光电耦合器件简介

合集下载

光电耦合器分类

光电耦合器分类

光电耦合器分类光电耦合器是一种用于将光信号转换为电信号的器件。

根据不同的分类方式,光电耦合器可以有多种类型。

以下是光电耦合器的分类,包括结构类型、传输模式、输入输出阻抗、工作频率、隔离电压、传输速度、检测方式以及光纤类型。

1.结构类型光电耦合器可以根据其结构类型分为以下几种:1.1.微型封装:微型封装的光电耦合器体积小,适合用于高密度集成和空间受限的应用场景。

1.2.扁平封装:扁平封装的光电耦合器具有较低的高度和较宽的引脚间距,适用于需要表面安装或空间受限的情况。

1.3.宽引脚封装:宽引脚封装的光电耦合器具有较宽的引脚间距,适用于需要较高电流驱动能力的应用场景。

1.4.光纤耦合封装:光纤耦合封装的光电耦合器是将光信号从光纤中传输到光电探测器中进行转换的器件,适用于长距离和高速度的光纤通信系统。

2.传输模式光电耦合器可以根据其传输模式分为以下几种:2.1.线性模式:线性模式的光电耦合器输出电流与输入电流成比例关系,适用于模拟信号的传输。

2.2.数字模式:数字模式的光电耦合器输出为数字信号,适用于数字电路中的信号传输。

3.输入输出阻抗光电耦合器根据其输入输出阻抗可以分为以下几种:3.1.高阻抗型:高阻抗型的光电耦合器输入输出阻抗较高,适用于长线传输和噪声抑制。

3.2.低阻抗型:低阻抗型的光电耦合器输入输出阻抗较低,适用于高速数据传输和低功耗应用。

4.工作频率光电耦合器根据其工作频率可以分为以下几种:4.1.低频型:低频型的光电耦合器适用于低频信号的传输。

4.2.高频型:高频型的光电耦合器适用于高频信号的传输,具有较好的高频性能。

5.隔离电压光电耦合器根据其隔离电压可以分为以下几种:5.1.低隔离电压型:低隔离电压型的光电耦合器适用于低电压差的应用场景。

5.2.高隔离电压型:高隔离电压型的光电耦合器适用于高电压差的应用场景,具有较高的隔离能力和抗干扰能力。

6.传输速度光电耦合器根据其传输速度可以分为以下几种:6.1.低速型:低速型的光电耦合器适用于低速数据传输的应用场景。

光电耦合器

光电耦合器

光电耦合器光电耦合器亦称光耦合器(Optical Coupler)。

它是以光为媒介,用来传输电信号的器件,内部包括发光器和受光器两部分。

通常是把发光器(可见光LED或红外线LED)与受光器(光电半导体管)封装在同一管壳内。

当输入端加上电信号时,发光器发出光线,受光器接受照之后就产生光电流,从输出端引出,从而实现了“光-电-光”的转换。

下面分别介绍光电耦合器的工作原理及检测方法。

1.工作原理光电耦合器有管式、双列直插式和光导纤维式等封培育形式。

图1是内部结构示意图。

光电耦合器的种类达数十种,主要有通用型(又分无基极引线和基极引线两种)、达林顿型、施密特型、高速型、光集成电路、光纤维、光敏晶闸管型(又分单向晶闸管、双向晶闸管)、光敏场效应管型。

此外还有双通道式(内部有两套对管)、高增益型、交-直流输入型等等。

表1和表2分别列出光电耦合器的分类及典型产品主要参数。

国外生产厂家有英国ISOCOM公司等,国内厂家的苏州半导体总厂等。

光电耦合器的主要优点是:信号单向传输,输入端与输出端隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长。

光电耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、脉冲放大电路、数字仪表、微型计算机中。

利用它还可构成固态继电器(SSR)等。

光电耦合器的参数较多。

最重要的参数是电流放大系数传输比CTR (Curremt-Trrasfer Ratio)。

当接收管的电流放大系数h FE为常数时,它等于输出电流I C之比,通常用百分数来表示。

有公式CTR=I C/ I F×100%采用一只接收管的光电耦合器,CTR为20%~30%;达林顿型可达100%~500%。

这表明,欲获得同样的输出电流,达林顿型只需要较小的输入电流。

图3绘出了典型产品的CTR-I F特性。

2.利用万用表检测光电耦合器的方法鉴于光电耦合器中的发射管与接收管是互相独立的因此可以单独检测这两部分。

光电耦合器件

光电耦合器件
应使发光元件和接收元件的波长 匹配。
2. 光电开关 光电开关利用感光元件对变化的入 射光加以接收,并进行光电转换,同时 加以某种形式的放大和控制, 从而获得最终的控制输出“开”、 “关”信号的器件。 图8-22为典型的光电开关结构图。
发光元件 窗 接收元件 壳体
导线
图(a)是一种透射式的光电开关, 它的发光元件和接收元件的光轴是重 合的。
+Vcc
R
CD4 584
CD4584 双列14脚封装 六非门(施密特触发器) 互补MOS 电源电压:7~15 v
+Vcc R
图(a)、(b)表示负载为 CMOS比较器等高输入阻抗电路时 的情况,
+Vcc
R SN 741 4
SN7414 双列14脚封装 六非门(施密特触发器) 双极型低功耗TTL 电源电压:5 v
光电开关的特点:
小型、高速、非接触,而且与TTL、 MOS 等电路容易结合。
用光电开关检测物体时,大部分只 要求其输出信号有“高——低” (1—0) 之 分即可。
图8 - 23 是光电开关的基本电路示例。
+Vcc
R
CD4 584
+Vcc R
+Vcc
R SN 741 4
(a)
(b)
(c)
图8-23 光电开关的基本电路
当不透明的物体位于或经过它们之 间时,会阻断光路,使接收元件接收不 到来自发光元件的光,这样就起到了检 测作用。
图(b)是一种反射式的光电开关。
反射物
接 收 元件
发 光 元件
壳体 导线
它的发光元件和接收元件的光轴在 同一平面且以某一角度相交,交点一般 即为待测物所在处。
当有物体经过时,接收元件将接收 到从物体表面反射的光,没有物体时则 接收不到。

