中考数学专项练习分式方程的增根(含解析)
初中数学分式方程的增根、无解问题解答题基础训练(附答案详解)
![初中数学分式方程的增根、无解问题解答题基础训练(附答案详解)](https://img.taocdn.com/s3/m/2b0fc229680203d8cf2f248d.png)
17.若关于x的方程 的解是正数,求k值.
18.当k为何值时,分式方程 有增根?
19.已知关于x的方程 的根是x=1,求 的值.
参考答案
1.m<5且m≠2
【解析】
【分析】
先解分式方程,然后根据分式方程解的取值范围和增根的定义列出不等式即可求出结论.
【详解】
解:
解得:
∵关于x的分式方程 的解为正数,
∴
即
解得:m<5且m≠2.
【点睛】
此题考查的是根据分式方程解的情况,求参数的取值范围,掌握分式方程的解法和增根的定义是解决此题的关键.
2.(1) ;(2) ,数轴上表示见解析.
【解析】
【分析】
(1)将y=-1代入原方程解出a即可.
(2)根据不等式的解法解出解集即可.
【详解】
(2)将新方程的x表示出来,令方程小于零,解出即可.
【详解】
由上得:2x=(m-2)x-6,整理得:(4-m)x=-6.
(1)①当4-m=0即m=4时,原方程无解;
②当分母x+3=0即x=-3时,方程无解;
故2×(-3)=(m-2)×(-3)-6,
解得m=2,
综上所述,m=4或m=2.
(2)
当m≠4时, ,
∵方程的解是负数,
∴a-4<0,
∴a<4,
又∵x+2≠0,
∴x≠-2,
∴a≠2
那么a的取值范围是:a<4且a≠2.
【点睛】
本题考查解分式方程,解题的关键是掌握分式方程的求解,注意x+2≠0.
9. 且
【解析】
【分析】
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求a的取值范围.
分式方程增根练习题
![分式方程增根练习题](https://img.taocdn.com/s3/m/7820a9c383c4bb4cf6ecd17a.png)
与分式方程根有关的成绩分类举例之杨若古兰创作与分式方程的根有关的成绩,在近年的中考试题中时有出现,现结合近年的中考题分类举例,介绍给读者,供进修、复习有关内容时参考.1. 已知分式方程有增根,求字母系数的值解答此类成绩必须明确增根的意义:(1)增根是使所给分式方程分母为零的未知数的值.(2)增根是将所给分式方程去分母后所得整式方程的根.利用(1)可以确定出分式方程的增根,利用(2)可以求出分式方程有增根时的字母系数的值.例1. (2000年潜江市)使关于x的方程a xx a x2224222-+-=-发生增根的a的值是()A. 2B. -2C. ±2D. 与a有关例2. (1997年山东省)若解分式方程2111 2x x mx xxx+-++=+发生增根,则m的值是()A. -1或-2B. -1或2C. 1或2D. 1或-2例3. (2001年重庆市)若关于x的方程axx +--=1110有增根,则a的值为__________.例4. (2001年鄂州市)关于x的方程xxk x-=+-323会发生增根,求k的值.例 5. 当k为什么值时,解关于x的方程:()()()1 151112x xkx xk xx-+-+=--只要增根x=1.评注:由以上几例可知,解答此类成绩的基本思路是:(1)将所给方程化为整式方程;(2)由所给方程确定增根(使分母为零的未知数的值或题目给出);(3)将增根代入变形后的整式方程,求出字母系数的值.2. 已知分式方程根的情况,求字母系数的值或取值范围例6. (2002年荆门市)当k的值为_________(填出一个值即可)时,方程x x k x x x-=--122只要一个实数根.例7. (2002年孝感市)当m为什么值时,关于x的方程21112xx mx x x---=+-无实根?例8. (2003年南昌市)已知关于x的方程11xmxm--=有实数根,求m的取值范围.评注:由以上三例可知,由分式方程根的情况,求字母系数的值或取值范围的基本思路是:(1)将所给方程化为整式方程;(2)根据根的情况,由整式方程利用根的判别式求出字母系数的值或取值范围,留意排除使原方程有增根的字母系数的值.3. 已知分式方程无增根,求字母系数的取值范围 例9.当a 取何值时,解关于x 的方程:()()x x x x x ax x x ---++=+-+12212212无增根?