北航2015级硕士研究生数理统计参考答案(B层)
北航最优化方法最新最全答案2015版
将此问题化成线性规划.
minimize f (x)
x∈Rn
subject to Ax = b
x ≥ 0.
5
解: 引入变量 t ,所给问题等价于
minimize t subject to f (x) = t,
Ax = b, x ≥ 0.
考虑问题
minimize t
subject to f (x) ≤ t, Ax = b,
4. 单纯形法的练习:习题2.10,习题2.11,习题2.12,习题2.13,习题2.20(说明单纯形 法的效率的一般性例子中,自变量为三个时所得问题),习题2.21(说明单纯形法采用最小 相对费用系数进基原则确定进基变量时,如果所求解问题是退化的,则单纯形法会出现 循环!),习题2.31.
5. 两阶段法的练习:习题2.14-习题2.16;大 M 法的练习:习题2.18.
2u1 − 2v1 + u3 − v3 = 3, ui, vi, s ≥ 0, i = 1, 2, 3.
方法2: 引入非负变量 t1, t2, t3 ,将原问题转化成等价问题
minimize t1 + t2 + t3 subject to x + y ≤ 1,
2x + z = 3, |x| = t1, |y| = t2, |z| = t3.
(c)
minimize subject to
x1 + 4x2 + x3 x1 − 2x2 + x3 = 4 x1 − x3 = 1
x2 ≥ 0, x3 ≥ 0.
解:
(c) 由于变量 x1 无限制,可利用约束 x1 = x3 + 1 对其消去. 因此,得其标准形
北航研究生数理统计试题
一、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体2(,)N μσ的样本,令)x x T -=,试证明T 服从t -分布t (2)二、(6分,B 班不做)统计量F-F(n,m)分布,证明111(,)F F n m αααα-的(0<<1)的分位点x 是。
三、(8分)设总体X 的密度函数为(1),01(;) 0 , x x p x ααα⎧+<<=⎨⎩其他其中1α>-,是位置参数。
x 1,x 2,…,x n 是来自总体X 的简单样本,试求参数α的矩估计和极大似然估计。
四、(12分)设总体X 的密度函数为1x exp x (;) 0 , p x μμσσσ⎧⎧-⎫-≥⎨⎬⎪=⎭⎨⎩⎪⎩,其它,其中,0,μμσσ-∞<<+∞>已知,是未知参数。
x 1,x 2,…,x n 是来自总体X 的简单样本。
(1)试求参数σ的一致最小方差无偏估计σ∧; (2)σ∧是否为σ的有效估计?证明你的结论。
五、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体211(,)N μσ的简单样本,y 1,y 2,…,y n 是来自正态总体222(,)N μσ的简单样本,且两样本相互独立,其中221122,,,μσμσ是未知参数,2212σσ≠。
为检验假设012112:, :,H H μμμμ=≠可令12, 1,2,..., , ,i i i z x y i n μμμ=-==-则上述假设检验问题等价于0111:0, :0,H H μμ=≠这样双样本检验问题就变为单检验问题。
基于变换后样本z 1,z 2,…,z n ,在显著性水平α下,试构造检验上述问题的t-检验统计量及相应的拒绝域。
六、(6分,B 班不做)设x 1,x 2,…,x n 是来自正态总体20(,)N μσ的简单样本,0μ已知,2σ未知,试求假设检验问题22220010:, :H H σσσσ≥<的水平为α的UMPT 。
研究生-数理统计课后答案参考
, i 1, 2, , n
解
由已知条件得: Yi ~ B(1, p) ,其中 p 1 FX ( ) .
因为 X i 互相独立,所以 Yi 也互相独立,再根据二项分布的可加性,有
Y ~ B(n, p) , p 1 F
i 1 i
n
X
( ) .
9 设 X1 ,, X n 是来自总体 X 的样本,试求 EX , DX , ES 2 。假设总体的分布为: 1) X ~ B( N , p); 2) X ~ P( ); 3) X ~ U [a, b]; 4) X ~ N ( ,1);
解
n 2 2 2 E Xi X E (n 1) S (n 1) ES i 1 (n 1) DX (n 1) 2
2 (n 1) S 2 n 2 4 D X i X D ( n 1) S D 2 i 1
试画出身高直方图,它是否近似服从某个正态分布密度函数的图形. 解
图 1.2 数据直方图
它近似服从均值为 172,方差为 5.64 的正态分布,即 N (172,5.64) . 4 设总体 X 的方差为 4,均值为 ,现抽取容量为 100 的样本,试确定常数 k,使得 满足 P( X k ) 0.9 .
2)对总体 X ~ P( )
P( X 1 x1 , X 2 x2 , X 3 x3 , X 4 x4 , X 5 x5 ) P( X i xi )
i 1 i 1 n 5
x
i
xi !
