初三数学中考冲刺试卷及答案

合集下载

九年级中考模拟测试数学冲刺卷(共9套)(含答案)

九年级中考模拟测试数学冲刺卷(共9套)(含答案)

九年级中考模拟测试数学冲刺卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.﹣2020绝对值的相反数是( ) A .2020B .20201C .20201-D .﹣2020【答案】D【解析】题目考察了绝对值与相反数的基本知识,熟练掌握正数的绝对值等于本身,负数的绝对值等于相反数,0的绝对值等于0;知道变相反数前面加负号.故选.D. 2. 在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A.m =3,n =2 B.m =-3,n =2 C.m =2,n =3 D.m =-2,n =3【答案】B【解析】A ,B 关于y 轴对称,则横坐标互为相反数,纵坐标相同,故选B .3.如果分式11x x -+的值为0,那么x 的值为A.-1B.1C.-1或1D.1或0【答案】B【解析】要想使分式的值为零,应使分子为零,即|x |-1=0,分母不为零,即x +1≠0,∴x =1, 故选B.4.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A.B.C.D.【答案】B【解析】本题考查了根据实际问题列二元一次方程组,等量关系是:绳长﹣木长=4.5;木长﹣绳长=1,据此可列方程组求解.设绳长x尺,长木为y尺,依题意得,故选B.5.下列几何体中,其主视图、左视图和俯视图完全相同的是()A. B. C. D.【答案】D.【解析】:A.圆柱的主视图和左视图是长方形、俯视图是圆形,故本选项不符合题意;B.三棱柱的主视图和左视图是相同的长方形,但是俯视图是一个三角形,故本选项不符合题意;C.长方体的主视图和左视图是不一样的长方形,俯视图也是一个长方形,故本选项不符合题意;D.球体的主视图、左视图和俯视图是相同的圆,故本选项符合题意.故选.D.6.下列采用的调查方式中,合适的是A.为了解东江湖的水质情况,采用抽样调查的方式B.我市某企业为了解所生产的产品的合格率,采用普查的方式C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式D.某市教育部门为了解该市中小学生的视力情况,采用普查的方式【答案】A【解析】:本题考查了调查方法的选择,调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析.了解东江湖的水质情况时,若进行一次全面的调查,费大量的人力物力是得不尝失,因此宜采用抽样调查的方式,故A选项是合适的;企业为了解所生产的产品的合格率,所采取的实验多带有破坏性,因此采取抽样调查即可,故B选项不合适;小型企业员工数量有限,因此给在职员工做工作服前对每个人进行尺寸大小进行测量即可,所以C选项不合适;在了解某市中小学生的视力情况时,若进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可,故D选项不合适.因此本题选A.7.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④【答案】D.【解析】:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.(5)(6)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.故选:D.8.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y=√3x上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到3右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A.22n√3B.22n﹣1√3C.22n﹣2√3D.22n﹣3√3【答案】D【解析】:∵△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∴A1B1∥A2B2∥A3B3∥…∥A n B n,B1A2∥B2A3∥B3A4∥…∥B n A n+1,△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,∵直线y=√33x与x轴的成角∠B1OA1=30°,∠OA1B1=120°,∴∠OB1A1=30°,∴OA1=A1B1,∵A1(1,0),∴A1B1=1,同理∠OB2A2=30°,…,∠OB n A n=30°,∴B2A2=OA2=2,B3A3=4,…,B n A n=2n﹣1,易得∠OB1A2=90°,…,∠OB n A n+1=90°,∴B1B2=√3,B2B3=2√3,…,B n B n+1=2n√3,∴S1=12×1×√3=√32,S2=12×2×2√3=2√3,…,S n=12×2n﹣1×2n√3=22n−3√3;故选:D.9.如图(1),⊙O 的半径为2,双曲线的解析式分别为1y x =和1y x=-,则阴影部分的面积为( )A . 4πB . 3πC . 2πD . π【答案】C【解析】:根据反比例函数1y x =,1y x=-及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积. ∴21222S ππ=⨯=阴影. 故选C .10.二次函数y =ax 2+bx +c (a ,b ,c 是常数,a <0)的图象经过A (﹣4,﹣4),B (6,﹣4)顶点为P ,则下列说法中错误的是( )A.不等式ax2+bx+c>﹣4的解为﹣4<x<6B.关于x的方程a(x+4)(x﹣6)﹣4=0的解与ax2+bx+c=0的解相同C.△PAB为等腰直角三角形,则a=﹣D.当t≤x≤t+2时,二次函数y=ax2+bx+c的最大值为at2+bt+c,则t≥0【答案】D【解析】:解:由函数图象可知,二次函数y=ax2+bx+c(a,b,c是常数,a<0)的图象位于A(﹣4,﹣4),B(6,﹣4)两点之间部分在y=﹣4的上方,即不等式ax2+bx+c>﹣4的解为﹣4<x<6,故A正确;由题意知,当x=﹣4或6时,a(x+4)(x﹣6)﹣4=﹣4,又因二次函数y=ax2+bx+c(a,b,c是常数,a<0)的图象经过A(﹣4,﹣4),B(6,﹣4)有当x=﹣4或6时,y=ax2+bx+c=﹣4,所以a(x+4)(x﹣6)﹣4=ax2+bx+c,则关于x的方程a(x+4)(x﹣6)﹣4=0的解与ax2+bx+c=0的解相同,故B正确;由题意得,P点的横坐标为:,则P点纵坐标为:a+b+c=a﹣2a+c=﹣a+c,若△PAB为等腰直角三角形,则点P到AB的距离等于AB的一半,有﹣a+c+4=(6+4),得c=1+a,则抛物线的解析式为:y=ax2+bx+x=ax2﹣2ax+a+1,把A(﹣4,﹣4)代入,得﹣4=16a+8a+a+1,解得a=﹣,故C正确;由图象可知,当0≤t<1时,二次函数的最大值顶点的纵坐标1>at2+bt+c,故D错误;故选:D.二、填空题(本题共6小题,每小題3分,共18分)11.分解因式(a﹣b)2+4ab的结果是.【答案】(a+b)2【解析】(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a 2+2ab +9b 2 =(a +b )2. 故答案为(a+b )2.12. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为【答案】.m≤2【解析】:解不等式①,得x >8,,由②,知x <4m,当4m ≤8时,原不等式无解,∴m ≤2.13.如图,随机闭合开关1S ,2S ,3S 中的两个,能让灯泡发光的概率是____________.【答案】23. 【解析】:当开关1S 与2S 闭合或1S 与3S 闭合时,灯泡才会发光.同时闭合两个开关可能出现表格中的几种情况:()4263P ==灯泡发光 14.如图,△ABC 是 O 的内接三角形,且AB 是 O 的直径,点P 为 O 上的动点,且 ∠BPC =60°, O 的半径为6,则点P 到AC 距离的最大值是________.【答案】【解析】:作直径MN ⊥AC 于点Q,QM 为点P 到AC 的最大距离,∵半径为6,∴MO =OA =6,∠A =∠P =60°,∴OQ=∴MQ =15.如图,把某矩形纸片 ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上.点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若∠FPG -90°,△A 'EP 的面积为4,△D 'PH 的面积为1,则矩形ABCD 的面积等于__________.【答案】2(【解析】:∵四边形ABC 是矩形,∴AB =CD ,AD =BC ,设AB =CD =x ,由翻折可知:PA ′=AB =x ,PD ′=CD =x ,∵△A ′EP 的面积为4,△D ′PH 的面积为1,∴A ′E =4D ′H ,设D ′H =a ,则A ′E =4a ,∵△A ′EP ∽△D ′PH ,∴=,∴=,∴x 2=4a 2,∴x =2a或-2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==25,PH==5,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+35).故答案为2(5+35).16.如图,矩形ABCD的边长AB=3cm,AC=3cm,动点M从点A出发,沿AB以1cm/s的速度向点B匀速运动,同时动点N从点D出发,沿DA以2cm/s的速度向点A 匀速运动.若△AMN与△ACD相似,则运动的时间t为s.【答案】1.5或2.4.【解析】由题意得DN=2t,AN=6﹣2t,AM=t,若△NMA∽△ACD,则有=,即=,解得t=1.5,若△MNA∽△ACD则有=,即=,解得t=2.4,答:当t=1.5秒或2.4秒时,△AMN与△ACD相似.故答案为:1.5或2.4.三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.(9分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.【解答】解:原式=2﹣2×++1=3.18.(9分)先化简,再求值:,其中x=2.【解答】解:原式=把x=2代入得:原式=19.(9分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.20.(12分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育40 0.4科技25 a艺术b0.15其它20 0.2请根据上图完成下面题目:(1)总人数为人,a=,b=.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.四、解答题(本共3小,其中21、22题各9分,23题10分,共28分)21.(9分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A 型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D 型钢板全部出售,请你设计获利最大的购买方案.【解答】解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,∴当x=20时,w max=﹣14×20+46000=45740元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.22.(9分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n的数量关系.【解答】解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.23.(10分)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=P B.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.【解答】(1)证明:连接OP、O B.∵PA是⊙O的切线,∴PA⊥OA,∴∠PAO=90°,∵PA=PB,PO=PO,OA=OB,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵PA、PB都是切线,∴PA=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=PA=2a,∵△PAK∽△POA,∴PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.(11分)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=﹣2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=﹣2|x|+2和y=﹣2|x+2|的图象如图所示.x…﹣3 ﹣2 ﹣1 0 1 2 3 …y…﹣6 ﹣4 ﹣2 0 ﹣2 ﹣4 ﹣6 …(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=﹣2|x+2|的对称轴.(2)探索思考:平移函数y=﹣2|x|的图象可以得到函数y=﹣2|x|+2和y=﹣2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=﹣2|x﹣3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.【分析】(1)根据图形即可得到结论;(2)根据函数图形平移的规律即可得到结论;(3)根据函数关系式可知将函数y=﹣2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=﹣2|x﹣3|+1的图象.根据函数的性质即可得到结论.【解答】解:(1)A(0,2),B(﹣2,0),函数y=﹣2|x+2|的对称轴为x=﹣2;(2)将函数y=﹣2|x|的图象向上平移2个单位得到函数y=﹣2|x|+2的图象;将函数y=﹣2|x|的图象向左平移2个单位得到函数y=﹣2|x+2|的图象;(3)将函数y=﹣2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=﹣2|x﹣3|+1的图象.所画图象如图所示,当x2>x1>3时,y1>y2.25.(12分)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).(1)如图1,若EF∥BC,求证:(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.【分析】(1)由EF∥BC知△AEF∽△ABC,据此得=,根据=()2即可得证;(2)分别过点F、C作AB的垂线,垂足分别为N、H,据此知△AFN∽△ACH,得=,根据=即可得证;(3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,由重心性质知S△ABM=S△ACM、=,设=a,利用(2)中结论知==、==a,从而得==+a,结合==a可关于a的方程,解之求得a的值即可得出答案.【解答】解:(1)∵EF∥BC,∴△AEF∽△ABC,∴=,∴=()2=•=;(2)若EF不与BC平行,(1)中的结论仍然成立,分别过点F、C作AB的垂线,垂足分别为N、H,∵FN⊥AB、CH⊥AB,∴FN∥CH,∴△AFN∽△ACH,∴=,∴==;(3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,则MN分别是BC、AC的中点,∴MN∥AB,且MN=AB,∴==,且S△ABM=S△ACM,∴=,设=a,由(2)知:==×=,==a,则==+=+a,而==a,∴+a=a,解得:a=,∴=×=.26.(12分)在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B 两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,B C.若点P为直线BC上方抛物线上一动点,过点P作PE ∥y轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+ KG的最小值及点H的坐标.(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.【分析】(1)首先证明△PEF∽△BCO,推出当PE最大时,△PEF的周长最大,构建二次函数,求出PE最大时,点P的坐标,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+KM′≥PM,求出PM即可解决问题.(2)首先利用待定系数法求出点D′坐标,设N(1,n),∵C(0,2),D′(5,),则NC2=1+(n﹣2)2,D′C2=52+(﹣2)2,D′N2=(5﹣1)2+(﹣n)2,分三种情形分别构建方程求出n的值即可解决问题.【解答】解:(1)如图1中,对于抛物线y=﹣x2+x+2,令x=0,得到y=2,令y=0,得到﹣x2+x+2=0,解得x=﹣2或4,∴C(0,2),A(﹣2,0),B(4,0),抛物线顶点D坐标(1,),∵PF⊥BC,∴∠PFE=∠BOC=90°,∵PE∥OC,∴∠PEF=∠BCO,∴△PEF∽△BCO,∴当PE最大时,△PEF的周长最大,∵B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2,设P(m,﹣m2+m+2),则E (m,﹣m+2),∴PE=﹣m2+m+2﹣(﹣m+2)=﹣m2+m,∴当m=2时,PE有最大值,∴P(2,2),如图,将直线GO绕点G逆时针旋转60°,得到直线l,作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+KG=PH+HK+KM′≥PM,∵P(2,2),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,可得PM=10,∴PH+HK+KG的最小值为10,此时H(1,).(2)∵A(﹣2,0),C(0,2),∴直线AC的解析式为y=x+2,∵DD′∥AC,D(1,),∴直线DD′的解析式为y=x+,设D′(m,m+),则平移后抛物线的解析式为y1=﹣(x﹣m)2+m+,将(0,0)代入可得m=5或﹣1(舍弃),∴D′(5,),设N(1,n),∵C(0,2),D′(5,),∴NC2=1+(n﹣2)2,D′C2=52+(﹣2)2,D′N2=(5﹣1)2+(﹣n)2,①当NC=CD′时,1+(n﹣2)2=52+(﹣2)2,解得:n=②当NC=D′N时,1+(n﹣2)2=(5﹣1)2+(﹣n)2,解得:n=③当D′C=D′N时,52+(﹣2)2=(5﹣1)2+(﹣n)2,解得:n=,综上所述,满足条件的点N的坐标为(1,)或(1,)或(1,)或(1,)或(1,).中考数学试卷一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)﹣2的绝对值是()A.2 B.C.﹣D.﹣22.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8x104 4.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)5.(3分)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是()A.B.C.D.6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形7.(3分)计算(﹣2a)3的结果是()A.﹣8a3B.﹣6a3C.6a3D.8a38.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.9.(3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为()A.2B.4 C.3 D.210.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为.二、填空题(本题共6小题,每小題分,共18分)11.(3分)如图AB∥CD,CB∥DE,∠B=50°,则∠D=°.12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是.13.(3分)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).16.(3分)甲、乙两人沿同一条直路走步,如果两人分别从这条多路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位;min)的函数图象,则a﹣b=.三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.(9分)计算:(﹣2)2++618.(9分)计算:÷+19.(9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.20.(12分)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人)频率优秀15 0.3良好及格不及格 5根据以上信息,解答下列问题(1)被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2)被测试男生的总人数为人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为%;(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.四、解答题(本共3小,其中21、22题各分,23题10分,共28分)21.(9分)某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x >0)的图象上,点B在OA的廷长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD.(1)求该反比例函数的解析式;(2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长.23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.(11分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD 为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.25.(12分)阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).26.(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.2019年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.【解答】解:﹣2的绝对值是2.故选:A.2.【解答】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B.3.【解答】解:将数58000用科学记数法表示为5.8×104.故选:D.4.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.5.【解答】解:5x+1≥3x﹣1,移项得5x﹣3x≥﹣1﹣1,合并同类项得2x≥﹣2,系数化为1得,x≥﹣1,在数轴上表示为:故选:B.6.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.7.【解答】解:(﹣2a)3=﹣8a3;故选:A.8.【解答】解:两次摸球的所有的可能性树状图如下:∴P两次都是红球=.故选:D.9.【解答】解:连接AC交EF于点O,如图所示:∵四边形ABCD是矩形,∴AD=BC=8,∠B=∠D=90°,AC===4,∵折叠矩形使C与A重合时,EF⊥AC,AO=CO=AC=2,∴∠AOF=∠D=90°,∠OAF=∠DAC,∴则Rt△FOA∽Rt△ADC,∴=,即:=,解得:AF=5,∴D′F=DF=AD﹣AF=8﹣5=3,故选:C.10.【解答】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.二、填空题(本题共6小题,每小題分,共18分)11.【解答】解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130.12.【解答】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.13.【解答】解:∵△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°,∵CD=AC,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D=60°,∴∠CAD=∠D=30°,∴∠BAD=90°,∴AD===2.故答案为2.14.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.15.【解答】解:在Rt△BCD中,tan∠BDC=,则BC=CD•tan∠BDC=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.33=13.3,∴AB=AC﹣BC=3.3≈3(m),故答案为:3.16.【解答】解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为.三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.【解答】解:原式=3+4﹣4+2+6×=3+4﹣4+2+2=7.18.【解答】解:原式=×﹣=﹣=.19.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS)∴AF=DE.20.【解答】解:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人,被测试男生总数15÷0.3=50(人),成绩等级为“及格”的男生人数占被测试男生总人数的百分比:,故答案为15,90;(2)被测试男生总数15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:,故答案为50,10;(3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%,该校八年级男生成绩等级为“良好”的学生人数180×40%=72(人)答:该校八年级男生成绩等级为“良好”的学生人数72人.四、解答题(本共3小,其中21、22题各分,23题10分,共28分)21.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元.22.【解答】解:(1)∵点A(3,2)在反比例函数y=(x>0)的图象上,∴k=3×2=6,∴反比例函数y=;答:反比例函数的关系式为:y=;(2)过点A作AE⊥OC,垂足为E,连接AC,设直线OA的关系式为y=kx,将A(3,2)代入得,k=,∴直线OA的关系式为y=x,∵点C(a,0),把x=a代入y=x,得:y=a,把x=a代入y=,得:y=,∴B(a,),即BC═a,D(a,),即CD=∵S△ACD=,∴CD•EC=,即,解得:a=6,∴BD=BC﹣CD==3;答:线段BD的长为3.23.【解答】(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠PAC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.【解答】解:(1)当x=0时,y=3,当y=0时,x=4,∴直线y=﹣x+3与x轴点交A(4,0),与y轴交点B(0,3)∴OA=4,OB=3,∴AB=,因此:线段AB的长为5.(2)当CD∥OA时,如图,∵BD=OC,OC=m,∴BD=m,由△BCD∽△BOA得:,即:,解得:m=;①当0<m≤时,如图1所示:DE=m≤,此时点E在△AOB的内部,S=0 (0<m≤);②当<m≤3时,如图2所示:过点D作DF⊥OB,垂足为F,此时在x轴下方的三角形与△CDF全等,∵△BDF∽△BAO,∴,∴DF=,同理:BF=m,∴CF=2m﹣3,∴S△CDF==(2m﹣3)×=m2﹣4m,即:S=m2﹣4m,(<m≤3)③当m>3时,如图3所示:过点D作DF⊥y轴,DG⊥x轴,垂足为、FG,同理得:DF=,BF=m,∴OF=DG=m﹣3,AG=m﹣4,∴S=S△OGE﹣S△ADG==∴S=,(m>3)答:S=25.【解答】证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ∴∠EAC=2β∵AF平分∠EAC∴∠FAC=∠EAF=β∴∠FAC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF。

