八年级数学上册 《全等三角形常考题型总结》
新人教版八年级上册《全等三角形》知识点归纳总结
全等三角形一、知识要点:〔一〕全等变换:只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。
全等变换包括以下三种:1、平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
2、对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
3、旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
〔二〕全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动〔或称变换〕使之与另一个重合,这两个三角形称为全等三角形。
〔三〕全等三角形的性质: 全等三角形的对应角相等、对应边相等。
二、题型分析:题型一: 考察全等三角形的定义例题:以下说法正确的选项是〔 〕A 、全等三角形是指形状相同的两个三角形 C 、全等三角形的周长和面积分别相等 C 、全等三角形是指面积相等的两个三角形 D 、所有的等边三角形都是全等三角题型二:考察全等三角形之间的关系——传递性例题:如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,那么△ABC 和△GHI ______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,那么△ABC 和△GHI ______全等.〔填“一定〞或“不一定〞或“一定不〞〕题型三:根据三角形全等求角例1:△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,那么∠DEF =______. 例2:如图,△ABN ≌△ACM ,AB=AC ,BN=CM ,∠B=50°,∠ANC=120°,那么∠MAC 的度数等于〔 〕A 、120°B 、70°C 、60°D 、50°第二节 三角形全等的判定一、知识要点:〔一〕三角形全等的判定公理及推论有:1、“边角边〞简称“SAS 〞2、“角边角〞简称“ASA 〞3、“边边边〞简称“SSS 〞4、“角角边〞简称“AAS 〞5、斜边和直角边相等的两直角三角形〔HL 〕。
初二年级数学八上第十二章全等三角形知识点总结复习及常考题型练习
第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(3)全等三角形的周长相等、面积相等。
(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.证明两个三角形全等的基本思路:5.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)中线倍长法、截长补短法证三角形全等。
八年级数学上册 《全等三角形常考题型总结》
全等三角形题型总结题型一、一线三垂直1、如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,CE⊥MN于E,(1)求证:BD=AE。
(2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系?2、如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,此人的运动速度为1m/s,求这个人运动了多长时间.27、王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC, ∠ABC=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.题型二、角平分线与全等1、如图所示,四边形ABCD中AB=AD,CA平分∠BCD,AE⊥BC,AF⊥CD,图中有无和△ABE全等的三角形?请说明理由。
2.如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA于点D,PE⊥OB于点E,F是OC上除点P、O外的一点,连接DF,EF,则DF与EF的关系如何?证明你的结论.图题型三、旋转与全等1、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG,(1)观察猜想BE与DC之间的大小关系,并证明你的结论。
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程,若不存在,说明理由。
BACD E2、图17,△ABC 和△ADE 都是等腰直角三角形,CE 与BD 相交于点M ,BD 交AC 于点N . 证明:(1)BD =CE ; (2)BD ⊥CE .图173、如图,ABC ∆为等边三角形,D 为边BA 延长线上一点,连接CD ,以CD 为一边作等边三角形CDE ∆,连接AE .(1)求证:CBD ∆≌CAE ∆.(2)判断AE 与BC 的位置关系,并说明理由.4、如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,具有BF=AC ,FD=CD ,试探究BE 与AC 的位置关系.ABDCEF5、如图,把一个Rt△ACB(∠ACB=90°)绕着顶点B按顺时针方向旋转60°,使得点C旋转到边AB上的一点D,点A旋转到点E的位置,F、G分别是BD、BE上的点,BF=BG,延长CF与DG交于点H .(1)求证:CF=DG;(2)求∠FHG的度数.6、如图16,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC ≌△ADE的道理.7、如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.8、如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(1)图①中有对全等三角形,并把它们写出来(2)求证:BD与EF互相平分于G;(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.第题型四、等腰三角形与全等1、如图,在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.2、有两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点.(1)不重叠的两部分△AOF与△DOC是否全等?为什么?(2)连接BO,求证:BO平分∠ABD.3、在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE.4、如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.5、如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连结点D,E,F,•得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.题型四、翻折与全等1.如图,已知∠3=∠4,∠1=∠2,求证:BE=DE.2、已知,如图,AD是△ABC的高,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,求证:AB=AC.3、如图,已知AB=AC,AB⊥BD,AC⊥CD,AD,BC相交于点E,求证:(1)CE=BE;(2)CB⊥AD.CA E DB4、如图,A、E、F、B四点共线,AC⊥CE、BD⊥DF、AE=BF、AC=BD,求证:△ACF≌△BDE.5、如图,PC=PD,QC=QD,PQ、CD相交于点E?(1) 根据以上条件,你能发现哪些全等三角形?(2) 你能证明PQ⊥CD吗?C。
人教版八年级数学上册专题复习证明三角形全等的常见题型
证明三角形全等的常见题型全等三角形是初中几何的重要内容之一,全等三角形的学习是几何入门最关键的一步,这部分内容学习的好坏直接影响着今后的学习。
而一些初学的同学,虽然学习了几种判定三角形全等的公理和推论,但往往仍不知如何根据已知条件证明两个三角形全等。
在辅导时可以抓住以下几种证明三角形全等的常见题型,进行分析。
一、已知一边与其一邻角对应相等1.证已知角的另一边对应相等,再用SAS证全等。
例1已知:如图1,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。
证明∵BE=CF(已知),∴BE+ EF=CF+EF,即 BF=CE。
在△ABF和△DCE中,∴△ABF≌△DCE(SAS)。
∴ AF=DE(全等三角形对应边相等)。
2.证已知边的另一邻角对应相等,再用ASA证全等。
例2已知:如图2,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。
求证:AE=CE。
证明∵ FC∥AB(已知),∴∠ADE=∠CFE(两直线平行,内错角相等)。
在△ADE和△CFE中,∴△ADE≌△CFE(ASA).∴ AE=CE(全等三角形对应边相等)3.证已知边的对角对应相等,再用AAS证全等。
例3(同例2).证明∵ FC∥AB(已知),∴∠A=∠ECF(两直线平行,内错角相等).在△ADE和△CFE中,∴△ADE≌△CFE(AAS).∴ AE=CE(全等三角形对应边相等)。
二、已知两边对应相等1.证两已知边的夹角对应相等,再用SAS证等。
例4已知:如图3,AD=AE,点D、E在BCBD=CE,∠1=∠2。
求证:△ABD≌△ACE.证明∵∠1=∠2(已知),∠ADB=180°-∠1,∠AEC=180°-∠2(邻补角定义),∴∠ADB = ∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).2.证第三边对应相等,再用SSS证全等。
例5已知:如图4,点A、C、B、D在同一直线AC=BD,AM=CN,BM=DN。
全等三角形重点题型(供参考)
全等三角形知识点总结知识点总结一、全等图形、全等三角形:1.全等图形:能够完全的两个图形确实是全等图形。
2.全等图形的性质:全等多边形的、别离相等。
3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角别离相等。
一样,若是两个三角形的边、角别离对应相等,那么这两个三角形全等。
说明:全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。
那个地址要注意:(1)周长相等的两个三角形,不必然全等;(2)面积相等的两个三角形,也不必然全等。
二、全等三角形的判定:1.一样三角形全等的判定(1)三边对应相等的两个三角形全等(“边边边”或“”)。
(2)两边和它们的夹角对应相等的两个三角形全等(“边角边”或“”)。
(3)两个角和它们的夹边别离对应相等的两个三角形全等(“角边角”或“”)。
(4)有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“”)。
2.直角三角形全等的判定利用一样三角形全等的判定都能证明直角三角形全等.斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“”).注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不必然全等。
3.性质一、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形相等。
(以上可以简称:全等三角形的对应元素相等)三、角平分线的性质及判定:性质定理:角平分线上的点到该角两边的距离相等。
判定定理:到角的两边距离相等的点在该角的角平分线上。
四、证明两三角形全等或利用它证明线段或角相等的大体方式步骤:1.确信已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回忆三角形判定公理,弄清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
初二全等三角形所有知识点总结和常考题提高难题压轴题练习
初二全等三角形全部知识点总结和常考题知识点:1.基本定义:⑴全等形:能够完好重合的两个图形叫做全等形 . ⑵全等三角形:能够完好重合的两个三角形叫做全等三角形 . ⑶对应极点:全等三角形中相互重合的极点叫做对应极点 . ⑷对应边:全等三角形中相互重合的边叫做对应边 . ⑸对应角:全等三角形中相互重合的角叫做对应角 .2.基天性质:⑴三角形的稳固性:三角形三边的长度确立了,这个三角形的形状、大小就全确立,这个性质叫做三角形的稳固性 .⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判断定理:⑴边边边( SSS):三边对应相等的两个三角形全等 .⑵边角边( SAS):两边和它们的夹角对应相等的两个三角形全等 .⑶角边角( ASA):两角和它们的夹边对应相等的两个三角形全等 . ⑷角角边( AAS):两角和此中一个角的对边对应相等的两个三角形全等 . ⑸斜边、直角边( HL ):斜边和一条直角边对应相等的两个直角三角形全等 .4.角均分线:⑴画法:⑵性质定理:角均分线上的点到角的两边的距离相等 .⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的均分线上.5.证明的基本方法:⑴明确命题中的已知和求证 . (包含隐含条件,如公共边、公共角、对顶角、角均分线、中线、高、等腰三角形等所隐含的边角关系)⑵依据题意,画出图形,并用数字符号表示已知和求证 . ⑶经过剖析,找出由已知推出求证的门路,写出证明过程 .常考题:一.选择题(共14 小题)1.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等2.如图,已知 AE=CF,∠ AFD=∠CEB,那么增添以下一个条件后,仍没法判断△ADF≌△ CBE的是()A.∠ A=∠C B.AD=CB C.BE=DF D.AD∥ BC3.以下图,亮亮书上的三角形被墨迹污染了一部分,很快他就依据所学知识画出一个与书上完好同样的三角形,那么这两个三角形完好同样的依照是()A.SSS B.SAS C.AAS D.ASA4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直均分线的交点D.三条角均分线的交点5.如图,△ ACB≌△ A′CB′,∠ BCB′=30°,则∠ ACA′的度数为()A.20°B.30°C.35°D.40°6.如图,直线l 1、 l 2、l 3表示三条相互交错的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1 处 B.2 处 C.3 处 D.4 处7.如图,AD是△ ABC中∠ BAC的角均分线, DE⊥ AB于点 E,S△ABC=7,DE=2,AB=4,则 AC长是()A.3B.4C.6D.58.如图,在△ ABC和△ DEC中,已知 AB=DE,还需增添两个条件才能使△ABC≌△ DEC,不可以增添的一组条件是()A.BC=EC,∠ B=∠E B. BC=EC,AC=DC C.BC=DC,∠ A=∠ D D.∠ B=∠ E,∠ A=∠D9.如图,已知在△ ABC中, CD是 AB边上的高线, BE均分∠ ABC,交 CD于点 E,BC=5,DE=2,则△ BCE的面积等于()A.10 B.7C.5D.410.要丈量河两岸相对的两点A, B 的距离,先在 AB的垂线 BF上取两点 C,D,使 CD=BC,再定出 BF的垂线 DE,使 A,C,E 在一条直线上(以下图),能够说明△EDC≌△ ABC,得 ED=AB,所以测得 ED的长就是 AB的长,判断△ EDC≌△ ABC最适合的原因是()A.边角边B.角边角C.边边边D.边边角11.