e
5xBiblioteka x !i 1 i5
e 5
其中: x
北航2010-2015年研究生数值分析报告期末模拟试卷与真题
北航2010-2015年研究生数值分析报告期末模拟试卷与真题数值分析模拟卷A一、填空(共30分,每空3分)1 设-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数)(1A cond =________. 2 设 ,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________, ],,[321+++n n n n x x x x f ,=________.3 设≤≤-++≤≤+=21,1210,)(2323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________.4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则?=10)(dx x xq k ________,=)(2x q ________.5 设=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的.二、(14分)设49,1,41,)(21023====x x x x x f , (1)试求)(x f 在]49,41[上的三次Hermite 插值多项式)(x H 使满足2,1,0),()(==i x f x H i i ,)()(11x f x H '='.(2)写出余项)()()(x H x f x R -=的表达式.三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3241+=+,(1)证明R x ∈?0均有?∞→=x x n x lim (?x 为方程的根);(2)取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值;(3)此迭代的收敛阶是多少?证明你的结论.四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?五、(15分)设有常微分方程的初值问题=='00)(),(y x y y x f y ,试用Taylor 展开原理构造形如)()(11011--++++=n n n n n f f h y y y ββα的方法,使其具有二阶精度,并推导其局部截断误差主项.六、(15分)已知方程组b Ax =,其中= ??=21,13.021b A ,(1)试讨论用Jacobi 迭代法和Gauss-Seidel 迭代法求解此方程组的收敛性.(2)若有迭代公式)()()()1(b Ax a x x k k k ++=+,试确定一个的取值围,在这个围任取一个值均能使该迭代公式收敛.七、(8分)方程组,其中,A 是对称的且非奇异.设A 有误差,则原方程组变化为,其中为解的误差向量,试证明 .其中1λ和2λ分别为A 的按模最大和最小的特征值.数值分析模拟卷B填空题(每空2分,共30分)1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字;2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________;3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________;=]4,3,2,1,0[f ________;4. 已知???? ??-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond ______________________ ;5. 用二分法求方程01)(3=-+=x x x f 在区间[0,1]的根,进行一步后根所在区间为_________,进行二步后根所在区间为_________________;6. 求解线性方程组=+=+04511532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________;7. 为使两点数值求积公式:?-+≈111100)()()(x f x f dx x f ωω具有最高的代数精确度,其求积节点应为=0x _____ , =1x _____,==10ωω__________.8. 求积公式)]2()1([23)(30f f dx x f +≈?是否是插值型的__________,其代数精度为___________。
北航研究生数理统计第二次大作业-聚类分析
Z 场均 角球数 0.11373 2.18400 -0.22977 0.02089 0.21585 0.09516 0.32725 -0.90749 -1.22314 0.51293 -0.44330 1.62698 -1.68732 0.32725 -0.83322 1.09780 1.37632 -1.83586 0.79144 1.09780 0.16943 0.94926 -1.68732 -0.13694 -0.75895 -0.50829 -0.13694 -0.44330 -1.37168
北京航空航天大学 数理统计第二次大作业
欧洲足球俱乐部竞技水平的聚类分析和判别分析
2015 年 12 月
欧洲足球俱乐部竞技水平的聚类分析和判别分析
摘要:近年来,人们对足球的关注越来越多。欧洲作为足球的发源地,其五大联 赛自然吸引着大批人的目光。尤其是欧洲冠军杯联赛更是代表着欧洲足球的最高 水平,吸引着各国最好的球队参加。本文从参加 2014-2015 赛季欧洲冠军杯联赛 的球队中选取 29 支球队,根据这些球队的一些技术统计资料,用 SPSS 软件对 其进行聚类分析,将这些球队按水平层次分为了 5 类。并选取 3 支球队,利用聚 类分析的结果对这 3 支球队进行判别分析。结果表明,聚类分类结果与判别分析 结果基本符合实际情况。
由于不同的变量之间存在着较大的数量级的差别,因此要对数据变量进行标
准化处理。本文采用 Z 得分值法标准化的方法进行标准化,用 x 的值减去 x 的
均值再除以样本的方差。也就是把个案转换为样本均值为 0、标准差为 1 的样本。
如果不同变量的变量值数值相差太大,会导致计算个案间距离时,由于绝对值较
小的数值权数较小,个案距离的大小几乎由大数值决定,标准化过程可以解决此
北航2015年考研991科目的答案
北航2015年考研991科目的答案一、单项选择题1.C 2.A 3.D 4.B 5.C 6.B 7.D 8.A 9.C 10.D 二、填空题1.顺序2.O(m) 3.log2k+1 4.235 5.2(n-1) 6.该有向图中不存在回路7.2.9 8.m-1 9.插入排序法10.9三、综合题1.答:(1)多个堆栈共享一个连续的存储空间,可以充分利用存储空间,只有在整个存储空间都用完时才能产生溢出,其缺点是当一个堆栈溢出时需要向左、右栈查询有无空闲单元。
若有,则需要移动相应元素和修改相关的栈底和栈顶指针的位置。
当各个堆栈接近溢出时,查询空闲单元、移动元素和修改栈底栈顶指针位置的操作频繁,计算复杂,并且耗费时间。
(2)每个堆栈仅用一个顺序存储空间时,操作简便。
但难以确定初始分配存储空间的大小,空间分配少了,容易产生溢出,空间分配多了,容易造成空间浪费;并且各个堆栈不能共享空间。
(3)一般情况下,分别建立多个链接堆栈不考虑堆栈的溢出(仅受用户内存空间限制),缺点是堆栈中各元素要通过指针链接,比顺序存储结构多占用存储空间。
2.(T->lchild==NULL && T->rchild==NULL) T->lchild T->rchild3.(由于图表显示限制,此题答案见指定教材(《数据结构教程第二版》(2012年4月第7次印刷)) 第418页8-16题)4.(1).根据α=散列表中存入的元素数/散列表的长度,得到表的长度为18,因此,合适的散列函数应该为H(k)=k MOD 17。