光耦百科

光耦百科
使用光电耦合器主要是为了提供输入电路和输出电路间的隔离,在设计电路时, 必须遵循下列原则:所选用的光电耦合器件必须符合国际的有关隔离击穿电压的标
准;由英国埃索柯姆(Isocom)公司、美国摩托罗拉公司生产的 4N××系列(如 4N25 、 4N26、4N35)光 耦 合 器 ,目 前 在 国 内 应 用 地 十 分 普 遍ห้องสมุดไป่ตู้。鉴 于 此 类 光 耦 合 器 呈 现 开 关 特 性,其线性度差,适宜传输数字信号(高、低电平),可以用于单片机的输出隔离;所 选用的光耦器件必须具有较高的耦合系数。
光耦
百科名片 光耦合器(opticalcoupler,英文缩写为 OC)亦称光电隔离器或光电耦合器,简称光耦。它 是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管 LED)与受光器(光 敏半导体管)封装在同一管壳内。当输入端加电信号时发光器发出光线,受光器接受光线之 后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。以光为媒介把输入端信号 耦合到输出端的光电耦合器,由于它具有体积小、寿命长、无触点,抗干扰能力强,输出和 输入之间绝缘,单向传输信号等优点,在数字电路上获得广泛的应用。 目录
Un 封装型,以及光纤传输型
光耦
等。(4)按传输信号分,可分为数字型光电耦合器(OC 门输出型,图腾柱输出型及三 态门电路输出型等)和线性光电耦合器(可分为低漂移型,高线性型,宽带型,单电 源型,双电源型等)。
(5)按 速 度 分 ,可 分 为 低 速 光 电 耦 合 器( 光 敏 三 极 管 、光 电 池 等 输 出 型 )和 高 速 光 电耦合器(光敏二极管带信号处理电路或者光敏集成电路输出型)。
保持恒定时,它等于直流输出电流 IC 与直流输入电流 IF 的百分比。采用一只光敏三

光耦器件的工作原理

光耦器件的工作原理

光耦器件的工作原理光耦器件,也被称为光电耦合器件或光电耦合器,是一种将光信号转换为电信号的装置。

它是光电子器件的一种重要形式,主要由光发射器件和光接收器件组成。

光耦器件的工作原理可以分为两个方面,即光发射部分和光接收部分。

光发射部分的工作原理:光发射部分通常由光二极管(LED)组成,其工作原理是通过直接电流作用下的注入复合效应。

当正向电压施加在LED上时,电子从N型区域注入到P型区域,而空穴从P型区域注入到N型区域。

由于N型区域和P 型区域之间参杂了杂质,形成了PN结。

当电子和空穴在PN结相遇时,会发生复合效应,产生光子并释放能量。

这些发射的光子经过反射或折射,最终从LED的透镜发射出去。

光接收部分的工作原理:光接收部分通常由光敏二极管(光电二极管)或光电晶体管(光敏三极管)组成。

这些器件基于内照光效应或外光效应原理工作。

内照光效应是指当光子射到PN结上时,会激发PN结上的载流子,在电场的作用下产生电流。

外光效应是指当光子照射到半导体晶体管的基区(基极),由于此时静漏极电流Ico很小,射过来的光子就可能改变集电区(集电极)的电流,即将光信号转化为电信号。

光耦器件通过光发射部分和光接收部分之间的物理分离,实现了电与光的隔离,从而具有以下几个特点:1.隔离性能:光耦器件可以将输入与输出之间进行电-光-电的隔离,有效地防止输入端电信号对输出端的干扰。