如图,△ ABC的三边 AB,BC,CA长分别是 20,30, 40,其三条角均分线将△ ABC分为三个三角形,则 S△ABO: S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:512.尺规作图作∠ AOB的均分线方法以下:以 O为圆心,随意长为半径画弧交OA,P,OB于 C,D,再分别以点 C,D 为圆心,以大于 CD长为半径画弧,两弧交于点作射线 OP由作法得△ OCP≌△ ODP的依据是()A.SAS B.ASA C.AAS D.SSS13.以下判断正确的选项是()A.有两边和此中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等14.如图,已知∠ 1=∠ 2, AC=AD,增添以下条件:①AB=AE;② BC=ED;③∠ C=∠ D;④∠ B=∠E.此中能使△ ABC≌△ AED的条件有()A.4 个 B.3 个 C.2 个 D.1 个二.填空题(共11 小题)15.如图,在△ ABC中,∠ C=90°, AD 均分∠ CAB,BC=8cm,BD=5cm,那么点 D 到线段 AB的距离是cm.16.如图,△ ABC中,∠ C=90°, AD 均分∠ BAC, AB=5, CD=2,则△ ABD的面积是.17.如图为 6 个边长等的正方形的组合图形,则∠1+∠ 2+∠3=°.18.如图,△ ABC≌△ DEF,请依据图中供给的信息,写出x=.19.以下图,某同学把一块三角形的玻璃打坏成了三块,此刻要到玻璃店去配一块完好同样的玻璃,那么最省事的方法是带去玻璃店.20.如图,已知 AB∥CF,E 为 DF的中点,若 AB=9cm,CF=5cm,则 BD=cm.21.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°, E 是 BC的中点,DE均分∠ ADC,∠ CED=35°,如图,则∠ EAB是多少度?大家一同热情地议论交流,小英第一个得出正确答案,是度.22.如图,△ ABC≌△ ADE,∠ B=100°,∠ BAC=30°,那么∠ AED=度.23.以下图,将两根钢条 AA′, BB′的中点 O连在一同,使 A A′, BB′能够绕着点 O自由转动,就做成了一个丈量工具,则A′B′的长等于内槽宽 AB,那么判断△ OAB≌△ OA′B′的原因是.24.如图,在四边形 ABCD中,∠A=90°,AD=4,连结 BD,BD⊥CD,∠ ADB=∠ C.若P 是 BC边上一动点,则 DP长的最小值为.25.如图,△ ABC中,∠ C=90°, CA=CB,点 M在线段 AB上,∠ GMB=∠A,BG⊥MG,垂足为 G,MG与 BC订交于点 H.若 MH=8cm,则BG=cm.三.解答题(共15 小题)26.已知:如图,C为 BE上一点,点 A,D 分别在 BE双侧,AB∥ED,AB=CE,BC=ED.求证: AC=CD.27.已知:如图, OP是∠ AOC和∠ BOD的均分线, OA=OC,OB=OD.求证: AB=CD.28.已知,以下图,AB=AC,BD=CD,DE⊥AB于点 E,DF⊥AC于点 F,求证:DE=DF.29.如图, C是 AB的中点, AD=BE,CD=CE.求证:∠ A=∠B.30.已知:如图,在梯形 ABCD中,AD∥BC, BC=DC,CF均分∠ BCD,DF∥AB,BF的延伸线交 DC于点 E.求证:(1)△ BFC≌△ DFC;(2) AD=DE.31.如图,已知, EC=AC,∠ BCE=∠ DCA,∠ A=∠E;求证: BC=DC.32.如图,把一个直角三角形 ACB(∠ ACB=90°)绕着极点 B 顺时针旋转 60°,使得点C 旋转到AB边上的一点D,点A 旋转到点E 的地点.F,G分别是BD,BE上的点, BF=BG,延伸 CF与 DG交于点 H.(1)求证: CF=DG;(2)求出∠ FHG的度数.33.已知,如图,△ ABC 和△ ECD都是等腰直角三角形,∠ ACB=∠DCE=90°,D 为 AB边上一点.求证: BD=AE.34.如图,点 M、 N 分别是正五边形ABCDE的边 BC、CD上的点,且BM=CN,AM交 BN于点 P.(1)求证:△ ABM≌△ BCN;(2)求∠ APN的度数.35.如图,四边形 ABCD中,E 点在 AD上,此中∠ BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ ABC与△ DEC全等.36.如图,△ ABC和△ ADE都是等腰三角形,且∠ BAC=90°,∠ DAE=90°, B,C,D在同一条直线上.求证: BD=CE.37.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,此中 AB=CB, AD=CD.对角线 AC,BD订交于点 O,OE⊥AB, OF⊥CB,垂足分别是 E,F.求证 OE=OF.38.如图,在△ ABC中,∠ ACB=90°, CE⊥AB 于点 E, AD=AC,AF 均分∠CAB交CE于点 F,DF的延伸线交 AC于点 G.求证:(1)DF∥ BC;( 2) FG=FE.39.如图:在△ ABC中,BE、CF分别是 AC、AB两边上的高,在 BE上截取 BD=AC,在 CF的延伸线上截取 CG=AB,连结 AD、AG.( 1)求证: AD=AG;( 2) AD与 AG的地点关系怎样,请说明原因.40.如图,已知△ ABC中, AB=AC=10cm, BC=8cm,点 D为 AB的中点.( 1)假如点 P 在线段 BC上以 3cm/s 的速度由 B 点向 C点运动,同时,点 Q在线段 CA上由 C 点向 A 点运动.①若点 Q的运动速度与点 P 的运动速度相等,经过 1s 后,△BPD与△ CQP能否全等,请说明原因;②若点 Q的运动速度与点 P 的运动速度不相等,当点 Q的运动速度为多少时,能够使△ BPD与△ CQP全等?( 2)若点 Q以②中的运动速度从点 C出发,点 P 以本来的运动速度从点 B 同时出发,都逆时针沿△ ABC三边运动,求经过多长时间点 P 与点 Q第一次在△ ABC 的哪条边上相遇?初二全等三角形全部知识点总结和常考题提升难题压轴题练习 ( 含答案分析 )参照答案与试题分析一.选择题(共14 小题)1.(2013? 西宁)使两个直角三角形全等的条件是()A.一个锐角对应相等 B.两个锐角对应相等C.一条边对应相等D.两条边对应相等【剖析】利用全等三角形的判断来确立.做题时,要联合已知条件与三角形全等的判断方法逐一考证.【解答】解: A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不可以证明两三角形全等,故A 选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不可以证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不可以得出两三角形全等,故 C 选项错误;D、两条边对应相等,假如两条直角边相等,可利用 SAS证全等;若向来角边对应相等,一斜边对应相等,也可证全等,故 D 选项正确.应选: D.【评论】本题考察了直角三角形全等的判断方法;三角形全等的判断有ASA、SAS、AAS、 SSS、HL,能够发现起码得有一组对应边相等,才有可能全等.2.(2013? 安顺)如图,已知AE=CF,∠ AFD=∠CEB,那么增添以下一个条件后,仍没法判断△ ADF≌△ CBE的是()A.∠ A=∠C B.AD=CB C.BE=DF D.AD∥ BC【剖析】求出 AF=CE,再依据全等三角形的判断定理判断即可.【解答】解:∵ AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ ADF和△ CBE中∴△ ADF≌△ CBE(ASA),正确,故本选项错误;B、依据 AD=CB,AF=CE,∠ AFD=∠ CEB不可以推出△ ADF≌△ CBE,错误,故本选项正确;C、∵在△ ADF和△ CBE中∴△ ADF≌△ CBE(SAS),正确,故本选项错误;D、∵ AD∥BC,∴∠ A=∠ C,∵在△ ADF和△ CBE中∴△ ADF≌△ CBE(ASA),正确,故本选项错误;应选 B.【评论】本题考察了平行线性质,全等三角形的判断的应用,注意:全等三角形的判断定理有 SAS, ASA,AAS,SSS.3.(2014 秋? 江津区期末)以下图,亮亮书上的三角形被墨迹污染了一部分,很快他就依据所学知识画出一个与书上完好同样的三角形,那么这两个三角形完全同样的依照是()A.SSS B.SAS C.AAS D.ASA【剖析】依据图象,三角形有两角和它们的夹边是完好的,所以能够依据“角边角”画出.【解答】解:依据题意,三角形的两角和它们的夹边是完好的,所以能够利用“角边角”定理作出完好同样的三角形.应选 D.【评论】本题考察了三角形全等的判断的实质运用,娴熟掌握判断定理并灵巧运用是解题的重点.4.(2007? 中山)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直均分线的交点D.三条角均分线的交点【剖析】因为角的均分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角均分线的交点.【解答】解:∵角的均分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角均分线的交点.应选: D.【评论】该题考察的是角均分线的性质,因为角的均分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角均分线的交点,易错选项为 C.5.(2011? 呼伦贝尔)如图,△ ACB≌△ A′CB′,∠ BCB′=30°,则∠ ACA′的度数为()A.20°B.30°C.35°D.40°【剖析】本题依据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ ACB≌△ A′CB′,∴∠ ACB=∠A′CB′,即∠ ACA′ +∠A′CB=∠B′CB+∠A′CB,∴∠ ACA′=∠B′CB,又∠ B′CB=30°∴∠ ACA′=30°.应选: B.【评论】本题考察了全等三角形的判断及全等三角形性质的应用,利用全等三角形的性质求解.6.(2000? 安徽)如图,直线l 1、l 2、l 3表示三条相互交错的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1 处 B.2 处 C.3 处 D.4 处【剖析】到三条相互交错的公路距离相等的地址应是三条角均分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角均分线的交点以及三个外角两两均分线的交点都知足要求.【解答】解:知足条件的有:(1)三角形两个内角均分线的交点,共一处;(2)三个外角两两均分线的交点,共三处.应选: D.【评论】本题考察了角均分线的性质;这是一道生活联系实质的问题,解答此类题目时最直接的判断就是三角形的角均分线,很简单遗漏外角均分线,解答时必定要注意,不要漏解.7.( 2014? 遂宁)如图,AD是△ ABC中∠ BAC的角均分线, DE⊥AB于点 E,S△ABC=7,DE=2,AB=4,则 AC长是()A.3B.4C.6D.5【剖析】过点 D 作 DF⊥AC于 F,依据角均分线上的点到角的两边距离相等可得DE=DF,再依据 S△ABC=S△ABD+S△ACD列出方程求解即可.【解答】解:如图,过点 D 作 DF⊥AC于 F,∵AD是△ ABC中∠ BAC的角均分线, DE⊥AB,∴ DE=DF,由图可知, S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得 AC=3.应选: A.【评论】本题考察了角均分线上的点到角的两边距离相等的性质,熟记性质是解题的重点.8.(2013? 铁岭)如图,在△ ABC和△ DEC中,已知 AB=DE,还需增添两个条件才能使△ ABC≌△ DEC,不可以增添的一组条件是()A.BC=EC,∠ B=∠E B. BC=EC,AC=DC C.BC=DC,∠ A=∠ D D.∠ B=∠ E,∠ A=∠D【剖析】依据全等三角形的判断方法分别进行判断即可.【解答】解:A、已知 AB=DE,再加上条件 BC=EC,∠ B=∠E 可利用 SAS证明△ABC ≌△ DEC,故此选项不合题意;B、已知 AB=DE,再加上条件 BC=EC,AC=DC可利用 SSS证明△ ABC≌△ DEC,故此选项不合题意;C、已知 AB=DE,再加上条件 BC=DC,∠ A=∠D不可以证明△ ABC≌△ DEC,故此选项切合题意;D、已知 AB=DE,再加上条件∠ B=∠E,∠ A=∠D 可利用 ASA证明△ ABC≌△DEC,故此选项不合题意;应选: C.【评论】本题考察三角形全等的判断方法,判断两个三角形全等的一般方法有:SSS、 SAS、ASA、AAS、HL.注意: AAA、 SSA 不可以判断两个三角形全等,判断两个三角形全等时,一定有边的参加,如有两边一角对应相等时,角一定是两边的夹角.9.(2015? 湖州)如图,已知在△ ABC中, CD是 AB边上的高线, BE均分∠ ABC,E,BC=5,DE=2,则△ BCE的面积等于()交 CD于点A.10 B.7C.5D.4【剖析】作 EF⊥ BC于 F,依据角均分线的性质求得EF=DE=2,而后依据三角形面积公式求得即可.【解答】解:作 EF⊥BC于 F,∵BE均分∠ ABC,ED⊥AB,EF⊥BC,∴ EF=DE=2,∴ S△BCE=BC? EF=×5×2=5,应选 C.【评论】本题考察了角的均分线的性质以及三角形的面积,作出协助线求得三角形的高是解题的重点.10.( 1998? 南京)要丈量河两岸相对的两点 A,B 的距离,先在 AB 的垂线 BF 上取两点 C,D,使 CD=BC,再定出 BF的垂线 DE,使 A,C,E 在一条直线上(以下图),能够说明△ EDC≌△ ABC,得 ED=AB,所以测得 ED的长就是 AB的长,判断△ EDC≌△ ABC最适合的原因是()A.边角边B.角边角C.边边边D.边边角【剖析】由已知能够获得∠ ABC=∠BDE,又 CD=BC,∠ ACB=∠ DCE,由此依据角边角即可判断△ EDC≌△ ABC.【解答】解:∵ BF⊥AB, DE⊥BD∴∠ ABC=∠BDE又∵ CD=BC,∠ ACB=∠ DCE∴△ EDC≌△ ABC(ASA)应选 B.【评论】本题考察了全等三角形的判断方法;需注意依据垂直定义获得的条件,以及隐含的对顶角相等,察看图形,找着隐含条件是十分重要的.11.(2017? 石家庄模拟)如图,△ABC的三边 AB,BC,CA长分别是 20,30,40,S△ABO:S△BCO: S△CAO等于()其三条角均分线将△ABC分为三个三角形,则A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5【剖析】利用角均分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是 20,30,40,所以面积之比就是 2:3:4.【解答】解:利用同高不一样底的三角形的面积之比就是底之比可知选C.应选 C.【评论】本题主要考察了角均分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式特别重要的.12.( 2009? 鸡西)尺规作图作∠ AOB的均分线方法以下:以 O 为圆心,随意长为半径画弧交 OA,OB于 C,D,再分别以点 C,D 为圆心,以大于 CD长为半径画弧,两弧交于点P,作射线 OP由作法得△ OCP≌△ ODP的依据是()A.SAS B.ASA C.AAS D.SSS【剖析】仔细阅读作法,从角均分线的作法得出△ OCP与△ ODP的两边分别相等,加上公共边相等,于是两个三角形切合 SSS判断方法要求的条件,答案可得.【解答】解:以 O为圆心,随意长为半径画弧交 OA, OB于 C,D,即OC=OD;以点 C,D 为圆心,以大于 CD长为半径画弧,两弧交于点 P,即CP=DP;∴在△ OCP和△ ODP中,∴△ OCP≌△ ODP(SSS).