(2).(由于图表显示限制,此题答案见指定教材(《数据结构教程第二版》(2012年4月第7次印刷)) 第428页9-15题)四、算法设计题SORT(int A[ ], int n){ int ,i, j, min, max, temp; i=1;while(i<=n/2){ min=i; max=i;for(j=i+1;j<n-i+1;j++){ if(A[j]<A[min])min=j; if(A[j]>A[max]) max=j;} /* 确定某趟排序的最小值元素和最大值元素*/ if(min!=i){temp=A[min]; A[min]=A[i]; A[i]=temp; } /* 交换A[min]与A[i]的位置*/ if(max!=n-i+1) if(max==i){temp=A[min]; A[min]=A[n-i+1]; A[n-i+1]=temp; } /* 交换A[min]与A[n-i+1]的位置*/ else{temp=A[max]; A[max]=A[n-i+1]; A[n-i+1]=temp; /* 交换A[max]与A[n-i+1]的位置*/ } i++; } }五、填空题1.break a/q 2.a[n-1]>=a[n-2] FUNC2(a, n-1) 3.(*(a+i)+i) (*(a+i)+N-i-1) 4.i!=0 n%10+′0′5.ch-=30 ch-=266.*(s+i) t++ 7.strlen(p)-1 p<q 8.ch & 24 9.4 &number 10.argv[1],“rb”argv[2], “wb”六、简答题1.答:通常有下列三种方式:(1)参数传递方式:函数调用时根据实参传递给形参内容的不同又分为值传递与地址传递两种。
北航数理统计第二次数理统计大作业 判别分析
数理统计大作业(二)全国各省发展程度的聚类分析及判别分析指导教师院系名称材料科学与工程院学号学生姓名2015 年 12 月21 日目录全国各省发展程度的聚类分析及判别分析 (1)摘要: (1)引言 (1)1实验方案 (2)1.1数据统计 (2)1.2聚类分析 (3)1.3判别分析 (4)2结果分析与讨论 (5)2.1聚类分析结果 (5)2.2聚类分析结果分析: (8)2.3判别分析结果 (9)2.4 Fisher判别结果分析: (11)参考文献: (16)全国各省发展程度的聚类分析及判别分析摘要:利用SPSS软件对全国31个省、直辖市、自治区(浙江、安徽、甘肃除外)的主要经济指标进行多种聚类分析,分析选择最佳聚类类数,并对浙江、湖南、甘肃进行类型判别分析。
通过这两个方法对全国各省进行发展分类。
本文选取了7项社会发展指标作为决定发展程度的影响因素,其中经济因素为主要因素,同时评估城镇化率和人口素质因素。
各项数据均来自2014年国家统计年鉴。
分析结果表明:北京市和上海市和天津市为同一类;江苏省和山东省和广东省为同一类型;河北、湖北、河南、湖南、四川、辽宁为同一类;其余的为另一类。
关键词:聚类分析、判别分析、发展引言聚类分析是根据研究对象的特征对研究对象进行分类的多元统计分析技术的总称。
它直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类。
系统聚类分析又称集群分析,是聚类分析中应用最广的一种方法,它根据样本的多指标(变量)、多个观察数据,定量地确定样品、指标之间存在的相似性或亲疏关系,并据此连结这些样品或指标,归成大小类群,构成分类树状图或冰柱图。
判别分析是根据多种因素(指标)对事物的影响来实现对事物的分类,从而对事物进行判别分类的统计方法。
判别分析适用于已经掌握了历史上分类的每一个类别的若干样品,希望根据这些历史的经验(样品),总结出分类的规律性(判别函数)来指导未来的分类。
2015-2016年北京航空航天大学研究生随机过程考试试卷
北京航空航天大学2015〜2016学年第一学期 随机过程理论期末考试试卷(2015年11月29曰)班级: 学号: 姓名: 成绩: 注意事项:1、所有答案请写在答题纸上,并在每一页答题纸上写上学号、姓名2、考试完毕后,所有答题纸、草稿纸一律上交。
一、(本题35分,每小题5分)简要问答下列问题。
1. 平稳随机过程的各态历经性及其意义。
2. 平稳随机过程通过线性时不变系统,输出过程不一定是平稳随机过程。
3. 高斯平稳随机过程与其导数过程在同一时刻相互独立。
4. 白噪声过程通过线性系统后输出过程的相关时间和噪声等效通频带的定 义,以及它们之间的关系?5. 什么是实随机过程的复表示?并给出复表示的功率谱密度。
6. 两个相互独立的泊松过程的和仍然是泊松过程。
7. 马尔可夫链的切普曼-科尔莫戈罗夫方程及其意义。
二、(本题15分)设()1k nj t k k Z t A e ω==∑,其中k ω,1,,k n = 是实数:k A ,1,,k n= 是均值为零的实随机变量,且有 1 0 i j i j E A A i j =⎧⎡⎤=⎨⎣⎦≠⎩,请计算: 1. ()Z t 的均值和自协方差函数;2. ()Z t 的均方值;3. ()Z t 是否为平稳随机过程?三、(本题10分)设随机过程()X t 和()Y t 为()00cos sin X t U t V t ωω=+()00sin cos Y t U t V t ωω=+其中00ω>,U 和V 是两个相互独立的高斯随机变量,且有()()0E U E V ==()()221E U E V ==,试计算1. X t 和Y t 的均值和自相关函数;2. ()X t 和()Y t 的互相关函数和互功率谱密度;3. ()X t 和()Y t 在同一时刻的联合概率密度函数。
四、(本题20分)设()X t 为具有单位谱高的零均值白噪声过程,其通过传递函数分别为()1H j ω和()2H j ω的两个理想带通滤波器,输出分別为()1Y t 和()2Y t ,其中:()11 1 20 B H j ωωω⎧±<⎪=⎨⎪⎩其他,()22 1 20 B H j ωωω⎧±<⎪=⎨⎪⎩其他试计算:1. ()1Y t 和()2Y t 的互相关函数及互功率谱密度;2. ()1H j ω和()2H j ω满足什么条件.可以使()1Y t 和()2Y t 互不相关?3. 如果要使得()1Y t 和()2Y t 的互相关系数为0.5,则()1H j ω和()2H j ω应满足什么条件?五、(本题10分)具有单位进高的零均值高斯白噪声过程()X t 均方枳分后输出 过程为()()0tW t X s ds =⎰,()00W = 请计算:1. ()W t 的均值和自相关函数;2. ()()21W t W t -的均值和均方值。
研究生课程-数理统计课后题答案