2.电隔离:通过光电转换技术,光耦器件可以在信号传输过程中实现电隔离,避免了不同电源之间的干扰和循环接地引起的回路故障。

3.传输速率:光耦器件的光敏器件可以实现高速信号传输,其响应速度可达几十兆赫兹甚至更高。

4.噪声抑制:由于光耦器件的输入端和输出端之间被电隔离,能够有效抑制输入信号中的干扰噪声,提高系统的信噪比。

5.安全性:光耦器件能够隔离高电压与低电压之间的危险信号,提高系统的安全性和稳定性。

总结而言,光耦器件通过光发射部分将电信号转换为光信号,再通过光接收部分将光信号转换为电信号,实现了无接触传输和电光隔离。

光电耦合器作用和原理

光电耦合器作用和原理

光电耦合器作用和原理光电耦合器(Optocoupler)是一种光学器件,具有隔离性、放大性、线性性、稳定性等特点,广泛应用于电子电路中。

它主要由光发射器、光接收器、隔离层和输出级组成。

光电耦合器的作用是将输入信号转换成光脉冲信号,并通过隔离层隔离与输出№级,同时光脉冲信号被接收器转换为输出信号,从而实现输入输出信号的隔离和传输。

光电耦合器可以起到电气隔离和信号转换的作用,为电子电路提供安全可靠的保护。

同时,光电耦合器还可以提高电路的抗干扰能力和共模抑制比。

光电耦合器的原理是光电效应。

当有光照射到半导体材料上时,根据光电效应,半导体中一部分电子被激发,从而电子从价带跃迁至导带,形成空穴和电子对,从而产生光生载流子。

当半导体中有足够的轻子和空穴,光生载流子迅速扩散和漂移,并在光电接收器结构内的pn结区域结合产生电流。

光电接收器的输出信号与输入光发射器的输入信号一致。

光电耦合器的使用步骤如下:1.根据电路的需求选择合适的光电耦合器,包括光电器件类型、隔离电压等参数。

2.接线时应注意输入端和输出端的电极连接,一般采用直插式或SOP引脚式连接。

3.在电路中正确接入光电耦合器,将输入端连接到输入信号源,输出端连接到需要控制的电路中。

4.在电路通电前,应先检查光电器件的极性和隔离性能是否正确,以免引起损坏。

5.对于高频信号输入,需注意进行匹配和阻抗调节,以保证输入和输出信号传输的准确和稳定。

总之,光电耦合器是一种重要的光学器件,在现代电子电路中广泛应用。

它通过光电效应将输入电信号转换为光信号,隔离并放大信号,提高电路的抗干扰能力和共模抑制比,保证了电路的稳定性和可靠性。

同时,使用光电耦合器还可以避免电路中的接地问题和供电噪音问题。

光电耦合器介绍

光电耦合器介绍

光电耦合器介绍光耦是做什么用的呢?光耦全称是光耦合器,英文名字是:optical coupler,英文缩写为OC,亦称光电隔离器,简称光耦。

光耦隔离就是采用光耦合器进行隔离,光耦合器的结构相当于把发光二极管和光敏(三极)管封装在一起。

发光二极管把输入的电信号转换为光信号传给光敏管转换为电信号输出,由于没有直接的电气连接,这样既耦合传输了信号,又有隔离干扰的作用。

只要光耦合器质量好,电路参数设计合理,一般故障少见。

如果系统中出现异常,使输入、输出两侧的电位差超过光耦合器所能承受的电压,就会使之被击穿损坏。

光耦的参数都有哪些?是什么含义?1、CTR:电流传输比2、Isolation V oltage:隔离电压3、Collector-Emitter Voltage:集电极-发射极电压CTR:发光管的电流和光敏三极管的电流比的最小值隔离电压:发光管和光敏三极管的隔离电压的最小值集电极-发射极电压:集电极-发射极之间的耐压值的最小值光耦什么时候导通?什么时候截至?-------------------------------------关于TLP521-1的光耦的导通的试验报告要求:3.5v~24v 认为是高电平,0v~1.5v认为是低电平思路:1、0v~1.5v认为是低电平,利用串接一个二极管1N4001的压降0.7V+光耦的LED的压降,吃掉1.4V左右;2、24V是最高电压,不能在最高电压的时候,光耦通过的电流太大;所以选用2K的电阻;光耦工作在大概10mA的电流,可以保证稳定可靠工作n年以上;3、3.5V以上是高电平,为了尽快进入光敏三极管的饱和区,要把光耦的光敏三极管的上拉电阻加大;因此选用10K;同时要考虑到ctr最小为50%;电路:1、发光管端:实验室电源(0~24V)->2K->1N4001->TLP521-1(1)->TLP521-1(2)-gnd12、光敏三极管:实验室电源(DC5V)->10K->TLP521-1(4)->TLP521-1(3)-gnd23、万用表直流电压挡20V万用表+ -> TLP521-1(4)万用表- -> TLP521-1(3)试验结果输入电源万用表电压(V)1.3V 51.5V 4.81.7V 4.411.9V 3.582.1V 2.942.3V 1.82.5V 0.582.7V 0.22.9V 0.193.1V 0.173.3V 0.163.5V 0.165V 0.1324V 0.06-----------------------------------------光耦是用来隔离输入输出的,主要是隔离输入的信号。

什么是光电耦合器-其原理作用是什么

什么是光电耦合器-其原理作用是什么

什么是光电耦合器?其原理作用是什么光电产品是我们现代生活中必不可少的一种设备,它为我们的生活带来了诸多的便利。

光电产品能够正常的使用,是离不开光电器件的。

光电耦合器就是这样一种非常重要的光电器件。

但是,小编相信绝大多数读者朋友都不是很了解光电耦合器的原理和作用,下面小编就为大家详细介绍光电耦合器的相关知识,希望带领大家了解这种器件的原理和作用。

光电耦合器简介什么是光电耦合器呢?它是一种以光为主要媒介的光电转换元件,它能够实现由光到电、再由电到光的转化。

光电耦合器又叫光电隔离器。

它能够对电路中的电信号产生很好的隔离作用,特别是在照明的电路中,它更是能够有效地保护电路和导线,使光信号和电信号互不干扰,各自进行工作,确保了电源和光源各自的正常有序工作,具有较好的电绝缘能力和防干扰能力。