评注:解答此类成绩的基本思路是:(1)将已知方程化为整式方程;(2)由所得整式方程求出有增根的字母系数的值和使整式方程有实数根的字母系数的取值范围;(3)从有实数根的范围里排除有增根的值,即得无增根的取值范围.4. 已知分式方程根的符号,求字母系数的取值范围 例9. 已知关于x 的方程x a x +-=-21的根大于0,求a 的取值范围.例10. 已知关于x 的方程x kx +-=22的根小于0,求k 的取值范围评注:解答此类题的基本思路是:(1)求出已知方程的根;(2)由已知建立关于字母系数的不等式,求出字母系数的取值范围,留意排除使原方程有增根的字母系数的值.说明:留意例9与例10的区别,例9有122-≠a ,而例10无k +≠42这一不等式?请读者思考.。
【专项突破卷】中考数学《分式方程》专项突破练习卷(含答案与解析)
![【专项突破卷】中考数学《分式方程》专项突破练习卷(含答案与解析)](https://img.taocdn.com/s3/m/5b48d2ade518964bce847c8f.png)
《分式方程》专项练习卷一.分式方程的解(共12小题)1.(2021•江津区模拟)若a为整数,关于x的不等式组有且只有3个整数解,且关于y的分式方程有整数解,则满足条件的所有整数a的和为()A.0 B.4 C.7 D.82.(2021•九龙坡区校级模拟)若整数a使关于x的不等式组有解且至多有四个整数解,且使关于y的分式方程=﹣的解为非负数,则满足条件的所有a的值之和为()A.63 B.67 C.68 D.723.(2021•新都区模拟)若关于x的方程=+1无解,则a的值是()A.1 B.3 C.﹣1或2 D.1或24.(2021•沙坪坝区校级模拟)若整数a是使得关于x的不等式组有且只有2个整数解,且使得且关于y的分式方程+=a有非负数解,则所有满足条件的整数a的个数为()A.6 B.5 C.4 D.35.(2021•温江区校级模拟)若关于x的分式方程+3的解为3,则a的值是()A.7 B.6 C.﹣1 D.﹣66.(2021•九龙坡区模拟)若关于x的分式方程+=﹣3的解为正数,且关于y的一元一次不等式组有解,则符合条件的所有整数a的和为()A.1 B.2 C.3 D.47.(2021•罗平县模拟)若分式方程=无解,则实数a的值为()A.1 B.1或C.D.1或28.(2021•云南模拟)若关于x的一元一次不等式组的解集为x≤5,且关于y的分式方程的解为非正数,则符合条件的a所有整数的个数为()A.2 B.3 C.4 D.59.(2021•郫都区模拟)若关于x的方程+=3的解为正数,则m的取值范围是.10.(2021•铁岭二模)已知x=9是分式方程=的解,那么k的值为.11.(2020•攀枝花一模)若关于x的方程无解,则m的值为.12.(2020•广陵区校级三模)关于x的方程=2+无解,则k的值为.二.解分式方程(共8小题)13.(2021•平房区一模)方程=的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣314.(2021•河南模拟)解分式方程2﹣=,去分母得()A.2(2﹣6x)﹣1=1 B.2(2﹣6x)﹣2=1C.2(2﹣6x)+2=1 D.2(2﹣6x)+2=﹣115.(2021•道里区一模)方程=的解为()A.x=1 B.x=﹣1 C.x=2 D.x=316.(2021•道外区一模)方程=的解为()A.1 B.﹣1 C.4 D.17.(2021•盐城模拟)方程=+3的解是.18.(2021•百色模拟)分式方程+=1的解为.19.(2021•资兴市模拟)在正数范围内定义一种运算“*”,其规则为“a*b=﹣”,根据这个规则方程(x ﹣1)*x=0的解为.20.(2020•资兴市一模)观察下列等式:=1﹣,=﹣,=﹣将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=(1)猜想并写出:=(2)分式方程++=1的解是.三.换元法解分式方程(共1小题)21.(2021•松江区二模)用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是.四.分式方程的增根(共4小题)22.(2021•海淀区校级模拟)若关于x的分式方程有增根,则m的值是()A.4 B.3 C.2 D.123.(2021•青羊区校级模拟)若关于x的分式方程有增根,则k的值为.24.(2021•东港市模拟)若关于x的分式方程+3=有增根,则m的值为.25.