散.收敛域()1,1-.例3 (1)求幂级数213(1)n nn n x n∞-=⋅-∑的收敛半径与收敛域.(缺项级数) 提示:12(1)112(1)3lim lim 1(1)3n n n n n n n n n nu x nu n x +++-→∞→∞-=⋅+- 223lim31n n x x n →∞==+当21313x x <⇒<时级数收敛;当21313x x >⇒>时级数发散.当 13x =±时,原级数是111(1)n n n ∞-=-∑,收敛的交错级数.所以 收敛半径13R =,收敛区间11(,)33-,收敛域11[,]33-. 注意:缺项级数可以直接用比值法求收敛半径.(2)求幂级数1211(1)21n n n x n --∞=--∑的收敛域.解:21221212121lim lim lim 2121n n n n n n nu x n n x x u n x n ++-→∞→∞→∞--=⋅=⋅=++由211x x <<即时级数收敛,由由211x x >>即时级数发散. 得 1R =当1x =时,1121n ∞∑n -n=1(-)-收敛,当1x =-时,121n ∞∑n n=1(-)-收敛,所以 收敛域为 [1,1]-.例4求幂级数1(21)nn x n ∞=+∑的收敛半径与收敛域.(中心不在原点的级数)解 令21t x =+,幂级数变形为1nn t n∞=∑,1111lim lim lim 11112n t t x n n n n a n n R R R a n n→∞→∞→∞++====⇒=⇒=+11122t x <⇒+<时级数绝对收敛,11122t x >⇒+>时级数发散,11,0t x x =⇒=-=,当1x =-时原级数为11(1)nn n∞=-∑收敛, 当0x =时,11n n ∞=∑发散,故 原级数收敛半径12R =,收敛域为[1,0]-. 注意:一般幂级数求收敛半径时作变量代换.提问:(1) 设幂级数∑∞=1n nn xa 与∑∞=1n nn xb 的收敛半径分别为35与31,则幂级数∑∞=122n n nnx b a 的收敛半径为(A )(A) 5 (B)35 (C) 31 (D) 51答案 53lim1=+→∞nn n a a ,3lim1=+→∞nn n b b 1R ⇒=519159lim 222121=⋅=⋅++→∞n nn n n a b b a (2) 求级数∑∞=-12)3(n nn x 的收敛域. 解 令3t x =-,级数21n n t n ∞=∑,由1)1(lim lim221=+=→∞+→∞n n a a n nn n 知1t R =, 因此当131<-<-x 即42<<x 时级数收敛.当2=x 时,原级数为∑∞=-12)1(n nn 收敛,当4=x 时,原级数为∑∞=121n n收敛. 所以收敛域为]4,2[.(3) 级数21(2)4nnn x n ∞=-⋅∑的收敛域为)4,0(. 答 令(2)nt x =- 对于14n n n t n ∞=⋅∑,由1141lim lim (1)44n n n n n na n a n ++→∞→∞⋅==+⋅, 于是收敛半径4t R =,则4)2(42<-<-x ,即40<<x 内收敛.当0=x 和4=x 时,原级数都为∑∞=11n n发散,所以收敛域为)4,0(. 三、幂级数以及和函数的运算性质 1.设nn n n n n a xb x ∞∞==∑∑和的收敛半径分别为a b R R 和1)加减法:∑∑∑∞=∞=∞=±=±0)(n n n nn nnn nnx b ax b x a ,()c c R R x ,-∈.其中: },min{b a c R R R =. 2)乘法:0()nnnnnnni jn n n n i j na xb xc x a b x∞∞∞∞====+=⋅==∑∑∑∑∑,()c c R R x ,-∈.其中: },min{b a c R R R =, ∑=-=nk kn k n ba c 0, ,2,1=n .3)除法:∑∑∑∞=∞=∞==0n n n n nn n nnx c xb xa ,()c c R R x ,-∈.其中: c R 待定, 而n c 由系列表达式∑=-=nk kn k n cb a 0, ,2,1=n 确定.此处, +∞==b a R R , 但1=c R . 2.幂级数∑∞=0n nn xa 的和函数()S x 在其收敛区间(,)R R -内是连续.3.幂级数∑∞=0n nn xa 的和函数()S x 在其收敛区间(,)R R -内可积,且有逐项积分公式1()1xx n n nn n n a S x dx a t dt xn ∞∞+====+∑∑⎰⎰,R R x ='<||.(积分前后的收敛半径不变). 例:+++++=-n x x x x2111, 1||<x .逐项积分时在1x =处无 意义. 4.幂级数∑∞=0n nn xa 的和函数()S x 在其收敛区间上可微,且在收敛区间上101()n n n n n n S x a x na x ∞∞-=='⎛⎫'== ⎪⎝⎭∑∑, R R x ='<||.说明:求导与积分前后两级数的收敛半径不变,但收敛域有可能改变. 公式11n n x x∞==-∑收敛域为1x < 例5 求幂级数∑∞=+01n n n x 的和函数)(x S ,并求0(1)1nn n ∞=-+∑.解:(1) 1lim +∞→=n n n a a R 112lim =++=∞→n n n .当1-=x 时,级数为∑∞=+-11)1(n n n 收 敛;当1=x 时, 级数为∑∞=+111n n 发散. 故原级数收敛域是)1,1[-. (2) 当1||0<<x 时, 有∑∑∞=∞=+-=='⎪⎪⎭⎫ ⎝⎛+='001111])([n nn n x x n x x xS .于是 )1ln(11])([)(00x dt tdt t tS x xS xx--=-='=⎰⎰, 由于(0)1S =且幂级数在其收敛域上连续,1ln(1), 10,01;()1, 0.x x x S x xx ⎧---≤<<<⎪=⎨⎪=⎩或 取 1x =-代入和函数可得 2ln )1(1)1(0=-=+-∑∞=S n n n. (2)求幂级数1211123n n n nxx x nx ∞--==+++++∑的和函数)(x S ,并求级数12n n n ∞=∑及级数123n n n∞=∑的和.