生活中常见的光电耦合器有很多种类,如光电二极管、三极管,光敏电阻、光控型晶闸管,这些都属于很不错的光电耦合器。

光电耦合器原理那么光电耦合器的工作原理是什么呢?要了解光电耦合器的原理,首先就要了解它的组成部分。

光电耦合器主要是由两部分组成,分别是发光源和受光器,这两部分的元件都同时处于一个密闭的空间中,而且彼此之间都是用绝缘的透明壳体隔离。

电流工作的方式是以发光源的接线口为输入端,电流从这里进入。

以受光器的接线口为输出端,电流从这里输出。

当电流进入到发光源中,发光的元件受到电流作用发光,而且光的亮度会因为输入电流的大小而改变。

当光照到受光器上,受光器发生反应,电流从这里输出就会成为光电流。

那么什么是光电流呢?它是同时具有光电特性的信号,当这种信号传播到受光器上,受光器就会根据光电流的光照强度输出对应大小的电流,这些电流再回到电路中,就会形成一。

光电耦合器件的应用

光电耦合器件的应用

光电耦合器件的应用光电耦合器件是一种能够将光信号转换为电信号,或者将电信号转换为光信号的器件。

它由光电转换器和电光转换器组成,广泛应用于通信、测量、遥感等领域。

在通信领域,光电耦合器件被广泛应用于光纤通信系统中。

光纤通信系统是一种基于光信号传输的高速、远距离通信方式。

光电耦合器件作为光纤通信系统中的重要组成部分,起到了关键的作用。

它能够将光信号转换为电信号,并通过电路进行放大、调制等处理,然后再将电信号转换为光信号,通过光纤进行传输。

这样既能够实现光信号的高速传输,又能够充分利用电子器件的处理能力,提高通信系统的性能。

在测量领域,光电耦合器件也有着重要的应用。

光电耦合器件能够将光信号转换为电信号,从而实现对光信号的测量。

在光学测量中,光电耦合器件常常被用于测量光强、光功率、光频率等参数。

通过将光信号转换为电信号,并通过相应的电路进行处理,可以得到准确的测量结果。

这在科学研究、工程测试等领域都起到了重要的作用。

光电耦合器件还被广泛应用于遥感领域。

遥感是一种通过遥感卫星或其他遥感平台获取地球表面信息的技术。

光电耦合器件作为遥感系统中的重要组成部分,能够将通过遥感平台获取的光信号转换为电信号,并通过相应的电路进行处理。

这样可以得到地球表面的各种信息,如地形、植被、水资源等。

这对于环境监测、农业生产、城市规划等方面都具有重要意义。

光电耦合器件作为一种将光信号和电信号相互转换的器件,具有广泛的应用前景。

它在通信、测量、遥感等领域都有着重要的作用。

随着科技的不断进步,光电耦合器件的性能也在不断提高,应用领域也在不断拓展。

相信在未来,光电耦合器件将会在更多的领域发挥重要作用,为人们的生活带来更多的便利。

光电耦合器件

光电耦合器件

3. 传输参数 (1)电流比CTR 指直流状态下,输出电流与输入电流之比。 一般 < 1。 (2)隔离电阻 RISO。指输入输出间绝缘电阻。 (3)极间耐压 UISO。 指发光管光电管间的绝缘耐压,一般在 500 V以上。 (4)脉冲上升时间和下降时间、输入输出的寄 生电容
以目前应用最广泛的发光二极管 和光敏三极管组合成的光电耦合 器为例,其内部结构。
ISOCOM公司是具有30年的与业光耦制造
经验,是英国光耦制造与家。
小批量采贩
1、小批量采贩原因多样化,采贩渠道多样化 2、工程师对小批量采贩的技术支持需求增加 3、小批量采贩网站的易用性和参考资料受欢迎 4、更多的工程师开始使用网络结算通道 5、对目录分销商的认知度在提升,使用的人在增加
添加文本样机开収(71.6%)和小批量生产模式(28.4%) 仌然是2011年小批量采贩的主要原因,但原有物料替换试 样(18%)和科学研究(13.1%)引起的小批量采贩表现较 活跃,这两项是2011调查新增的选项。此外,小批量采贩 的原因还包括产品维修(9.9%)和量产物料丌足(9%)。
现货市场/贸易商(50.2%)是小批量采贩的主要渠道,目录分销商(17.6%)、 授权分销商(14.0%)、B2B网站(13.2%)前景丌容忽视。现货市场质量无 保障,但价格低;目录分销商产品种类全,质量有保障,但价格高;授权分销 商技术支持力量强;B2B网站贩物便捷,可见小批量采贩正在趋向更加多样化 的采贩渠道。
1、组成开关电路
2、组成逻辑电路 当A或B只要有一个为低 电平时,B1或B2其中一 个或两个将会截止,F=o; 只有当输入逻辑电平A=1、 B=l时,输出F=1,完成 了“与”逻辑功能。
还可以根据其它逻辑运 算规律,组成“或门”、 “与非门”、“非门” 等逻辑电路。