应选: D.【评论】本题考察三角形全等的判断方法,判断两个三角形全等的一般方法有:SSS、 SAS、ASA、AAS、HL.注意: AAA、 SSA 不可以判断两个三角形全等,判断两个三角形全等时,一定有边的参加,如有两边一角对应相等时,角一定是两边的夹角.13.( 2002? 河南)以下判断正确的选项是()A.有两边和此中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等【剖析】判断两个三角形全等的一般方法有: SSS、SAS、ASA、AAS、HL,对照选项进行剖析.【解答】解: A、只有两个三角形同为锐角三角形或许钝角三角形或许直角三角形时,才能建立;B、30°角没有对应关系,不可以建立;C、假如这个角是直角,此时就不建立了;D、切合全等三角形的判断方法:AAS或许 ASA.应选 D.【评论】本题要求对全等三角形的几种判断方法娴熟运用,会对特别三角形全等进行剖析判断.14.(2006? 十堰)如图,已知∠ 1=∠ 2,AC=AD,增添以下条件:①AB=AE;② BC=ED;③∠ C=∠ D;④∠ B=∠ E.此中能使△ABC≌△ AED的条件有()A.4 个B.3 个C.2 个D.1 个【剖析】∠1=∠ 2,∠ BAC=∠ EAD,AC=AD,依据三角形全等的判断方法,可加一角或已知角的另一边.【解答】解:已知∠ 1=∠ 2, AC=AD,由∠ 1=∠ 2 可知∠BAC=∠EAD,加① AB=AE,就能够用 SAS判断△ ABC≌△ AED;加③∠ C=∠D,就能够用 ASA判断△ ABC≌△ AED;加④∠ B=∠E,就能够用 AAS判断△ ABC≌△ AED;加② BC=ED不过具备 SSA,不可以判断三角形全等.此中能使△ ABC≌△ AED的条件有:①③④应选: B.【评论】本题考察三角形全等的判断方法,判断两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要依据已知条件在图形上的地点,联合判断方法,进行增添.二.填空题(共11 小题)15.(2006? 芜湖)如图,在△ ABC中,∠C=90°,AD均分∠ CAB,BC=8cm,BD=5cm,那么点 D 到线段 AB的距离是 3 cm.【剖析】求 D 点到线段 AB的距离,因为 D 在∠ BAC的均分线上,只需求出 D 到AC的距离 CD即可,由已知可用 BC减去 BD可得答案.【解答】解: CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠ C=90°,∴D到 AC的距离为 CD=3cm,∵ AD均分∠ CAB,∴D点到线段 AB的距离为3cm.故答案为: 3.【评论】本题考察了角均分线的性质;知道并利用 CD是 D点到线段 AB的距离是正确解答本题的重点.16.(2013? 邵东县模拟)如图,△ ABC中,∠C=90°,AD均分∠ BAC,AB=5,CD=2,则△ ABD的面积是 5 .【剖析】要求△ ABD的面积,有 AB=5,可为三角形的底,只求出底边上的高即可,利用角的均分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是 2,则可求得面积.【解答】解:∵∠ C=90°, AD均分∠ BAC,∴点 D 到 AB的距离 =CD=2,∴△ ABD的面积是 5× 2÷ 2=5.故答案为: 5.【评论】本题主要考察了角均分线上的一点到两边的距离相等的性质.注意剖析思路,培育自己的剖析能力.17.( 2016 秋 ? 宁城县期末)如图为 6 个边长等的正方形的组合图形,则∠1+∠2+∠3= 135°.【剖析】察看图形可知∠ 1 与∠ 3 互余,∠ 2 是直角的一半,利用这些关系可解本题.【解答】解:察看图形可知:△ ABC≌△ BDE,∴∠ 1=∠ DBE,又∵∠ DBE+∠3=90°,∴∠ 1+∠3=90°.∵∠ 2=45°,∴∠ 1+∠ 2+∠3=∠1+∠3+∠2=90° +45°=135°.故填 135.【评论】本题综合考察角均分线,余角,要注意∠ 1 与∠ 3 互余,∠ 2 是直角的一半,特别是察看图形的能力.18.(2013? 柳州)如图,△ABC≌△ DEF,请依据图中供给的信息,写出 x= 20.【剖析】先利用三角形的内角和定理求出∠ A=70°,而后依据全等三角形对应边相等解答.【解答】解:如图,∠ A=180°﹣ 50°﹣ 60°=70°,∵△ ABC≌△ DEF,∴EF=BC=20,即 x=20.故答案为: 20.【评论】本题考察了全等三角形的性质,依据角度确立出全等三角形的对应边是解题的重点.19.(2009? 杨浦区二模)以下图,某同学把一块三角形的玻璃打坏成了三块,此刻要到玻璃店去配一块完好同样的玻璃,那么最省事的方法是带③ 去玻璃店.【剖析】本题就是已知三角形损坏部分的边角,获得本来三角形的边角,依据三角形全等的判断方法,即可求解.【解答】解:第一块和第二块只保存了原三角形的一个角和部分边,依据这两块中的任一块均不可以配一块与本来完好同样的;第三块不单保存了本来三角形的两个角还保存了一边,则能够依据 ASA来配一块同样的玻璃.应带③去.故答案为:③.【评论】这是一道考察全等三角形的判断方法的开放性的题,要修业生将所学的知识运用于实质生活中,要仔细察看图形,依据已知选择方法.20.(2015 秋? 西区期末)如图,已知 AB∥ CF,E 为 DF的中点,若 AB=9cm,CF=5cm,则 BD= 4 cm.【剖析】先依据平行线的性质求出∠ ADE=∠EFC,再由 ASA可求出△ ADE≌△CFE,依据全等三角形的性质即可求出 AD的长,再由 AB=9cm即可求出 BD的长.【解答】解:∵ AB∥CF,∴∠ ADE=∠EFC,∵∠ AED=∠FEC,E 为 DF的中点,∴△ ADE≌△ CFE,∴AD=CF=5cm,∵ AB=9cm,∴BD=9﹣ 5=4cm.故填 4.【评论】本题考察的是平行线的性质、全等三角形的判断定理及性质,比较简单.21.( 2009 秋? 南通期末)在数学活动课上,小明提出这样一个问题:∠ B=∠ C=90°,E 是 BC的中点,DE均分∠ ADC,∠CED=35°,如图,则∠ EAB是多少度?大家一同热情地议论沟通,小英第一个得出正确答案,是35度.【剖析】过点 E 作 EF⊥AD,证明△ ABE≌△ AFE,再求得∠ CDE=90°﹣35°=55°,即可求得∠ EAB的度数.【解答】解:过点 E 作 EF⊥AD,∵DE均分∠ADC,且E 是BC的中点,∴ CE=EB=EF,又∠ B=90°,且AE=AE,∴△ ABE≌△ AFE,∴∠ EAB=∠EAF.又∵∠ CED=35°,∠ C=90°,∴∠ CDE=90°﹣ 35°=55°,即∠CDA=110°,∠DAB=70°,∴∠ EAB=35°.【评论】三角形全等的判断是中考的热门,一般以考察三角形全等的方法为主,判断两个三角形全等,先依据已知条件或求证的结论确立三角形,而后再依据三角形全等的判断方法,看缺什么条件,再去证什么条件.22.( 2012 秋? 合肥期末)如图,△ ABC≌△ ADE,∠ B=100°,∠ BAC=30°,那么∠ AED= 50 度.【剖析】先运用三角形内角和定理求出∠ C,再运用全等三角形的对应角相等来求∠ AED.【解答】解:∵在△ ABC中,∠ C=180﹣∠ B﹣∠ BAC=50°,又∵△ ABC≌△ ADE,∴∠ AED=∠C=50°,∴∠ AED=50度.故填 50【评论】本题考察的是全等三角形的性质,全等三角形的对应边相等,对应角相等.是需要识记的内容.23.(2015 秋? 蒙城县期末)以下图,将两根钢条AA′,BB′的中点O连在一同,使A A′,BB′能够绕着点O自由转动,就做成了一个丈量工具,则A′B′的长等于内槽宽 AB,那么判断△ OAB≌△ OA′B′的原因是 SAS .【剖析】已知二边和夹角相等,利用SAS可证两个三角形全等.【解答】解:∵ OA=OA′, OB=OB′,∠ AOB=∠A′OB′,∴△ OAB≌△ OA′B′( SAS)所以原因是 SAS.【评论】本题考察了三角形全等的应用;依据题目给出的条件,要察看图中有哪些相等的边和角,而后判断所选方法,题目不难.24.( 2011? 河南)如图,在四边形 ABCD中,∠ A=90°, AD=4,连结 BD,BD⊥ CD,∠ ADB=∠C.若 P 是 BC边上一动点,则 DP长的最小值为 4 .【剖析】依据垂线段最短,当DP垂直于 BC的时候, DP的长度最小,则联合已知条件,利用三角形的内角和定理推出∠ ABD=∠ CBD,由角均分线性质即可得AD=DP,由 AD的长可得 DP的长.【解答】解:依据垂线段最短,当DP⊥BC的时候, DP的长度最小,∵BD⊥CD,即∠ BDC=90°,又∠ A=90°,∴∠ A=∠ BDC,又∠ ADB=∠C,∴∠ ABD=∠CBD,又 DA⊥BA,BD⊥DC,∴ AD=DP,又 AD=4,∴ DP=4.故答案为: 4.【评论】本题主要考察了直线外一点到直线的距离垂线段最短、角均分线的性质,解题的重点在于确立好 DP垂直于 BC.25.( 2015? 鄂尔多斯)如图,△ ABC中,∠ C=90°, CA=CB,点 M在线段 AB上,∠GMB=∠ A,BG⊥ MG,垂足为 G,MG与 BC订交于点 H.若 MH=8cm,则 BG= 4 cm.【剖析】如图,作 MD⊥ BC于 D,延伸 DE交 BG的延伸线于 E,建立等腰△BDM、全等三角形△ BED 和△ MHD,利用等腰三角形的性质和全等三角形的对应边相等获得: BE=MH,所以 BG=MH=4.【解答】解:如图,作 MD⊥BC于 D,延伸 MD交 BG的延伸线于 E,∵△ ABC中,∠ C=90°, CA=CB,∴∠ ABC=∠A=45°,∵∠ GMB=∠A,∴∠ GMB=∠A=°,∵BG⊥MG,∴∠ BGM=90°,∴∠ GBM=90°﹣° =°,∴∠ GBH=∠EBM﹣∠ ABC=°.∵MD∥AC,∴∠ BMD=∠A=45°,∴△ BDM为等腰直角三角形∴BD=DM,而∠ GBH=°,∴GM均分∠BMD,而 BG⊥ MG,∴BG=EG,即 BG=BE,∵∠ MHD+∠HMD=∠E+∠HMD=90°,∴∠ MHD=∠E,∵∠ GBD=90°﹣∠ E,∠ HMD=90°﹣∠ E,∴∠ GBD=∠HMD,∴在△ BED和△ MHD中,,∴△ BED≌△ MHD(AAS),∴BE=MH,∴BG=MH=4.故答案是: 4.【评论】本题考察了全等三角形的判断与性质:判断三角形全等的方法有“SSS”、“ SAS”、“ ASA”、“ AAS”;全等三角形的对应边相等.也考察了等腰直角三角形的性质.三.解答题(共15 小题)26.( 2008? 北京)已知:如图, C 为 BE上一点,点 A,D 分别在 BE双侧,AB∥ ED,AB=CE, BC=ED.求证: AC=CD.【剖析】依据 AB∥ED 推出∠ B=∠E,再利用 SAS 判断△ ABC≌△ CED从而得出AC=CD.【解答】证明:∵ AB∥ED,∴∠ B=∠ E.在△ ABC和△ CED中,,∴△ ABC≌△ CED.∴AC=CD.【评论】本题是一道很简单的全等证明,纵观近几年北京市中考数学试卷,每一年都有一道比较简单的几何证明题:只需证一次全等,无需增添协助线,且全等的条件都很显然.27.(2007? 北京)已知:如图,OP是∠ AOC和∠ BOD的均分线, OA=OC,OB=OD.求证: AB=CD.【剖析】依据角均分线的性质得出∠ AOP=∠COP,∠BOP=∠DOP,从而推出∠AOB= ∠ COD,再利用 SAS判断其全等从而获得 AB=CD.【解答】证明:∵ OP是∠ AOC和∠ BOD的均分线,∴∠ AOP=∠COP,∠ BOP=∠DOP.∴∠ AOB=∠COD.在△ AOB和△ COD中,.∴△ AOB≌△ COD.∴AB=CD.【评论】本题考察三角形全等的判断方法,以及全等三角形的性质.判断两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.本题比较简单,读已知时就能想到要用全等来证明线段相等.28.( 2014? 黄冈)已知,以下图,AB=AC,BD=CD,DE⊥ AB于点 E,DF⊥ AC于点 F,求证: DE=DF.【剖析】连结 AD,利用 SSS获得三角形 ABD与三角形 ACD全等,利用全等三角形对应角相等获得∠EAD=∠FAD,即AD 为角均分线,再由DE⊥AB,DF⊥AC,利用角均分线定理即可得证.【解答】证明:连结 AD,在△ ACD和△ ABD中,,∴△ ACD≌△ ABD(SSS),∴∠ EAD=∠FAD,即 AD均分∠ EAF,∵DE⊥AE,DF⊥AF,∴ DE=DF.【评论】本题考察了全等三角形的判断与性质,以及角均分线定理,娴熟掌握全等三角形的判断与性质是解本题的重点.29.( 2013? 常州)如图, C是 AB的中点, AD=BE,CD=CE.求证:∠ A=∠B.【剖析】依据中点定义求出AC=BC,而后利用“ SSS”证明△ ACD和△ BCE全等,再依据全等三角形对应角相等证明即可.【解答】证明:∵ C是 AB的中点,∴AC=BC,在△ ACD和△ BCE中,,∴△ ACD≌△ BCE(SSS),∴∠ A=∠ B.【评论】本题考察了全等三角形的判断与性质,比较简单,主要利用了三边对应相等,两三角形全等,以及全等三角形对应角相等的性质.30.(2008? 重庆)已知:如图,在梯形 ABCD中,AD∥ BC,BC=DC,CF均分∠ BCD,DF∥AB, BF的延伸线交 DC于点 E.求证:(1)△ BFC≌△ DFC;(2) AD=DE.。
全等三角形的重难点模型(八大题型)(解析版)—八年级数学上册(浙教版)