解 1)11limlim 1n n n n a n a nρ+→∞→∞+===,所以1R =. 当1x =时,1n n ∞=∑发散,当1x =-时,1(1)nn n ∞=-⋅∑发散.所以 级数敛域为(1,1)-. 2)设11(),(1,1)n n S x nxx ∞-==∈-∑,则 100111()1,(1,1)11xx n n n n xS t dt ntdt x x x x ∞∞-=====-=∈---∑∑⎰⎰201()()(),(1,1)1(1)x d x S x S t dt x dx x x '===∈---⎰为所求和函数.3)令12x =,则有 12111()12(1)2n n n ∞-==-∑,所以122n n n∞==∑.4)令13x =,则有 12111()13(1)3n n n ∞-==-∑,所以12332n n n ∞==∑.练习:(1)求幂级数1nn x n∞=∑的和函数)(x S :[)敛域-1,1()S x =-ln(1-x)(2)∑∞=-=11_______)21(n n n . 因为121111()()()(1)11(1)n n n n x S x nxx x x x ∞∞-=='''====-=---∑∑, 令12x =,则有∑∞=-==114)21()21(n n S n ,所以答案为4.例6 设,,2,1,0,d cos sin 40==⎰n x x x I nn π求∑∞=0n n I 的和.解 由4014)(sin 11dsin sin ππ++==⎰n n n x n x x I 1)22(11++=n n ,得∑∑∞=+∞=+=010)22(11n n n n n I ,令∑∞=++=0111)(n n x n x S , 则其收敛半径1=R ,在)1,1(-内x x x S n n-=='∑∞=11)(0,于是 x t tx S x --=-=⎰1ln d 11)(0,令22=x ,则221ln )22(11)22(01--=+=∑∞=+n n n S ,从而∑⎰∑∞=∞=+=-==040)22ln(2211lnd cos sin n n n n x x x I π.例7 求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数)(x f 及其极值. 解 依题意)(x f 211(1)(1)2nnn x x n ∞==+-<∑ ,1)(1)1()(212112x x x x x x f n n n n n +-=-=-='∑∑∞=∞=- 上式两边从0到x 积分,得)1ln(21)d(11121d 1)0()(202202x t t t t t f x f x x+-=++-=+-=-⎰⎰, 由1)0(=f 得)1(),1ln(211)(2<+-=x x x f .令0)(='x f ,求得唯一驻点0=x ,由于,01)0(,)1(1)(222<-=''+--=''f x x x f 可见)(x f 在0=x 处取得极大值,且极大值为1)0(=f . 例8 求幂级数n n x n 21)1121(-+∑∞=在区间)1,1(-内的和函数)(x S . 解 设∑∑∞=∞==+=122121)(,12)(n n n nx x S n x x S , 则 )1,1(),()()(21-∈-=x x S x S x S , 由于∑∞=--=12222,1)(n nx x x x S ),1,1(,1))((12221-∈-=='∑∞=x x x xx xS n n因此 ,11ln 21d 1)(0221xx x t t t x xS x-++-=-=⎰ 又由于,0)0(1=S所以 ⎪⎩⎪⎨⎧=<<-++-=.00,,10 ,11ln 211)(1x x xx x x S 故 ⎪⎩⎪⎨⎧=<<---+=-=.00, ,10 ,1111ln21)()()(221x x x x x x x S x S x S练习:求下列级数的收敛区间,并求和函数:(1) +-+-753753x x x x 解 该级数为∑∞=----112112)1(n n n x n ,由 22121211212lim 1212lim limx n n x n x n x u u n n n n nn n =+-=-+=→∞-+→∞+→∞,知当12<x 时幂级数绝对收敛. 当1-=x 时,幂级数∑∞=--112)1(n n n 收敛;当1=x 时,幂级数∑∞=---1112)1(n n n 收敛,所以原幂级数的收敛域为]1,1[-.设=)(x S ∑∞=----112112)1(n n n x n ,则当)1,1(-∈x 时有 =')(x S 21121221112111)()1()12)1((x x x x n n n n n n n n n +=-=-='--∑∑∑∞=-∞=--∞=--, 所以 =)(x S ⎰=+x x t t 02arctan d 11.(2) ++++7538642x x x x解 该幂级数为∑∞=-1122n n nx,由22121211lim 2)22(lim lim x n n x nx x n u u n n n n nn n =+=+=→∞-+→∞+→∞, 知当12<x 时幂级数绝对收敛. 当1-=x 时,幂级数∑∞=-1)2(n n 发散;当1=x 时,幂级数∑∞=12n n 发散,所以原幂级数的收敛区间为)1,1(-. 设=)(x S ∑∞=-1122n n nx,则当)1,1(-∈x 时,有22221212)1(2)1()()()(x xx x x x x S n nn n-='-='='=∑∑∞=∞=. 小结:1.注意收敛区间与收敛域的联系与区别.2.利用幂级数的性质求幂级数的和函数时,求导或求积分时前后的收敛区间不变.3.利用幂级数的和函数可以求常数项级数的和;求出和函数后, 取x 的特值代入和函数即得所求.4.对缺项幂级数在求收敛半径时应设辅助变量转化为常规形幂级数或直接用正项级数的比值判别法求收敛区间.课后记:存在问题:1.对缺项幂级数以及通项为0()nn a x x -的幂级数求收敛半径以及收敛域 问题多.2.求幂级数的和函数,不知从何下手.不能灵活运用幂级数的性质以及四S x的表达式.个常用公式灵活变形找()3.不能灵活运用和函数求常数项级数的和.。