光电耦合器用途

光电耦合器用途

光电耦合器用途光电耦合器(Optocoupler)是一种可以将光信号和电信号进行转换的电子器件。

它由光电二极管和光敏三极管组成,内部用光电转换材料将输入光信号转换为电信号输出。

光电耦合器广泛应用于电气系统中,具有多种重要用途。

1. 隔离信号光电耦合器的主要作用是实现信号的隔离。

在一些特殊的应用场景中,需要将电路系统的输入与输出隔离开来,以确保安全性和稳定性。

光电耦合器通过接收输入信号并将其转换为光信号,然后通过光敏三极管将光信号转换回电信号输出,从而实现了输入与输出之间的电气隔离。

2. 抑制干扰在电气系统中,信号之间常常会发生相互干扰的现象。

光电耦合器具有良好的高频隔离特性,可以有效抑制电气干扰信号的传递。

通过使用光电耦合器,可以提高系统的信号质量,减少对其他电路的干扰,增强系统的稳定性和可靠性。

3. 开关控制光电耦合器也被广泛应用于开关控制领域。

在一些需要控制电路的应用场景中,如遥控开关、自动控制系统等,光电耦合器可以将光信号转换为电信号来实现对电路的开关控制。

通过控制输入端的光信号,可以实现对输出端的电路开关进行控制,从而达到灵活控制电气系统的目的。

4. 传感器信号转换光电耦合器还常常用于传感器信号的转换。

传感器通常会输出微弱的电信号,为了能够更好地利用这些信号,常需要将其放大或转换为其他形式的信号。

光电耦合器可以将传感器的电信号转换为光信号输出,再通过光敏三极管将光信号转换为电信号。

这样可以增强传感器的信号质量,提高其抗干扰能力,以及适应更广泛的应用需求。

5. 隔离通讯在通讯领域,光电耦合器被广泛用于隔离和转换通讯信号。

随着信息技术的发展,通讯系统的频率和速度不断提高,同时也对信号的稳定性和抗干扰性提出了更高的要求。

光电耦合器能够实现高速数据传输和信号隔离,减少干扰和损耗,提高通讯质量和可靠性。

综上所述,光电耦合器具有多种重要用途。

它可以实现信号的隔离和抑制干扰,用于开关控制和传感器信号转换,以及在通讯领域中实现隔离通讯等。

光电耦合器工作原理

光电耦合器工作原理

光电耦合器工作原理光电耦合器是一种能够将光信号转换为电信号,或者将电信号转换为光信号的器件。

它由光电二极管和光敏三极管组成,通过光敏元件的光电效应,实现光信号和电信号之间的转换。

光电耦合器的工作原理如下:1. 光电二极管:光电二极管是一种能够将光信号转换为电信号的半导体器件。

当光照射到光电二极管的PN结上时,光子能量被吸收,产生电子-空穴对。

光电二极管的PN结上有一个电场,使得电子和空穴分别朝着不同的方向运动。

这样,就产生了一个电流,即光电流。

2. 光敏三极管:光敏三极管是一种能够将电信号转换为光信号的半导体器件。

它由一个发射区和一个接收区组成。

当电流通过发射区时,发射区会发射出光子。

这些光子经过空气或者光纤传输到接收区,然后被接收区吸收,产生电子-空穴对。

这样,就产生了一个电流,即光电流。

3. 光电耦合:光电耦合器利用光电二极管和光敏三极管之间的光电效应,实现光信号和电信号之间的转换。

当光照射到光电二极管上时,光电二极管产生光电流。

这个光电流通过电路传输到光敏三极管的发射区,激发发射区发射出光子。

这些光子经过传输介质传输到光敏三极管的接收区,被接收区吸收,产生光电流。

这样,光电耦合器就实现了光信号到电信号的转换。

4. 应用:光电耦合器广泛应用于光通信、光电隔离、光电检测等领域。

在光通信中,光电耦合器可以将光纤中的光信号转换为电信号,然后通过电路进行处理和传输。

在光电隔离中,光电耦合器可以实现电路之间的隔离,避免电流和电压的相互干扰。

在光电检测中,光电耦合器可以将光信号转换为电信号,然后通过电路进行分析和判断。

总结:光电耦合器是一种能够将光信号和电信号之间进行转换的器件。

它通过光电效应实现光电流的产生和转换,从而实现光信号和电信号之间的转换。

光电耦合器在光通信、光电隔离、光电检测等领域具有重要的应用价值。

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说光电转换器件一般采用光敏材料制成,其主要功能是将光信号转换为电信号。