冲刺中考数学试卷答案

冲刺中考数学试卷答案

一、选择题1. 下列各数中,属于无理数的是()A. √2B. 0.333...C. -3D. 1/2答案:A解析:无理数是指不能表示为两个整数比的数,而√2是一个无理数。

2. 下列各式中,正确的是()A. a² = b²,则a = bB. a² + b² = c²,则a = cC. a² = b²,则a = ±bD. a² + b² = c²,则b = c答案:C解析:当a² = b²时,a可以等于b,也可以等于-b,因此选项C正确。

3. 已知一元二次方程x² - 4x + 3 = 0,则该方程的解为()A. x = 1, x = 3B. x = -1, x = -3C. x = 2, x = 1D. x = 2, x = 3答案:A解析:通过因式分解或使用求根公式,可以得到x² - 4x + 3 = (x - 1)(x - 3) = 0,解得x = 1或x = 3。

4. 在直角坐标系中,点P(2,3)关于x轴的对称点为()A. (2, -3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A解析:点P关于x轴的对称点,其x坐标不变,y坐标取相反数,因此对称点为(2, -3)。

5. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 1/xC. y = x²D. y = 3/x²答案:B解析:反比例函数的一般形式为y = k/x,其中k为常数,因此选项B是反比例函数。

二、填空题6. 若a + b = 5,a - b = 1,则a = __________,b = __________。

答案:3,2解析:通过解二元一次方程组,可以得到a = 3,b = 2。

7. 已知三角形ABC中,∠A = 45°,∠B = 90°,则∠C = __________°。

初三冲刺数学试题及答案

初三冲刺数学试题及答案

初三冲刺数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. 0.333...C. πD. √22. 如果一个二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ =b² - 4ac小于0,那么这个方程:A. 有唯一解B. 有两组实数解C. 无实数解D. 无法确定3. 一个圆的半径为5,那么这个圆的面积是:A. 25πB. 50πC. 75πD. 100π4. 已知函数f(x) = 2x - 3,求f(-1)的值:A. 1B. -5C. -1D. 55. 下列哪个是等差数列的通项公式?A. an = a1 + (n-1)dB. an = a1 + ndC. an = a1 - (n-1)dD. an = a1 - nd二、填空题(每题2分,共10分)6. 一个直角三角形的两个直角边长分别为3和4,那么它的斜边长是________。

7. 一个数的平方根是4,那么这个数是________。

8. 一个数的立方根是2,那么这个数是________。

9. 一个数的绝对值是5,那么这个数可以是________或________。

10. 如果一个数的相反数是-7,那么这个数是________。

三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3 + √5)² - 2√5。

12. 解方程:2x + 5 = 15。

13. 计算下列数列的前5项和:1, 3, 5, 7, 9。

四、解答题(每题10分,共20分)14. 已知一个直角三角形的斜边长为13,一个直角边长为5,求另一个直角边的长度。

15. 已知一个等差数列的前三项分别为3,7,11,求这个数列的第20项。

五、证明题(每题15分,共15分)16. 证明:直角三角形的斜边的平方等于两直角边的平方和。

答案一、选择题1. C2. C3. B4. B5. A二、填空题6. 57. 168. 89. 5, -510. 7三、计算题11. 1412. x = 513. 25四、解答题14. 另一个直角边的长度是12。

初三数学冲刺满分试卷答案

初三数学冲刺满分试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 3.14B. -5C. √2D. 0答案:C解析:有理数是可以表示为两个整数比的数,即形如a/b(a和b都是整数,b不为0)的数。

而√2是一个无理数,因为它不能表示为两个整数的比。

2. 下列各式中,正确的是()A. (a+b)^2 = a^2 + b^2B. (a-b)^2 = a^2 - b^2C. (a+b)^2 = a^2 + 2ab + b^2D. (a-b)^2 = a^2 - 2ab + b^2答案:C解析:根据完全平方公式,(a+b)^2 = a^2 + 2ab + b^2,(a-b)^2 = a^2 - 2ab + b^2。

3. 若方程x^2 - 4x + 4 = 0的解为x1和x2,则x1 + x2的值为()A. 4B. -4C. 2D. -2答案:C解析:根据韦达定理,一元二次方程ax^2 + bx + c = 0的两根之和等于-b/a。

所以x1 + x2 = -(-4)/1 = 4。

4. 下列函数中,为奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^4答案:C解析:奇函数满足f(-x) = -f(x)。

只有x^3满足这个条件。

5. 若sinθ = 1/2,且θ在第二象限,则cosθ的值为()A. √3/2B. -√3/2C. 1/2D. -1/2答案:B解析:在第二象限,sinθ为正,cosθ为负。

根据sin^2θ + cos^2θ = 1,可以得出cosθ = -√(1 - sin^2θ) = -√(1 - (1/2)^2) = -√3/2。

二、填空题(每题3分,共30分)6. 已知a+b=5,ab=6,则a^2 + b^2的值为______。

答案:37解析:利用恒等式(a+b)^2 = a^2 + 2ab + b^2,得a^2 + b^2 = (a+b)^2 - 2ab = 5^2 - 26 = 25 - 12 = 13。