幂级数的系数

幂级数的系数

幂级数的系数幂级数是数学中重要的概念,它描述了一种无穷级数的形式。

幂级数的系数是指无穷级数中每一项的系数。

在本文中,我们将探讨幂级数的系数和其在数学和应用中的重要性。

幂级数是一种形式为anxn的无穷级数,其中an是每一项的系数,x是变量。

幂级数可以表达为:f(x) = a0 + a1x + a2x^2 + a3x^3 + ...当x取某个特定的值时,幂级数可能收敛或发散。

如果幂级数收敛于某个特定的值,我们可以将该值视为幂级数在该点的和。

幂级数的系数具有重要的数学性质。

通过研究幂级数的系数,我们可以了解幂级数的性质和特征。

例如,系数的正负号和绝对值大小可以告诉我们幂级数在不同点的收敛性和收敛半径。

如果幂级数的系数随着n的增大而趋于零,那么幂级数往往在更多的点上收敛。

幂级数的系数在微积分中扮演重要的角色。

以泰勒级数为例,泰勒级数是一种特殊的幂级数,它可以表示许多函数在某点附近的近似值。

通过求解函数各阶导数在该点的取值,我们可以确定泰勒级数的系数。

这个过程被称为函数的泰勒展开。

幂级数的系数还在数值分析和近似计算中扮演关键的角色。

许多数学问题可以通过幂级数展开来近似求解。

通过计算出幂级数的系数,我们可以得到问题的近似解。

例如,通过计算正弦函数的幂级数展开的系数,我们可以计算任意给定角度的正弦值。

在物理学和工程学中,幂级数的系数也起着重要作用。

许多物理和工程问题可以通过幂级数展开来描述和解决。

例如,在电路分析中,我们可以使用幂级数展开来近似计算电流和电压。

幂级数的系数还在概率论和统计学中得到广泛应用。

概率生成函数和特征函数是两个常见的幂级数展开形式,它们在概率论和统计学的各种问题中起到重要的作用。

通过计算幂级数的系数,我们可以获得与概率和统计相关的有用信息。

综上所述,幂级数的系数是数学中重要的概念,它们描述了幂级数的性质和特征。

通过研究幂级数的系数,我们可以了解幂级数的收敛性和近似值计算等重要信息。

幂级数的系数在数学、物理和工程学、概率论和统计学等领域中都有广泛的应用。

函数的泰勒级数和幂级数展开

函数的泰勒级数和幂级数展开

函数的泰勒级数和幂级数展开泰勒级数和幂级数展开是微积分中的重要概念,用于将一个函数表示为无穷级数的形式。

这种展开方式在数学和工程中有广泛的应用,能够帮助我们更好地理解和计算各种函数。

一、泰勒级数展开泰勒级数展开是将一个函数表示为多项式的形式,通过求函数在某个点的各阶导数来展开。

设函数f(x)在x=a附近有各阶导数,那么泰勒级数展开可以表示为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2 + ...其中f'(a),f''(a)分别表示函数f(x)在x=a处的一阶导数和二阶导数。

泰勒级数展开的一般形式为:f(x) = f(a) + \frac{{f'(a)}}{{1!}}(x-a) + \frac{{f''(a)}}{{2!}}(x-a)^2 + ...泰勒级数展开依赖于函数在某点附近的导数,当函数在该点的导数存在且具有一定的性质时,展开式收敛于原函数。

二、幂级数展开幂级数展开是将一个函数表示为无穷级数的形式,通过将函数进行幂级数展开,可以更好地研究其性质和行为。

幂级数展开的一般形式为:f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n其中a_n为展开式的系数,(x-a)^n为幂项。