全等三角形的重难点模型(八大题型)【题型01:平移型】【题型02:翻折型】【题型03:旋转型】【题型04:一线三等角型(三类型)】【题型05:手拉手模型(四大类型)】【题型06:半角模型】【题型07:对角互补模型】【题型08:平行+线段中点构造全等模型】【题型1 平移型】【方法技巧】【典例1】如图,点E,C在线段BF上,AB=DE,BE=CF,AC=DF.(1)求证:△ABC≌△DEF;(2)若∠B=45°,∠F=85°,求∠A的度数.【答案】(1)见解析(2)50°【分析】本题考查全等三角形的判定与性质,三角形内角和定理,解题的关键是熟练运用全等三角形的判定.(1)首先根据BE=CF可得BC=EF,即可判定△ABC≌△DEF;(2)首先根据(1)中两三角形全等,可得∠ACB=∠F=85°,在△ABC中根据三角形内角和定理即可求出∠A.【详解】(1)证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,∴在△ABC和△DEF中,AB=DE AC=DF BC=EF,∴△ABC≌△DEF(SSS).(2)解:∵△ABC≌△DEF,∠B=45°,∠F=85°,∴∠ACB=∠F=85°,∴∠A=180°―∠ACB―∠B=50°.【变式1-1】如图、点B、E、C、F在一条直线上AB=DE,AC=DF,BE=CF.(1)求证:∠A=∠D;(2)求证:AC∥DF.【答案】(1)证明见解析(2)证明见解析【分析】本题考查三角形综合,涉及三角形全等的判定与性质、平行线的判定等知识,熟记相关几何判定与性质是解决问题的关键.(1)由题中条件,利用两个三角形全等的判定定理SSS得到△ABC≌△DEF,再由三角形全等的性质即可得证;(2)由(1)中△ABC≌△DEF得到∠ACB=∠F,再由同位角相等两直线平行即可得证.【详解】(1)证明:∵BE=CF,∴BC=FE,在△ABC 和△DEF 中,AB =DE AC =DF BE =CF∴△ABC≌△DEF (SSS),∴∠A =∠D ;(2)证明:由(1)知△ABC≌△DEF ,∴ ∠ACB =∠F ,∴ AC∥DF .【变式1-2】如图,在△ABC 和 △DEF 中,边AC ,DE 交于点H ,AB∥DE ,AB =DE ,BC =EF .(1)若∠B =55°,∠ACB =100°,求∠CHE 的度数;(2)求证:△ABC≌△DEF .【答案】(1)∠CHE =25°;(2)证明见解析.【分析】本题考查了三角形的内角和定理,平行线的性质,全等三角形的判定,熟练掌握知识点的应用是解题的关键.(1)根据三角形内角和定理求出∠A ,再根据平行线的性质得出∠CHE =∠A 即可;(2)根据平行线的性质得出∠B =∠DEF ,求出BC =EF ,再根据全等三角形的判定定理推出即可;【详解】(1)解:∵∠B =55°,∠ACB =100°,∴∠A =180°―∠B ―∠ACB =25°,∵AB∥DE ,∴∠CHE =∠A =25°;(2)证明:∵AB∥DE ,∴∠B =∠DEF ,在△ABC 和△DEF 中,AB =DE ∠B =∠DEF BC =EF∴△ABC≌△DEF (SAS).【变式1-3】如图,点B 、E 、C 、F 在同一直线上,∠A =∠D =90°,BE =CF ,AC =DF .求证:∠B =∠DEF .【答案】答案见解析【分析】本题考查了三角形全等的判定与性质,掌握三角形全等的判定定理是解题的关键即可得到答案.根据BE =CF 得到BE +EC =EC +CF 即BC =FE ,之后利用HL 证明Rt △ABC≌Rt △DFE 即可得到答案.【详解】证明:∵BE =CF ,∴BE +EC =EC +CF ,即BC =FE .∵∠A =∠D =90°,则在Rt △ABC 和Rt △DFE 中,BC =FE AC =DE ,∴Rt △ABC≌Rt △DFE(HL).∴∠B =∠DEF .【题型2 翻折型】【方法技巧】【典例2】如图,AB=AD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.【变式2-1】如图,已知∠1=∠2,∠C=∠D,求证:AC=BD【答案】证明见解析【分析】本题考查全等三角形的判定与性质,由两个三角形全等的判定定理AAS 得到△ABC≌△BAD (AAS),再由三角形全等性质即可得证,熟练掌握两个三角形全等判的定定理AAS 及性质是解决问题的关键.【详解】证明:在△ABC 与△BAD 中,∠1=∠2∠C =∠D AB =AB,∴△ABC≌△BAD (AAS),∴AC =BD .【变式2-2】如图,已知AD 平分∠BAC ,AB =AC .求证:△ABD≌△ACD .【答案】见解析【分析】本题主要考查了全等三角形的判定.根据AD 平分∠BAC ,可得∠BAD =∠CAD ,再根据边角边可证明△ABD≌△ACD .【详解】证明:∵AD 平分∠BAC,∴∠BAD =∠CAD ,在△ABD 和△ACD 中,∵AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD≌△ACD (SAS).【变式2-3】如图,AB =AC ,BO =CO ,求证:∠ADC =∠AEB .【答案】见解析【分析】本题考查了全等三角形的判定与性质、三角形外角的定义及性质,连接OA ,证明△AOB≌△AOC (SSS)得出∠B =∠C ,再由三角形外角的定义及性质即可得出答案,熟练掌握以上知识点并灵活运用是解此题的关键.【详解】证明:如图,连接OA ,在△AOB 和△AOC 中,AB =AC OB =OC OA =OA,∴△AOB≌△AOC (SSS),∴∠B =∠C ,∵∠DOB =∠EOC ,∴∠B +∠DOB =∠C +∠EOC ,∴∠ADC =∠AEB .【题型3旋转型】【方法技巧】【典例3】如图,在△ABC 和△AEF 中,点E 在BC 边上,∠C =∠F ,AC =AF ,∠CAF =∠BAE ,EF 与AC 交于点G .(1)试说明:△ABC ≌△AEF ;(2)若∠B =55°,∠C =20°,求∠EAC 的度数.【答案】(1)见解答;(2)35°.【解答】(1)证明:∵∠CAF=∠BAE,∴∠CAF+∠EAC=∠BAE+∠EAC,即∠BAC=∠EAF,在△ABC和△AEF中,,∴△ABC≌△AEF(ASA);(2)解:∵∠B=55°,∠C=20°,∴∠BAC=180°﹣55°﹣20°=105°,∵△ABC≌△AEF,∴AB=AE,∴∠B=∠AEB=55°,∴∠BAE=180°﹣∠B﹣∠AEB=70°,∴∠EAC=∠BAC﹣∠BAE=105°﹣70°=35°.【变式3-1】如图,点E在△ABC外部,点D在BC边上,若∠1=∠2,∠E=∠C,AE=AC,求证:AB=AD.【答案】证明见解答.【解答】证明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴AB=AD.【变式3-2】如图,点E在△ABC边AC上,AE=BC,BC∥AD,∠BAC=∠ADE.(1)求证:△ABC≌△DEA;(2)若∠CAD=30°,求∠BCD的度数.【答案】(1)见解析;(2)∠BCD=105°.【解答】(1)证明:∵BC∥AD,∴∠ACB=∠DAE.在△ABC和△DEA中,∵,∴△ABC≌△DEA(AAS).(2)解:由(1)知△ABC≌△DEA(AAS),∴AC=AD,∠ACB=∠CAD=30°,∴,∴∠BCD=∠ACD+∠ACB=30°+75°=105°.∴∠BCD=105°.【变式3-3】如图,在△ABC中,点D是BC的中点,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.【答案】证明见解答过程.【解答】证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵点D是BC的中点,∴BD=CD,在△BDE与△CDF中,,∴△BDE≌△CDF(AAS).【变式3-4】如图,∠ABC=∠ADE,∠BAD=∠CAE,AC=AE,求证:△ABC≌△ADE.【答案】见解答.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE.在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).【题型4 一线三等角型】【方法技巧】模型一一线三垂直如图一,∠D=∠BCA=∠E=90°,BC=AC。
人教版八年级数学上册第12章全等三角形知识点复习总结及常考题型练习.doc
第十二章一、::二、::1.::⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解::①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.::⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.理解::①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(3)全等三角形的周长相等、面积相等。
(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3.全等三角形的判定定理::⑴边边边( SSS):三边对应相等的两个三角形全等.⑵边角边( SAS ):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等..4.::5.::⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.::⑴明确命题中的已知和求证. (包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.::(1) 要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)中线倍长法、截长补短法证三角形全等。
三角形全等的判定(6种题型)-2023年新八年级数学核心知识点与常见题型(浙教版)(解析版)
三角形全等的判定(6种题型)【知识梳理】一、全等三角形判定——“边边边”全等三角形判定——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .二、全等三角形判定——“边角边”1. 全等三角形判定——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.三、垂直平分线:1.定义:垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线.2.性质定理:线段垂直平分线上的点到线段两端的距离相等四、全等三角形判定——“角边角”全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .五、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.六、角平分线的性质定理:角平分线上的点到角两边的距离相等.【考点剖析】题型一、全等三角形的判定——“边边边”例1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边 ∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 用全等三角形的性质和判定.【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边 ∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等)【变式2】、如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BD =CE ,求证:∠BAD =∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,AB AC AD AE BD CE =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACE (SSS )∴∠BAD =∠CAE (全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质. 要证∠BAD =∠CAE ,先找出这两个角所在的三角形分别是△BDA 和△CAE ,然后证这两个三角形全等.题型二、全等三角形的判定——“边角边”例2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【思路点拨】由条件AB =AD ,AC =AE ,需要找夹角∠BAC 与∠DAE ,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.【变式】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD例3、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【思路点拨】延长AD 到点E ,使AD =DE ,连接CE .通过证全等将AB 转化到△CEA 中,同时也构造出了2AD .利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,AD DE ADB EDC BD CD ⎧⎪∠∠⎨⎪⎩===.∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >.【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB +AC >2AD ,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD 绕点D 逆时针旋转180°得到△CED ,也就把AB 转化到△CEA 中,同时也构造出了2AD .若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.例4、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【思路点拨】在DC 上取一点E ,使BD =DE ,则△ABD ≌△AED ,所以AB =AE ,只要再证出EC =AE 即可.【答案与解析】证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,BD DE ADB=ADE AD AD ⎧⎪⎨⎪⎩=∠∠=∴△ABD ≌△AED (SAS ).∴AB =AE ,∠B =∠AED .又∵∠B =2∠C =∠AED =∠C +∠EAC .∴∠C =∠EAC .∴AE =EC .∴AB =AE =EC =CD —DE =CD —BD .【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明AB =CD -BD ,把CD -BD 转化为一条线段,可利用翻折变换,把△ABD 沿AD 翻折,使线段BD 运动到DC 上,从而构造出CD -BD ,并且也把∠B 转化为∠AEB ,从而拉近了与∠C 的关系.【变式】已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =12(AB +AD ), 求证:∠B +∠D =180°. AE D CB【答案】证明:在线段AE 上,截取EF =EB ,连接FC ,∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =12(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型三、全等三角形的判定——“角边角”例5、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】(2022•长安区一模)已知:点B 、E 、C 、F 在一条直线上,AB ∥DE ,AC ∥DF ,BE =CF .求证:△ABC ≌△DEF .【分析】先利用平行线的性质得到∠B=∠DEF,∠ACB=∠F,再证明BC=EF,然后根据“ASA”可判断△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,{∠B=∠DEF BC=EF∠ACB=∠F,∴△ABC≌△DEF(ASA).5种判定方法是解决问题的关键.选用哪一种判定方法,取决于题目中的已知条件.例6、如图,G是线段AB上一点,AC和DG相交于点E.请先作出∠ABC的平分线BF,交AC于点F;然后证明:当AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.【思路点拨】通过已知条件证明∠DAC=∠C,∠CBF=∠ADG,则可证△DAE≌△BCF【答案与解析】证明:∵AD∥BC,∴∠DAC=∠C∵BF平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN题型四、全等三角形的判定——“角角边”例7.(2021秋•苏州期末)如图,在四边形ABCD 中,E 是对角线AC 上一点,AD ∥BC ,∠ADC =∠ACD ,∠CED +∠B =180°.求证:△ADE ≌△CAB .【分析】由等角对等边可得AC=AD,再由平行线的性质可得∠DAE=∠ACB,由∠CED+∠B=180°,∠CED+∠AED=180°,得∠AED=∠B,从而利用AAS可判定△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【点评】本题主要考查全等三角形的判定,解答的关键是由已知条件得出相应的角或边的关系.例8、已知:如图,AB⊥AE,AD⊥,∠E=∠B,DE=CB.求证:AD=AC.【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC和△EAD中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 题型五:线段的垂直平分线 例9.(2023秋·浙江杭州·八年级校考开学考试)如图所示,在ABC 中,8AC =,5BC =,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则BCE 的周长为( )A .13B .18C .10.5D .21【答案】A 【分析】根据线段垂直平分线的性质得到AE BE =,再将BCE 的周长转化为AC BC +的长,即可求解.