常用的光电转换器件有光电二极管和光电三极管。

光电转换器件内部有可感光的半导体材料。

当光在其表面照射时,光子被材料吸收,形成光激发的载流子。

这些载流子受到电场的作用发生漂移和扩散,在外加电压的作用下,产生光电流。

光电流的强度与入射光强度成正比。

电光转换器件一般采用高纯度的半导体材料制成,其主要功能是将电信号转换为光信号。

常用的电光转换器件有LED(发光二极管)和激光二极管。

这些器件内部有PN结,当外加正向电压时,电子和空穴注入结区域并发生复合,释放出多余的能量以光子的形式。

这些光子经半导体波导的引导和扩散,最终形成输出的光信号。

1.当有光照射到光电转换器件上时,光子被材料吸收,产生光电流。

光电流的大小与光的强度成正比。

2.光电流经过电路进行放大和调整,然后输入到电光转换器件中。

3.电光转换器件通过电信号的作用,产生对应的光信号。

电流和电压的大小将直接影响输出光的功率和亮度。

4.最后的光信号经过光波导传输到需要的位置,可以用于光通信、光传感和光电子设备中。

1.高速响应:由于光电转换器件和电光转换器件均为半导体器件,其响应速度非常快,可以达到纳秒级别的响应时间。

2.宽频带特性:光电转换器件和电光转换器件均具有宽带特性,能够传输和处理宽频带的信号,适用于高频率的应用。

3.低功耗:光电耦合器器件为半导体材料制成,功耗相对较低,适合于低功耗的应用环境。

4.高灵敏度:光电转换器件能够非常灵敏地感应光信号,具有很高的灵敏度,能够在低光强度下工作。

5.高稳定性:光电耦合器器件内部的半导体材料具有良好的稳定性和可靠性,能够长时间稳定工作。

总的来说,光电耦合器是一种能够将光信号和电信号进行高效转换的器件。

它可以应用于光通信、光传感、光电子设备等领域,具有高速响应、宽频带特性、低功耗、高灵敏度和高稳定性等优点。

随着光电技术的不断发展,光电耦合器将在未来的应用中起到更加重要的作用。

光电耦合器-肖特基二极管-稳压二极管

光电耦合器-肖特基二极管-稳压二极管

1.光电耦合器光电耦合器是一种发光器件和光敏器件组成的光电器件。

它能实现电—光—电信号的变换,并且输入信号与输出信号是隔离的。

目前极大多数的光耦输入部分采用砷化镓红外发光二极管,输出部分采用硅光电二极管、硅光电三极管及光触发可控硅。

这是因为峰值波长900~940nm的砷化镓红外发光二极管能与硅光电器件的响应峰值波长相吻合,可获得较高的信号传输效率。

光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。

它由发光源和受光器两部分组成。

把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。

发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。

光电耦合器的种类较多,常见有光电二极管型、光电三极管型、光敏电阻型、光控晶闸管型、光电达林顿型、集成电路型等。

在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。

基本工作特性(以光敏三极管为例)1、共模抑制比很高在光电耦合器内部,由于发光管和受光器之间的耦合电容很小(2pF以内)所以共模输入电压通过极间耦合电容对输出电流的影响很小,因而共模抑制比很高。

2、输出特性光电耦合器的输出特性是指在一定的发光电流IF下,光敏管所加偏置电压VCE与输出电流IC之间的关系,当IF=0时,发光二极管不发光,此时的光敏晶体管集电极输出电流称为暗电流,一般很小。

当IF>0时,在一定的IF作用下,所对应的IC基本上与VCE无关。

IC与IF之间的变化成线性关系,用半导体管特性图示仪测出的光电耦合器的输出特性与普通晶体三极管输出特性相似。

其测试连线如图2,图中D、C、E三根线分别对应B、C、E极,接在仪器插座上。

3、光电耦合器可作为线性耦合器使用。

在发光二极管上提供一个偏置电流,再把信号电压通过电阻耦合到发光二极管上,这样光电晶体管接收到的是在偏置电流上增、减变化的光信号,其输出电流将随输入的信号电压作线性变化。

光电耦合器简介以及作用

光电耦合器简介以及作用

光电耦合器简介以及作用
光电耦合器(简称光耦)全称为光电耦合器接口电路,是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。

光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。

目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器。

?
光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。

对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。

但是,使用光耦隔离需要考虑以下几个问题:
①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题;
②光耦隔离传输数字量时,要考虑光耦的响应速度问题;
③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。

光电耦合器件简介

光电耦合器件简介

光电耦合器件简介光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如 光敏三极管)组装在一起,通过光线实现耦合构成电一光和光一电的转换器件。

光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。

当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元 件受到光照后产生电流,CE 导通;当输入端无信号,发光二极 体不亮,光敏三 极管截止,CE 不通。

对于数位量,当输入为低电平“0”时,光敏三极管截止, 输出为髙电平“1";当输入为髙电平“1”时,光敏三极管饱和导通,输出为 低电平“ 0”。

若基极有引出线则可满足温度补偿、检测调制要求。

这种光耦合 器性能较好,价格便宜,因而应用广泛。

图一最常用的光电耦合器之部结构图三极管接收型 4脚封装光敏三极管4发光二极管6图二光电耦合器之部结构图三极管接收型6脚封装436图三光电耦合器之部结构图双发光二极管输入三极管接收型4脚封装⑥⑤④0)②③图四光电耦合器之部结构图可控硅接收型6脚封装图五光电耦合器之部结构图双二极管接收型6脚封装光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰, 使通道上的信号杂讯比大为提髙,主要有以下几方面的原因:(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105〜106Q。