幂级数展开的关键在于求解展开系数a_n。

具体求解方法根据具体的函数和要求而定,有时需要利用函数的导数,有时需要使用复杂的数学技巧。

幂级数展开有很好的数学性质,可以在一定条件下收敛于原函数。

通过取幂级数展开的有限项,可以得到原函数的近似值。

在实际计算中,幂级数展开也有广泛的应用,比如在工程中用于信号处理、电路分析等领域。

总结:函数的泰勒级数和幂级数展开是微积分中常用的数学工具,用于将一个函数表示为无穷级数的形式。

泰勒级数展开是将函数表示为多项式,而幂级数展开是将函数表示为无穷级数。

通过泰勒级数和幂级数展开,我们可以更好地理解函数的性质和行为,并在实际应用中应用这些展开式进行计算。

微积分 第三版 第七章 7.5幂级数

微积分 第三版 第七章 7.5幂级数

1 1 1 n x dx dx x 0 n 0 x 01 x
x

x
(0 x 1 及
机动 目录 上页
)
下页 返回 结束
S (x)

(0 x 1 及
ln (1 x) 1 , lim x 0 x
)
因此由和函数的连续性得: 1 ln(1 x) , x
所以收敛域为 ( , ) .
1 n! lim 1 n (n 1) !

an lim n ! (2) R lim n an 1 n (n 1) !
所以级数仅在 x = 0 处收敛 .
机动 目录 上页 下页
0
返回
结束
例3.
的收敛半径 .
解: 级数缺少奇次幂项,不能直接应用定理2, 故直接由 比值审敛法求收敛半径.
机动 目录 上页 下页 返回 结束
例4. 解: 令 级数变为
的收敛域.
1 an R lim lim 2 n n n an 1 n
1 2 n 1 (n 1)
2 n 1 (n 1) 2 lim n 2n n
当 t = 2 时, 级数为
当 t = – 2 时, 级数为
在以原点为中心、
为半径的对称区间内是收敛的

, 则在区间(-R,R)内幂级数收敛.
称R为幂级数的收敛半径. 在区间端点处,其收敛域发散需另行讨论 .
收敛半径R = +∞, 收敛区间(-∞ ,+ ∞ ) 收敛半径R = 0, 收敛域缩为一点,即只在 x = 0
例1.求幂级数 的收敛半径及收敛域.
1 lim n 1 n n 1

人大微积分课件11-5幂级数

人大微积分课件11-5幂级数
2 收敛区间
定义收敛区间的概念并讲解如何确定幂级数的收敛区间。
3 点收敛性和区间收敛性
探究幂级数的点收敛性和区间收敛性之间的区别和联系。
幂级数的物理意义和应用
幂级数不仅在数学中有广泛的应用,还在物理学等其他领域具有重要的物理意义。
1 物理意义
探索幂级数在物理学中的意义和作用,如物理量的展开和近似计算。
收敛性
探讨幂级数在不同情况下的收 敛性。
幂级数的收敛半径
幂级数的收敛半径是判断级数收敛的重要参数。我们将介绍如何计算和示例应用。
1 计算方法
了解如何计算幂级数的收敛半径,掌握计算方法和示例。
2 收敛半径的意义
探究收敛半径在幂级数中的重要作用以及具体例子。
3 收敛域的图形表示
使用图形来展示收敛域,进一步理解收敛半径和收敛域的关系。
1 函数展开
利用幂级数展开函数,简化函数的处理和计算。
2 极限计算
通过幂级数的性质,求解极限问题,包括常见的极限计算方法。
3 微分方程
将微分方程转化为幂级数形式,并利用幂级数求解微分方程。
多项式与幂级数的关系
多项式是幂级数的一种特殊形式,它们之间有着紧密的联系和相互转换。
图像对比
通过图形比较多项式和幂级数 的特点和区别。
人大微积分课件11-5幂级 数
幂级数是微积分中非常重要的概念之一。本课件将从定义、收敛性、应用等 方面,详细介绍幂级数的全貌。
幂级数的定义
幂级数是一种无限级数,其每一项是$x$的幂次方的形式。我们将通过具体的例子来介绍幂级数的定义 及其特性。
图解
通过图形来理解幂级数的概念 和性质。
公式
推导幂级数的一般形式,并解 释其中的符号。

幂级数积分

幂级数积分

幂级数积分1.导言在微积分学中,幂级数一直是一个重要的研究对象。

在大量的应用中,人们需要对幂级数进行一连串的操作,包括求和、求导、积分等等。

本文将重点讨论幂级数积分,探究其特性和应用。

2.幂级数的基本概念在本文中,我们将研究形如$\sum_{n=0}^\infty a_n x^n$的幂级数。

其中,$a_n$是常数系数,$x$是自变量。

对于一定的$x$,幂级数可能会收敛,也可能会发散。

收敛的幂级数可以被视为函数,这个函数被称为幂级数项函数。

同时,幂级数也有一些重要的性质。

例如,如果幂级数在$x=a$处收敛,则当$|x-a|<R$时,幂级数都会收敛。

我们称$R$为收敛半径。

当$|x-a|>R$时,幂级数将会发散。

幂级数项函数的收敛区间可以用这种方式确定。

3.幂级数积分的定义对于$f(x)=\sum_{n=0}^\infty a_n x^n$在其收敛区间内的某一点$x_0$,我们可以定义它在$(x_0-r,x_0+r)$范围内的积分:$$\int_{x_0}^{x}f(t)dt=\int_{x_0}^{x}\sum_{n=0}^\infty a_n t^n dt=\sum_{n=0}^\infty a_n\int_{x_0}^{x}t^n dt$$$$=a_0(x-x_0)+a_1\left(\dfrac{x^n}{n}-\dfrac{x_0^n}{n}\right)+a_2\left(\dfrac{x^n}{n(n+1)}-\dfrac{x_0^n}{n(n+1)}\right)+\cdots$$这个式子旨在计算幂级数项函数的积分。