(2021•贺兰县模拟)如果在解关于x的分式方程+=2时出现了增根x=1,那么常数k的值为.五.由实际问题抽象出分式方程(共11小题)26.(2021•鹿城区一模)一家工艺品厂按计件方式结算工资.小鹿去这家工艺品厂打工,第一天工资60元,第二天比第一天多做了5件,工资为75元.设小鹿第一天做了x件,根据题意可列出方程为()A.=B.=C.=D.=+527.(2021•河南模拟)网上购物已经成为人们常用的一种购物方式.购物方式的改变给快递行业带来了商机,也带来了挑战.为了提高效率,某快递公司研发了快递机器人专门负责分拣包裹,已知单个机器人比人工(一个人)每小时多分拣100个,单个机器人分拣9000个包裹和人工(一个人)分拣6000个包裹所用时间相同.设人工(一个人)每小时分拣x个包裹,则可列方程为()A.B.C.D.28.(2021•宁波模拟)某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.5元.设每箱凉茶有x罐,则下列方程正确的是()A.B.C.D.29.(2021•永嘉县模拟)某童装店有几件不同款式的衣服,每件衣服的原价一样,6月1日儿童节那天,全场打7折,某宝妈在儿童节那天去购买该款式的衣服时发现:平时花350元购买到的衣服件数比现在少2件,设原价是x元,则根据题意可列出方程()A.=B.=C.﹣2=D.=﹣230.(2021•兴宁区校级一模)为美化城市环境,计划种植树木10万棵,由于志愿者的加入,实际每天种植比原计划多20%,结果提前5天完成任务,设原计划每天种植树木x万棵.可列方程是()A.+5=B.﹣=5C.﹣=5 D.﹣=531.(2021•河南模拟)由于疫情的原因,拥有“中国医疗耗材之都”之称的河南长垣,这个冬天特别的忙!其中某医护用品集团计划生产口罩1500万只,实际每天比原计划每天多生产2000只,结果提前五天完成任务,则原计划每天生产多少万只口罩?设原计划每天生产x万只口罩,根据题意可列方程为()A.B.C.D.32.(2021•泉州模拟)“绿水青山就是金山银山”,为了进一步优化河道环境,某工程队承担一条4800米长的河道整治任务.开工后,实际每天比原计划多整治200米,结果提前4天完成任务,若设原计划每天整治x米,那么所列方程正确的是()A.+=4 B.﹣=200C.﹣=4 D.﹣=20033.(2021•南昌模拟)数学家斐波那契编写的《算经》中有如下问题,一组人平分10元钱,每人分得若干,若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第二次分钱的人数.设第二次分钱的人数为x,则可列方程为.34.(2021•自贡模拟)某工厂生产一批零件,计划20天完成,若每天多生产5个,则16天完成且还多生产8个.设原计划每天生产x个,根据题意可列分式方程为.35.(2021•镇雄县一模)某校为了丰富学生的校园生活,准备购买一批陶笛.已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500元购买B型陶笛的数量相同,设A型陶笛的单价为x 元,根据题意列出正确的方程是.36.(2020•市北区二模)某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时,每天绿化的面积为x万平方米,则可列方程.六.分式方程的应用(共14小题)37.(2021•立山区一模)A、B两地相距60km,甲骑自行车从A地到B地,出发1h后,乙骑摩托车从A地到B地,且乙比甲早到3h,已知甲、乙的速度之比为1:3,则甲的速度是.38.(2020•盘锦模拟)某村在退耕还林活动中,计划植树200亩,全村在完成植树40亩后,某环保组织加入村民植树活动,现植树速度是原计划植树速度的2倍,结果比原计划提前4天完成任务,那么原计划天完成任务.39.(2021•长春一模)某扶贫干部决定引进改良的中药种子帮助贫困户脱贫.他先花8000元购买了桔梗种子,又花6000元购买了白术种子,已知他购买的这两种种子质量相等,且桔梗种子比白术种子每千克多20元,求白术种子每千克多少元?40.(2021•宝应县一模)为庆祝中国共产党成立100周年,扬州漆器厂接到制作960件漆器纪念贺礼订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?41.