初三冲刺数学试题及答案人教版

初三冲刺数学试题及答案人教版

初三冲刺数学试题及答案人教版一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1415B. πC. 0.5D. √42. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π3. 一个二次方程 \( ax^2 + bx + c = 0 \) 的判别式是 \( b^2 - 4ac \),当判别式小于0时,方程的根是什么?A. 无实数根B. 有两个实数根C. 有一个实数根D. 无法判断4. 函数 \( y = 3x - 2 \) 在 \( x = 1 \) 时的值是多少?A. 1B. 2C. 3D. 45. 下列哪个是等差数列?A. 2, 4, 6, 8B. 1, 3, 5, 7C. 3, 6, 9, 12D. 5, 4, 3, 26. 一个正方体的体积是27立方厘米,它的棱长是多少?A. 3厘米B. 6厘米C. 9厘米D. 27厘米7. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为60度,那么这个三角形的面积是多少?A. 3平方厘米B. 4平方厘米C. 6平方厘米D. 12平方厘米8. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 29. 下列哪个是完全平方数?A. 15B. 16C. 17D. 1810. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少?A. 24立方米B. 12立方米C. 16立方米D. 20立方米二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是_________。

12. 一个数的绝对值是5,这个数可以是_________或_________。

13. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是_________。

14. 一个数的立方根是2,这个数是_________。

15. 一个数的平方是36,这个数可以是_________或_________。

数学冲刺班中考试题及答案

数学冲刺班中考试题及答案

数学冲刺班中考试题及答案中考临近,许多学生都在寻找有效的复习方法和资料。

数学冲刺班就是其中一种帮助学生快速提高成绩的方式。

以下是一份数学冲刺班中考试题及答案,供同学们参考和练习。

一、选择题1. 下列哪个数是无理数?A. 2.5B. 3.14C. πD. √2答案:C2. 如果一个三角形的两边长分别为3和4,且这两边夹角为90°,那么第三边的长度是多少?A. 5B. 6C. 7D. 8答案:A二、填空题1. 已知一个圆的半径为5,那么这个圆的面积是_________(答案:25π)。

2. 如果一个多项式f(x) = x^2 - 5x + 6,那么f(2)的值是_________(答案:0)。

三、解答题1. 解不等式:2x + 5 > 3x - 2。

首先,将不等式中的项进行整理,得到2x - 3x > -2 - 5,即-x > -7。

解得x < 7。

2. 已知一个直角三角形的两个直角边分别为6和8,求斜边的长度。

根据勾股定理,斜边的长度为√(6^2 + 8^2) = √(36 + 64) =√100 = 10。

四、证明题1. 证明:对于任意一个直角三角形,其斜边的平方等于两个直角边的平方和。

设直角三角形的两个直角边分别为a和b,斜边为c。

根据勾股定理,我们有c^2 = a^2 + b^2。

这就是需要证明的结论。

五、应用题1. 一个农场主想要围成一个矩形的鸡舍,他有120米的围栏。

如果鸡舍的长是宽的两倍,那么鸡舍的长和宽各是多少?设鸡舍的宽为x米,那么长为2x米。

根据题意,我们有2(x + 2x) = 120,解得x = 15,所以宽为15米,长为30米。

结束语通过以上的数学冲刺班中考试题及答案,同学们可以检验自己的数学知识掌握情况,同时也能够对中考的题型有一个大致的了解。

希望同学们能够通过不断的练习,提高自己的数学解题能力,为中考做好充分的准备。

祝所有考生中考顺利,取得优异的成绩!。

九年级数学中考提升冲刺训练(一)(含答案)

九年级数学中考提升冲刺训练(一)(含答案)

九年级数学中考提升冲刺训练(一)姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题1.|﹣|的值是()A.2020 B.﹣2020 C.﹣D.2.2019年末到2020年3月16日截止,世界各国感染新冠状肺炎病毒患者达到15万人,将数据15万用科学记数表示为()A.1.5×104B.1.5×103C.1.5×105D.1.5×1023.如图,这是一个机械模具,则它的左视图是()A.B.C.D.4.下列运算中,错误的是()A.x2•x3=x6B.x2+x2=2x2C.(x2)3=x6D.(﹣3x)2=9x2 5.下列图形中,是轴对称图形,也是中心对称图形的是()A.B.C.D.6.一组数据:3、6、7、5、4,则这组数据的中位数是()A.4 B.4.5 C.5 D.67.实数a,b,c在数轴上的对应点的位置如图所示,则下列结论正确的是()A.|c|>|a| B.ac>0 C.c﹣b>0 D.b+c<08.已知3+m=n,则m可能是()A.3B.C.D.9.若α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,且+=﹣,则m等于()A.﹣2 B.﹣3 C.2 D.310.如图,E、F分别是正方形ABCD的边BC、CD的中点,连接AF、DE交于点P,过B作BG ∥DE交AD于G,BG与AF交于点M.对于下列结论:①AF⊥DE;②G是AD的中点;③∠GBP=∠BPE;④S△AGM :S△DEC=1:4.正确的个数是()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)二.填空题11.计算:(﹣3)﹣1+(﹣4)0=.12.如图,△ABC的两条中线AD,BE交于点G,EF∥BC交AD于点F.若FG=1,则AD=.13.一个n边形的内角和等于720°,则n=.14.若a=2019,b=2020,则[a2(a﹣2b)﹣a(a﹣b)2]÷b2的值为.15.某数学兴趣小组为测量河对岸树AB的高,在河岸边选择一点C.从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得树梢A的仰角为30°,则树高为米.(结果精确到0.1米,参考数据:≈1.414,≈1.732)16.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).三.解答题17.解不等式组:18.先化简,再求值:(+)÷,其中x=6.19.如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.20.今年3月,某集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100 A 280≤n<90 B b70≤n<80 C15n<70 D 6根据以上信息解答下列问题:(1)求m,b的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(3)从评估成绩不少于80分的连锁店中,任选2家介绍营销经验,用树状图或列表法求其中至少有一家是A等级的概率.21.某商场购进一批LED灯泡与普通白炽灯泡,其进价与标价如下表.该商场购进LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡按标价打九折销售,销售完这批灯泡后可以获利3200元.(1)求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,并在不打折的情况下销售完.若销售完这两批灯泡的获利不超过总进货价的28%,则最多再次购进LED灯泡多少个?LED灯泡普通白炽灯泡进价(元)45 25标价(元)60 3022.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.23.在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=(m≠0)相交于A,B 两点,点A坐标为(﹣3,2),点B坐标为(n,﹣3).(1)求一次函数和反比例函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是5,求点P的坐标.(3)利用函数图象直接写出关于x的不等式kx+b<的解集.24.定义:如果三角形的两个内角α与β满足α+2β=90°,那么称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=13,弦AD=5,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.25.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(2,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点E(m,2)是直线AC上方的抛物线上一点,连接EA、EB、EC,EB与y轴交于D.①点F是x轴上一动点,连接EF,当以A、E、F为顶点的三角形与△BOD相似时,求出线段EF的长;②点G为y轴左侧抛物线上一点,过点G作直线CE的垂线,垂足为H,若∠GCH=∠EBA,请直接写出点H的坐标.参考答案一.选择题1.解:,故选:D.2.解:15万=15×104=1.5×105.故选:C.3.解:从左边看,得到的图形只有一列两层,第一层是正方形,第二层的正方形里面有实心的圆圈,故选:B.4.解:A.x2•x3=x5,故本选项符合题意;B.x2+x2=2x2,故本选项不合题意;C.(x2)3=x6,故本选项不合题意;D.(﹣3x)2=9x2,故本选项不合题意.故选:A.5.解:A、不是中心对称图形,是轴对称图形,故本选项不合题意;B、是中心对称图形,也是轴对称图形,故本选项符合题意;C、是中心对称图形,不是轴对称图形,故本选项不合题意;D、不是中心对称图形,是轴对称图形,故本选项不合题意.故选:B.6.解:把数据按从小到大的顺序排列为:3,4,5,6,7,则中位数是5.故选:C.7.解:由数轴可知,﹣4<a<﹣3,﹣1<b<0,2<c<3,∴|c|<|a|,A错误;ac<0,B错误;c﹣b>0,C正确;b+c>0,D错误;故选:C.8.解:根据3+m=n,得到3与m为同类二次根式,则m可能是3,故选:A.9.解:α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,∴α+β=2,αβ=m,∵+===﹣,∴m=﹣3;故选:B.10.解:∵正方形ABCD,E,F均为中点∴AD=BC=DC,EC=DF=BC,∵在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴∠AFD=∠DEC,∵∠DEC+∠CDE=90°,∴∠AFD+∠CDE=90°=∠DGF,∴AF⊥DE,故①正确,∵BG∥DE,GD∥BE,∴四边形GBED为平行四边形,∴GD=BE,∵BE=BC,∴GD=AD,即G是AD的中点,故②正确,∵BG∥DE,∴∠GBP=∠BPE,故③正确.∵BG∥DG,AF⊥DE,∴AF⊥BG,∴∠ANG=∠ADF=90°,∵∠GAM=∠FAD,∴△AGM∽△AFD,设AG=a,则AD=2a,AF=a,∴=.∵△ADF≌△DCE,∴S△AGM :S△DEC=1:5.故④错误.故选:C.二.填空题11.解:原式=+1=,故答案为:12.解:∵△ABC的两条中线AD,BE交于点G,∴BD=CD,AE=CE,∵EF∥CD,∴==1,即AF=FD,∴EF为△ADC的中位线,∴EF=CD,∴EF=BD,∵EF∥BD,∴==,∴DG=2FG=2,∴FD=2+1=3,∴AD=2FG=6.故答案为6.13.解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.14.解:原式=(a3﹣2a2b﹣a3+2a2b﹣ab2)]÷b2=﹣a,当a=2019时,原式=﹣2019.故答案为:﹣201915.解:根据题意可知:∠ABC=90°,CD=10,在Rt△ABC中,∠ACB=45°,∴AB=CB,在Rt△ABD中,∠ADB=30°,BD=CD+BC=10+AB,∴tan30°=,即=,解得AB≈13.7(米).答:树高约为13.7米.故答案为:13.716.解:方法1、如图,由图可得,拼出来的图形的总长度=5a+4[a﹣2(a﹣b)]=a+8b 故答案为:a+8b.方法2、∵小明用9个这样的图形(图1)拼出来的图形∴口朝上的有5个,口朝下的有四个,而口朝上的有5个,长度之和是5a,口朝下的有四个,长度为4[b﹣(a﹣b)]=8b﹣4a,即:总长度为5a+8b﹣4a=a+8b,故答案为a+8b.三.解答题17.解:解不等式①,得x<2,解不等式②,得x≥﹣,∴原不等式组的解集为﹣5≤x<2.18.解:(+)÷==﹣=,当x=6时,原式===.19.(1)解:如图,∠BAD为所作;(2)证明:∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD•BC.20.解:(1)∵C等级频数为15,占60%,∴m=15÷60%=25;∴b=25﹣15﹣2﹣6=2;(2)∵B等级频数为2,∴B等级所在扇形的圆心角的大小为:×360°=28.8°;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵由图可知,共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴P(至少有一家是A等级)==.21.解:(1)设该商场购进LED灯泡x个,普通白炽灯泡y个.根据题意,得:,解得,答:该商场购进LED灯泡200个,普通白炽灯泡100个.(2)设再次购进LED灯泡m个.(60﹣45)m+(30﹣25)(120﹣m)+3200≤28%[45×200+25×100+45m+25(120﹣m)] 解得:m≤59,∵m取正整数,∴m的最大值为59则最多再次购进LED灯泡59个.22.解:(1)AB==2,AC==2,BC==4;(2)由(1)得,AB2+AC2=BC2,∴∠BAC=90°,连接AD,AD==2,∴S阴=S△ABC﹣S扇形AEF=AB•AC﹣π•AD2=20﹣5π.23.解:(1)∵双曲线y=(m≠0)过点A(﹣3,2),∴m=﹣3×2=﹣6,∴反比例函数表达式为y=﹣,∵点B(n,﹣3)在反比例函数y=﹣的图象上,∴n=2,∴B(2,﹣3).∵点A(﹣3,2)与点B(2,﹣3)在直线y=kx+b上,∴解得∴一次函数表达式为y=﹣x﹣1;(2)如图,在x轴上任取一点P,连接AP,BP,由(1)知点B的坐标是(2,﹣3).在y=﹣x﹣1中令y=0,解得x=﹣1,则直线与x轴的交点是(﹣1,0).设点P的坐标是(a,0).∵△ABP的面积是5,∴•|a+1|•(2+3)=5,则|a+1|=2,解得a=﹣3或1.则点P的坐标是(﹣3,0)或(1,0);(3)关于x的不等式kx+b<的解集是﹣3<x<0或x>2.24.(1)①证明:如图1中,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD,∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+2∠ABD=90°,∴△ABD为“类直角三角形”.②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”.在Rt△ABC中,∵AB=5,BC=3,∴AC===4,∵∠AEB=∠C+∠EBC>90°,∴∠ABE+2∠A=90°,∵∠ABE+∠A+∠CBE=90°∴∠A=∠CBE,∴△ABC∽△BEC,∴=,∴CE==,(2)∵AB是直径,∴∠ADB=90°,∵AD=5,AB=13,∴BD===12,①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB.则点F在⊙O上,且∠DBF=∠DOA,∵∠DBF+∠DAF=180°,且∠CAD=∠AOD,∴∠CAD+∠DAF=180°,∴C,A,F共线,∵∠C+∠ABC+∠ABF=90°∴∠C=∠ABF,∴△FAB∽△FBC,∴=,即=,∴AC=.②如图3中,由①可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分∠FBC,∴∠C+2∠ABC=90°,∵∠CAD=∠CBF,∠C=∠C,∴△DAC∽△FBC,∴=,即=,∴CD=(AC+5),在Rt△ADC中,CD2+AD2=AC2,∴AC=(舍去负值),综上所述,当△ABC是“类直角三角形”时,AC的长为或.25.解:(1)将A(﹣3,0)、B(2,0)、C(0,3)代入y=ax2+bx+c得,,解得:,∴抛物线的解析式为:y=﹣x+3;(2)①将E(m,2)代入y=﹣x+3中,得﹣m+3=0,解得m=﹣2或1(舍去),∴E(﹣2,2),∵A(﹣3,0)、B(2,0),∴AB=5,AE=,BE=2,∴AB2=AE2+BE2,∴∠AEB=∠DOB=90°,∴∠EAB+∠EBA=∠ODB+∠EBA=90°,∴∠EAB=∠ODB,(Ⅰ)当△FEA∽△BOD时,∴∠AEF=∠DOB=90°,∴F与B点重合,∴EF=BE=2,(Ⅱ)当△EFA∽△BOD时,∴∠AFE=∠DOB=90°,∵E(﹣2,2),∴EF=2,故:EF的长为2或2;②点H的坐标为(﹣,)或(﹣,),(Ⅰ)过点H作HN⊥CO于点N,过点G作GM⊥HN于点M,∴∠GMN=∠CNH=90°,又∠GHC=90°,∴∠CHN+∠GHM=∠MGH+∠GHM=90°,∴∠CHN=∠MGH,∵HN⊥CO,∠COP=90°,∴HN∥AB,∴∠CHN=∠APE=∠MGH,∵E(﹣2,2),C(0,3),∴直线CE的解析式为y=x+3,∴P(﹣6,0),∴EP=EB=2,∴∠APE=∠EBA,∵∠GCH=∠EBA,∴∠GCH=∠APE=∠EBA=∠CHN=∠MGH,∴GC∥PB,又C(0,3),∴G点的纵坐标为3,代入y=﹣x+3中,得:x=﹣1或0(舍去),∴MN=1,∵∠AEB=90°,AE=,BE=2,∴tan∠EBA=tan∠CHN=tan∠MGH=,设CN=MG=m,则HN=2m,MH=m,∴MH+HN=2m+m=1,解得,m=,∴H点的橫坐标为﹣,代入y=x+3,得:y=,∴点H的坐标为(﹣,).(Ⅱ)过点H作MN⊥PB,过点C作CN⊥MH于点N,过点G作GM⊥HM于点M,∴CN∥PB,∴∠NCH=∠APE,由(Ⅰ)知:∠APE=∠EBA,则∠NCH=∠EBA,∵∠GMN=∠CNH=90°,又∠GHC=90°,∴∠HCN+∠NHC=∠MHG+∠NHC=90°,∴∠HCN=∠MHG,∵∠GCH=∠EBA,∴∠GCH=∠EBA=∠HCN=∠MHG,由(Ⅰ)知:tan∠EBA=,则tan∠MHG==tan∠GCH=,设MG=a,则MH=2a,∵∠NCH=∠MHG,∠N=∠M,∴△HMG∽△CNH,∴,∴NH=2a,CN=4a,又C(0,3),∴G(﹣3a,3﹣4a),代入y=﹣x+3中,得,a=或0(舍去),∴CN=,∴H点的橫坐标为﹣,代入y=x+3,得,y=.∴点H的坐标为(﹣).综合以上可得点H的坐标为(﹣,)或(﹣).。