=!A乙£ P=旷S奚報洱封去、09乙x9乙+ 0Lx9+ O^xC+ 8x U ——= L刊U]xu Z-= X 诲切去尅去:搦2A S 0 = x s乙乙乙(A-尸!U心Z~ =U K(A-尸!UAo+e =尸!u!A Z- +e = f十u(Ao- 尸!U(Ao 一8一=F!U广尸!U'Ao eu -= 、/丿L□ u(!Ao+e) m =U KI U!x 7 - = x;・-尸!U忆=001=9901+ 901+ CO 1+ >6+26T ! U=z Z/= x u i —i^ 童#说圧最新精品文档,知识共享 1!1-1 /6 1 -303 1 0 30 4 24 20 £ 09 1 85 20 3 1 0yy i 9n y=240.4441 2 2 _61 -240.444「吃—303-240.4441030-240.44492 2 2424 —240.444]亠[20 — 240.444]亠〔909 — 240.444 222 n(—185—240.444)+(20—240.444)+(310—240.444) = 197032.247利用3题的结果可知x 二 2000 y = 2240.444 s" =s y =197032.247i123 4 5678910 11 1213X79. 80. 80. 80. 80. 80. 80. 79. 80. 80. 80. 80. 80.09804 02 04 03 03 04 97 05 03 02 00 2 y-2424334-35322i1 2 3 4 5 6 7 8 9 X i193 169303242202 290 181 202 2397 0 49510 y i-30103 42-1831-6134209095204.解:变换y 二 N -2000i^ 盍#说曲'韓爼習黯堆窖g 乙 0"=920^ =[g9J + t^)+ 乙(9J + 乙 Jxt7+』9J+6—)>;£+ ^9L + 9S-)x2^ —=(H989乙二比+下=19'V- =「 OL (K + ^X 3L + C X 6-乙 x9£—)— = k尸!U!A !LU kP£ 乙 tuZV 6- 9£- !A17'0£乙8乙I/9乙9£2k*(z 乙-Moi 竭靠:搦-g0000 LAs =乙00 L乙 008= 08+ —圧巨畜彩轴雷£宙吐OOZ —乙)x£+ ( 00 3-3-)1 —= 乙 _ lx亍!U(A- !A)右=$ 乙— U L00乙= SL尸!U:<z(A-z —口U!A y !LU M _ = :S(HX ZZ0£'9 =00x乙ZZ0£'9 =最新精品文档,知识共享 1!2Ix 丄Fjxn i 41 156 10 160 14 164 26 172 12 168 28 176 8 180 2 100-166i二1' m i X j -xn i 11帀0 汉(156 —166 $ 2 2 214 160-16626 164-16628 168-1661002 2 2 112 172 -166 8 176 -166 2180 -166= 33.448解:将子样值重新排列(由小到大) -4, -2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2, 3.21 M^Xm =X 7 =0R = X n - X 1 - 3.21 - _4 - 7.21 M e =XX (8 厂1*2n i 9 解:1 11n x i n 2X j一n2 j mn 2最新精品文档,知识共享 1!n £2x 2 _x 2n i亠口 2 i 丄环数 109 87 6 54 频数2 30 942试写出子样的频数分布,再写出经验分布函数并作出其图形 解: 环数 10 9 8 7 6 5 4 频数 2 3 0 9 4 0 2 频率0.10.150.450.20.10.14^xc60.3 6兰xv7F20(X )=* 0.75 7 兰 x£9 0.99 兰 xv10Jx^10区间划分频数频率密度估计值154口158100.10.025ni n2X i --二’Xj i Aj 1n i X i亠 n 2 X 2n n 2m 亠n^i亠2222 比 s }亠x_, [亠n 2 s2)$ n i X i + n2 X 2|'u U 匸!U 口U-=^-= !xa m—!x Zr a=xaY "fU u L u L —u F ! U 芳! U7= =^<3 7 = 7 3= X30 / ? L - 飞=々]7 = !X3 ( ?)d q !x最新精品文档,知识共享 1!3.313•解:Xi L U a,b EXiDX i12i =12 ,n在此题中x 丄 U -1,11 Dx i3— 1 EX 二 E —'n i 4 _ 1n 丄Exn i £. 1 DX 二 D x i 八 Dx i~n i 二14.解:因为XiL N *2所以由2分布定义可知丫二'i -1X ii£I a所以 Y L 2 n15.解: 因为XiL N 0,1E X 1 X 2 X 3=°.3所以X1X2X 3L N0」.3iX +X 2 +X 3£V3.丿同理X 4 X 5 X 6b 2(1)由于2分布的可加性,故1YX 1 X 2 X 3 =I ----------- = -------可知16•解:(1)因为XiL N OF 2辿 N 0,1CT=3nE Xi —=0i =12 ,n服从2分布,12 ,n D X 1 X 2 X 3D X^.1X 1 X 2 X 3L N 0,3=1+ ['X4+X 5 + X 6j 2口i =1,2, ,n所以F”)”讣P弄韶y—JZx d xfY iy二 f y =因为所以(2)因为所以y2n /"2 "fY (y )=<2Z r '-L_ ye^2(3)因为x 0x _0x丄N 0,;「2i =1,辿N 0,1CT飞工L 2.i ■■-F Y2 y P nY2% y卡 2 y…学芈n2 2 _nx____ 戸nXjL N 0,二2y 0y乞02,…,nnyF.f 2 x dxy 0y乞01,2,…,n故17•解:因为所以故(4)因为所以21X亠一;F Y 3 y = p 沁匸罕二fY 3y=F Y 3y二x 0 x _ 0y 0 y _oX i L N Of 2i =1,2, ,n£ 非L N (o,1)i =1 •、n ;・yF Y 4 y =P 「Y 4 冷乞吕「f 21 xdx'f y ) 1 f 2 y二 F Y 4 y =f 217 77存在相互独立的u , VU L N 0,1VL 2 nUy 乞0xLt n19•解:用公式计算富01 (90)=90 +J2P0U 0.01查表得U 0.01 =2.33代入上式计算可得 鼻爲(90 ) = 90 + 31.26 = 121.2620.解:因为 XL 2 nE 2 = nD 2 由2分布的性质3可知则由定义可知 18解:因为所以(2)因为所以u 2L 21 u 221V n2L F 1,n、n X i i \ n ”_' XiL N 0—i =12 ,nL N 0,1V]2u i :n 1;-n\ m l : X ii 4Y = r . _____ 1n : D m丘「人2F i =n 1J Xi牙Lt mX^L N 0,1zf X .lL ;「m卷 2Li”二i =1,2, , n mnm l X i 2 Y 2 -n imn' x :i -1• j Xi_i.工n{ CT 丿n m z i士 1mL F n,m=2n最新精品文档,知识共享1!X -n |X - n c - nPXx ;=P —-lx/2n V2n Jc _nt2l n m[ V2n ^2^ J VV2n JP^X <c)1.x) x)0, x+□0f:::0 0 _OCixe -■x +□0+x)1xdx-,x d-xe从而有2. 1).E(x)i+oOoO、k(1、k -1p)p' k(1 -、k丄x =1P _1 一1 一p 令P= XL(P)汕(1-P)"p=p n(1-p)u nX i -n最新精品文档,知识共享 1!X解之得解:因为总体X 服从U( a , b )所以_a b D( X )( a-b )2 n!2 12 r ! (n _r ] X ) =X D ( X ) =S 2,n 2解之得:nnIn x i i 4nnIn x ii -1(2)母体X 的期望而样本均值为:-1 nX =—区 X in y令E(x)二X 得1 - X5•。
2015年春季学期数理统计专业课答案模板B
一般以水泥出窑后做成的试块养护 28 天所测得的数据为准,但水泥不可能在工厂堆
放 28 天,所以考虑用 7 天的抗压强度 x 去预测 28 天的抗压强度 y。现记录了 1 个
月 26 窑的生成数据,且已计算得如下结果:
26
26
26
26
26
xi 62.83, yi 78.84, xi2 152.25, xi yi 190.89, yi2 239.72
4
)
(B)
1 5
(1
22
33
44
)
(D)
1 7
(1
22
23
4 )
4、设随机变量 服从标准正态分布,对给定(0 1) ,数 u 满足 P( u ) 。