(2021•徐州一模)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣令组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.求每副围棋和象棋各是多少元?42.(2021•铁西区一模)甲、乙两支工程队修建公路,已知甲队每天修路的长度比乙队每天修路的长度多50米,甲队修路600米与乙队修路300米用的天数相同.(1)求甲、乙两支工程队每天各修路多少米?(2)计划修建长度为3600米的公路,因工程需要,甲、乙两支工程队都要参与这条公路的修建.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,在总费用不超过40万元的情况下,至少安排乙队施工天.43.(2021•金山区二模)A、B两地相距18千米,甲工程队要在A、B两地间铺设一条输送天然气的管道,乙工程队要在A、B两地间铺设一条输油管道,已知甲工程队每天比乙工程队少铺设1千米.(1)若两队同时开工,甲工程队每天铺设3千米,求乙工程队比甲工程队提前几天完成?(2)若甲工程队提前3天开工,结果两队同时完成任务,求甲、乙两队每天各铺设管道多少千米?44.(2021•盐田区模拟)某超市用4000元购进某种牛奶,面市后供不应求,超市又用1万元购进第二批这种牛奶,所购数量是第一批的2倍,但单价贵了2元.(1)第一批牛奶进货单价为多少元?(2)超市销售两批牛奶售价相同,两批全部售完后要求获利不少于4000元,则售价至少为多少元?45.(2021•南海区模拟)为抗击新型冠状病毒肺炎,某市医院打算采购A、B两种医疗器械,购买1台A机器比购买1台B机器多花10万元,并且花费300万元购买A器材和花费100万元购买B器材的数量相等.(1)求购买一台A器材和一台B器材各需多少万元;(2)医院准备购买购A、B两种器材共80台,若购买A、B器材的总费用不高于1050万元,那么最多购买A器材多少台?46.(2021•山西模拟)“居家嗨购,网上过年”,为做好疫情防控并促进春节线上消费,我省组织开展了2021“全晋乐购”网上年货节活动,某企业采购了具有山西特色的年货慰问响应国家号召就地过年的员工.该企业选购甲,乙两种物品,已知乙种物品单价是甲种物品单价的,购买9000元甲种物品的数量比购买4800元乙种物品的数量多10件.(1)甲,乙两种物品的单价各为多少元?(2)如果该企业购买甲,乙两种物品共150件,总费用不超过3.9万元,则购买甲种物品最多为多少件?47.(2021•安徽模拟)中秋节期间,小明计划外出游玩,他有两种出行线路:线路一是自己开车;线路二是先坐高铁再骑行;其中线路二的路程是线路一的2倍,且乘坐高铁部分路程占线路二全程的95%,剩余路程为骑行路程.已知高铁平均速度是开车平均速度的5倍,若最终两种出行方式所花费时间一致,则开车速度是骑行速度的多少倍?48.(2021•黔东南州模拟)在抗击“新型冠状病毒”期间,某车间接受到一种零件的加工任务,该任务由甲、乙两人来完成,甲每天加工的数量是乙每天加工数量的1.5倍,现两人各加工300个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有1500个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?49.(2021•历下区一模)生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任,某小区购进A型和B型两种分类垃圾桶,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花20元,购买A型、B型垃圾桶各花费了1000元,且购买A型垃圾桶数量是购买B型垃圾桶数量的2倍.(1)求购买一个A型垃圾桶和一个B型垃圾桶各需多少元?(2)若小区一次性购买A型和B型垃圾桶共60个,要使总费用不超过2000元,最少要购买多少个A 型垃圾桶?50.(2021•长清区一模)某服装店老板到厂家选购A、B两种品牌的羽绒服,B品牌羽绒服每件进价比A品牌羽绒服每件进价多200元,若用10000元购进A种羽绒服的数量是用7000元购进B种羽绒服数量的2倍.(1)求A、B两种品牌羽绒服每件进价分别为多少元?(2)若A品牌羽绒服每件售价为800元,B品牌羽绒服每件售价为1200元,服装店老板决定一次性购进A、B两种品牌羽绒服共80件,在这批羽绒服全部出售后所获利利不低于28000元,则最少购进B品牌羽绒服多少件?