有关数学分析的细节可在相关教材中查找,这里不再赘述。

需要注意的是,积分结果仍然是一个幂级数。

此外,我们不能保证幂级数项函数在积分后仍然收敛,因此在使用幂级数积分时,需要对此进行额外的研究。

4.幂级数积分的性质幂级数积分的一些性质有助于我们更好地理解它的特点。

4.1可交换性对于两个具有相同收敛半径的幂级数$f(x)$和$g(x)$,我们有以下结论:$$\int f(x)g(x)dx=\int g(x)f(x)dx$$这个结论意味着,幂级数积分具有一定程度的可交换性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意:对于级数1nn u∞=∑,当1nn u∞=∑收敛时,1nn u∞=∑绝对收敛.例 证121(1)(21)n n n -∞=--∑绝对收敛:令12(1)(21)n n u n --=-,则 222211111,(21)[(1)]n n u n n n n n ∞===≤-+-∑收敛⇒1n n u ∞=∑收敛故 原级数绝对收敛.§7.5 幂级数教学目的:弄清幂级数的相关概念;掌握幂级数收敛半径、收敛区间、 收敛域定义与求法;掌握幂级数的性质,能灵活正确运用性质 求幂级数的和函数.重难点:掌握幂级数收敛半径、收敛区间、收敛域概念与求法;掌握幂 级数的性质,能灵活正确运用性质求幂级数的和函数,以及常 数项级数的和. 教学方法:启发式讲授 教学过程:一、函数项级数的概念1.【定义】设 ΛΛ),(,),(),(21x u x u x u n 是定义在区间I 上的函数,则ΛΛ++++=∑∞=)()()()(211x u x u x u x u nn n称为定义在区间I 上的(函数项)无穷级数. 2.收敛域(1) 收敛点I x ∈0—— 常数项级数 ∑∞=10)(n nx u 收敛;(2) 发散点I x ∈0——常数项级数∑∞=1)(n nx u 发散;(3) 收敛域D —— 函数项级数∑∞=1)(n nx u的所有收敛点形成的集合D ;(4) 发散域G ——∑∞=1)(n nx u的发散点的全体构成的集合G .3.和函数)(x S —— ∑∞==1)()(n n x u x S , D x ∈.若函数项级数∑∞=1)(n nx u在收敛域内每一点都对应于)(x S 的一个函数值,则称)(x S 为函数项级数∑∞=1)(n nx u的和函数.4.余项)(x r n —— )()()(x S x S x r n n -=, ∑==nk kn x ux S 1)()(, D x ∈.注: ①只有在收敛域D 上, )(x r n 才有意义; ② 0)(lim =∞→x r n n , D x ∈.二、幂级数及其收敛半径和收敛域 1.【定义】形如nn nx x a )(0∑∞=-的函数项级数称为0()x x -的幂级数.(也称为一般幂级数),其中 012,,,.,n a a a a L L 为常数,称为幂级数的系 数.当00=x 时,∑∞=0n nn xa 称为x 的幂级数(也称为标准幂级数), 其中常数n a (0,1,2,n =L )称为幂级数的系数. 结论:对于级数nn nx x a )(0∑∞=-,作代换0t x x =-可以将一般幂级数化为标准幂级数n nn a t∞=∑,所以我们只研究标准幂级数敛散性的判别方法.∑∞=0n nn xa 的收敛域:此级数的全体收敛点的集合.显然: D x ∈0(收敛域),即幂级数总在0x x =点处收敛.例如: ∑∞=0n nx , ∑∞=-0!)1(n nn x 均为幂级数.显然:∑∞=0n nx的收敛域)1,1(-=D ,其发散域),1[]1,(+∞--∞=Y G .且和函数,11)(0xx x S n n -==∑∞= 1||<x .此结论可当公式使用. 2.级数的收敛域 把级数∑∞=0n nn xa 的各项取绝对值得正项级数nnn a x∞=∑,记 1lim n n na l a +→∞=,则 11lim n n n n n a x l x a x ++→∞=;于是由比值判别法知 (1)若1,(0)l x l <≠,即1x R l <=,∑∞=0n nn x a 绝对收敛.(2) 若1l x >,即1x R l >=,∑∞=0n nn x a 发散.(3) 若1l x =,即1x R l ==,比值法失效,∑∞=0n nn x a 敛散另行判定.(4)若0l =,即01l x =<,此时对任意x ,∑∞=0n nn xa 收敛.上述分析显示级数∑∞=0n nn xa 在一个以原点为中心,从R -到R 的区间内绝对收敛,区间(,)R R -称为幂级数的收敛区间,1R l=为收敛半径. 若级数∑∞=0n nn xa 仅在点0x =收敛,则规定0R =,级数的收敛域为0x =例如 级数20!12!!nn n n xx x n x ∞==+++++∑L L由于 11lim lim lim 1(0)(1)!nn n n n n nx un x x u n x +-→∞→∞→∞==>≠-n !, ∴ 级数收敛域为 0x =或 {0};独点集.若∑∞=0n nn xa 对任意x 都收敛,则R =+∞,级数的收敛域为(,)-∞+∞.当0R <<+∞时,要讨论级数在x R =±处的敛散性才能确定收敛域.此时收敛域可能是下列区间之一:),,(R R -),,[R R -],,(R R -].,[R R - 3.