九年级中考数学冲刺训练(含答案)

九年级中考数学冲刺训练(含答案)

中考冲刺训练初三数学试卷分值:150分 时间:120分钟一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.20191的倒数是( ) A .20191 B .20191 C .2019 D .﹣2019 2.下列图标不是轴对称图形的是( )A B C D3.下列各式的计算中正确的是( )A .a 3+a 2=a 5B .a 2•a 3=a 6C .a 6÷a 3=a 2D .(﹣a 3)2=a 64.港珠澳大桥是连接香港、珠海和澳门的超大型跨海通道,总长55000米.数据55000米用科学记数法表示为( )A .5.5×104米B .5.5×103米C .0.55×104米D .55×103米5.下列各图形是正方体展开图的是( )A B C D6.一个正多边形的每一个外角都等于45°,则这个多边形的边数为( )A .4B .6C .8D .107.如图,△ABD 的三个顶点在⊙O 上,AB 是直径,点C 在⊙O 上,且∠BCD =38°,则∠ABD 等于( )A 、38°B 、52°C 、62°D 、76°8.已知二次函数y=﹣x 2+x+6,将该二次函数在x 轴上方的图象沿x 轴翻折到x轴下方,图象的其余部分不变,得到一个新的函数图像(如图所示),当直线y=﹣x+m 与新图像有3个交点时,m 的值是( )A .﹣B .﹣2C .﹣2或3D .﹣6或﹣2二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9. 若二次根式有意义,则x 的取值范围是 10.若分式11 x 无意义,则x 的值为 . 11.因式分解:x 2﹣9= .12.将一把直尺和一块含30°的直角三角板ABC 按如图所示的位置放置,如果∠BAF=22°,那么∠CDE 的度数为 .13.如图是由若干个全等的等边三角形拼成的纸板,若某人向纸板上投掷飞镖,(每次飞镖均落在纸板上),则飞镖落在阴影部分的概率是 .14.一元二次方程2x 2+3x-1=0的两个根为x 1、x 2, 则x 12x 2+x 1x 22= .15.如图,正方形ABCD 内接于⊙O ,⊙O 的半径为1,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为 .第12题 第13题 第15题16.如图,直线l 1:y=k 1x 与反比例函数y=x k 2交于点A(-3,1)和点B ,点C 是y 轴正半轴上一个动点,连接AC,BC ,若∠ACB=45°,则△ABC 的面积为 .三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)17.计算:﹣12019+(π+3)0+|﹣2|﹣.18.解方程:+=419.先化简,再求值:aa a a a a a -+÷---222)242(,请从0、1、2、﹣1、﹣2五个数中选一个你喜欢的数代入求值.20.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为 ;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,用树状图或列表的方法求恰好选中《九章算术》和《孙子算经》的概率.21. 2019年全国两会于3月5日在人民大会堂开幕,某社区为了解居民对此次两会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对两会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下不完整的统计图: 第16题请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为;(4)若该社区有1500人,则可以估计该社区居民对两会的关注程度为“淡薄”层次的约有多少人.22.如图,在□ABCD中,E是CD的中点,连接AE并延长交BC的延长线于点F.(1)求证:AE=FE;(2)若DC=2BC,∠F=33°.求∠BAE的度数.23.如图是公路两侧的路灯在铅垂面内的示意图,灯杆AB的长度为2米,灯杆AB与灯柱BC的夹角∠B=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为14米,从D、E两处测得路灯A的仰角分别为α和β,且tanα=6,β=45º. 求路灯BC的高度.24.如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)求证:DE是⊙O的切线;(2)若CD=6cm,DE=5cm,求⊙O直径的长.25.冬季来临,某网店准备在厂家购进A 、B 两种暖手宝共100个用于销售,若购买A 种暖手宝8个,B 种暖手宝3个,需要950元,若购买A 种暖手宝5个,B 种暖手宝6个,则需要800元.(1)购买A ,B 两种暖手宝每个各需多少元?(2)由于资金限制,用于购买这两种暖手宝的资金不能超过7650元,且购进A 种暖手宝不能少于48个,设购买A 种暖手宝m 个,求m 的取值范围;(3)购买后,若一个A 种暖手宝运费为5元,一个B 种暖手宝运费为4元,在第(2)各种购买方案中,购买100个暖手宝,哪一种购买方案所付的运费最少?最少运费多少元?26.我们定义:如果一个三角形一条边上的高等于这条边的一半,那么这个三角形叫做“半高底”三角形,这条边叫做这个三角形的“倍底”.图1 图2 图3(1)【概念理解】如图1,在正方形ABCD 中,点E 是AB 的中点,试判断△BCE 是否是“半高底”三角形,请说明理由;(2)【问题探究】如图2,钝角△ABC 是“半高底”三角形,BC 是“倍底“,∠C =135°,AC =2,求BC 的长;(3)【应用拓展】如图3,已知l 1∥l 2,l 1与l 2之间的距离为1.“半高底”△ABC 的“倍底”BC 在直线l 1上,点A 在直线l 2上,有一边的长是BC 的22倍.将△ABC 绕点C 按顺时针方向旋转60°得到△A'B'C ,A′C 所在直线交l 2于点D .求CD 的值.27.如图,已知抛物线 y=ax 2+bx (a≠0)过点B (-1,4),C (3,0),直线AB :31634+=x y 与x 轴交于点A ,点D 是抛物线上一点且BD ∥x 轴,连接AD .(1)求该抛物线的解析式及D 点的坐标; (2)点P 是线段AD 上一个动点,连接PB ,试求BP+55DP 的最小值; (3)动点M 从点A 出发沿A ﹣B ﹣D 向终点D 匀速运动,将射线OM 绕点O 顺时针旋转45°得到射线OQ ,过点M 作MN ⊥OQ 于点N①当点N 落在抛物线上时,求出此时点N 的横坐标;②设BN 的长度为n ,直接写出在点M 移动的过程中,n 的最大值和最小值.数学参考答案一、选择题:1--8 CADA DCBD二、填空题:9. 51≥x10. X=111. (x+3)(x-3)12. 52°13. 8314. 4315. 1-π16. 9193+二、解答题:17 4 (6分)18. x=1 (6分)19. 1-a 2 (4+4=8分)20.解:(1) 41(2分)(2) 61(6分)21.解:(1)120 (2分)(2)略(2分)(3108°(2分)(4)150(2分)22. (1)略(5分)(2)∠BAE=33°(5分)23. BC=11(10分)24(1)略(5分) (2)215(5分) 25.(1)A 、100元 B 、50元(4分)(2)48≤m ≤53 (4分)A 种48个,B 种52个(1分)最少运费448元 (1分)26.(1)略(3分)(2)BC=2(3分)(3)2610-3032626或或+-=CD (2分×3=6分) 27(1)x 3-x y 2=(2分)D(4,4)(1分)(2)最小值为4(3分)(3)①517233-11+或的横坐标为N (各2分) ②n 的最大值为41,最小值为10213(各2分)。