【详解】解:DE 是AB 的垂直平分线,∴AE BE =,∴BCE 的周长为BE EC BC AE EC BC AC BC ++=++=+,8AC =,5BC =,∴BCE 的周长为8513AC BC +=+=,故选:A .【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键.【变式1】(2022秋·浙江温州·八年级校考期中)如图,点D 是ABC 边AC 的中点,过点D 作AC 的垂线交BC 于点E ,已知6AC =,ABC 的周长为14,则ABE 的周长是( )A .6B .14C .8D .20【答案】C 【分析】由题意可知:ED 垂直平分AC ,故EA EC =,结合6AC =,ABC 的周长为14,即可得出答案.【详解】解:∵点D 是ABC 边AC 的中点, ED AC ⊥,∴ED 垂直平分AC ,∴EA EC =,∵6AC =,ABC 的周长为14,∴1468AB BC +=−=,∴8AB BC AB BE EC AB BE AE +=++=++=,∴ABE 的周长是8.故选:C .【点睛】此题考查了垂直平分线的性质和判定,掌握垂直平分线的性质和判定是解题的关键.【答案】C 【分析】根据垂直平分线的性质可知,到A ,B ,C 表示三个居民小区距离相等的点,是AC ,BC 两边垂直平分线的交点,由此即可求解.【详解】解:如图所示,分别作AC ,BC 两边垂直平分线MN ,PQ 交于点O ,连接OA,OB,OC,∵MN,PQ是AC,BC两边垂直平分线,==,∴OA OB OC∴点O是到三个小区的距离相等的点,即点O是AC,BC两边垂直平分线的交点,故选:C.【点睛】本题主要考查垂直平分线的性质,掌握垂直平分线的性质是解题的关键.八年级专题练习)如图,在ABC中,是ABC外的一点,且【分析】根据到线段两端距离相等的点在线段的垂直平分线上,即可证明A、D都在BC的垂直平分线上,由此即可证明结论.AB AC,【详解】证明:∵=∴点A在BC的垂直平分线上,BD CD,∵=∴点D在BC的垂直平分线上,∴A、D都在BC的垂直平分线上,∴AD垂直平分BC.【点睛】本题主要考查了线段垂直平分线的判定,熟知线段垂直平分线的判定条件是解题的关键.【变式】.(2022秋·浙江·八年级专题练习)如图,点E是△ABC的边AB的延长线上一点,∠BCE=∠A+∠ACB,求证:点E在BC的垂直平分线上.【分析】由三角形的外角性质得到∠EBC=∠A+∠ACB,结合已知推出∠BCE=∠EBC,得到BE=CE,即可得到结论.【详解】证明:∵∠BCE=∠A+∠ACB,∠EBC=∠A+∠ACB,∴∠BCE=∠EBC,∴BE=CE,∴点E在BC的垂直平分线上.【点睛】本题考查了三角形的外角性质,线段垂直平分线的判定,用到的知识点:到线段两端点的距离相等的点在线段的垂直平分线上.题型六:角平分线【答案】A【分析】根据角平分线上的点到两边的距离相等即可解答.【详解】根据题意要使集贸市场到三条公路的距离相等即集贸市场应建在三个角的角平分线的交点.故本题选A .【点睛】本题考查了角平分线的性质,熟记角平分线的性质是解答本题的关键. 的中点,ABC ,则BED 的面积为( 【答案】C【分析】作DF AC ⊥于F ,DM AB ⊥于点M ,根据角平分线的性质求出DM ,根据三角形的面积公式计算即可.【详解】解:作DF AC ⊥于F ,DM AB ⊥于点MAD 是ABC 的角平分线DF AC ⊥于F ,DM AB ⊥,112122AC DF AB DM ∴⋅+⋅=,112122AC DM AB DM ⋅+⋅=∴即:3421DM DM +=得3DM =8AB =, E 是AB 的中点,142BE AB ∴== 1143622BEDS BE DM ∴=⋅=⨯⨯= 故选:C .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键. 例12.(2022秋·浙江·八年级专题练习)已知:如图,90B C ∠=∠=,M 是BC 的中点,DM 平分ADC ∠.(1)若连接AM ,则AM 是否平分BAD ∠?请你证明你的结论;(2)线段DM 与AM 有怎样的位置关系?请说明理由.【答案】(1)AM 平分BAD ∠,证明见解析(2)DM AM ⊥,理由见解析【分析】(1)过点M 作ME AD ⊥,垂足为E ,证明ME MC MB ==即可得证.(2)利用两直线平行,同旁内角互补,证明1390∠+∠=.【详解】(1)AM 平分BAD ∠,理由为:证明:过点M 作ME AD ⊥,垂足为E ,∵DM 平分ADC ∠,∴12∠=∠,∵ME AD ⊥,MC CD ⊥∴MC ME =(角平分线上的点到角两边的距离相等),又∵MC MB =,∴ME MB =,∵MB AB ⊥,ME AD ⊥,∴AM 平分BAD ∠(到角的两边距离相等的点在这个角的平分线上).(2)DM AM ⊥,理由如下:∵90B C ∠=∠=,∴,DC CB AB CB ⊥⊥,∴DC AB ∥(垂直于同一条直线的两条直线平行),∴180DAB CDA ∠+∠=(两直线平行,同旁内角互补)又∵111,322CDA DAB ∠=∠∠=∠(角平分线定义) ∴2123180∠+∠=,∴1390∠+∠=,∴90AMD ∠=.即DM AM ⊥.【点睛】本题考查了角平分线的性质定理和判定定理,平行线的性质,熟练掌握以上的知识是解题的关键. 【变式1】(2023秋·浙江台州·八年级统考期末)如图 90B C ∠=∠=︒,E 为BC 上一点,AE 平分BAD ∠,DE 平分CDA ∠.(1)求AED ∠的度数;(2)求证:E 是BC 的中点.【答案】(1)90︒(2)见解析.【分析】(1)利用已知条件可以得到180BAD CDA ∠+∠=︒,想要求AED ∠的度数,只需要根据三角形内角和定理和角平分线的性质即可得到结论.(2)过点E 做EF AD ⊥,根据角平分线上的点到角的两边距离相等即可得结论.【详解】(1)解:∵90B C ∠=∠=︒,∴DC AB ∥,∴180BAD CDA ∠+∠=︒,∵AE 平分BAD ∠,DE 平分CDA ∠, ∴12EAD BAD ∠=∠,12EDA CDA ∠=∠, ∴1()902EAD EDA BAD CDA ∠+∠=∠+∠=︒,∴180()90AED EAD EDA ∠=︒−∠+∠=︒;(2)证明:过点E 作EF AD ⊥于点F ,∵AE 平分BAD ∠,90B Ð=°,EF AD ⊥,∴EF EB =.∵DE 平分CDA ∠,90C ∠=︒,EF AD ⊥,∴EF EC =.∴EB EC =,即E 是BC 的中点.【点睛】本题考查了平行线的判定与性质,以及角平分线上的点到角两边距离相等的性质,熟记性质和定理并做出辅助线是解题的关键.【变式2】.(2022秋·浙江杭州·八年级校考期中)如图,在ABC 外作两个大小不同的等腰直角三角形,其中90DAB CAE ∠=∠=︒,AB AD =,AC AE =.连接DC 、BE 交于F 点.(1)求证:DAC BAE ≌△△; (2)直线DC 、BE 是否互相垂直,试说明理由;(3)求证:AF 平分DFE ∠.【答案】(1)见解析(2)DC BE ⊥,理由见解析(3)见解析【分析】(1)由题意可得AD AB =,AC AE =,由90DAB CAE ∠=∠=︒,可得到DAC BAE ∠=∠,从而可证DAC BAE ≌△△;(2)由(1)可得ACD AEB ∠=∠,再利用直角三角形的性质及等量代换即可得到结论;(3)作AM DC ⊥于M ,AN BE ⊥于N ,利用全等三角形的面积相等及角平分线的判定即可证得结论.【详解】(1)证明:∵90DAB CAE ∠=∠=︒,∴DAB BAC CAE BAC ∠+∠=∠+∠,即DAC BAE ∠=∠,又∵AD AB =,AC AE =,∴()SAS DAC BAE ≌△△;(2)解:DC BE ⊥,理由如下;∵DAC BAE ≌△△, ∴ACD AEB ∠=∠,∵90AEB AOE ∠+∠= ,AOE FOC ∠=∠,∴90FOC ACD ∠+∠=,∴90EFC ∠=,∴DC BE ⊥;(3)证明:作AM DC ⊥于M ,AN BE ⊥于N ,∵DAC BAE ≌△△, ∴DAC BAE S S ∆∆=,DC BE =, ∴1122DC AM BE AN ⋅=⋅,∴AM AN =,∴AF 平分DFE ∠.【点睛】本题主要考查全等三角形的判定和性质,及直角三角形的性质,角平分线的判定,熟练掌握判定和性质是解决本题的关键.【变式3】(2023春·浙江金华·八年级浙江省义乌市后宅中学校考阶段练习)已知:OP 平分MON ∠,点A ,B 分别在边OM ,ON 上,且180OAP OBP ∠∠+=︒.(1)如图1,当90OAP ∠=︒时,求证:OA OB =;(2)如图2,当90OAP ∠<︒时,作PC OM ⊥于点C .求证:①PA PB =;②请直接写出OA ,OB ,AC 之间的数量关系 .【答案】(1)见解析(2)①见解析;②2OA OB AC −=【分析】(1)证明()AAS OPA OPB ≌,即可得证;(2)①作PD ON ⊥于点D ,证明()AAS PAC PBD ≌,即可得证; ②证明()AAS OCP ODP ≌,得出OD =,根据AC BD =,即可得证.【详解】(1)证明:180OAP OBP ∠∠+=︒,且90OAP ∠=︒,90OAP OBP ∠∠∴==︒,OP 平分MON ∠,POA POB ∠∠∴=,OP OP =,()AAS OPA OPB ∴≌,OA OB ∴=;(2)证明:①如图2,作PD ON ⊥于点D ,PC OM ⊥于点C ,PC PD ∴=,90PCA PDB OCP ∠∠∠===︒,180OAP OBP ∠∠+=︒,180DBP OBP ∠∠+=︒,OAP DBP ∠∠∴=,在PAC 和PBD 中,CAP DBP PCA PDBPC PD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS PAC PBD ∴≌, PA PB ∴=;②结论:2OA OB AC −=.理由:在OCP 和ODP 中,OCP ODP COP DOP OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS OCP ODP ∴≌,OC OD ∴=,OA AC OB BD ∴−=+,AC BD =,2OA OB AC BD AC ∴−=+=.故答案为:2OA OB AC −=.【点睛】本题考查了角平分线的性质,全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.【过关检测】一、单选题 1.(2022秋·浙江·八年级专题练习)如图,在ABC 中,90A ∠=︒,点D 是边AC 上一点,3DA =,若点D 到BC 的距离为3,则下列关于点D 的位置描述正确的是( )A .点D 是AC 的中点B .点D 是B ∠平分线与AC 的交点 C .点D 是BC 垂直平分线与AC 的交点D .点D 与点B 的距离为5【答案】B 【分析】作DE BC ⊥于E ,连接BD ,利用角平分线的判定定理可证明BD 是ABC ∠的角平分线,即可作答.【详解】解:如图所示:作DE BC ⊥于E ,连接BD ,∵3DA =,点D 到BC 的距离为3,∴=AD DE ,∵90A ∠=︒,∴DA BA ⊥,∵DE BC ⊥,∴BD 是ABC ∠的角平分线,即点D 是ABC ∠的角平分线与AC 的交点,故B 项正确;其余选项,利用现有条件均无法得出,故选:B .【点睛】本题主要考查了角平分线的判定定理,作出辅助线,证明BD 是ABC ∠的角平分线,是解答本题的关键. 2.(2023·浙江·九年级专题练习)如图,已知BF DE =,AB ∥DC ,要使ABF CDE ≅△△,添加的条件可以是( )A.BE DF =B .AF CE =C .AB CD = D .B D ∠=∠【答案】C 【分析】根据AB ∥DC ,可得B D ∠=∠,又BF DE =,所以添加AB CD =,根据SAS 可证ABF CDE ≅△△.【详解】解:应添加AB DC =,理由如下:AB ∥DC ,B D ∴∠=∠.在ABF △和CDE 中,AB CD B DBF DE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF CDE ∴≅,故选:C .【点睛】本题主要考查了平行线的性质以及全等三角形的判定,熟练掌握全等三角形的判定是解题的关键.3.(2023·浙江金华·统考二模)如图,ABC 和DEF 中,AB DE ∥,A D ∠=∠,点B ,E ,C ,F 共线,添加一个条件,不能判断ABC DEF ≌△△的是( )A .AB DE =B .ACB F ∠=∠C .BE CF =D .AC DF =【答案】B 【分析】根据AB DE ∥可得B DEF ∠=∠,加上A D ∠=∠,可知ABC 和DEF 中两组对角相等,因此一组对边相等时,即可判断ABC DEF ≌△△. 【详解】解:AB DE ∥,∴B DEF ∠=∠, 又A D ∠=∠,∴ABC 和DEF 中两组对角相等,当AB DE =时,根据ASA 可证ABC DEF ≌△△,故A 选项不合题意; 当ACB F ∠=∠时,ABC 和DEF 中,三组对角相等,不能判断ABC DEF ≌△△,故B 选项符合题意; 当BE CF =时,BC EF =,根据AAS 可证ABC DEF ≌△△,故C 选项不合题意; 当AC DF =时,根据AAS 可证ABC DEF ≌△△,故D 选项不合题意; 故选B .【点睛】本题考查添加条件使三角形全等,解题的关键是熟练掌握全等三角形的各种判定方法..ABC 的三条中线的交点.ABC 三边的垂直平分线的交点.ABC 三条角平分线的交点.ABC 三条高所在直线的交点【答案】C【分析】角平分线上的点到角的两边的距离相等,由此可解.【详解】解:要使凉亭到草坪三条边的距离相等,∴凉亭应在ABC 三条角平分线的交点处.故选C .【点睛】本题考查了角平分线的性质,解题的关键是注意区分三角形中线的交点、高的交点、垂直平分线的交点以及角平分线的交点之间的区别. 5.(2020秋·浙江·八年级期末)如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,2DE =,4AB =,则AC 的长为( )A .3B .4C .5D .6【答案】A 【分析】先根据角平分线的性质得到2DF DE ==,再利用三角形面积公式得到11242722AC ⨯⨯+⨯⨯=,然后解关于AC 的方程即可.【详解】解:∵AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,2DE =,∴2DF DE ==,∵7ABC S =△,4AB =,又∵ABD ACD ABC S S S +=△△△,∴111124272222AB DE DF AC AC ⋅+⋅=⨯⨯+⨯⨯=,∴3AC =.故选:A .【点睛】本题考查角平分线的性质:角的平分线上的点到角的两边的距离相等.理解和掌握角平分线的性质是解题的关键.本题也考查了三角形的面积及等积变换.6.(2022秋·浙江·八年级专题练习)如图,用B C ∠=∠,12∠=∠,直接判定ABD ACD ≌△△的理由是( )A .AASB .SSSC .ASAD .SAS【答案】A 【分析】根据三角形全等的判定方法判定即可.【详解】解:在ABD △和ACD 中,12B CAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AAS ABD ACD ≌,故A 正确. 故选:A .【点睛】本题主要考查三角形全等的判定,解题的关键是掌握证明全等三角形的几种证明方法:AAS 、ASA 、SSS 、SAS 、HL .A .2B .【答案】C 【分析】由FC AB ∥,得F ADE ∠=∠,FCE A ∠=∠,即可根据全等三角形的判定定理“AAS”证明CFE ADE ≅,则4CF AD AB BD ==−=.