若 P(| | x) ,则 x 等于( B )
(A) u /2 (B) u(1 )/2
(C) u1 (D) u1 /2
5、对于母体均值的置信区间,正确的是(B) (A) 若置信度1 固定,子样容量增加,则置信区间长度变长; (B) 若置信度1 固定,子样容量增加,则置信区间长度变短;
(x
S* n
t0.95 ,
x
S* n
t0.95
)
(6
0.33 1.860,6 9
0.33 1.860) (5.644,6.356) 9
(10 分)
为参数 的极大似然估计值。
(10 分) 《数理统计》试卷(B 卷)参考答案及评分标准第 2 页 共 3 页
三峡大学试卷 班级 密
姓名 线
3、某厂生产白水泥,需对每窑生产的水泥测定其抗压程度以确定水泥的编号,
/ n
则
P u1 /2
/
(完整word版)2015级硕士研究生数理统计参考答案(A层)
2015-2016 学年 第一学期期末试卷参考答案学号 姓名 成绩 考试日期: 2016年1月15日考试科目:《数理统计》(A 层)一、填空题(本题共16分,每小题4分)1.设12,,n x x x ,是来自正态总体2(0,)N σ的简单样本,则当c = 时,统计量221()nkk x cxx η==-∑服从F -分布,其中11nk k x x n ==∑。
((1)n n -)2. 设12,,n x x x ,是来自两点分布(1,)B p 的简单样本,其中01p <<,2n ≥,则当c = 时,统计量2ˆ(1)cx x σ=-是参数()(1)q p p p =-的无偏估计,其中11n k k x x n ==∑。
(1nn -)3.设总体X 的密度函数为22,[0,](;)0,[0,]x x p x x θθθθ⎧∈⎪=⎨⎪∉⎩,其中0θ>,12,,,n x x x 是来自总体X 简单样本,则θ的充分统计量是 。
(()n x ) 4.在双因素试验不考虑交互作用的方差分析中,总离差平方和T S 的分解式为T A B e S S S S =++其中211()p q T ij i j S x x ===-∑∑,21()pA i i S q x x ⋅==-∑,211()p qe ij i j i j S x x x x ⋅⋅===--+∑∑21()qB j j S p x x ⋅==-∑,则e S 的自由度是 。
((1)(1)p q --或1pq p q --+或1n p q --+其中n pq =)二、(本题12分)设12,,,n x x x 是来自正态总体2(1,2)N σ的简单样本。
(1)求2σ的极大似然估计2σ;(2)求2σ的一致最小方差无偏估计;(3)问2σ的一致最小方差无偏估计是否为有效估计?证明你的结论。
解(1)似然函数为22211()exp{(1)}4nnii L x σσ==--∑对数似然函数为222211ln ()(ln(4)ln )(1)24nii n L x σπσσ==-+--∑求导,有222241ln ()1(1)24nii L n x σσσσ=∂=-+-∂∑令22ln ()0L σσ∂=∂,可得θ的极大似然估计为2211ˆ(1)2n i i x n σ==-∑。
2015年12月 秋季 北航《统计学》在线作业二
2015年12月秋季北航《统计学》在线作业二一、单选题(共 12 道试题,共 48 分。
)V1. 中位数是()。
A. 数量中出现次数最多的变量值B. 顺序大小排列位置在正中间的变量值C. 抽样时中选的变量值D. 用权数计算出的变量值满分:4 分2. 权数对算术平均数的影响作用,实质上取决于()。
A. 作为权数的各组单位数占总体单位数比重的大小B. 各组标志值占总体标志总量比重的大小C. 标志值本身的大小D. D.标志值数量的多少满分:4 分3. 某公司计划要求销售收入比上月增长8%,实际增长了12%。
试问超计划完成程度为()。
A. 103.7%B. 50%C. 3.7%D. 150%满分:4 分4. 人均收入,人口密度,平均寿命,人口净增数,这四个指标中属于质量指标的有()A. 1个B. 2个C. 3个D. 4个满分:4 分5. 某主管局将下属企业先按轻、重工业分类,再按企业规模分组,这样的分组属于()。
A. 简单分组B. 复合分组C. 分析分组D. 结构分组满分:4 分6. 构成统计总体的基础为()。
A. 一致性B. 目的性C. 同质性D. 相关性满分:4 分7. 编制数量指标综合指数的一般原则是采用()作为同度量因素。
A. 报告期的质量指标B. 报告期的数量指标C. 基期的质量指标D. 基期的数量指标满分:4 分8. 对某机器生产的滚动轴承随机抽取196个样本,测得其直径的均值为0.826厘米,样本标准差0.042厘米,这批轴承均值的95%的置信区间为()。
A. [0.820, 0.831]B. [0.818, 0.834]C. [0.830, 0.854]D. [0.810, 0.834]满分:4 分9. 对于经常性的人口总量及构成情况进行的调查,适宜采用()。
A. 典型调查B. 重点调查C. 抽样调查D. 普查满分:4 分10. 几位学生的某门课成绩分别是67分、78分、88分、89分、96分,学生成绩是( )。
北航研究生数理统计答案完全版
) , y ~ N ( 2 ,
2
n
),
(m 1) S12m
2
~ (m 1) ,
2
2 (n 1) S 2 n
2
~ 2 (n 1) ,
于是有, ( x 1 ) ~ N (0,
2
m
2 ) , ( y 2 ) ~ N (0,
2
n
2),
则
( x 1 ) ( y 2 ) ~ N (0, (
解:
E( X )
1 1 1 xdx xdx 0 2 2(1 ) 1 1 2 1 1 (1 2 ) 2 2 2(1 ) 2 1 1 1 2 (1 ) 4 4 4
第 4 页 /第 23 页
北京航空航天大学
研究生应用数理统计
书后部分习题解答整理版
做矩估计, x
1 2 , 4 1 。 2
ˆ 2x 可得 的矩估计,
9. ( P80.7)
解: (1)由分布函数得出概率密度函数
f ( x; )
d ( F ( x; ) x 1 x 1 dx 0x 1
n
2
(1 x ) ,
令
ln L n n - 2 (1 x ) 0 ,得到 2 x 1 , 2 2 2
i
ˆ x ˆ x min{x } 。 于是 2 的极大似然估计为 2 1 i
13. ( P81.12) x1 , x 2 ,…, x n 为来自总体 X 的简单样本,试证明下列估计量来自m , nm n
。
ˆz 于是有,
北航2015级硕士研究生数理统计参考答案(B层)
2015-2016 学年 第一学期期末试卷参考答案学号 姓名 成绩 考试日期: 2016年1月15日考试科目:《数理统计》(B 层)一、填空题(本题共16分,每小题4分)1.设12,,n x x x ,是来自正态总体2(0,)N σ的简单样本,则当c = 时,统计量221()nkk x cxx η==-∑服从F -分布,其中11nk k x x n ==∑。
((1)n n -)2. 设12,,n x x x ,是来自两点分布(1,)B p 的简单样本,其中01p <<,2n ≥,则当c = 时,统计量2ˆ(1)cx x σ=-是参数()(1)q p p p =-的无偏估计,其中11nk k x x n ==∑。
(1n n -)3.设总体X 的密度函数为22,[0,](;)0,[0,]x x p x x θθθθ⎧∈⎪=⎨⎪∉⎩,其中0θ>,12,,,n x x x 是来自总体X 简单样本,则θ的充分统计量是 。
(()n x ) 4.设12,,n x x x ,是来自正态总体2(,)N μσ的简单样本,已知样本均值 4.25x =,μ的置信度为0.95的双侧置信区间下限为3.1,则μ的置信度为0.95的双侧置信区间为(,)。
((3.1,5.4))二、(本题12分)设12,,,n x x x 是来自正态总体2(1,2)N σ的简单样本。