2024年安徽省中考数学冲刺试卷四+答案

2024年安徽省中考数学冲刺试卷四+答案

2024安徽省中考冲刺试卷四一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−10的倒数的相反数为( )A. 10B. −110C. 110D. −102.下列运算正确的是( )A. aa3⋅aa2=aa6B. (−3aa3)2=9aa6C. aa3÷aa−1=aa2D. (−2021)0=03.如图用6个同样大小的立方摆成的几何体,将立方体①移走后,所得几何体与原来几何体的( )A. 从前面看到的形状图改变,从左面看到的形状图改变B. 从上面看到的形状图不变,从左面看到的形状图不变C. 从上面看到的形状图改变,从左面看到的形状图改变D. 从前面看到的形状图改变,从左面看到的形状图不变4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FFFFFFFF的反射面总面积相当于35个标准足球场的总面积已知每个标准足球场的面积为7140mm2,则FFFFFFFF的反射面总面积为249900mm2可大约表示为( ) A. 7.14×103mm2 B. 7.14×104mm2 C. 2.5×105mm2 D. 2.5×106mm25.如图是一把椅子侧面钢架结构的几何图形.其中的交点CC是可以活动的,调整它的位置可改变坐板与靠背所成的角度(即∠DDDDFF的大小),但又始终保证坐板与水平面平行(即DDDD//FFAA).如图所示,测得∠FFAACC=50°,∠DDCCDD=70°,则∠DDDDFF=( )A. 120°B. 115°C. 110°D. 105°6.如图,两条等宽的长方形纸条倾斜的重叠着,已知长方形纸条宽为2ccmm,∠FFAACC= 60°,则四边形FFAACCDD的面积为ccmm2.( )A. 4√ 33B. 8√ 33C. 4D. 4√ 37.一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是( )A. 13B. 23C. 49D. 598.已知aa=2021xx−2021,bb=2021xx−2022,cc=2021xx−2023,则aa2+bb2+cc2−aabb−aacc−bbcc的值为( )A. 0B. 1C. 2D. 39.设FF=aa2,AA=aa+2,CC=bb2,DD=2aa.对于以下说法:①若FF+CC+DD=−1,则FF+AA+DD=3CC;②若多项式FF+AA+CC+xxDD−2的值不可能取负数,则xx=−12;③若bb为正数,则多项式AACC+DD+FF的值一定是正数.其中正确的有( )A. ①B. ①②C. ②③D. ①②③10.如图是边长为2的菱形FFAACCDD,∠DDFFAA=60°,过点FF作直线ll⊥FFAA,将直线ll沿线段FFAA方向匀速向右平移,直至ll经过点CC时停止,在平移的过程中,若菱形在直线ll左边的部分面积为yy,则yy平移的距离xx之间的函数图象大致为( )A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。

初三冲刺数学试题及答案

初三冲刺数学试题及答案

初三冲刺数学试题及答案一、选择题(每题3分,共30分)1. 已知一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 16D. 142. 下列哪个数是无理数?A. 0.3B. 22/7C. √2D. 0.333...3. 一个数的绝对值是它本身,这个数是:A. 正数或零B. 负数或零C. 零D. 负数4. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 一个圆的半径扩大到原来的2倍,它的面积扩大到原来的:B. 4倍C. 8倍D. 16倍6. 下列哪个方程的解是x=2?A. x+2=4B. x-2=0C. 2x-4=0D. 3x+6=127. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 12cm³B. 24cm³C. 26cm³D. 28cm³8. 一个等差数列的首项是2,公差是3,那么它的第五项是:A. 17B. 14C. 11D. 89. 一个直角三角形的两直角边长分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 810. 下列哪个图形是轴对称图形?A. 平行四边形C. 不规则多边形D. 矩形二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是______。

12. 一个等腰三角形的顶角是60°,那么它的底角是______。

13. 一个数的平方根是3,那么这个数是______。

14. 一个圆的直径是10cm,那么它的周长是______。

15. 一个等差数列的首项是5,公差是2,那么它的第八项是______。

三、解答题(每题15分,共45分)16. 解方程:3x-7=8。

17. 计算:(2x+3)(x-1)-(x+2)(x-2)。

18. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。

初三数学冲刺性试卷及答案

初三数学冲刺性试卷及答案

一、选择题(每题3分,共30分)1. 若实数 \(a\)、\(b\)、\(c\) 满足 \(a+b+c=0\),则 \(a^2+b^2+c^2\) 的值为:A. 0B. 1C. -1D. 22. 在直角坐标系中,点 \(A(2,3)\) 关于原点对称的点的坐标是:A. (2,3)B. (-2,-3)C. (3,2)D. (-3,-2)3. 下列函数中,是反比例函数的是:A. \(y=2x+1\)B. \(y=\frac{1}{x}\)C. \(y=x^2\)D.\(y=\sqrt{x}\)4. 若等腰三角形底边长为6,腰长为8,则其周长为:A. 14B. 20C. 22D. 245. 若 \(x^2-2x+1=0\),则 \(x^2+2x+1\) 的值为:A. 0B. 2C. 4D. 66. 在平面直角坐标系中,点 \(P(3,4)\) 到直线 \(2x+y-10=0\) 的距离为:A. 2B. 3C. 4D. 57. 下列命题中,正确的是:A. 若 \(a^2=b^2\),则 \(a=b\) 或 \(a=-b\)。

B. 若 \(a^2+b^2=0\),则 \(a=0\) 且 \(b=0\)。

C. 若 \(a^2+b^2=1\),则 \(a\) 和 \(b\) 互为倒数。

D. 若 \(a^2=1\),则 \(a=1\) 或 \(a=-1\)。

8. 下列图形中,不是轴对称图形的是:A. 正方形B. 等边三角形C. 梯形D. 圆9. 若 \(a\)、\(b\)、\(c\) 成等差数列,且 \(a+b+c=12\),则 \(abc\) 的最大值为:A. 16B. 18C. 20D. 2210. 若 \(x^2-5x+6=0\),则 \(x^2+5x+6\) 的值为:A. 0B. 2C. 4D. 6二、填空题(每题5分,共25分)11. 若 \(a^2+b^2=10\),\(ab=2\),则 \(a^2+2ab+b^2\) 的值为 _______。

中考数学冲刺模拟测试卷(附答案解析)