【详解】解:FC AB ∥,F ADE ∴∠=∠,FCE A ∠=∠,在CFE 和ADE V 中,F ADE FCE AFE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS CFE ADE ∴≅, CF AD ∴=,5AB =,1BD =,514AD AB BD ∴=−=−=,4CF ∴=,CF ∴的长度为4.故选:C .【点睛】此题重点考查平行线的性质、全等三角形的判定与性质等知识,正确地找到全等三角形的对应边和对应角并且证明CFE ADE ≅是解题的关键.A .SSS【答案】B 【分析】根据已知条件两边,及两边的夹角是对顶角解答.【详解】解:在AOB 和COD △中,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,()AOB COD SAS ∴≌. 故选:B .【点睛】本题考查了全等三角形的应用,准确识图判断出两组对应边的夹角是对顶角是解题的关键. 9.(2022秋·浙江嘉兴·九年级校考期中)在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放在ABC 的( )A .三边垂直平分线的交点B .三杂中线的交点C .三条角平分线的交点D .三条高所在直线的交点【答案】A【分析】根据题意可知,当木凳所在位置到A 、B 、C 三个顶点的距离相等时,游戏公平,再由线段垂直平分线的性质即可求解.【详解】解:由题意可得:当木凳所在位置到A 、B 、C 三个顶点的距离相等时,游戏公平,∵线段垂直平分线上的点到线段两端的距离相等,∴木凳应放的最适当的位置是在ABC 的三边垂直平分线的交点,故选:A .【点睛】本题考查线段垂直平分线的性质的应用,掌握线段垂直平分线的性质是解题的关键. )可说明ABC 与△ 【答案】A 【分析】先根据垂直的定义可得90ACB ADB ∠=∠=︒,再根据角平分线的定义可得CAB DAB ∠=∠,然后根据AAS 定理即可得.【详解】解:,BC AC BD AD ⊥⊥,90ACB ADB ∴∠=∠=︒,AB 平分CAD ∠,CAB DAB ∴∠=∠,在ABC 和ABD △中,90ACB ADB CAB DABAB AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AAS ABC ABD ∴≌,故选:A . 【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定方法是解题关键.二、填空题【答案】CA FD =,B E ∠=∠,A D ∠=∠,AB DE ∥等【分析】可选择CA FD =添加条件后,能用SAS 进行全等的判;也可选择B E ∠=∠添加条件后,能用ASA 进行全等的判定;也可选择A D ∠=∠添加条件后,能用AAS 进行全等的判定;也可选择AB DE ∥添加条件后,能用ASA 进行全等的判定即可;【详解】解:添加CA FD =,∵12∠=∠,BC EF =,∴()SAS ABC DEF ≌△△,故答案为:CA FD =;或者添加B E ∠=∠,∵BC EF =,12∠=∠,∴()ASA ABC DEF ≌△△,故答案为:B E ∠=∠;或者添加A D ∠=∠,∵12∠=∠,BC EF =,∴()AAS ABC DEF ≌△△,故答案为:A D ∠=∠;或者添加AB DE ∥,∵AB DE ∥,∴B E ∠=∠,∵12∠=∠,BC EF =,∴()AAS ABC DEF ≌△△,故答案为:AB DE ∥.【点睛】本题考查了全等三角形的判定,解答本题关键是掌握全等三角形的判定定理,本题答案不唯一.【答案】AB DC =【分析】添加条件AB DC =,利用SAS 证明ABC DCB △≌△即可.【详解】解:添加条件AB DC =,理由如下:在ABC 和DCB △中,AB DC ABC DCBBC CB =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DCB △≌△, 故答案为:AB DC =.【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定定理是解题的关键,全等三角形的判定定理有SSS SAS AAS ASA HL ,,,,. 13.(2023秋·浙江湖州·八年级统考期末)如图,已知AC DB =,要使得ABC DCB ≅,根据“SSS”的判定方法,需要再添加的一个条件是_______.【答案】ABDC =【分析】要使ABC DCB ≅,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC 和DCB △中AB DC BC CB AC BD =⎧⎪=⎨⎪=⎩, ∴()ABC DCB SSS ≅△△, 故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.14.(2022秋·浙江丽水·八年级统考期末)如图,在ABC 中,CD 是边AB 上的高,BE 平分ABC ∠,交CD 于点E ,6BC =,若BCE 的面积为9,则DE 的长为______.【答案】3【分析】过E 作EF BC ⊥于F ,根据角平分线性质求出EF DE =,根据三角形面积公式求出即可.【详解】解:过E 作EF BC ⊥于F ,CD 是AB 边上的高,BE 平分ABC ∠,交CD 于点E ,DE EF ∴=,192BCE S BC EF =⋅=,1692EF ∴⨯⨯=,3EF DE ∴==,故答案为:3.【点睛】本题考查了角平分线性质的应用,能根据角平分线性质求出3EF DE ==是解此题的关键,注意:在角的内部,角平分线上的点到角的两边的距离相等. 八年级期末)如图,在ABC 中, 【答案】4【分析】根据线段垂直平分线的性质得到2AD BD ==,则4CD AC AD =−=.【详解】解:∵AB 的垂直平分线交AB 于点E ,交AC 于点D ,∴2AD BD ==,∵6AC =,∴4CD AC AD =−=,故答案为:4.【点睛】本题主要考查了线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端的距离相等是解题的关键. 16.(2022秋·浙江温州·八年级校联考期中)如图,在ABC 中,DE 是AC 的中垂线,分别交AC ,AB 于点D ,E .已知BCE 的周长为9,4BC =,则AB 的长为______.【答案】5【分析】先利用三角形周长得到5CE BE +=,再根据线段垂直平分线的性质得到EC EA =,然后利用等线段代换得到AB 的长.【详解】解:∵BCE 的周长为9,9CE BE BC ∴++=,又4BC =,5CE BE ∴+=,又DE 是AC 的中垂线,EC EA ∴=,5AB AE BE CE BE ∴=+=+=;故答案为:5.【点睛】本题考查了垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.17.(2023秋·浙江杭州·八年级校考开学考试)如图,已知12∠=∠,要说明ABC BAD ≌,(1)若以“SAS ”为依据,则需添加一个条件是__________;(2)若以“ASA ”为依据,则需添加一个条件是__________.【答案】 BC AD = BAC ABD ∠=∠【分析】(1)根据SAS 可添加一组角相等,故可判定全等;(2)根据ASA 可添加一组角相等,故可判定全等;【详解】解:(1)已知一组角相等和一个公共边,以“SAS ”为依据,则需添加一组角,即BC AD =故答案为:BC AD =;(2)已知一组角相等,和一个公共边,以“ASA ”为依据,则需添加一组角,即BAC ABD ∠=∠. 故答案为:BAC ABD ∠=∠.【点睛】本题主要考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL 、、、、.添加时注意:AAA SSA 、不能判定两个三角形全等. 18.(2019秋·浙江嘉兴·八年级校考阶段练习)如图,点B 、E 、C 、F 在一条直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF=________【答案】6.【分析】根据题中条件由SAS 可得△ABC ≌△DEF ,根据全等三角形的性质可得AC=DF=6.【详解】∵AB ∥DE ,∴∠B=∠DEF∵BE=CF ,∴BC=EF ,在△ABC 和△DEF 中,AB DE B DEFBC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴AC=DF=6.考点:全等三角形的判定与性质.。
初中数学--八年级上册全等三角形知识点归纳及经典练习题
数学--八年级上册全等三角形一、全等三角形及其判定(一)知识总结(二)例题精讲知识点三:三角形全等的开方性探索知识点二:三角形全等的判定知识点一:全等三角形的性质知识点一:全等三角形的性质A、夯实基础例1:已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠OAD=_____度.【解析】此题可根据全等三角形的对应角相等得∵△OAD≌△OBC∴∠OAD=∠OBC=180°-70°-25°=85°.【解答】85°B、双基固化例2:如图,△ABC≌△DEF,则有下列判断正确的是( )。
A.AB=DFB.AC=DFC.∠A=∠FD.∠B=∠D【解析】本题根据全等三角形的对应边相等,对应角相等判断即可.【解答】B.C、能力提升例3:如图,△ABC≌△AED,B和E是对应顶点,写出图中相等的线段和相等的角.【解析】根据全等三角形的对应边相等,对应角相等判断即可.关键要做到不重不漏. 【解答】相等的线段有:AB=AE,AC=AD,BC=DE,BD=EC相等的角有:∠B=∠E,∠BAC=∠EAD,∠ACB=∠ADE。
知识点二:三角形全等的判定A、夯实基础例4:如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△ CEB全等吗?为什么?【解答】△AFD≌△ CEB理由:∵AE=CF∴AE-FE=CF-EF,即AF=CE在△AFD和△ CEB中AF=CE∠AFD=∠CEB,DF=BE∴△AFD≌△CEB(SAS)B、双基固化例5:(2010年福州)如图,点B、E、C、F在一条直线上,BC=EF,AB∥DE,∠A=∠D。
求证:△ABC≌△DEF。
【解答】证明:∵ AB∥DE,∴∠B=∠DEF在△ABC和△DEF中,B=∠DEF∠A=∠DBC=EF∴△ABC≌△DEF(AAS)C、能力提升例6:(2010年宁德市)如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:____________,并给予证明.【解答】解法一:添加条件:AE=AF证明:在△AED与△AFD中,∵AE=AF,∠EAD=∠FAD,AD=AD,∴△AED≌△AFD(SAS).解法二:添加条件:∠EDA=∠FDA证明:在△AED与△AFD中,∵∠EAD=∠FAD,AD=AD,∠EDA=∠FDA,∴△AED≌△AFD(ASA).知识点三:三角形全等的开方性探索A、夯实基础例7:如图,已知△ABC和△DCB中,AB=DC,请补充一个条件_____,使△ABC≌△DCB。
初二全等三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)
初二全等三角形所有知识点总结和常考题1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形 .⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边 .⑸对应角:全等三角形中互相重合的角叫做对应角 .2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等 .⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程 .一.选择题(共14小题)1.使两个直角三角形全等的条件是()A. 一个锐角又t应相等B.两个锐角对应相等C. 一条边对应相等D.两条边对应相等2.如图,已知AE=CF /AFD=/ CEB那么添加下列一个条件后,仍无法判定△AD陷4CBE的是()A. /A=/ CB. AD=CBC. BE=DFD. AD // BC3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSSB. SASC. AASD. ASA4.到三角形三条边的距离都相等的点是这个三角形的(A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点5.如图,△ AC阴NA CB'/BCB =30°则/ ACA的度数为(A. 20°B. 300C. 350D. 40°6.如图,直线11、12、13表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A. 1处B. 2处C. 3处D. 4处7.如图,AD是4ABC中/ BAC的角平分线,D已AB于点E, S AABC=7, DE=ZAB=4,则AC长是()8.如图,在△ ABC和4DEC中,已知AB=DE还需添加两个条件才能使△ ABCDEC不能添加的一组条件是()A. BC=EC /B=/ EB. BC=EC AC=DCC. BC=DC /A=/DD. / B=/ E,/ A=/ D9.如图,已知在△ ABC中,CD是AB边上的高线,BE平分/ ABC,交CD于点E, BC=5 DE=2,贝BCE的面积等于()A. 10B. 7C. 5D. 410.要测量河两岸相对的两点A, B的距离,先在AB的垂线BF上取两点C, D, 使CD=BC再定出BF的垂线DE,使A, C, E在一条直线上(如图所示),可以说明△ED8 AABC,彳3ED=AB因此测得ED的长就是AB的长,判定△ ED8 △ ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角11.如图,4ABC的三边AB, BC, CA长分别是20, 30, 40,其三条角平分线将△ ABC分为三个三角形,则S A ABO):S A BCO:S A CAO等于()BC AA. 1:1:1B. 1: 2: 3C. 2: 3: 4D. 3: 4: 512.尺规作图作/ AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA, OB于C, D,再分别以点C, D为圆心,以大于tCD长为半径画弧,两弧交于点P,作射线OP由作法得^ OC国4ODP的根据是()A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为 30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等14.如图,已知/ 1=/2, AC=AD,增加下列条件:① AB=AE ②BC=ED ③C C= /D;④/ B=/ E.其中能使△ AB ®ZXAED 的条件有( )A. 4个B. 3个C. 2个D. 1个二.填空题(共11小题)15 .如图,在△ ABC 中,/C=90°, AD 平分/CAB BC=8cm, BD=5cm,那么点 D 到线段AB 的距离是 cm.16 .如图,△ ABC 中,/ C=90°, AD 平分/BAC AB=5, CD=2,则△ ABD 的面积17 .如图为6个边长等的正方形的组合图形,则/ 1+/ 2+/3=19 .如图所示,某同学把一块三角形的玻璃打碎成了三块, 现在要到玻璃店去配 一块完全一样的玻璃,那么最省事的办法是带 去玻璃店.18.如图,△AB ®ADEF5请根据图中提供的信息,写出* F x= ______是 _______20.如图,已知AB// CF, E为DF的中点,若AB=9cm, CF=5cm 贝U BD=cm.B C21.在数学活动课上,小明提出这样一个问题:/ B=Z C=90°, E是BC的中点, DE 平分/ADC, /CED=35,如图,则/ EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是度.D C22.如图,/XABeAADEE, / B=100°, / BAC=30,那么/ AED=度.23.如图所示,将两根钢条AA', BB'的中点。