【阿贝尔定理】(补充)设∑∞=0n n n x a 的收敛域为D ,则 (1)若D x ∈0且00x ≠, 则对||||0x x <∀,∑∞=0n nn xa 收敛且绝对收敛.(2) 若D x ∉0, 则 对||||0x x >∀,有D x ∉即级数∑∞=0n nn xa 发散.证明: (1) D x ∈0⇒∑∞=0n nn xa 收敛,由∑∞=00n n n xa 收⇒00()nn a x n →→∞0>∃===>M 0||(0nn a x M M ≤>的常数) ||||0x x <===>0000||||n nn nn n x x a x a x M x x ≤=⋅≤,因10<x x , 从而 00nn x M x ∞=∑收敛,⇒正项级数∑∞=0||n nn x a 收敛⇒∑∞=0n nn x a 收敛⇒D x ∈即对||||0x x <∀,∑∞=0n n n x a 收敛且绝对收敛.(2) D x ∉0,假若有D x ∈1满足||||01x x >)1(由==>∑∞=0n nn xa 收敛⇒D x ∈0矛盾. 所以||||0x x >∀,有∑∞=0n n n x a 发散,即D x ∉.注意:(1) 若D x ∈0, 则 00(||,||)x x D -⊂(收敛域), )0(0≠x ; (2) 若D x ∉0, 则 00(,||)(||,)x x G -∞-+∞⊂U (发散域).4.【定理7.13】若幂级数∑∞=0n n n x a 系数满足条件 1limn n na l a +→∞=或 lim ||n n n a l →∞=(l 为常数或∞),则(1) 当0l <<+∞时, 则1R l=; (2) 当0l =时, 则R =+∞. (3)当l =+∞时, 则0R =. 常用公式: 1lim+∞→=n n n a a R ,1lim n n n R a →∞=.例如: 幂级数∑∞=0n nx的收敛半径1=R ,1x =±时,级数发散,故其敛区与敛域均为(1,1)-.例1 求幂级数11(1)nn n x n ∞-=-∑的收敛半径与收敛域.解 (1) 级数的通项为 11(1)n n a n-=- 1lim +∞→=n n n a a R 11lim =+=∞→n n n .(2) 当1=x 时, 级数为∑∞=-1)1(n nn 收敛;当1-=x 时, 级数为∑∞=11n n发散.故收敛区间(敛区)是()1,1-,收敛域为]1,1(-(敛域).例2(1) 求幂级数∑∞=0!n nn x 的收敛半径与收敛域.解: 1!n a n =⇒1lim +∞→=n n n a a R +∞=+=+=∞→∞→)1(lim !)!1(limn n n n n ,故 收敛区间和收敛域均是 ),(+∞-∞. (2) 求幂级数∑∞=0!n nxn 的收敛半径.解: !na n =⇒1lim+∞→=n nn a a R 011lim )!1(!lim =+=+=∞→∞→n n n n n . 练习:求幂级数110(1)n n n x ∞--=-∑的收敛半径与收敛域.提示:1lim11nn n a R R a →∞+==⇒=,又1x =时级数发散.收敛域()1,1-.例3 (1)求幂级数213(1)n nn n x n∞-=⋅-∑的收敛半径与收敛域.(缺项级数) 提示:12(1)112(1)3lim lim 1(1)3n n n n n n n n n nu x nu n x +++-→∞→∞-=⋅+- 223lim 31n n x x n →∞==+ 当21313x x <⇒<时级数收敛;当21313x x >⇒>时级数发散.当 13x =±时,原级数是111(1)n n n ∞-=-∑,收敛的交错级数.所以 收敛半径13R =,收敛区间11(,)33-,收敛域11[,]33-. 注意:缺项级数可以直接用比值法求收敛半径.(2)求幂级数1211(1)21n n n x n --∞=--∑的收敛域.解:21221212121limlim lim 2121n n n n n n nu x n n x x u n x n ++-→∞→∞→∞--=⋅=⋅=++ 由211x x <<即时级数收敛,由由211x x >>即时级数发散.得 1R =当1x =时,1121n ∞∑n -n=1(-)-收敛,当1x =-时,121n ∞∑n n=1(-)-收敛,所以 收敛域为 [1,1]-.例4求幂级数1(21)nn x n ∞=+∑的收敛半径与收敛域.(中心不在原点的级数)解 令21t x =+,幂级数变形为1nn t n∞=∑,1111lim lim lim 11112n t t x n n n n a n n R R R a n n→∞→∞→∞++====⇒=⇒=+11122t x <⇒+<时级数绝对收敛,11122t x >⇒+>时级数发散,11,0t x x =⇒=-=,当1x =-时原级数为11(1)n n n ∞=-∑收敛,当0x =时,11n n∞=∑发散,故 原级数收敛半径12R =,收敛域为[1,0]-.注意:一般幂级数求收敛半径时作变量代换.