参考答案与试题解析一.分式方程的解(共12小题)1.(2021•江津区模拟)若a为整数,关于x的不等式组有且只有3个整数解,且关于y的分式方程有整数解,则满足条件的所有整数a的和为()A.0 B.4 C.7 D.8【分析】观察此题先解不等式组确定x的解集,由只有3个整数解确定a的取值范围.再根据分式方程由整数解即可找出符合条件的所有整数a,求和即可.【解答】解:不等式组;解①得:x≥﹣2,解②得:x<,∴且x有3个整数解,∴0<≤1,∴0<a≤4,解关于y的分式方程得y=,∵该分式方程有整数解,∴当y=1时,a=0,当y=﹣1时,a=4,当y=2时,a=1,方程产生增根,故舍去.当y=﹣2时,a=3,又∴0<a≤4,∴符合条件的所有整数a可取3和4,∴和为7.故选:C.【点评】此题考查不等式组的解法以及分式方程的解法,综合性较强,解出所有a的取值范围,再取整数求和即可解决本题.2.(2021•九龙坡区校级模拟)若整数a使关于x的不等式组有解且至多有四个整数解,且使关于y的分式方程=﹣的解为非负数,则满足条件的所有a的值之和为()A.63 B.67 C.68 D.72【分析】观察本题,可通过解不等式组找到x的取值范围,结合至多四个整数解和分式方程的解的特点确定a的取值范围再取整数解求和即可.【解答】解:不等式组解①得:x≤7,解①得:x,∴且至多有四个整数解,∴3<≤7,∴4<a≤12,解关于y的分式方程得y=2a﹣8,∵分式方程有解且为非负数,即2a﹣8≥0且2a﹣8≠2,∴a≥4且a≠5,综上整数a可取:6,7,8,9,10,11,12,∴和为:6+7+8+9+10+11+12=63,故选:A.【点评】本题考查不等式组的解法以及分式方程的解法,综合性较强,需要注意分式方程产生增根的特殊性,从而确定a的取值范围再取整数解求和即可.3.(2021•新都区模拟)若关于x的方程=+1无解,则a的值是()A.1 B.3 C.﹣1或2 D.1或2【分析】先转化为整式方程,再由分式方程无解,进而可以求得a的值.【解答】解:=+1,去分母得,ax=2+x﹣1,整理得,(a﹣1)x=1,当x=1时,分式方程无解,则a﹣1=1,解得,a=2;当整式方程无解时,a=1,故选:D.【点评】本题主要考查分式方程的解,掌握解分式方程的方法是解题的关键.4.(2021•沙坪坝区校级模拟)若整数a是使得关于x的不等式组有且只有2个整数解,且使得且关于y的分式方程+=a有非负数解,则所有满足条件的整数a的个数为()A.6 B.5 C.4 D.3【分析】解不等式组,利用有且只有2个整数解,确定a的取值范围;解分式方程,利用有非负数解,也可确定a的取值范围.同时满足两个条件的a的取值范围最终确定,由于a为整数,取a的整数解,结论可得.【解答】解:解不等式组,得,∵不等式组有且只有2个整数解,即x=2,3;∴1<≤2,解得:1<a≤7.∵分式方程+=a,解得,y=,∴≥0且≠1,∴a>2且a≠4.∴2<a≤7且a≠4.∵a为整数,∴a=3,5,6,7.故选:C.【点评】本题主要考查了一元一次不等式组的解法,分式方程的解法.依据已知条件得出a的取值范围是解题的关键.5.(2021•温江区校级模拟)若关于x的分式方程+3的解为3,则a的值是()A.7 B.6 C.﹣1 D.﹣6【分析】将x=3代入原方程即可求出a的值.【解答】解:将x=3代入原方程,得,,解得a=7.故选:A.【点评】本题主要考查分式方程的解,要理解方程的解是使方程成立的未知数的值.6.(2021•九龙坡区模拟)若关于x的分式方程+=﹣3的解为正数,且关于y的一元一次不等式组有解,则符合条件的所有整数a的和为()A.1 B.2 C.3 D.4【分析】分别解出x的解与y的解集,再求关于a的整数解.【解答】解:解关于x的分式方程得x=.∵解为正数,且x≠2.∴a﹣3<0,≠2即a<3且a≠1.解关于y的不等式组得y≥﹣1,y≤.∵不等式组有解,∴,即a≥﹣1.∴满足﹣1≤a<3的所有整数解为﹣1,0,2.∴﹣1+0+2=1.故选:A.【点评】本题考查解含参不等式问题,可利用数轴求解.解题关键是求出a的取值范围,注意增根情况.7.(2021•罗平县模拟)若分式方程=无解,则实数a的值为()A.1 B.1或C.D.1或2【分析】关于x的分式方程=无解,则化成整式方程以后,解整式方程得到的解一定是方程的增根,一定是2,把x=2代入整式方程即可求得a的值,以及未知数化成整式方程以后,未知数系数为0,依此即可求解.