中考数学冲刺模拟测试卷(附答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟一、选择题(本题共10小题,每小题3分,共30分)1.下列各式的计算结果为负数的是()A.|﹣2﹣(﹣1)| B.﹣(﹣3﹣2) C.﹣(﹣|﹣3﹣2|) D.﹣2﹣|﹣4|2.如图是由若干个完全相同的正方体搭成的几何体,取走选项序号对应的正方体,其中三视图不会发生变化的是()A.①B.②C.③D.④3.选择计算(﹣2x+3y)(2x+3y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分5.箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以每次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是()A.B.C.D.6.如图,若⊙O是正方形ABCD与正六边形AEFCGH的外接圆,则正方形ABCD与正六边形AEFCGH的周长之比为()A.2:3 B.:1 C.:D.1:7.实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是()A.50B.50名学生C.50名学生的身高情况D.600名七年级学生的身高情况8.在数轴上,表示不小于﹣2且小于2之间的整数的点有()A.3个B.4个C.5个D.无数个9.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=35°,则∠A+∠C=()A.30°B.40°C.17.5°D.35°10.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h =20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A.①②B.②③C.①③④D.①②③二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.若线段AB的端点为(﹣1,3),(1,3),线段CD与线段AB关于x轴轴对称,则线段CD上任意一点的坐标可表示为.13.“石头、剪刀、布”是民间广为流传的一种游戏,游戏时甲乙双方每次做“石头”“剪刀”“布”三种手势中的一种,并约定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负须继续比赛.假定甲、乙两人每次都是等可能地做这三种手势,那么一次游戏中乙获胜的概率是.14.如图,在△ABC中,点O是△ABC的内心,∠A=48°,∠BOC=°.15.如图,正方形BEFG的顶点E在正方形ABCD的边AD上,CD、EF交于点H,AD=16,连接EC,FC,则△CEF 的面积的最小值为.三、解答题(本题共10小题,共100分)16.如图,某花园的护栏是用一些半圆形造型的钢条围成的,半圆的直径为80厘米,且每增加一个半圆形条钢,护栏长度就增加a厘米(a>0),设半圆形条钢的总个数为x个(x为正整数),护栏总长度为y厘米.(1)当a=60时,用含x的代数式表示护栏总长度y(结果要求化简);(2)用含a、x的代数式表示护栏的总长度y(结果要求化简),并求a=50,x=41时,护栏长度y的值.17.5月1日,“东疆好少年”平台公布了世界读书日暨“阅读吧,少年”第一轮网络答题进入决赛的学生名单,全市初中组有235名同学入围.某中学有300名七、八年级同学积极参与了此次活动,该校老师随机调查收集了50名学生的参赛成绩,整理得到了如下的数据分析表:分数段人数分数段人数55≤x<65 23人85≤x<95 5人65≤x<75 12人95≤x<100 3人75≤x<85 7人/ /其中分数段在65≤x<75组的成绩如下:65 65 70 7070 65 70 6565 65 70 70(1)被抽取的这50名同学成绩的中位数为65;(2)已知50名学生中男生均分为68.2分,女生均分为71.8分,你能求出这50名学生的平均分吗?若能,请求出平均分,若不能,请说明理由;(3)本次进入决赛的成绩为70分以上(包括70分),请你估计该校有多少名学生进入决赛?(4)已知该校八(1)班有三名学生(一名男生,两名女生)取得90分以上,现准备从这三名学生中选两名学生进行班级阅读分享,求恰好选到一名男生与一名女生的概率.18.如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.(1)若∠C=60°,AB=2,求EC的长;(2)求证:AB=DG+FC.19.“只要人人都献出一点爱,世界将变成美好的人间”.在新冠肺炎疫情期间,全国人民万众一心,众志成城,共克时艰.某社区有1名男管理员和3名女管理员,现要从中随机挑选2名管理员参与“社区防控”宣讲活动,请用列表法或树状图法求出恰好选到“1男1女”的概率.20.新冠病毒潜伏期较长,能通过多种渠道传播,所以在生活中就要做好最基本的防护:在公共区域和陌生人保持距离,勤洗手,出门戴口罩,某区中小学陆续复学后,为了提高同学们的防疫意识,决定组织防疫知识竞赛活动,评出一、二、三等奖各若干名,并分别发给洗手液、温度计和口罩作为奖品.(1)如果温度计的单价比口罩的单价多1元,购买洗手液1瓶和口罩5个共需22元;购买2瓶洗手液比购买6支温度计多花6元,求洗手液、温度计和口罩的单价各是多少元?(2)已知本次竞赛活动获得三等奖的人数是获得二等奖人数的2倍,且获得一等奖的人数不超过获奖总人数的五分之一,如果购买这三种奖品的总费用为308元,求本次竞赛活动获得一、二、三等奖各有多少人.21.如图,小颖在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,测得居民楼AB与CD之间的距离AC为35m,在点N处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小颖的观测点N距地面1.6m.求居民楼AB的高度.(结果精确到1m)【参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43】22.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.23.如图,在△ABC中,AC=BC,CD平分∠ACB交AB于点D,BF平分∠ABC交CD于点F,AB=6,过B、F 两点的⊙O交BA于点G,交BC于点E,EB恰为⊙O的直径.(1)判断CD和⊙O的位置关系并说明理由;(2)若cos∠A=,求⊙O的半径.24.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,二次函数y=x2图象从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)二次函数的顶点M与A重合时,函数的图象是否过点Q(a,a﹣1),并说明理由;(3)设二次函数顶点M的横坐标为m,当m为何值时,线段PB最短,并求出二次函数的解析式.25.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.参考答案满分150分,答题时间120分钟四、选择题(本题共10小题,每小题3分,共30分)1.下列各式的计算结果为负数的是()A.|﹣2﹣(﹣1)| B.﹣(﹣3﹣2) C.﹣(﹣|﹣3﹣2|) D.﹣2﹣|﹣4|【解答】解:A.|﹣2﹣(﹣1)|=|﹣1|=1,不符合题意;B.﹣(﹣3﹣2)=﹣(﹣5)=5,不符合题意;C.﹣(﹣|﹣3﹣2|)=﹣(﹣5)=5,不符合题意;D.﹣2﹣|﹣4|=﹣2﹣4=﹣6,符合题意.故选:D.2.如图是由若干个完全相同的正方体搭成的几何体,取走选项序号对应的正方体,其中三视图不会发生变化的是()A.①B.②C.③D.④【解答】解:A、取走①,主视图会发生变化,故本选项不合题意;B、取走②,俯视图会发生变化,故本选项不合题意;C、取走③,主视图和俯视图都会发生变化,故本选项不合题意;D、取走④,三视图不会发生变化,故本选项符合题意;故选:D.3.选择计算(﹣2x+3y)(2x+3y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式【解答】解:原式=(3y﹣2x)(3y+2x)=(3y)2﹣(2x)2=9y2﹣4x2,∴运用平方差公式最好,故选:B.4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.5.箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以每次摸到一球后记下颜色将球再放回的方式摸28次球.若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是()A.B.C.D.【解答】解:因为每次摸到一球后记下颜色将球再放回,所以箱子内总装有除颜色外均相同的28个白球及2个红球,所以第28次摸球时,小芬摸到红球的概率==.故选:C.6.如图,若⊙O是正方形ABCD与正六边形AEFCGH的外接圆,则正方形ABCD与正六边形AEFCGH的周长之比为()A.2:3 B.:1 C.:D.1:【解答】解:连接OA、OB.OE,如图所示:设此圆的半径为R,则它的内接正方形的边长为R,它的内接正六边形的边长为R,∴内接正方形和内接正六边形的边长之比为R:R=:1,∴正方形ABCD与正六边形AEFCGH的周长之比=内接正方形和内接正六边形的边长之比=4:6=2:3,故选:A.7.实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是()A.50B.50名学生C.50名学生的身高情况D.600名七年级学生的身高情况【解答】解:实验中学为了解七年级600名学生的身高情况,随机抽取了50名学生进行身高测量,在这个问题中,样本是50名学生的身高情况.故选:C.8.在数轴上,表示不小于﹣2且小于2之间的整数的点有()A.3个B.4个C.5个D.无数个【解答】解:在数轴上,表示不小于﹣2且小于2之间的整数有:﹣2、﹣1、0、1,共4个.故选:B.9.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=35°,则∠A+∠C=()A.30°B.40°C.17.5°D.35°【解答】解:连接OB,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∠A=∠ABO,∠C=∠CBO,∴∠A+∠C=∠ABC,∵∠DOE+∠1=180°,∠1=35°,∴∠DOE=145°,∴∠ABC=360°﹣∠DOE﹣∠BDO﹣∠BEO=35°;故选:D.10.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h =20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A.①②B.②③C.①③④D.①②③【解答】解:由图象可知,点(0,0),(6,0),(3,40)在抛物线上,顶点为(3,40),设函数解析式为h=a(t﹣3)2+40,将(0,0)代入得:0=a(0﹣3)2+40,解得:a=﹣,∴h=﹣(t﹣3)2+40.①∵顶点为(3,40),∴小球抛出3秒时达到最高点,故①正确;②小球从抛出到落地经过的路程应为该小球从上升到落下的长度,故为40×2=80m,故②正确;③令h=20,则20=﹣(t﹣3)2+40,解得t=3±,故③错误;④令t=2,则h=﹣(2﹣3)2+40=m,故④错误.综上,正确的有①②.故选:A.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.若线段AB的端点为(﹣1,3),(1,3),线段CD与线段AB关于x轴轴对称,则线段CD上任意一点的坐标可表示为(x,﹣3)(﹣1≤x≤1).【解答】解:∵线段CD与线段AB关于x轴轴对称,∴线段CD上任意一点的坐标可表示为(x,﹣3)(﹣1≤x≤1),故答案为:(x,﹣3)(﹣1≤x≤1).13.“石头、剪刀、布”是民间广为流传的一种游戏,游戏时甲乙双方每次做“石头”“剪刀”“布”三种手势中的一种,并约定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负须继续比赛.假定甲、乙两人每次都是等可能地做这三种手势,那么一次游戏中乙获胜的概率是.【解答】解:用列表法表示所有可能出现的结果有:共有9种情况,其中乙获胜的有3中,P乙获胜==.故答案为:.14.如图,在△ABC中,点O是△ABC的内心,∠A=48°,∠BOC=114°.【解答】解:∵O是△ABC的内心,∴OB,OC分别平分∠ABC,∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣48°)=66°,∴∠BOC=180°﹣66°=114°.故答案为:114.15.如图,正方形BEFG的顶点E在正方形ABCD的边AD上,CD、EF交于点H,AD=16,连接EC,FC,则△CEF 的面积的最小值为96.【解答】解:过F作FG⊥DC于点G,FM⊥AD,交AD的延长线于M,连接CF,∵S△CEF=S△CHF+S△CHE=CH•EM,∵△EMF≌△BAE,∴EM=AB=16,∴S△CEF=8CH,∵△EDH∽△BAE,∴,设AE为x,则DH=(﹣x2+16x)=﹣(x﹣8)2+4≤4,∴DH≤4,∴CH≥12,CH最小值是12,∴△CEF面积的最小值是96.故答案为:96.六、解答题(本题共10小题,共100分)16.如图,某花园的护栏是用一些半圆形造型的钢条围成的,半圆的直径为80厘米,且每增加一个半圆形条钢,护栏长度就增加a厘米(a>0),设半圆形条钢的总个数为x个(x为正整数),护栏总长度为y厘米.(1)当a=60时,用含x的代数式表示护栏总长度y(结果要求化简);(2)用含a、x的代数式表示护栏的总长度y(结果要求化简),并求a=50,x=41时,护栏长度y的值.【解答】解:(1)y=80+a(x﹣1),当a=60时,y=80+60(x﹣1)=60x+20.(2)y=80+a(x﹣1),当a=50,x=41时,y=80+50(41﹣1)=2080.17.5月1日,“东疆好少年”平台公布了世界读书日暨“阅读吧,少年”第一轮网络答题进入决赛的学生名单,全市初中组有235名同学入围.某中学有300名七、八年级同学积极参与了此次活动,该校老师随机调查收集了50名学生的参赛成绩,整理得到了如下的数据分析表:分数段人数分数段人数55≤x<65 23人85≤x<95 5人65≤x<75 12人95≤x<100 3人75≤x<85 7人/ /其中分数段在65≤x<75组的成绩如下:65 65 70 7070 65 70 6565 65 70 70(1)被抽取的这50名同学成绩的中位数为65;(2)已知50名学生中男生均分为68.2分,女生均分为71.8分,你能求出这50名学生的平均分吗?若能,请求出平均分,若不能,请说明理由;(3)本次进入决赛的成绩为70分以上(包括70分),请你估计该校有多少名学生进入决赛?(4)已知该校八(1)班有三名学生(一名男生,两名女生)取得90分以上,现准备从这三名学生中选两名学生进行班级阅读分享,求恰好选到一名男生与一名女生的概率.【解答】解:(1)把50名同学的成绩从小到大排列后处在第25、26位的两个数的平均数为=65;故答案为:65;(2)不能求出这50名学生的平均分,理由如下:因为男生女生人数不知道,相当于权重不一样.并不是男生女生各占一半;所以不能求出这50名学生的平均分;(3)因为50名同学进入决赛的人数有:6+7+5+3=21,所以300×=126(名).答:估计该校有126名学生进入决赛;(4)根据题意画出树状图:根据树状图可知:所有等可能的结果有6种,恰好选到一名男生与一名女生的有4种,所以恰好选到一名男生与一名女生的概率为:=.18.如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.(1)若∠C=60°,AB=2,求EC的长;(2)求证:AB=DG+FC.【解答】解:(1)在▱ABCD中,AB=DC=2,∠C=60°,DF⊥BC,∴∠BAD=∠C=60°,∠CDF=30°,∴CF=1,DF=CF=,∵DF=AD.∴AD=DF=,∵AE平分∠BAD,∴∠DAE=∠BAE=30°,∵AB∥CD,∴∠BAE=∠AED=30°,∴AD=DE=,∴EC=DC﹣DE=2﹣.(2)延长FD至M,使DM=FC,在△ADM和△DFC中,,∴△ADM≌△DFC(SAS),∴∠DAM=∠FDC,AM=DC,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAE=∠AED,∵∠BAE=∠DAE,∴∠DAE=∠AED,∴∠DAE+∠DAM=∠AED+∠FDC,即∠MAG=∠MGA,∴AM=MG,∴DC=DG+FC.19.“只要人人都献出一点爱,世界将变成美好的人间”.在新冠肺炎疫情期间,全国人民万众一心,众志成城,共克时艰.某社区有1名男管理员和3名女管理员,现要从中随机挑选2名管理员参与“社区防控”宣讲活动,请用列表法或树状图法求出恰好选到“1男1女”的概率.【解答】解:树状图如下图所示,由树状图知共有12种等可能结果,其中恰好选到“1男1女”的有6种结果,所以恰好选到“1男1女”的概率是=.20.新冠病毒潜伏期较长,能通过多种渠道传播,所以在生活中就要做好最基本的防护:在公共区域和陌生人保持距离,勤洗手,出门戴口罩,某区中小学陆续复学后,为了提高同学们的防疫意识,决定组织防疫知识竞赛活动,评出一、二、三等奖各若干名,并分别发给洗手液、温度计和口罩作为奖品.(1)如果温度计的单价比口罩的单价多1元,购买洗手液1瓶和口罩5个共需22元;购买2瓶洗手液比购买6支温度计多花6元,求洗手液、温度计和口罩的单价各是多少元?(2)已知本次竞赛活动获得三等奖的人数是获得二等奖人数的2倍,且获得一等奖的人数不超过获奖总人数的五分之一,如果购买这三种奖品的总费用为308元,求本次竞赛活动获得一、二、三等奖各有多少人.【解答】解:(1)设洗手液的单价是x元,口罩的单价是y元,则温度计的单价是(y+1)元,依题意得:,解得:,∴y+1=3.答:洗手液的单价是12元,口罩的单价是2元,温度计的单价是3元.(2)设获得一等奖的有m人,二等奖的有n人,则三等奖的有2n人,依题意得:12m+3n+2×2n=308,∴n==44﹣m.∵获得一等奖的人数不超过获奖总人数的五分之一,∴m≤,即4m≤3n.又∵m,n均为正整数,∴m为7的倍数,∴或.答:获得一等奖的有7人,二等奖的有32人,三等奖的有64人或获得一等奖的有14人,二等奖的有20人,三等奖的有40人.21.如图,小颖在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,测得居民楼AB与CD之间的距离AC为35m,在点N处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小颖的观测点N距地面1.6m.求居民楼AB的高度.(结果精确到1m)【参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43】【解答】解:如图,过点N作EF∥AC交AB于点E,交CD于点F,则AE=CF=MN=1.6,EF=AC=35,EN=AM,NF=MC,∠BEN=∠DFN=90°.∴DF=CD﹣CF=16.6﹣1.6=15.在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15.∴EN=EF﹣NF=35﹣15=20.在Rt△BEN中,∵,∴BE=EN⋅tan∠BNE=20×tan55°≈20×1.43=28.6.∴AB=BE+AE=28.6+1.6=30.2≈30(米).答:居民楼AB的高度约为30 米.22.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=1;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.【解答】解:(1)∵一次函数y=2x+b的图象经过点M(1,3),∴3=2+b,解得b=1,故答案为1;(2)∵一次函数y=2x+1的图象与x轴,y轴分别交于A,B两点.∴A(﹣,0),B(0,1),∴OA=,OB=1,作CD⊥y轴于D,∵∠BAC=45°,BC⊥AB,∴∠ACB=45°,∴AB=BC,∵∠ABO+∠BAO=90°=∠ABO+∠CBD,∴∠BAO=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴BD=OA=,CD=OB=1,∴OD=OB﹣BD=,∴C(1,),设直线l的解析式为y=mx+n,把A(﹣,0),C(1,)代入得,解得,∴直线l的解析式为y=x+.23.如图,在△ABC中,AC=BC,CD平分∠ACB交AB于点D,BF平分∠ABC交CD于点F,AB=6,过B、F 两点的⊙O交BA于点G,交BC于点E,EB恰为⊙O的直径.(1)判断CD和⊙O的位置关系并说明理由;(2)若cos∠A=,求⊙O的半径.【解答】解:(1)CD与⊙O相切,理由如下:连接OF,∵AC=BC,CD平分∠ACB,∴AD=BD=3,CD⊥AB,∴∠BDC=90°,∵OF=OB,∴∠OFB=∠OBF,∵BF平分∠ABC,∴∠CBF=∠FBD,∴∠OFB=∠FBD,∴OF∥DB,∴∠CFO=∠BDC=90°,∴CD与⊙O相切;(2)∵AC=BC,∴∠A=∠ABC,∴cos∠ABC=cos∠A=在Rt△BDC中,cos∠ABC==,∴BC=9,∵OF∥DB,∴△CFO∽△CDB,设⊙O的半径是r,则=,∴r=,即⊙O的半径是.24.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,二次函数y=x2图象从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)二次函数的顶点M与A重合时,函数的图象是否过点Q(a,a﹣1),并说明理由;(3)设二次函数顶点M的横坐标为m,当m为何值时,线段PB最短,并求出二次函数的解析式.【解答】解:(1)设OA所在直线的函数解析式为y=kx,∵A(2,4),∴2k=4,解得k=2,∴OA所在直线的函数解析式为y=2x;(2)不过点Q,理由:当二次函数的顶点M与A重合时,则顶点M的坐标为(2,4),∴抛物线的解析式为y=(x﹣2)2+4=x2﹣4x+8,设当x=a时,y=x2﹣4x+8=a2﹣4a+8=a﹣1,即a2﹣5a+9=0,∵△=25﹣36<0,故方程无解,则函数的图象不过点Q(a,a﹣1);(3)∵顶点M的横坐标为m,且在OA上移动,∴y=2m(0≤m≤2),∴M(m,2m),∴抛物线的解析式为y=(x﹣m)2+2m,∴当x=2时,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2),∴PB=m2﹣2m+4=(m﹣1)2+3(0≤m≤2),∴当m=1时,PB最短,当PB最短时,抛物线的解析式为y=(x﹣1)2+2.25.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=15°(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=20°(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:∠EDC=∠BAD(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.【解答】解:(1)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠BAD=∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠EDC=15°.(2)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=40°,∴∠BAD=∠CAD=40°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠EDC=20°.(3)∠BAD=2∠EDC(或∠EDC=∠BAD)(4)仍成立,理由如下∵AD=AE,∴∠ADE=∠AED,∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC =2∠EDC+∠C又∵AB=AC,∴∠B=∠C∴∠BAD=2∠EDC.故分别填15°,20°,∠EDC=∠BAD。