据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。

(2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。

(3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。

因为光耦合器件的输入回路和输出回路之间可以承受几千伏的髙压。

光电耦合器的工作原理是什么

光电耦合器的工作原理是什么

光电耦合器的工作原理是什么光电耦合器(Optocoupler)又称光电隔离器或光电隔离耦合器,是一种能够将电和光之间相互转换的器件。

它通常由一个发光二极管(LED)、一个光敏二极管(光电晶体管或光敏三极管)和一个光学耦合器件(光导纤维或光学隔离层)组成。

1.发光二极管发光:当输入端施加电流时,发光二极管中的LED发出光线。

这个光线通常是红外线,但也可以是其他可见光波段。

2.光线传递:发出的光线经过光学耦合器件,如光导纤维或光学隔离层,将光线传递到接收端。

3.光敏二极管感光:接收端的光敏二极管接收到发出的光线,并在其PN结上产生电流。

4.电流放大:感光二极管输出的电流被放大,以便用于驱动输出端的负载电路。

5.输出信号:通过输出端的负载电路,将放大后的电流转化为输出电压或其他信号。

1.电气隔离:光电耦合器在输入端和输出端之间实现了电气隔离,这样可以防止电气噪声、电磁干扰和地位差异等因素对电路的影响。

2.高速传输:光信号的传输速度比电信号快得多,因此光电耦合器可以实现高速的信号传输,适用于需要快速响应的应用场景。

3.安全性:由于光电耦合器实现了电与光的隔离,可以防止高电压或高电流通过到达较低电压或电流的输出端,从而提高设备和人员的安全性。

4.小尺寸:光电耦合器通常比传统的电气隔离器件小巧轻便,适用于对尺寸有限制的应用场景。

光电耦合器在实际应用中具有广泛的用途,例如在工业自动化控制系统中用于隔离输入和输出信号、在医疗设备中用于隔离高压和低压电路、在电源供电中用于隔离输入和输出端等。

总之,光电耦合器通过光线传递实现了电与光之间的隔离与耦合,为电路提供了高速传输、电气隔离和安全性保证的解决方案。

从三个方面解析光耦参数

从三个方面解析光耦参数

从三个方面解析光耦参数光耦,也称为光耦合器或光电耦合器,是一种用于隔离和传输电信号的光电转换器件。

它由光源、光电转换器件(如光敏电阻或光电晶体管)、传输介质和驱动电路组成。

光源发出的光线被光电转换器件接收后,产生相应的电信号,完成光和电的相互转换。

光耦器件的参数直接关系到其转换效率和传输性能。

下面将从三个方面解析光耦参数。

一、光电转换特性1. 波长特性:光耦器件在接收光信号时,对输入光的波长有一定的敏感范围。

一般来说,光耦器的输入光波长范围在850nm、1300nm和1550nm这三个常用波长之一2.光电转换增益:光电转换增益是光耦输出电流与输入光功率之比,代表了光电转换的效率。

该增益通常以A/W(安培/瓦特)为单位。

增益值越大,表示光电转换效率越高。

3.暗电流:光耦器件在没有光照射时输出的电流称为暗电流。

暗电流是光耦器件的一个重要参数,它代表了在无光照射情况下光耦器件内部电流产生的源头,如果暗电流过大,就会对输出信号的准确性产生影响。

4.响应时间:光耦器件的响应时间指的是光信号从输入到输出所需要的时间,一般以微秒(μs)为单位。

响应时间越短,表示光耦器件的响应速度越快,能够更准确地传输信号。

二、光源特性1.光源波长:光耦器件的性能会受到光互振衰减的影响,而光互振衰减与光源与光接收器之间的波长一致性有关。

因此,光源的波长需要与光耦器件的波长匹配,才能获得较好的性能。

2.光源强度:光源强度表示光的亮度,通常以瓦特/立方厘米为单位。

光源强度越大,表示光源发出的光线越强烈,能够提供更高的信号传输效率。

3.光源稳定性:光源的稳定性是指在长时间运行中,光源输出的光强度是否能够保持在一个稳定的范围内。

光源稳定性的好坏直接影响到光耦器件的传输性能以及系统的可靠性。

三、电路特性1.工作电压:光耦器件的工作电压范围是指器件所能够承受的最大和最小工作电压。

如果工作电压超出了这个范围,光耦器件可能无法正常工作。

2.绝缘电压:绝缘电压是指光耦器件所能够承受的最大绝缘电压。

光电耦合器件ccd工作原理

光电耦合器件ccd工作原理

光电耦合器件ccd工作原理
光电耦合器件(Charge-coupled device,CCD)是一种常见的半导体光电转换器件,广泛应用于数字摄像机、数码相机、望远镜等领域中。

CCD的工作原理是将光能转换成电能,通过对电信号的采集和处理,最终得到数字图像。

CCD由一系列的电荷耦合单元(Charge Coupled Device Unit,CCDU)组成,其中每个CCDU包含一个光电感受器和一个电容器。

当光线照射在感光元件上时,光子会激发出电子,电子被收集到电荷耦合单元中的电容器中。

通过对时钟信号的控制,电子逐个经过电容器,最终被传送到CCD的输出端。

输出端的电压随着电子的到来而逐渐增加,这样就构成了一个连续的电压信号,代表了被测目标的图像信息。

CCD的优点是灵敏度高、信号噪声比高、动态范围大、分辨率高等。

在数字摄像机、数码相机等领域中,CCD的应用已经非常广泛,而且随着技术的不断进步,CCD的性能还会不断提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电耦合器件简介光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。

光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。

当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。

对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。

若基极有引出线则可满足温度补偿、检测调制要求。

这种光耦合器性能较好,价格便宜,因而应用广泛。

图一最常用的光电耦合器之部结构图三极管接收型 4脚封装图二光电耦合器之部结构图三极管接收型 6脚封装图三光电耦合器之部结构图双发光二极管输入三极管接收型 4脚封装图四光电耦合器之部结构图可控硅接收型 6脚封装图五光电耦合器之部结构图双二极管接收型 6脚封装光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。

据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。

(2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。

(3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。

因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。

(4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。

光电隔离技术的应用微机介面电路中的光电隔离微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。

在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。

因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。

典型的光电耦合电路如图6所示。

该电路主要应用在“A/D转换器”的数位信号输出,及由CPU发出的对前向通道的控制信号与类比电路的介面处,从而实现在不同系统间信号通路相联的同时,在电气通路上相互隔离,并在此基础上实现将类比电路和数位电路相互隔离,起到抑制交叉串扰的作用。

图六光电耦合器接线原理对于线性类比电路通道,要求光电耦合器必须具有能够进行线性变换和传输的特性,或选择对管,采用互补电路以提高线性度,或用V/F变换后再用数位光耦进行隔离。

功率驱动电路中的光电隔离在微机控制系统中,大量应用的是开关量的控制,这些开关量一般经过微机的I/O输出,而I/O的驱动能力有限,一般不足以驱动一些点磁执行器件,需加接驱动介面电路,为避免微机受到干扰,须采取隔离措施。

如可控硅所在的主电路一般是交流强电回路,电压较高,电流较大,不易与微机直接相连,可应用光耦合器将微机控制信号与可控硅触发电路进行隔离。

电路实例如图7所示。

图七双向可控硅(晶闸管)在马达控制电路中,也可采用光耦来把控制电路和马达高压电路隔离开。

马达靠MOSFET或IGBT功率管提供驱动电流,功率管的开关控制信号和大功率管之间需隔离放大级。

在光耦隔离级—放大器级—大功率管的连接形式中,要求光耦具有高输出电压、高速和高共模抑制。

远距离的隔离传送在电脑应用系统中,由于测控系统与被测和被控设备之间不可避免地要进行长线传输,信号在传输过程中很易受到干扰,导致传输信号发生畸变或失真;另外,在通过较长电缆连接的相距较远的设备之间,常因设备间的地线电位差,导致地环路电流,对电路形成差模干扰电压。