全等三角形重点题型(供参考)
全等三角形知识点总结知识点总结一、全等图形、全等三角形:1.全等图形:能够完全 ______ 的两个图形就是全等图形。
2.________________________________ 全等图形的性质:全等多边形的、分别相等。
3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。
同样,如果两个三角形的边、角分別对应相等,那么这两个三角形全等。
说明:全等三角形对应边上的高,中线相等,对应角的平分线相等:全等三角形的周长,而积也都相等。
这里要注意:(1)周长相等的两个三角形,不一定全等;(2)而积相等的两个三角形,也不一定全等。
二、全等三角形的判定:1.一般三角形全等的判定(1) __________________________________________________ 三边对应相等的两个三角形全等(“边边边”或“______________________________________ ”)。
(2) ______________________________________________________________ 两边和它们的夹角对应相等的两个三角形全等(“边角边”或“__________________________ ”)。
(3) ____________________________________________________________________ 两个角和它们的夹边分别对应相等的两个三角形全等("角边角”或“”)。
(4) ____________________________________________________________________ 有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“” )02.直角三角形全等的判定利用一般三角形全等的判定都能证明直角三角形全等.斜边和一条直角边对应相等的两个直角三角形全等("斜边、直角边”或“_____________________________________________________________________________ ”).注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。
八年级数学上册第十二章全等三角形考点题型与解题方法(带答案)
八年级数学上册第十二章全等三角形考点题型与解题方法单选题1、如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.7B.3.5C.3D.2答案:C分析:利用全等三角形的性质求解即可.解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故选C.小提示:本题主要考查了全等三角形的性质,熟知全等三角形对应边相等是解题的关键.2、如图,AD平分∠BAC,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF.则下列结论中:①AD是△ABC的高;②AD是△ABC的中线;③ED=FD;④AB=AE+BF.其中正确的个数有()A.4个B.3个C.2个D.1个答案:A分析:过点D作DG⊥AB于点G,由角平分线的定义及平行线的性质可得∠ADB=90°,然后可证△ADC≌△ADB,△DEC≌△DFB,进而问题可求解.解:∵AD平分∠BAC,BC平分∠ABF,∴∠CAD=∠BAD=12∠CAB,∠ABC=∠FBC=12∠ABF,∵BF∥AC,∴∠CAB+∠ABF=180°,∴∠DAB+∠ABD=90°,即∠ADB=90°,∴AD⊥BC,即AD是△ABC的高,故①正确;∵∠ADB=∠ADC=90°,AD=AD,∴△ADC≌△ADB(ASA),∴DB=DC,即AD是△ABC的中线,故②正确;∵BF∥AC,∴∠CED=∠F,∵∠CDE=∠BDF,∴△DEC≌△DFB(AAS),∴ED=FD,故③正确;过点D作DG⊥AB于点G,如图所示:∵AD平分∠BAC,BC平分∠ABF,∠AED=∠F=90°,∴DE=DG=DF,∵AD=AD,∴△AED≌△AGD(HL),∴AE=AG,同理可知BF=BG,∵AB=AG+BG,∴AB=AE+BF,故④正确;综上所述:正确的个数有4个;故选A.小提示:本题主要考查全等三角形的性质与判定、平行线的性质及角平分线的性质,熟练掌握全等三角形的性质与判定、平行线的性质及角平分线的性质是解题的关键.3、墨墨想在纸上作∠A1O1B1等于已知的∠AOB,步骤有:①画射线O1M;②以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;③以点A1为圆心,以CD为半径画弧,与已画的弧交于点B1,作射线O1B1;④以点O1为圆心,以OC为半径画弧,交O1M于点A1.在上述的步骤中,作∠A1O1B1的正确顺序应为()A.①④②③B.②③④①C.①②④③D.①③④②答案:C分析:根据作一个角等于已知角的方法,选择合适的顺序即可.解:根据作一个角等于已知角的步骤可知,正确的顺序是①②④③故选C.小提示:此题考查了尺规作图-作一个角等于已知角,熟练掌握其作法步骤过程是解题的关键.4、如图,已知AB=AD,BC=DE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF的度数为()A.120°B.135°C.115°D.125°答案:C分析:由已知可得△ABC≌△ADE,故有∠BAC=∠DAE,由∠EAB=120°及∠CAD=10°可求得∠AFB的度数,进而得∠GFD的度数,在△FGD中,由三角形的外角等于不相邻的两个内角的和即可求得∠EGF的度数.在△ABC和△ADE中{AB=AD ∠B=∠D BC=DE∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE∵∠EAB=∠BAC+∠DAE+∠CAD=120°∴∠BAC=∠DAE=12×(120°−10°)=55°∴∠BAF=∠BAC+∠CAD=65°∴在△AFB中,∠AFB=180°-∠B-∠BAF=90°∴∠GFD=90°在△FGD中,∠EGF=∠D+∠GFD=115°故选:C小提示:本题考查了三角形全等的判定和性质、三角形内角和定理,关键求得∠BAC的度数.5、如图,四边形ABCD中,AC、BD为对角线,且AC=AB,∠ACD=∠ABD,AE⊥BD于点E,若BD=6,CD=4.则DE的长度为()A.2B.1C.1.4D.1.6答案:B分析:过点A作AF⊥CD交CD的延长线于点F,根据AAS证明△AFC≌△AEB,得到AF=AE,CF=BE,再根据HL 证明Rt△AFD≌Rt△AED,得到DF=DE,最后根据线段的和差即可求解.解:过点A作AF⊥CD交CD的延长线于点F,∴∠AFC=90°,∵AE⊥BD,∴∠AFC=∠AED=∠AEB=90°,在△AFC和△AEB中,{∠AFC=AEB∠ACF=∠ABEAC=AB,∴△AFC≌△AEB(AAS),∴AF=AE,CF=BE,在Rt△AFD和Rt△AED中,{AF=AEAD=AD,∴Rt△AFD≌Rt△AED(HL),∴DF=DE,∵CF=CD+DF,BE=BD-DE,CF=BE,∴CD+DF=BD-DE,∴2DE=BD-CD,∵BD=6,CD=4,∴2DE=2,∴DE=1,故选:B.小提示:此题考查了全等三角形的判定与性质,根据AAS证明△AFC≌△AEB及根据HL证明Rt△AFD≌Rt△AED是解题的关键.6、如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是()A.2B.2.5C.3D.103答案:C分析:过点A作AH⊥BC于H,证△ABC≌△AED,得AF=AH,再证Rt△AFG≌Rt△AHG(HL),同理Rt△ADF≌Rt△ABH,得S四边形DGBA=S四边形AFGH=12,然后求得Rt△AFG的面积=6,进而得到FG的长.如图所示,过点A作AH⊥BC于H,在△ABC与△ADE中,{AC=AE∠C=∠E BC=DE,∴△ABC≌△ADE(SAS),∴AD=AB,S△ABC=S△AED,又∵AF⊥DE,∴12×DE×AF=12×BC×AH,∴AF=AH,∵AF⊥DE,AH⊥BC,∴∠AFG=∠AHG=90°,在Rt△AFG和Rt△AHG中,,{AG=AGAF=AH∴Rt△AFG≌Rt△AHG(HL),同理:Rt△ADF≌Rt△ABH(HL),∴S四边形DGBA=S四边形AFGH=12,∵Rt△AFG≌Rt△AHG,∴SRt△AFG=6,∵AF=4,∴1×FG×4=6,2解得:FG=3.故选:C.小提示:本题考查全等三角形的判定与性质,综合运用各知识点是解题的基础,作出合适的辅助线是解此题的关键.7、如图,已知AB=AD,AE=AC=BC,∠1=∠2,∠C=40°,则∠ADE的度数为()A.40°B.65°C.70°D.75°答案:C分析:首先根据已知条件证明△ABC≅△ADE,再利用等腰三角形求角度即可.解:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,在△ABC与△ADE中,∵{AB=AD∠BAC=∠DAEAC=AE,∴△ABC≅△ADE(SAS),∴∠C=∠E=40°,AE=BC=DE,∴∠ADE=∠EAD=12(180°−∠E)=12(180°−40°)=70°,故选:C.小提示:本题主要考查三角形全等的证明,利用已知条件进行证明是解题的关键.8、小明不慎将一块三角形的玻璃摔碎成如图的四块,你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块答案:B分析:根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.小提示:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.9、如图,一块玻璃被打碎成三块,如果要去玻璃店配一块完全一样的玻璃,那么最合理的办法是()A.带①去B.带②去C.带③去D.带①②③去答案:C分析:根据三角形的定义,不在同一平面的三条线段,首尾相连组成的图形是三角形,即可求出答案.解:A选项的①上下两边可以无限延伸,无法确定③的大小,不符合题意;B选项的②上下两边可以无限延伸,能确定①的大小,无法确定③的大小,不符合题意;C选项的③上下两边可以延伸,能确定①、②的大小,符合题意,故选C;D选项不符合题意,只需带③即可配一块完全相同的玻璃.故选:C.小提示:本题主要考查三角形的定义,理解和识记三角形的定义,即可求出答案.10、如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,若AB=4,CF=3,则BD的长是( )A.0.5B.1C.1.5D.2答案:B分析:根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出ΔADE≅ΔCFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.∵CF//AB,∴∠A=∠FCE,∠ADE=∠F,在ΔADE和ΔFCE中{∠A=∠FCE∠ADE=∠FDE=FE,∴ΔADE≅ΔCFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB−AD=4−3=1.故选B.小提示:本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ΔADE≅ΔFCE是解此题的关键.填空题11、如图所示,△ABC与△ADE全等,则∠B的对应角是_________,AC的对应边是_________.答案:∠E AD首先确定三角形的对应顶点,再将对应顶点放在对应位置写出两个三角形的全等关系,即△ABC≌△AED,然后按照对应关系即可写出对应边和对应角,∠B的对应角为∠E,AC的对应边为AD.∠E AD12、如图,在Rt△ABC中,∠C=90°,AC=AE,DE⊥AB,若∠BDE=46°,则∠DAE=_______.答案:23°##23度分析:根据题目所给条件,可以得到∠CDE的度数,再根据题目所给条件以及角平分线的判定定理,可以得到DA是∠CDE的角平分线,即可得到∠ADE,再根据△ADE是直角三角形,从而得到最后的答案.解:∵∠BDE=46°,∴∠CDE=180°−∠BDE=180°−46°=134°,∵DE⊥AB,∴∠DEA=90°,又∵AC=AE,∠DEA=90°,∠C=90°,∴DA是∠CDE的角平分线,∴∠ADE=12∠CDE=12×134°=67°,∴在Rt△ADE中,∠DAE=180°−∠DEA−∠ADE=180°−∠90°−67°=23°,所以答案是:23°.小提示:本题考查的是三角形的内角和定理,角平分线的判定定理与性质,解答本题的关键是熟练掌握角平分线的性质和判定定理.13、如图所示的图案是由全等的图形拼成的,其中AD=0.5,BC=1,则AF=______.答案:6分析:由图形知,所示的图案是由梯形ABCD和七个与它全等的梯形拼接而成,根据全等则重合的性质求解即可.解:由题可知,图中有8个全等的梯形,所以AF=4AD+4BC=4×0.5+4×1=6.所以答案是:6.小提示:考查了全等图形的性质,本题利用了全等形图形一定重合的性质求解,做题的关键是找准相互重合的对应边.14、如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以v cm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为_____时,△ABP与△PCQ全等.答案:2或83分析:可分两种情况:①ΔABP≅ΔPCQ得到BP=CQ,AB=PC,②ΔABP≅ΔQCP得到BA=CQ,PB= PC,然后分别计算出t的值,进而得到v的值.解:①当BP=CQ,AB=PC时,ΔABP≅ΔPCQ,∵AB=8cm,∴PC=8cm,∴BP=12−8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,ΔABP≅ΔQCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,,解得:v=83时,ΔABP与ΔPQC全等,综上所述,当v=2或83.所以答案是:2或83小提示:主要考查了全等三角形的性质,矩形的性质,解本题的关键是熟练掌握全等三角形的判定与性质.15、如图,AD是△ABC的角平分线,若△ABC的面积是48,且AC=16,AB=8,则点D到AB的距离是______.答案:4分析:过D点作DE⊥AB于E,DF⊥AC于F,如图,根据角平分线的性质得到SΔABD+SΔACD=SΔABC,再利用三角形面积公式得到12×8×DE+12×DE×16=48,然后求出DE即可.解:过D点作DE⊥AB于E,DF⊥AC于F,如图,∵AD是ΔABC的角平分线,∴DE=DF,∵SΔABD+SΔACD=SΔABC,∴12AB⋅DE+12AC⋅DF=48,即12×8×DE+12×DE×16=48,∴DE=4,即点D到AB的距离为4.所以答案是:4.小提示:本题考查了角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等,也考查了三角形面积.解答题16、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN 绕点C 旋转到图①的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图②的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.