(1)求2σ的极大似然估计2σ;(2)求2σ的一致最小方差无偏估计;(3)问2σ的一致最小方差无偏估计是否为有效估计?证明你的结论。
解(1)似然函数为22211()exp{(1)}4nnii L x σσ==--∑对数似然函数为222211ln ()(ln(4)ln )(1)24n i i n L x σπσσ==-+--∑求导,有222241ln ()1(1)24n i i L n x σσσσ=∂=-+-∂∑ 令22ln ()0L σσ∂=∂,可得θ的极大似然估计为2211ˆ(1)2n i i x n σ==-∑。
北京航空航天大学2015年春学期《统计学》在线作业三满分答案
北航《统计学》在线作业三一、单选题:1.几位学生的某门课成绩分别是67分、78分、88分、89分、96分,学生成绩是( )。
(满分:4)A. 品质标志B. B.数量标志C. 标志值D. D.数量指标正确答案:B2.权数对算术平均数的影响作用,实质上取决于( )。
(满分:4)A. 作为权数的各组单位数占总体单位数比重的大小B. 各组标志值占总体标志总量比重的大小C. 标志值本身的大小D. D.标志值数量的多少正确答案:A3.将连续型变量值分为五组:第一组为40一50,第二组为50-60,第三组为60-70,第四组为70-80,第五组为80以上。
依习惯上规定( )。
(满分:4)A. 50在第一组,70在第四组B. 60在第二组,80在第五组C. 70在第四组,80在第五组D. 80在第四组,50在第二组正确答案:C4.将统计总体按照一定标志区分为若干个组成部分的统计方法是( )。
(满分:4)A. 统计整理B. 统计分析C. 统计调查D. 统计分组正确答案:D5.某主管局将下属企业先按轻、重工业分类,再按企业规模分组,这样的分组属于( )。
(满分:4)A. 简单分组B. 复合分组C. 分析分组D. 结构分组正确答案:B6.综合指数的特点是( )。
(满分:4)A. 先对比后综合B. 先综合后对比C. 先综合后分解D. 先综合后平均正确答案:B7.非全面调查中最完善、最有计量科学根据的方法是( )。
(满分:4)A. 重点调查B. 典型调查C. 抽样调查D. 非全面统计报表正确答案:C8.能够测定变量之间相关系密切程度的主要方法是( )。
(满分:4)A. 相关表B. B.相关图C. C.相关系数D. D.定性分析正确答案:C9.随着样本单位数的无限增加,样本统计量和未知的总体指标之差的绝对值小于任意的正数,称为抽样估计的( )。
(满分:4)A. 无偏性B. 一致性C. 有效性D. 充分性正确答案:B10.实施抽样中,先按某一标志将总体分成若干组,其中的每一组称为一个群,然后以群为单位进行单纯随机抽样,将抽到的群进行全面调查,这是( )。
北航2014级硕士研究生应用数理统计答案(B卷)Word版
2014-2015 学年 第一学期期末试卷答案学号 姓名 成绩 考试日期: 2015年1月13日考试科目:《应用数理统计》(B 层)一、填空题(本题共16分,每小题4分)1.设122,,n x x x ,是来自正态总体2(,)N μσ的简单样本,则c =n mm- 时,统计量2221122211()()mkk k nk k k m xx cx x η-=-=+-=-∑∑服从F -分布。
2. 设12,,n x x x ,是来自正态总体2(0,)N σ的简单样本,用22211ˆ()ni i nx x n σ===∑估计2σ,则均方误差2222ˆ()E σσσ- 42σ 。
3.设总体X 的密度函数为22,[0,](;)0,[0,]x x p x x θθθθ⎧∈⎪=⎨⎪∉⎩,其中0θ>,12,,,n x x x 是来自总体X 简单样本,则2()q θθ=的矩估计ˆq = 294x 或212n i i x n =∑ 。
4.在双因素方差分析中,总离差平方和T S 的分解式为T A B A B e S S S S S ⨯=+++其中2111()p q re ijk ij i j k S x x ⋅====-∑∑∑,11rij ijk k x x r ⋅==∑,则e S 的自由度是 (1)pq r - 或n pq -,其中n pqr = 。
二、(本题12分)设总体X 的密度函数为111,(0,1)(;)0,(0,1)x x f x x θθθ-⎧∈⎪=⎨⎪∉⎩,其中0θ>,12,,,n x x x 是来自总体X 的简单样本。
(1)求θ的极大似然估计ˆθ;(2)求θ的一致最小方差无偏估计;(3)问θ的一致最小方差无偏估计是否为有效估计?证明你的结论。
解(1)似然函数为(1)()11{01}1211()()(,,,)n ni x x n ni L x I x x x θθθ-<≤<==∏对数似然函数为(1)(){01}1211ln ()ln (1)ln ln (,,,)n ni x x n i L n x I x x x θθθ<≤<==-+-+∑求导,有21ln ()1ln nii L n x θθθθ=∂=--∂∑令ln ()0L θθ∂=∂,可得θ的极大似然估计为11ˆln n i i x n θ==-∑。
概率论与数理统计课后答案北邮版
概率论与数理统计课后答案北邮版(第三章)(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.222⨯⨯222⨯⨯=2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】和的联合分布律如表:223247C3C35=313247C2C35=11232247C C6C35=21132247C C12C35=313247C2C35=12132247C C6C35=223247C3C35=3.设二维随机变量(X,Y)的联合分布函数为F(x,y)=⎪⎩⎪⎨⎧≤≤≤≤.,020,2,sinsin其他ππyxyx求二维随机变量(X,Y)在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,4πππyx内的概率.【解】如图πππ{0,}(3.2)463P X Y<≤<≤公式ππππππ(,)(,)(0,)(0,)434636F F F F--+ππππππsin sin sin sin sin0sin sin0sin4346361).4=--+=题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数;(3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112x y A f x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12 (2) 由定义,有 (,)(,)d d yxF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12e d d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <};(4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.5402127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他所以(,),()()X Y f x y X Y f x f y 独立5515e25e,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25e d d y y x DP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=e ,0,0,.y x y -⎧<<⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=22,1,0,.cx y x y ⎧≤≤⎨⎩其他(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰522217d ,01,420,0,.y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他 11.