【解答】解:=,去分母得:x﹣2=ax﹣3,(a﹣1)x=1,∵分式方程=无解,∴把x=2代入得:2(a﹣1)=1,解得:a=;或a﹣1=0,解得:a=1.故实数a的值为1或.故选:B.【点评】本题考查了分式方程的解,理解分式方程的增根产生的原因是解题的关键.8.(2021•云南模拟)若关于x的一元一次不等式组的解集为x≤5,且关于y的分式方程的解为非正数,则符合条件的a所有整数的个数为()A.2 B.3 C.4 D.5【分析】表示出不等式组的解集,由已知解集确定出a的范围,表示出分式方程的解,根据解为非正数确定出a的范围,进而求出a的具体范围,确定出正整数解的个数即可.【解答】解:不等式组,由①得:x≤5,由②得:x<3+2a,∵关于x的一元一次不等式组的解集为x≤5;∴3+2a>5,解得:a>1;∵+=1的解为非正数,∴解得:y=a﹣6,∴a﹣6≤0,即a≤6,综上所述,可得:a的取值范围为1<a≤6;则符合条件的a所有整数有:2,3,4,5,6,共5个.故选:D.【点评】此题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握各自的性质是解本题的关键.9.(2021•郫都区模拟)若关于x的方程+=3的解为正数,则m的取值范围是m>﹣16且m≠4 .【分析】先解分式方程,根据分式方程的解为正数和分式方程无意义的情况,即可得出m的取值范围.【解答】解:+=3,去分母得,x+m﹣(x﹣4)=3(x﹣4),整理得,3x=m+16,解得,x=,∵分式方程的解为正数,∴>0且≠4,∴m>﹣16且m≠4.故答案为:m>﹣16且m≠4.【点评】本题主要考查解分式方程和一元一次不等式,熟知解分式方程的方法是解题的关键.10.(2021•铁岭二模)已知x=9是分式方程=的解,那么k的值为 1 .【分析】将x=9代入原方程即可求出k的值.【解答】解:将x=9代入原方程,得,,解得k=1.故答案为:1.【点评】本题主要考查分式方程的解,要理解方程的解是使方程成立的未知数的值.11.(2020•攀枝花一模)若关于x的方程无解,则m的值为﹣1或.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出m的值即可.【解答】解:分式方程去分母得:x+4+m(x﹣4)=4,整理得:x+4+mx﹣4m=4,即(m+1)x=4m,当m+1=0,即m=﹣1时,方程无解;当m+1≠0,即m≠﹣1时,由分式方程无解,得到x=4或x=﹣4,把x=4代入整式方程得:4(m+1)=4m,无解;把x=﹣4代入整式方程得:﹣8m=4,即m=﹣,综上,m的值为﹣1或﹣.故答案为:﹣1或﹣.【点评】此题考查了分式方程的解,分式方程无解,即化成整式方程时无解,或者求得的x能令最简公分母为0,据此进行解答.12.(2020•广陵区校级三模)关于x的方程=2+无解,则k的值为 3 .【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出k的值.【解答】解:去分母得:x=2(x﹣3)+k,∵分式方程无解,∴x﹣3=0,即x=3,把x=3代入整式方程得:k=3.故答案为:3.【点评】此题考查了分式方程的解,分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.二.解分式方程(共8小题)13.(2021•平房区一模)方程=的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:8x=3(x﹣5),解得:x=﹣3,检验:把x=﹣3代入方程得:2x(x﹣5)=48≠0,则分式方程的解为x=﹣3.故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.(2021•河南模拟)解分式方程2﹣=,去分母得()A.2(2﹣6x)﹣1=1 B.2(2﹣6x)﹣2=1C.2(2﹣6x)+2=1 D.2(2﹣6x)+2=﹣1【分析】分式方程整理后,找出最简公分母,去分母得到结果,即可作出判断.【解答】解:方程两边都乘以(2﹣6x),去分母得:2(2﹣6x)+2=1.故选:C.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.