(3)当直线MN 绕点C 旋转到图③的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.答案:(1)证明见解析(2)AD =BE +DE ,证明见解析(3)BE =AD +DE ,证明见解析分析:(1)先用AAS 证明△ADC ≌△CEB ,得AD =CE ,BE =CD ,进而得出DE =BE +CD ;(2)先证明△ACD ≌△CBE (AAS ),可得AD =CE ,CD =BE ,进而得出AD =CD +DE =BE +DE ;(3)证明过程同(2),进而可得BE =AD +DE .(1)证明:由题意知,∠BCA =90°,∠ADC =∠BEC =90°,∴∠ACD +∠BCE =90°,∠BCE +CBE =90°,∴∠ACD =∠CBE ,在△ADC 和△CEB 中,∵{∠ADC =∠CEB =90°∠ACD =∠CBE AC =BC,∴△ADC ≌△CEB (AAS ),∴AD =CE ,BE =CD ,∴DE =DC +CE =BE +AD .(2)解:AD=BE+DE.证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠ACD+∠BCD=90°,∠BCD+∠CBE=90°,∴∠ACD=∠CBE,在△ABD和△ACE中,∵{∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴AD=CD+DE=BE+DE.(3)解:BE=AD+DE.证明:∵AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠BEC=90º,∴∠EBC+∠BCE=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠ACD=∠EBC,在△ACD和△CBE中,∵{∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴BE=CD,AD=CE,∴BE=CE+DE=AD+DE,∴BE=AD+DE.小提示:本题考查了全等三角形的判定与性质.解题的关键在于找出证明三角形全等的条件.17、如图,已知点C是AB的中点,CD//BE,且CD=BE.(1)求证:△ACD≌△CBE.(2)若∠A=87°,∠D=32°,求∠B的度数.答案:(1)见解析;(2)61∘分析:(1)根据SAS证明△ACD≌△CBE;(2)根据三角形内角和定理求得∠ACD,再根据三角形全等的性质得到∠B=∠ACD.(1)∵C是AB的中点,∴AC=CB,∵CD//BE,∴∠ACD=∠CBE,在△ACD和△CBE中,{AC=CB∠ACD=∠CBECD=BE,∴ΔACD≅ΔCBE;(2)∵∠A=87°,∠D=32°,∴∠ACD=180°−∠A−∠D=180°−87°−32°=61°,又∵ΔACD≅ΔCBE,∴∠B=∠ACD=61°.小提示:考查了全等三角形的判定和性质,解题关键是根据SAS证明△ACD≌△CBE.18、阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.答案:(1)2;(2)4分析:(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证△FGH≌△FNK,则有FK=FH,因为HM=GH+MN易证△FMK≌△FMH,故可求解.(1)由题意知S四边形ABCD =S△ABC+S△ADC=S△ABC+S△ABE=S△AEC=12AC2=2,故答案为2;(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示:∵ FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,∴∠FNK=∠FGH=90°,∴△FGH≌△FNK,∴FH=FK,又∵FM=FM,HM=KM=MN+GH=MN+NK,∴△FMK≌△FMH,∴MK=FN=2cm,∴S五边形FGHMN =S△FGH+S△HFM+S△MFN=2S△FMK=2×12MK⋅FN=4.小提示:本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.。
(完整版)全等三角形知识总结和经典例题
全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS)9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
初二数学上册:全等三角形常考题型+解题思路整理
初二数学上册:全等三角形常考题型+解题思路整理全等三角形的性质对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等。
寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
(3)有公共边的,公共边常是对应边。
(4)有公共角的,公共角常是对应角。
(5)有对顶角的,对顶角常是对应角。
(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角)。
【解题关键】要想正确地表示两个三角形全等,找出对应的元素是关键。
全等三角形的判定方法(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等。
(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等。
(3)边边边定理(SSS):三边对应相等的两个三角形全等。
(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等。
(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等。
全等三形的应用运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线。
【拓展】通过判定两个三角形全等,可证明两条线段间的位置关系和大小关系。
而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础。
找全等三角形的方法(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
八年级上册数学《全等三角形》知识归纳与题型突破含解析
第十二章 全等三角形知识归纳与题型突破(题型清单)一、全等图形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形能够完全重合的两个三角形叫全等三角形.三、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.四、全等三角形的判定01 思维导图02 知识速记五、全等三角形的证明思路SAS HLSSS AAS SAS ASAAAS ASA AAS→ → → →→ → → → → → 找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边六、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.七、 角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。
人教版八年级上册数学专题复习证明三角形全等的常见题型
证明三角形全等的常见题型全等三角形是初中几何的重要内容之一,全等三角形的学习是几何入门最关键的一步,这部分内容学习的好坏直接影响着今后的学习。
而一些初学的同学,虽然学习了几种判定三角形全等的公理和推论,但往往仍不知如何根据已知条件证明两个三角形全等。
在辅导时可以抓住以下几种证明三角形全等的常见题型,进行分析。
一、已知一边与其一邻角对应相等1.证已知角的另一边对应相等,再用SAS证全等。
例1已知:如图1,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。
证明∵BE=CF(已知),∴BE+ EF=CF+EF,即 BF=CE。
在△ABF和△DCE中,∴△ABF≌△DCE(SAS)。
∴ AF=DE(全等三角形对应边相等)。
2.证已知边的另一邻角对应相等,再用ASA证全等。
例2已知:如图2,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。
求证:AE=CE。
证明∵ FC∥AB(已知),∴∠ADE=∠CFE(两直线平行,内错角相等)。
在△ADE和△CFE中,∴△ADE≌△CFE(ASA).∴ AE=CE(全等三角形对应边相等)3.证已知边的对角对应相等,再用AAS证全等。
例3(同例2).证明∵ FC∥AB(已知),∴∠A=∠ECF(两直线平行,内错角相等).在△ADE和△CFE中,∴△ADE≌△CFE(AAS).∴ AE=CE(全等三角形对应边相等)。
二、已知两边对应相等1.证两已知边的夹角对应相等,再用SAS证等。
例4已知:如图3,AD=AE,点D、E在BCBD=CE,∠1=∠2。
求证:△ABD≌△ACE.证明∵∠1=∠2(已知),∠ADB=180°-∠1,∠AEC=180°-∠2(邻补角定义),∴∠ADB = ∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).2.证第三边对应相等,再用SSS证全等。
例5已知:如图4,点A、C、B、D在同一直线AC=BD,AM=CN, BM=DN。
八年级上册数学全等三角形必考题
八年级上册数学全等三角形必考题全文共5篇示例,供读者参考八年级上册数学全等三角形必考题1《全等三角形的判定》这一课,要求学生会通过观察几何图形识别两个三角形全等,并能通过正确的分类动手探索出两个三角形全等的条件。
具体说:(1)正确识别两个三角形全等——会将两个三角形相等的边和角对应重叠在一起,看是否重合;(2)相信判定两个三角形全等不一定要3条边和3个角都相等,可能一边或一角相等就足够(这个判断不一定要正确,但要有这种想法,探索命题的真假才有可能);(3)能正确地将三角形的6个元素按条件的个数分成:①一个元素:一个边或一条角对应相等。
②两个元素:两边或一边一角或两角对应相等。
③三个元素:三边或两边和一角或一边和两角或三角对应相等。
或者按:①边(一条边或两条边或三条边分别对应相等)。
②角(一个角或两个角或三个角分别对应相等)。
③边和角[一条边和一个角或一条边和两个角(又分为角边角和角角边两种)或两条边和一个角(又分为边角边和边边角两种)分别对应相等];(4)能将分好的三大类(12小类)条件用画图的方法进行验证,找出能判定两个三角形全等的三条公理和一条定理;(5)能用这四个判定,直接判定两个三角形是否全等或能补充一个条件使两个三角形全等。
基于知识的完整性和分类的数学思想的渗透,我认为这个教学设计体现了知识与技能目标。
增强学生的观察、猜想和动手操作能力。
八年级上册数学全等三角形必考题2一、制订好复习课的复习目标复习要对以前多节新课中的知识点或数学思想方法进行压缩整理,所以要制订好复习课的复习目标。
首先,选择合适的知识范围非常重要。
其次,应确定对所选知识点中重点的复习深度,过易会让学生索然无味,过难会让学生畏惧前行,失去信心。
我对这节课的难度把握是保全突尖,教学流程本身有梯度,例题与配套变式也有梯度。
不过对于例3“求证两线段相等”这个问题既需要添加辅助线,又要连续两次证全等。
问题的梯度设置过大,许多学生还观察不出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形题型总结
题型一、一线三垂直
1、如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,CE⊥MN于E,(1)求证:BD=AE。
(2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系?
2、如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,此人的运动速度为1m/s,求这个人运动了多长时间.
27、王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC, ∠ABC=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.
题型二、角平分线与全等
1、如图所示,四边形ABCD中AB=AD,CA平分∠BCD,AE⊥BC,AF⊥CD,图中有无和△ABE全等的三角形?请说明理由。
2.如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA于点D,PE⊥OB于点E,F是OC上除点P、O外的一点,连接DF,EF,则DF与EF的关系如何?证明你的结论.
图
题型三、旋转与全等
1、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG,(1)观察猜想BE与DC之间的大小关系,并证明你的结论。
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程,若不存在,说明理由。
B
A
C
D E
2、图17,△ABC 和△ADE 都是等腰直角三角形,CE 与BD 相交于点M ,BD 交AC 于点N . 证明:(1)BD =CE ; (2)BD ⊥CE .
图17
3、如图,ABC ∆为等边三角形,D 为边BA 延长线上一点,连接CD ,以CD 为一边作等边三角形
CDE ∆,连接AE .
(1)求证:CBD ∆≌CAE ∆.
(2)判断AE 与BC 的位置关系,并说明理由.
4、如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,具有BF=AC ,FD=CD ,试探究BE 与AC 的位置关
系.
A
B
D
C
E
F
5、如图,把一个Rt△ACB(∠ACB=90°)绕着顶点B按顺时针方向旋转60°,使得点C旋转到边AB上的一点D,点A旋转到点E的位置,F、G分别是BD、BE上的点,BF=BG,延长CF与DG交于点H .
(1)求证:CF=DG;
(2)求∠FHG的度数.
6、如图16,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC ≌△ADE的道理.
7、如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,
求证:△ABD≌△AEC.
8、如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.
(1)图①中有对全等三角形,并把它们写出来
(2)求证:BD与EF互相平分于G;
(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.
第
题型四、等腰三角形与全等
1、如图,在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.
2、有两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点.
(1)不重叠的两部分△AOF与△DOC是否全等?为什么?
(2)连接BO,求证:BO平分∠ABD.
3、在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
求证:(1)△ABD≌△ACD;(2)BE=CE.
4、如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.
(1)求证:△ABE≌△CAD;
(2)求∠PBQ的度数.
5、如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连结点D,E,F,•得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.。