提问:(1)(02.3) 设幂级数∑∞=1n nn x a 与∑∞=1n n n x b 的收敛半径分别为35与31,则幂级数∑∞=122n n nn x b a 的收敛半径为(A ) (A) 5 (B)35 (C) 31 (D) 51答案 53lim1=+→∞nn n a a ,3lim1=+→∞nn n b b 1R ⇒=519159lim 222121=⋅=⋅++→∞n nn n n a b b a(2) (90.5) 求级数∑∞=-12)3(n nn x 的收敛域. 解 令3t x =-,级数21n n t n∞=∑,由1)1(lim lim 221=+=→∞+→∞n n a a n n n n 知1t R =, 因此当131<-<-x 即42<<x 时级数收敛.当2=x 时,原级数为∑∞=-12)1(n nn 收敛,当4=x 时,原级数为∑∞=121n n 收敛. 所以收敛域为]4,2[.(3) (92.3) 级数21(2)4nnn x n ∞=-⋅∑的收敛域为)4,0(. 答 令(2)nt x =- 对于14n n n t n ∞=⋅∑,由1141lim lim (1)44n n n n n n a n a n ++→∞→∞⋅==+⋅, 于是收敛半径4t R =,则4)2(42<-<-x ,即40<<x 内收敛. 当0=x 和4=x 时,原级数都为∑∞=11n n 发散,所以收敛域为)4,0(. 三、幂级数以及和函数的运算性质 1.设nn n n n n a xb x ∞∞==∑∑和的收敛半径分别为a b R R 和1)加减法:∑∑∑∞=∞=∞=±=±0)(n n n nn nnn nnx b ax b x a ,()c c R R x ,-∈.其中: },min{b a c R R R =. 2)乘法:0()nnnnnnni jn n n n i j na xb xc x a b x∞∞∞∞====+=⋅==∑∑∑∑∑,()c c R R x ,-∈. 其中: },min{b a c R R R =, ∑=-=nk kn k n ba c 0,Λ,2,1=n .3)除法:∑∑∑∞=∞=∞==00n n n n nn n nnx c xb xa ,()c c R R x ,-∈.其中: c R 待定, 而n c 由系列表达式∑=-=nk kn k n cb a 0,Λ,2,1=n 确定.此处, +∞==b a R R , 但1=c R . 2.幂级数∑∞=0n nn xa 的和函数()S x 在其收敛区间(,)R R -内是连续. 3.幂级数∑∞=0n nn xa 的和函数()S x 在其收敛区间(,)R R -内可积,且有逐项积分公式10()1xx nn n n n n a S x dx a t dt x n ∞∞+====+∑∑⎰⎰,R R x ='<||.(积分前后的收敛半径不变). 例:ΛΛ+++++=-n x x x x2111, 1||<x .逐项积分时在1x =处无 意义. 4.幂级数∑∞=0n nn xa 的和函数()S x 在其收敛区间上可微,且在收敛区间上101()n n n n n n S x a x na x ∞∞-=='⎛⎫'== ⎪⎝⎭∑∑, R R x ='<||.说明:求导与积分前后两级数的收敛半径不变,但收敛域有可能改变. 公式11n n x x∞==-∑收敛域为1x < 例5 求幂级数∑∞=+01n n n x 的和函数)(x S ,并求0(1)1nn n ∞=-+∑.解:(1) 1lim +∞→=n n n a a R 112lim =++=∞→n n n .当1-=x 时,级数为∑∞=+-11)1(n n n 收 敛;当1=x 时, 级数为∑∞=+111n n 发散. 故原级数收敛域是)1,1[-.(2) 当1||0<<x 时, 有∑∑∞=∞=+-=='⎪⎪⎭⎫ ⎝⎛+='001111])([n nn n x x n x x xS . 于是 )1ln(11])([)(00x dt tdt t tS x xS x x --=-='=⎰⎰,由于(0)1S =且幂级数在其收敛域上连续,1ln(1), 10,01;()1, 0.x x x S x xx ⎧---≤<<<⎪=⎨⎪=⎩或 取 1x =-代入和函数可得 2ln )1(1)1(0=-=+-∑∞=S n n n. (2)求幂级数1211123n n n nxx x nx ∞--==+++++∑L L 的和函数)(x S ,并求级数12n n n ∞=∑及级数123n n n∞=∑的和.解 1)11limlim 1n n n n a n a nρ+→∞→∞+===,所以1R =. 当1x =时,1n n ∞=∑发散,当1x =-时,1(1)nn n ∞=-⋅∑发散.所以 级数敛域为(1,1)-. 2)设11(),(1,1)n n S x nxx ∞-==∈-∑,则1111()1,(1,1)11xx n n n n xS t dt ntdt x x x x∞∞-=====-=∈---∑∑⎰⎰201()()(),(1,1)1(1)x d x S x S t dt x dx x x '===∈---⎰为所求和函数.3)令12x =,则有 12111()12(1)2n n n ∞-==-∑,所以122n n n∞==∑.4)令13x =,则有 12111()13(1)3n n n ∞-==-∑,所以12332n n n ∞==∑.练习:(1)求幂级数1nn x n ∞=∑的和函数)(x S :[)敛域-1,1()S x =-ln(1-x)(2) (99.3)∑∞=-=11_______)21(n n n . 