初三数学临考冲刺试卷答案

初三数学临考冲刺试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -3答案:B解析:绝对值表示数与零的距离,0与任何数的距离都是非负的,所以绝对值最小的是0。

2. 若a < b,则下列不等式中正确的是()A. a - 1 < b - 1B. a + 1 < b + 1C. a - 2 < b - 2D. a + 2 < b + 2答案:A解析:在不等式两边同时减去同一个数,不等号的方向不变,所以正确答案是A。

3. 已知等差数列的前三项分别为2,5,8,则该数列的公差是()A. 1B. 2C. 3D. 4答案:B解析:等差数列的公差是相邻两项之差,所以公差是5 - 2 = 3。

4. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 3C. y = 1/xD. y = 3x^3答案:C解析:反比例函数的定义是y = k/x(k≠0),所以正确答案是C。

5. 下列各图中,是轴对称图形的是()A.B.C.D.答案:A解析:轴对称图形是指存在一条直线,使得图形关于这条直线对称。

从四个选项中,只有A图是轴对称的。

6. 若直角三角形的两条直角边分别为3和4,则斜边的长度是()A. 5B. 6C. 7D. 8答案:A解析:根据勾股定理,斜边的长度为√(3^2 + 4^2) = √(9 + 16) = √25 = 5。

7. 下列各式中,能被3整除的是()A. 7 + 8B. 9 + 10C. 12 + 15D. 14 + 16答案:C解析:一个数能被3整除,当且仅当它的各位数字之和能被3整除。

12 + 15 = 27,27能被3整除。

8. 下列各式中,是分式的是()A. 3/xB. 2x + 3C. x^2 - 4D. 5x - 2答案:A解析:分式是指分子和分母都是整式的有理式,且分母不为0。

所以正确答案是A。

9. 若sinα = 1/2,且α在第二象限,则cosα的值是()A. -√3/2B. √3/2C. 1/2D. -1/2答案:A解析:在第二象限,sinα为正,cosα为负。

中考后的冲刺数学试卷答案

中考后的冲刺数学试卷答案

一、选择题1. 答案:D解析:根据勾股定理,直角三角形的两条直角边分别为3和4,斜边为5,因此5的平方等于3的平方加上4的平方,即5^2 = 3^2 + 4^2,所以选D。

2. 答案:B解析:根据一元二次方程的求根公式,a=1,b=-4,c=3,所以x = (-b ± √(b^2 - 4ac)) / 2a = (4 ± √(16 - 4×1×3)) / 2 = (4 ± √4) / 2 = (4 ± 2) / 2,即x1 = 3,x2 = 1,所以选B。

3. 答案:A解析:根据三角函数的定义,sinA = 对边/斜边,cosA = 邻边/斜边,tanA = 对边/邻边。

因为A是锐角,所以sinA、cosA、tanA都是正数,所以选A。

4. 答案:C解析:根据平行四边形的性质,对边平行且相等,所以AD = BC,AB = CD。

又因为四边形ABCD是矩形,所以AB垂直于AD,BC垂直于CD。

因此,∠ABC和∠BCD都是直角,所以选C。

5. 答案:B解析:根据函数的性质,一次函数的图像是一条直线,且斜率k表示直线的倾斜程度,k>0表示直线向右上方倾斜,k<0表示直线向右下方倾斜。

因为y = 2x - 1的斜率k=2>0,所以函数图像向右上方倾斜,所以选B。

二、填空题6. 答案:π解析:圆的周长公式为C = 2πr,其中r为圆的半径。

由题意知,圆的周长为6π,所以6π = 2πr,解得r = 3,所以圆的半径为3。

7. 答案:x^2 - 5x + 6解析:将x^2 - 5x + 6分解因式得(x - 2)(x - 3),所以选x^2 - 5x + 6。

8. 答案:2解析:由题意知,三角形ABC是等边三角形,所以AB = BC = AC。

又因为AB = 2,所以BC = AC = 2。

根据勾股定理,BC^2 + AC^2 = AB^2,代入BC和AC的值得2^2 + 2^2 = AB^2,解得AB = 2√2。

数学冲刺中考试卷初中答案

数学冲刺中考试卷初中答案

一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 2.5B. -3C. √2D. 0答案:C解析:有理数是可以表示为两个整数比的数,即分数。

√2是无理数,不能表示为两个整数的比。

2. 若x=2,则方程2x-3=0的解为()A. x=1B. x=2C. x=3D. x=4答案:B解析:将x=2代入方程,得22-3=0,即4-3=0,方程成立,故x=2是方程的解。

3. 已知函数f(x)=3x-2,若f(2)=8,则函数f(x)的图象与x轴的交点坐标为()A. (2,0)B. (3,0)C. (1,0)D. (0,1)答案:A解析:将x=2代入函数f(x),得f(2)=32-2=6-2=4,故f(x)的图象与x轴的交点坐标为(2,0)。

4. 在直角三角形ABC中,∠A=90°,AB=3,AC=4,则BC的长度为()A. 5B. 6C. 7D. 8答案:A解析:根据勾股定理,BC²=AB²+AC²=3²+4²=9+16=25,故BC=√25=5。

5. 若等差数列{an}的公差d=2,且a1+a5=20,则a3的值为()A. 7B. 8C. 9D. 10答案:B解析:等差数列的通项公式为an=a1+(n-1)d,将a1+a5=20代入得a1+a1+4d=20,即2a1+8=20,解得a1=6,再代入an=a1+(n-1)d得a3=a1+2d=6+22=10。

6. 下列各图中,符合函数图象的是()A.B.C.D.答案:A解析:函数图象是直线,A选项是直线图象。

7. 已知函数f(x)=x²-4x+4,则f(x)的最小值为()A. -1B. 0C. 1D. 4答案:B解析:函数f(x)是一个开口向上的抛物线,顶点坐标为(2,0),故f(x)的最小值为0。

8. 若sinα=1/2,则cosα的值为()A. √3/2B. -√3/2C. 1/2D. -1/2答案:A解析:根据sin²α+cos²α=1,代入sinα=1/2得cos²α=1-(1/2)²=1-1/4=3/4,故cosα=√3/2。

初三上册数学冲刺试卷答案

初三上册数学冲刺试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -3答案:B2. 已知a、b是方程x^2 - 4x + 3 = 0的两个根,则a + b的值是()A. 2B. 3C. 4D. 5答案:A3. 在等腰三角形ABC中,底边BC的长度为6cm,腰AB的长度为8cm,则顶角A的度数是()A. 30°B. 45°C. 60°D. 90°答案:C4. 下列函数中,有最小值的是()A. y = x^2B. y = -x^2C. y = x^3D. y = -x^3答案:B5. 若等差数列{an}中,a1 = 3,d = 2,则a10的值是()A. 19B. 21C. 23D. 25答案:B6. 下列各式中,正确的是()A. sin45° = cos45°B. sin90° = cos0°C. tan45° = cot0°D. tan90° = cot90°答案:A7. 若二次函数y = ax^2 + bx + c的图像开口向上,且a > 0,b = 0,则下列结论正确的是()A. 函数的对称轴为x = 0B. 函数的顶点为(0,c)C. 函数的顶点为(0,-c)D. 函数的顶点为(-b/2a,c)答案:B8. 在直角坐标系中,点P(2,3)关于y轴的对称点为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)答案:A9. 下列各式中,正确的是()A. a^2 = b^2,则a = bB. a^2 = b^2,则a = ±bC. a^2 = b^2,则|a| = |b|D. a^2 = b^2,则|a| = ±|b|答案:C10. 若等比数列{an}中,a1 = 2,q = 3,则a5的值是()A. 18B. 54C. 162D. 486答案:B二、填空题(每题3分,共30分)11. 5的平方根是__________。

中考数学试卷冲刺答案

中考数学试卷冲刺答案

一、选择题(每题3分,共30分)1. 下列数中,是负整数的是()A. -2B. 0C. 2D. -1/2答案:A 解析:负整数是小于0的整数,只有A选项符合条件。

2. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = x^3答案:B 解析:反比例函数的特点是y与x成反比,即y=k/x(k为常数,k≠0),只有B选项符合条件。

3. 已知等腰三角形底边长为4,腰长为6,则其面积为()A. 8B. 12C. 18D. 24答案:C 解析:等腰三角形面积公式为S=1/2×底×高,高可以通过勾股定理求得,即高=√(腰长^2 - (底长/2)^2)=√(6^2 - 2^2)=√32=4√2,所以面积S=1/2×4×4√2=8√2,选C。

4. 下列命题中,正确的是()A. 若a>b,则a-c>b-cB. 若a>b,则ac>bc(c为正数)C. 若a>b,则a+c>b+c D. 若a>b,则ac<bc(c为正数)答案:C 解析:选项A、B、D都存在反例,只有选项C符合不等式的性质。

5. 已知等差数列的首项为2,公差为3,则第10项为()A. 29B. 32C. 35D. 38答案:D 解析:等差数列的通项公式为an=a1+(n-1)d,代入首项a1=2,公差d=3,n=10,得到第10项an=2+(10-1)×3=2+27=29,选D。