设随机变量(X ,Y )的概率密度为f(x,y)=1,,01, 0,.y x x⎧<<<⎨⎩其他求条件概率密度f Y|X(y|x),f X|Y(x|y).题11图【解】()(,)dXf x f x y y+∞-∞=⎰1d2,01,0,.xxy x x-⎧=<<⎪=⎨⎪⎩⎰其他111d1,10,()(,)d1d1,01,0,.yY yx y yf y f x y x x y y-+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y XXy xf x yf y x xf x⎧<<⎪==⎨⎪⎩其他|1,1,1(,)1(|),1,()10,.X YYy xyf x yf x y y xf y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X,最大的号码为Y.(1)求X与Y的联合概率分布;(2)X与Y是否相互独立【解】(1)X与Y的联合分布律如下表345{}iP X x= YX1 3511C 10= 3522C 10= 3533C 10= 610 2 0 3511C 10= 3522C 10= 310 32511C 10= 110{}i P Y y =110 310 610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为 2 5 8(1)求关于X 和关于Y 的边缘分布;(2) X 与Y 是否相互独立2 5 8 P {Y=y i }{}i P X x =(2) 因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他XYX Y题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y , 从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰ 33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图 (3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z x y zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4只,求其中没有一只寿命小于180h 的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥之间独立34{180}{180}P X P X ≥≥1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==于是{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n k P X i P Y k i n n p q p qi k i n n p qi k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律;(4) 求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =(1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d d π1d d πRR r rR r r R θθ=⎰⎰⎰⎰3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y === 同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1j j P Y y ===∑,故3111{}1623P Y y ==--=.同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=.(2) {,}{}{|}P X n Y m P X n P Y m X n ======e C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤=24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=.26. 设二维随机变量(X ,Y )的概率分布为1 0 11 0 1 a 0 b 0 c其中a ,b ,c 为常数,且X 的数学期望E (X )=,P {Y ≤0|X ≤0}=,记Z =X +Y .求:(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +=1 即 a+b+c = . 由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为2,1,0,1,2,X Y{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 2 1 0 1 2(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.27. 设随机变量X,Y 独立同分布,且X 的分布函数为F(x),求Z=max{X,Y}的分布函数.解:因为X,Y 独立同分布,所以F X (z )=F Y (z),则F Z (z )=P{Z ≤z}=P{X ≤z ,Y ≤z}=P{x ≤z}·P{Y ≤z}=[F (z )]2.28.设随机变量X 与Y 相互独立,X 的概率分布为1{},1,0,1,3P X i i ===-Y 的概率密度为1,01,()0,Y y f y ≤<⎧=⎨⎩其他.记Z =X +Y .(1)求1{|0};2P Z X ≤= (2)求Z 的概率密度()Z f z分析 题(1)可用条件概率的公式求解.题(2)可先求Z 的分布函数,再求导得密度函数.解(1) 1{0,}12{|0}2{0}P X Z P Z X P X =≤≤===1{0,}2{0}P X Y P X =≤== 11{}22P Y =≤=(2)(){}{}Z F z P Z z P X Y z =≤=+≤{,1}{,0}{,1}P X Y z X P X Y z X P X Y z X =+≤=-++≤=++≤= {1,1}{,0}{1,1}P Y z X P Y z X P Y z X =≤+=-+≤=+≤-= {1}{1}{}{0}{1}{1}P Y z P X P Y z P X P Y z P X =≤+=-+≤=+≤-=1[{1}{}{1}]3P Y z P Y z P Y z =≤++≤+≤-1[(1)()(1)]3Y Y Y F z F z F z =+++-'1()()[(1)()(1)]3Z Z Y Y Y f z F z f z f z f z ==+++-1,1230,.z ⎧-≤<⎪=⎨⎪⎩其他29.设随机变量(X,Y)服从二维正态分布,且X 与Y 不相关,f X (x),f Y (y)分别表示X,Y 的概率密度,求在Y=y 的条件下,X 的条件概率密度f X |Y (x |y).解:由第四章第三节所证可知,二维正态分布的不相关与独立性等价,所以f(x,y)=f X (x) ·F Y (y),由本章所讨论知,/()()(,)(/)()()()X Y X Y X Y Y f x f y f x y f x y f x f y f y ===.30.设二维随机变量(X ,Y )的概率密度为2,01,01,(,)0,.x y x y f x y --<<<<⎧=⎨⎩其他(1)求{2};P X Y >(2)求Z =X +Y 的概率密度()Z f z .