因为121111()()()(1)11(1)n nn n x S x nx x x x x ∞∞-=='''====-=---∑∑, 令12x =,则有∑∞=-==114)21()21(n n S n ,所以答案为4.例6 (00.6) 设,,2,1,0,d cos sin 40Λ==⎰n x x x I nn π求∑∞=0n n I 的和.解 由40140)(sin 11dsin sin ππ++==⎰n n n x n x x I 1)22(11++=n n ,得∑∑∞=+∞=+=010)22(11n n n n n I ,令∑∞=++=0111)(n n x n x S , 则其收敛半径1=R ,在)1,1(-内x x x S n n-=='∑∞=11)(0,于是 x t tx S x --=-=⎰1ln d 11)(0,令22=x ,则221ln )22(11)22(01--=+=∑∞=+n n n S , 从而∑⎰∑∞=∞=+=-==04)22ln(2211lnd cos sin n n n n x x x I π.例7 (03.9) 求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数)(x f 及其极值. 解 依题意)(x f 211(1)(1)2nnn x x n ∞==+-<∑ ,1)(1)1()(212112x x x x x x f n n n n n +-=-=-='∑∑∞=∞=- 上式两边从0到x 积分,得)1ln(21)d(11121d 1)0()(202202x t t t t t f x f x x +-=++-=+-=-⎰⎰, 由1)0(=f 得)1(),1ln(211)(2<+-=x x x f .令0)(='x f ,求得唯一驻点0=x ,由于,01)0(,)1(1)(222<-=''+--=''f x x x f 可见)(x f 在0=x 处取得极大值,且极大值为1)0(=f .例8(05.9) 求幂级数n n x n 21)1121(-+∑∞=在区间)1,1(-内的和函数)(x S . 解 设∑∑∞=∞==+=122121)(,12)(n n n nx x S n x x S , 则 )1,1(),()()(21-∈-=x x S x S x S , 由于∑∞=--=12222,1)(n nx x x x S ),1,1(,1))((12221-∈-=='∑∞=x xx xx xS n n因此 ,11ln 21d 1)(0221x x x t t t x xS x-++-=-=⎰ 又由于,0)0(1=S 所以 ⎪⎩⎪⎨⎧=<<-++-=.00,,10 ,11ln 211)(1x x xx x x S 故 ⎪⎩⎪⎨⎧=<<---+=-=.00, ,10 ,1111ln 21)()()(221x x x x xx x S x S x S练习:求下列级数的收敛区间,并求和函数:(1)Λ+-+-753753x x x x 解 该级数为∑∞=----112112)1(n n n x n ,由 22121211212lim 1212lim limx n n x n x n x u u n n n n nn n =+-=-+=→∞-+→∞+→∞,知当12<x 时幂级数绝对收敛. 当1-=x 时,幂级数∑∞=--112)1(n n n 收敛;当1=x 时,幂级数∑∞=---1112)1(n n n 收敛,所以原幂级数的收敛域为]1,1[-.设=)(x S ∑∞=----112112)1(n n n x n ,则当)1,1(-∈x 时有 =')(x S 21121221112111)()1()12)1((x x x x n n n n n n n n n +=-=-='--∑∑∑∞=-∞=--∞=--, 所以 =)(x S ⎰=+x x t t 02arctan d 11. (2)Λ++++7538642x x x x解 该幂级数为∑∞=-1122n n nx,由22121211lim 2)22(lim lim x n n x nx x n u u n n n n nn n =+=+=→∞-+→∞+→∞, 知当12<x 时幂级数绝对收敛. 当1-=x 时,幂级数∑∞=-1)2(n n 发散;当1=x 时,幂级数∑∞=12n n 发散,所以原幂级数的收敛区间为)1,1(-. 设=)(x S ∑∞=-1122n n nx,则当)1,1(-∈x 时,有22221212)1(2)1()()()(x xx x x x x S n nn n-='-='='=∑∑∞=∞=. 小结:1.注意收敛区间与收敛域的联系与区别.2.利用幂级数的性质求幂级数的和函数时,求导或求积分时前后的收敛区间不变.3.利用幂级数的和函数可以求常数项级数的和;求出和函数后, 取x 的特值代入和函数即得所求. 4.对缺项幂级数在求收敛半径时应设辅助变量转化为常规形幂级数或直接用正项级数的比值判别法求收敛区间.课后记:存在问题:1.对缺项幂级数以及通项为0()nn a x x -的幂级数求收敛半径以及收敛域 问题多.2.求幂级数的和函数,不知从何下手.不能灵活运用幂级数的性质以及四 个常用公式灵活变形找()S x 的表达式.3.不能灵活运用和函数求常数项级数的和.。

相关文档
最新文档