(2021•道里区一模)方程=的解为()A.x=1 B.x=﹣1 C.x=2 D.x=3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2(4﹣x)=3(x+1),去括号得:8﹣2x=3x+3,解得:x=1,检验:把x=1代入得:(x+1)(4﹣x)=2×3=6≠0,则分式方程的解为x=1.故选:A.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.16.(2021•道外区一模)方程=的解为()A.1 B.﹣1 C.4 D.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(2﹣3x)=x﹣4,去括号得:6﹣9x=x﹣4,解得:x=1,检验:把x=1代入得:(x﹣4)(2﹣3x)=﹣3×(﹣1)=3≠0,∴分式方程的解为x=1.故选:A.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.(2021•盐城模拟)方程=+3的解是x=1 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:6x(1﹣2x)=1+2x+3(1+2x)(1﹣2x),整理得:6x﹣12x2=1+2x+3﹣12x2,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.(2021•百色模拟)分式方程+=1的解为x=1 .【分析】根据解分式方程的步骤,即可解答.【解答】解:方程两边都乘以x﹣2,得:3﹣2x﹣2=x﹣2,解得:x=1,检验:当x=1时,x﹣2=1﹣2=﹣1≠0,所以分式方程的解为x=1,故答案为:x=1.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.(2021•资兴市模拟)在正数范围内定义一种运算“*”,其规则为“a*b=﹣”,根据这个规则方程(x ﹣1)*x=0的解为x=﹣5 .【分析】已知方程利用题中的新定义化简,求出解即可.【解答】解:方程整理得:﹣=0,去分母得:6x﹣5x+5=0,解得:x=﹣5,经检验x=﹣5是分式方程的解,故答案为:x=﹣5【点评】此题考查了解分式方程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(2020•资兴市一模)观察下列等式:=1﹣,=﹣,=﹣将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=(1)猜想并写出:=﹣(2)分式方程++=1的解是x=5 .【分析】(1)根据已知等式得出拆项法,写出即可;(2)方程利用拆项法变形后,求出解即可.【解答】解:(1)=﹣;(2)已知方程整理得:+﹣+﹣=1,即=1,去分母得:1=x﹣4,解得:x=5,经检验x=5是分式方程的解.故答案为:(1)﹣;(2)x=5【点评】此题考查了解分式方程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.三.换元法解分式方程(共1小题)21.(2021•松江区二模)用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是y2﹣3y+2=0 .【分析】根据题意,用含y的式子表示出方程并整理方程即可.【解答】解:设=y,则.所以原方程可变形为:.方程的两边都乘以y,得y2+2=3y.即y2﹣3y+2=0.故答案为:y2﹣3y+2=0.【点评】本题考查了换元法.换元法解方程一般四步:设元(未知数),换元,解元,还元.四.分式方程的增根(共4小题)22.(2021•海淀区校级模拟)若关于x的分式方程有增根,则m的值是()A.4 B.3 C.2 D.1【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出m的值.【解答】解:,方程两边都乘(x﹣1)得2m﹣1﹣7x=5(x﹣1),∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,2m﹣1﹣7=0,解得m=4.故选:A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.23.(2021•青羊区校级模拟)若关于x的分式方程有增根,则k的值为.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出k的值即可.