分析 已知(X,Y)的联合密度函数,可用联合密度函数的性质{(,)P X Y ∈}(,)GG f x y dxdy =⎰⎰ 解(1); Z=X+Y 的概率密度函数可用先求Z 的分布函数再求导的方法或直接套公式求解. 解 (1)2{2}(,)x yP X Y f x y dxdy >>=⎰⎰120120(2)57().824x dx x y dyx x dx =--=-=⎰⎰⎰(2)()(,),Z f z f x z x dx +∞-∞=-⎰其中 2()01,01(,)0x z x x z x f x z x ---<<<-<⎧-=⎨⎩其他201,01z x z x -<<<-<⎧=⎨⎩其他当02z z ≤≥或时,()0Z f z =; 当01z <<时,0()(2)(2);zZ f z z dx z z =-=-⎰ 当12z ≤<时,121()(2)(2),Z z f z z dx z -=-=-⎰即Z 的概率密度为2(2)01()(2)120Z z z z f z z z -<<⎧⎪=-≤<⎨⎪⎩其他。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016 学年 第一学期期末试卷
参考答案
学号 姓名 成绩 考试日期: 2016年1月15日
考试科目:《数理统计》(B 层)
一、填空题(本题共16分,每小题4分)
1.设12,,n x x x ,是来自正态总体2(0,)N σ的简单样本,则当c = 时,统计量2
21
()
n
k
k x c
x
x η==-∑服从F -分布,其中1
1n
k k x x n ==∑。
((1)n n -)
2. 设12,,n x x x ,是来自两点分布(1,)B p 的简单样本,其中01p <<,2n ≥,则
当c = 时,统计量2ˆ(1)cx x σ
=-是参数()(1)q p p p =-的无偏估计,其中1
1n
k k x x n ==∑。
(1n n -)
3.设总体X 的密度函数为22
,[0,]
(;)0,[0,]x x p x x θθθθ⎧∈⎪=⎨⎪∉⎩,其中0θ>,12,,,n x x x 是
来自总体X 简单样本,则θ的充分统计量是 。
(()n x ) 4.设12,,n x x x ,是来自正态总体2(,)N μσ的简单样本,已知样本均值 4.25x =,
μ的置信度为0.95的双侧置信区间下限为3.1,则μ的置信度为0.95的双侧置信区间为(,)。
((3.1,5.4))
二、(本题12分)设12,,,n x x x 是来自正态总体2(1,2)N σ的简单样本。
(1)求2σ的极大似然估计2σ;(2)求2σ的一致最小方差无偏估计;(3)问2σ的一致最小方差无偏估计是否为有效估计?证明你的结论。
解(1)似然函数为
2
2
2
1
1()exp{(1)}4n
n
i
i L x σσ
==-
-∑
对数似然函数为
2
2
221
1ln ()(ln(4)ln )(1)24n i i n L x σπσσ==-+--∑
求导,有
22
224
1
ln ()1(1)24n i i L n x σσσσ=∂=-+-∂∑ 令22
ln ()0L σσ∂=∂,可得θ的极大似然估计为2
21
1ˆ(1)2n i i x n σ==-∑。
(2)因为
2
2
122
1
1(,,,;)exp{(1)}4n
n
n i
i f x x x x σσ
==-
-∑
令2()n c σ=,()1h x =,22
1()4w σσ
=-
,,由于2()w σ的值域(,0)-∞有内
点,由定理2.2.4知21(1)n
i i T x ==-∑是完全充分统计量。
而
2
221
1
((1))(1)2n
n
i i i i E x E x n σ==-=-=∑∑
因而2
2
11ˆ(1)2n i i x n σ==-∑既是完全充分统计量21
(1)n
i i T x ==-∑的函数,又是2σ的无偏估计,由定理2.2.5知2
21
1ˆ(1)2n
i i x n σ==-∑是2σ一致最小方差无偏估计。
(3)224112
ˆ()((1))4Var Var x n n
σ
σ=-=。
因为
222
222223
ln (;)11(1)()2()2()
f x x σσσσ∂=--∂ 所以
222
2222223
ln (;)11
()()(1)()2()2()
f x I E E x σσσσσ∂=-=-+-∂ 22
22
4
1112()()2σσσ=-
+
=
从而4222
2
2(())ˆ()()
Var n nI σσσσ'==,即信息不等式等号成立,故2
211ˆ(1)2n i i x n σ==-∑是2σ的有效估计。
三、(本题12分)已知某厂生产的某种钢索的断裂强度服从正态分布)30,80(2N ,断裂强度的单位是kg/cm 2。
为提高钢索断裂强度,改进生产工艺,现从新工艺下
生产的钢索中抽取9根,测得断裂强度的平均值为100x =(kg/cm 2)。
设新工艺下钢索强度仍服从正态分布,且总体方差不变。
在显著性水平0.05α=下,是否可以认为新生产的钢索断裂强度较以往钢索断裂强度有显著提高?即需要检验假设检验问题
0100::μμμμ>=H H
进一步计算犯第二类错误的概率()βμ,并讨论()βμ关于μ的单调性。
解:假设检验问题为
检验统计量为n
x u 2
σ
μ-=
,拒绝域为}:),,,{(12
21ασ
μ-≥-=
=z n
x u x x x W n 。
由于95.0265.1230
3
209
3080100z u =>=⨯
=-=
,所以拒绝假设0H ,认为这批钢索断裂强度较以往钢索断裂强度有显著提高。
犯第二类错误的概率为
}{
1)(95.02
z n
x P ≥--=σ
μμβμ
}{
95.02
z n x P <-=σ
μμ
}{
2
95.02
n
z n x P σ
μμσ
μ
μ--
<-=
)(2
95.0n
z σ
μμ--
Φ=
))80(1.065.1(-⨯-Φ=μ
其中0μμ>,)(μβ是μ的单调减函数。
四、(本题10分)考虑某四因子二水平试验,除考察因子D C B A ,,,外,还需考察交互作用B A ⨯。
今选用表)2(78L ,表头设计及试验数据如表所示,所考虑指标是越大越好。
试用极差分析方法指出因子的主次顺序和较优工艺条件。
因素的主次顺序为,;,,A C A B B D ⨯,较优工艺条件为1122A B C D 。
五、(本题10分)随机向量),,(321x x x 的协方差矩阵
⎪⎪⎪⎭
⎫
⎝⎛--=∑410120001
(1)根据主成分%80的选取标准,应选取几个主成分?
(2)试求第一主成分。
解:由04
1
12
00
01
||=---=
∑-λλλλI ,可得特征值为 4142.4231≈+=λ,5858.1232≈-=λ,13=λ
而
%80%06.6374142.43211<==++λλλλ,%80%71.857
6
32121>==+++λλλλλ,
故选两个主成分。
(2)由于⎪⎪⎪⎪⎭⎫
⎝
⎛+-++211012
100
022→⎪⎪⎪⎪⎭
⎫
⎝⎛+-+-+211021100022
→⎪⎪⎪⎪⎭
⎫
⎝⎛+-+00021100022,对应的齐次方程组为 ⎩⎨
⎧=+-+=+0
)21(0
)22(321x x x 一组非零解为⎪⎪⎪
⎭
⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1210321x x x ,从而对应于特征值4142.4231≈+=λ的单位特
征向量为
⎪
⎪⎪⎭
⎫
⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=
⎪⎪⎪⎭
⎫
⎝⎛=9239.03827.0012102241
321a a a a
所以,第一主成分为3219239.03827.0x x y +-=。