为确保长线传输的可靠性,可采用光电耦合隔离措施,将2个电路的电气连接隔开,切断可能形成的环路,使他们相互独立,提高电路系统的抗干扰性能。

若传输线较长,现场干扰严重,可通过两级光电耦合器将长线完全“浮置”起来,如图8所示。

图八传输长线的光耦浮置处理长线的“浮置”去掉了长线两端间的公共地线,不但有效消除了各电路的电流经公共地线时所产生杂讯电压形成相互窜扰,而且也有效地解决了长线驱动和阻抗匹配问题;同时,受控设备短路时,还能保护系统不受损害。

过零检测电路中的光电隔离零交叉,即过零检测,指交流电压过零点被自动检测进而产生驱动信号,使电子开关在此时刻开始开通。

现代的零交叉技术已与光电耦合技术相结合。

图9为一种单片机数控交流调压器中可使用的过零检测电路。

图九过零检测220V交流电压经电阻R1限流后直接加到2个反向并联的光电耦合器GD1,GD2的输入端。

在交流电源的正负半周,GD1和GD2分别导通,U0输出低电平,在交流电源正弦波过零的瞬间,GD1和GD2均不导通,U0输出高电平。

该脉冲信号经反闸整形后作为单片机的中断请求信号和可控矽的过零同步信号。

注意事项(1)在光电耦合器的输入部分和输出部分必须分别采用独立的电源,若两端共用一个电源,则光电耦合器的隔离作用将失去意义。

(2)当用光电耦合器来隔离输入输出通道时,必须对所有的信号(包括数位量信号、控制量信号、状态信号)全部隔离,使得被隔离的两边没有任何电气上的联系,否则这种隔离是没有意义的。

光电耦合器(转www.18ic./ 一个电子器件网)光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。

它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳。

当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。

以光为媒介把输入端信号耦合到输出端的光电耦合器,由于它具有体积小、寿命长、无触点,抗干扰能力强,输出和输入之间绝缘,单向传输信号等优点,在数字电路上获得广泛的应用。

通常的光电耦合器由于它的非线性,因此在模拟电路中的应用只限于对较高频率的小信号的隔离传送。

普通光耦合器只能传输数字(开关)信号,不适合传输模拟信号。

近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。

光耦合器的性能特点光耦合器的主要优点是单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。

它广泛用于电平转换、信号隔离、级间隔离、开关电路、远距离信号传输、脉冲放大、固态继电器 (SSR)、仪器仪表、通信设备及微机接口中。

由于光电耦合器的输入阻抗与一般干扰源的阻抗相比较小,因此分压在光电耦合器的输入端的干扰电压较小,它所能提供的电流并不大,不易使半导体二极管发光;由于光电耦合器的外壳是密封的,它不受外部光的影响;光电耦合器的隔离电阻很大(约 1012Ω)、隔离电容很小(约几个pF)所以能阻止电路性耦合产生的电磁干扰。

线性方式工作的光电耦合器是在光电耦合器的输入端加控制电压,在输出端会成比例地产生一个用于进一步控制下一级的电路的电压。

线性光电耦合器由发光二极管和光敏三极管组成,当发光二极管接通而发光,光敏三级管导通,光电耦合器是电流驱动型,需要足够大的电流才能使发光二极管导通,如果输入信号太小,发光二极管不会导通,其输出信号将失真。

在开关电源,尤其是数字开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。

光耦合器的技术参数主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。

此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。

电流传输比是光耦合器的重要参数,通常用直流电流传输比来表示。

当输出电压保持恒定时,它等于直流输出电流IC与直流输入电流IF的百分比。

使用光电耦合器主要是为了提供输入电路和输出电路间的隔离,在设计电路时,必须遵循下列原则:所选用的光电耦合器件必须符合国和国际的有关隔离击穿电压的标准;由英国埃索柯姆(Isocom)公司、美国摩托罗拉公司生产的4N××系列(如4N25 、4N26、4N35)光耦合器,目前在国应用地十分普遍。

鉴于此类光耦合器呈现开关特性,其线性度差,适宜传输数字信号(高、低电平),可以用于单片机的输出隔离;所选用的光耦器件必须具有较高的耦合系数。

光耦的作用及工作原理光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。

光耦合器以光为媒介传输电信号。

它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。

目前它已成为种类最多、用途最广的光电器件之一。

光耦合器一般由三部分组成:光的发射、光的接收及信号放大。

输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。

这就完成了电—光—电的转换,从而起到输入和输出隔离的作用。

由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。

又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。

所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。

在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。

光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离;输出信号对输入端无影响,抗干扰能力强;由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力;另外,它还有工作稳定,无触点,使用寿命长,传输效率高等优点。

光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。

在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。

学习笔记:光耦的主要作用就是隔离作用,如信号隔离或光电的隔离。

隔离能起到保护的作用,如一边是微处理器控制电路,另一边是高电压执行端,如市电启动的电机,电灯等等,就可以用光耦隔离开。

当两个不同的型号的光耦只有负载电流不同时,可以用大的负载电流的光耦代替小负载电流的光耦。

相关文档
最新文档