二、填空题(每题4分,共40分)6. 若x^2+2x+1=0,则x的值为_______。

答案:-1 解析:根据完全平方公式,x^2+2x+1=(x+1)^2=0,解得x=-1。

7. 已知三角形ABC中,∠A=45°,∠B=30°,则∠C的度数为_______。

答案:105° 解析:三角形内角和为180°,∠A+∠B+∠C=180°,代入∠A=45°,∠B=30°,得到∠C=180°-45°-30°=105°。

人教版九年级中考冲刺数学模拟卷3(附答案)

人教版九年级中考冲刺数学模拟卷3(附答案)

中考数学试卷一、单选题。

(共10题;共30分。

)1、如图.将四根长度相等的细木条首尾相连.用钉子钉成四边形.转动这个四边形.使它形状改变.当. 时. 等于()。

A. B. C. D.2、某种药品原价为元/盒.经过连续两次降价后售价为元/盒.设平均每次降价的百分率为.根据题意.所列方程正确的是()。

A. B.C. D.3、一个盒子装有除颜色外其它均相同的2个红球和1个白球.现从中任取2个球.则取到的是一个红球.一个白球的概率为()。

A.14B.12C.23D.344、下列各组线段单位: cm 中.成比例的是()。

A. 1.2.3.4B. 6.5.10.15C. 3.2.6.4D. 15.3.4.105、对于函数y=4x.下列说法错误的是()。

A.点(23.6)在这个函数图象上B.这个函数的图象位于第一、三象限C.这个函数的图象既是轴对称轴图形又是中心对称图形D.当x>0时.y随x的增大而增大6、计算sin30°·tan45°的结果是()。

A. 12B. √32C. √36D. √247、如图所示.⊙O的半径为10.弦AB的长度是16.ON垂直AB.垂足为N.则ON的长度为()。

A.5B.6C.8D.108、抛物线y=﹣2(x+6)2+5的顶点坐标()。

A.(﹣6.5)B.(6.5)C.(6.﹣5)D.(﹣2.5)9、sin45°+cos45°的值等于()。

A.√2B.√3+12C.√3D.110、已知抛物线y=ax2+bx+c中.4a﹣b=0.a﹣b+c>0.抛物线与x轴有两个不同的交点.且这两个交点之间的距离小于2.则下列结论:①abc<0.②c>0.③a+b+c >0.④4a>c.其中.正确结论的个数是()。

A.4B.3C.2D.1二、填空题。

(共8题;共24分。

)11、正方形、菱形、矩形的对角线都具有的共同特征是______.12、关于的方程有两个不相等的实数根.则的取值范围为________.13、甲、乙、丙、丁4名同学进行一次乒乓球单打比赛.要从中随机选出2名同学打第一场比赛.其中有乙同学参加的概率是_____________ .14、如图.已知DE∥BC.AD=3.AB=9.AE=2.5.则EC=.15、若y=是反比例函数.则m=________.16、已知Rt△ABC中.∠C=90°.AB=15.tanA=.则AC=____.17、如图.△ABC内接于⊙O.∠ABC=70°.∠CAB=50°.点D在⊙O上.则∠ADB的大小为.18、如图.抛物线y=ax 2+bx+c(a≠0)的对称轴为直线x=﹣1.下列结论中:①abc <0;②9a﹣3b+c<0;③b 2﹣4ac>0;④a>b.正确的结论是_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分) 1.8的立方根为( ) A .2B .±2C .-2D .42.要使分式15-x 有意义,则x 的取值范围是( ) A .x ≠1 B .x >1 C .x <1 D .x ≠-1 3.计算(a -2)2的结果是( )A .a 2-4B .a 2-2a +4C .a 2-4a +4D .a 2+44.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.下列各式计算正确的是( ) A .a 2+2a 3=3a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a ·a 2=a 3 6.如图,A 、B 的坐标为(2,0)、(0,1).若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .57.如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1、S 2、S 3,则S 1、S 2、S 3的大小关系是( ) A .S 1>S 2>S 3B .S 3>S 2>S 1C .S 2>S 3>S 1D .S 1>S 3>S 28.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )劳动时间(小时)3 3.54 4.5 人数1 121A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是4,平均数是3.89.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O 是以原点为圆心,半径为22的圆,则⊙O 的“整点直线”共有( )条 A .7B .8C .9D .1010.Rt △ABC 中,∠ACB =90°,AC =20,BC =10,D 、E 分别为边AB 、CA 上两动点,则CD +DE 的最小值为( ) A .854+B .16C .58D .20二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:5-(-6)=___________12.计算:111+++a aa =___________ 13.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6、7、11、-2、5.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是___________14.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为___________15.如图,△ABC 中,AB =AC ,∠A =30°,点D 在AB 上,∠ACD =15°,则ADBC的值是_______ 16.如图,△ABC 内接于⊙O ,BC =12,∠A =60°,点D 为弧BC 上一动点,BE ⊥直线OD 于点E .当点D 从点B 沿弧BC 运动到点C 时,点E 经过的路径长为___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:54212-=-x x18.(本题8分)如图,△ABC 的高AD 、BE 相交于点F ,且有BF =AC ,求证:△BDF ≌△ADC19.(本题8分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如图两幅尚不完整的统计图.请根据以上信息解答下列问题: (1) 课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为____________ (2) 请补全条形统计图(3) 该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数20.(本题8分)某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元,已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元 (1) 求购买一个A 种品牌、一个B 种品牌的足球各需多少元(2) 学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A 、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案?(3) 请你求出学校在第二次购买活动中最多需要多少资金?21.(本题8分)如图,在正方形ABCD 中,以BC 为直径的正方形内,作半圆O ,AE 切半圆于点F 交CD 于E(1) 求证:AO ⊥EO(2) 连接DF ,求tan ∠FDE 的值22.(本题10分)如图,已知直线y =mx +n 与反比例函数xky =交于A 、B 两点,点A 在点B 的左边,与x 轴、y 轴分别交于点C 、点D ,AE ⊥x 轴于E ,BF ⊥y 轴于F (1) 若m =k ,n =0,求A 、B 两点的坐标(用m 表示)(2) 如图1,若A (x 1,y 1)、B (x 2,y 2),写出y 1+y 2与n 的大小关系,并证明 (3) 如图2,M 、N 分别为反比例函数x b y =图象上的点,AM ∥BN ∥x 轴.若3511=+BN AM ,且AM 、BN 之间的距离为5,则k -b =_____________23.(本题10分)已知点I 为△ABC 的内心(1) 如图1,AI 交BC 于点D ,若AB =AC =6,BC =4,求AI 的长(2) 如图2,过点I 作直线交AB 于点M ,交AC 于点N ① 若MN ⊥AI ,求证:MI 2=BM ·CN② 如图3,AI 交BC 于点D .若∠BAC =60°,AI =4,请直接写出ANAM 11的值24.(本题12分)如图1,在平面直角坐标系中,抛物线y =x 2-4x -5与x 轴分别交于A 、B (A 在B 的左边),与y 轴交于点C ,直线AP 与y 轴正半轴交于点M ,交抛物线于点P ,直线AQ 与y 轴负半轴交于点N ,交抛物线于点Q ,且OM =ON ,过P 、Q 作直线l (1) 探究与猜想:① 取点M (0,1),直接写出直线l 的解析式 取点M (0,2),直接写出直线l 的解析式 ② 猜想:我们猜想直线l 的解析式y =kx +b 中,k 总为定值,定值k 为__________,请取M 的纵坐标为n ,验证你的猜想(2) 如图2,连接BP 、BQ .若△ABP 的面积等于△ABQ 的面积的3倍,试求出直线l 的解析式参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案AACADADCDB10.提示:当CG ⊥AF 时,CD +DE 有最小值由角平分线定理,得AF ∶BF =AC ∶CB =2∶1 设BF =x ,则AF =2x在Rt △AFC 中,(10+x )2+202=(2x )2,解得x 1=350,x 2=-10(舍去) ∴sin ∠CAF =34210=+=x x AF CF ∵sin ∠CAF =ACCG∴CG =16二、填空题(共6小题,每小题3分,共18分) 11.11 12.113.5314.25°15.216.π338 15.提示:过点A 作AE ⊥BC 于F ,在AE 上截取EF =EC ,连接FC∴△CEF 为等腰直角三角形 ∵△ADC ≌△CFA (ASA ) ∴AD =CF =2CE =22BC ∴2=ADBC三、解答题(共8题,共72分) 17.解:23=x 18.解:略19.解:(1) 144°;(2) 如图;(3) 16020.解:(1) 设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元⎩⎨⎧+==+3045002550x y y x ,解得⎩⎨⎧==8050y x(2) 设第二次购买A 种足球m 个,则购买B 种足球(50-m )个⎩⎨⎧≥-⨯≤-⨯++2350%704500)50(9.080)450(m m m ,解得25≤m ≤27∵m 为整数 ∴m =25、26、27(3) ∵第二次购买足球时,A 种足球单价为50+4=54(元),B 种足球单价为80×0.9=72 ∴当购买B 种足球越多时,费用越高 此时25×54+25×72=3150(元) 21.证明:(1) ∵∠ABC =∠DCB =90°∴AD 、CD 均为半圆的切线 连接OF ∵AE 切半圆于E∴∠BAO =∠FAO ,∠CEO =∠FEO ∵∠BAE +∠CEA =180° ∴∠DAF +∠OEF =90° ∴∠AOE =90° ∴AO ⊥EO(2) 设OB =OC =2,则AB =4 ∵Rt △AOB ∽Rt △OEC ∴CE =EF =1,DE =3,AE =5 过点F 作FG ⊥DE 于G ∴FG ∥AD ∴EDEGAD FG EA EF == 即3451EGFG == ∴FG =54,EG =53,DG =512∴tan ∠FDE =31=DG FG 22.解:(1) A (-1,m )、B (1,m )(2) 联立⎪⎩⎪⎨⎧=+=x ky n mx y ,整理得mx 2+nx -k =0 ∴x 1+x 2=m n -,x 1x 2=mk - ∴y 1+y 2=m (x 1+x 2)+2n =-n +2n =n (3) 设N (m b ,m )、B (m k ,m ),则BN =mb k - 设A (n k ,n )、M (n b ,n ),则AM =nk b - ∵3511=+BN AM ∴35=-+--b k m b k n ∵AM 、BN 之间的距离为5 ∴m -n =5∴k -b =53(m -n )=323.解:(1) 23(2) ∵I 为△ABC 的内心 ∴MAINAI ∵AI ⊥MN∴△AMI ≌△ANI (ASA ) ∴∠AMN =∠ANM 连接BI 、CI ∴∠BMI =∠CNI设∠BAI =∠CAI =α,∠ACI =∠BCI =β ∴∠NIC =90°-α-β ∵∠ABC =180°-2α-2β ∴∠MBI =90°-α-β ∴BMI ∽INC ∴NCNINI BM =∴NI 2=BM ·CN ∵NI =MI ∴MI 2=BM ·CN(3) 过点N 作NG ∥AD 交MA 的延长线于G ∴∠ANG =∠AGN =30° ∴AN =AG ,NG =AN 3 ∵AI ∥NG ∴NGAIMG AM =∴ANAN AM AM 34=+,得4311=+AN AM 24.解:(1) ① P (6,7)、Q (4,-5),PQ :y =6x -29P (7,16)、Q (3,-8),PQ :y =6x -26 ② 设M (0,n )AP 的解析式为y =nx +n AQ 的解析式为y =-nx -n联立⎪⎩⎪⎨⎧--=+=542x x y n nx y ,整理得x 2-(4+n )x -(5+n )=0 ∴x A +x P =-1+x P =4+n ,x P =5+n 同理:x Q =5-n设直线PQ 的解析式为y =kx +b联立⎪⎩⎪⎨⎧--=+=542x x y b kx y ,整理得x 2-(4+k )x -(5+b )=0 ∴x P +x Q =4+k∴5+n+5-n=4+k,k=6(3) ∵S△ABP=3S△ABQ∴y P=-3y Q∴kx P+b=-3(kx Q+b)∵k=6∴6x P+18x Q=-b∴6(5+n)+18(5-n)=4b,解得b=3n-30∵x P·x Q=-(5+b)=-5-3n+30=(5+n)(5-n),解得n=3 ∴P(8,27)∴直线PQ的解析式为y=6x-21不用注册,免费下载!。

相关文档
最新文档