【解答】解:分式方程去分母得:1﹣kx+3(x﹣2)=﹣1,展开得:(3﹣k)x=4,当3﹣k=0,即k=3时,方程无解,不符合题意;当3﹣k≠0,即k≠3时,∵分式方程无解,∴x﹣2=0,即x=2,把x=2代入得:2﹣2k=﹣1,解得:k=,综上,k=.故答案为:.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.24.(2021•东港市模拟)若关于x的分式方程+3=有增根,则m的值为7 .【分析】由分式方程有增根,得到最简公分母为0,确定出m的值即可.【解答】解:分式方程去分母得:7+3(x﹣1)=m,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:7=m,解得:m=7.故答案为:7.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.25.(2021•贺兰县模拟)如果在解关于x的分式方程+=2时出现了增根x=1,那么常数k的值为1 .【分析】分式方程去分母转化为整式方程,把x=1代入整式方程计算即可求出k的值.【解答】解:分式方程去分母得:x﹣k=2x﹣2,解得:x=2﹣k,由分式方程的增根为x=1,得到2﹣k=1,解得:k=1,故答案为:1【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.五.由实际问题抽象出分式方程(共11小题)26.(2021•鹿城区一模)一家工艺品厂按计件方式结算工资.小鹿去这家工艺品厂打工,第一天工资60元,第二天比第一天多做了5件,工资为75元.设小鹿第一天做了x件,根据题意可列出方程为()A.=B.=C.=D.=+5【分析】设小鹿第一天做了x件,则第二天比第一天多做了(x+5)件,根据“第一天工资60元,工资为75元”即可得出关于x的分式方程.【解答】解:设小鹿第一天做了x件,则第二天比第一天多做了(x+5)件,依题意得:=.故选:A.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.27.(2021•河南模拟)网上购物已经成为人们常用的一种购物方式.购物方式的改变给快递行业带来了商机,也带来了挑战.为了提高效率,某快递公司研发了快递机器人专门负责分拣包裹,已知单个机器人比人工(一个人)每小时多分拣100个,单个机器人分拣9000个包裹和人工(一个人)分拣6000个包裹所用时间相同.设人工(一个人)每小时分拣x个包裹,则可列方程为()A.B.C.D.【分析】根据单个机器人比人工(一个人)每小时多分拣100个,单个机器人分拣9000个包裹和人工(一个人)分拣6000个包裹所用时间相同,可以列出相应的分式方程,从而可以解答本题.【解答】解:由题意可得,,故选:A.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.28.(2021•宁波模拟)某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.5元.设每箱凉茶有x罐,则下列方程正确的是()A.B.C.D.。
分式方程增根练习题
![分式方程增根练习题](https://img.taocdn.com/s3/m/7c5bf25ab42acfc789eb172ded630b1c59ee9ba6.png)
分式方程增根练习题一、基础题1. 解方程:$\frac{2}{x3} = 4$2. 解方程:$\frac{3}{x+2} + \frac{1}{x1} = 2$3. 解方程:$\frac{5}{x4} \frac{2}{x+3} = 1$4. 解方程:$\frac{4}{x+5} + \frac{3}{x2} = \frac{7}{x}$5. 解方程:$\frac{2}{x3} \frac{1}{x+4} = \frac{3}{2x6}$二、提高题6. 解方程:$\frac{3}{x1} + \frac{2}{x+2} =\frac{5}{x^2+x2}$7. 解方程:$\frac{4}{x+3} \frac{3}{x2} =\frac{1}{x^2+x6}$8. 解方程:$\frac{5}{x4} + \frac{2}{x+1} =\frac{7}{x^23x4}$9. 解方程:$\frac{6}{x+5} \frac{1}{x3} =\frac{5}{x^2+2x15}$10. 解方程:$\frac{7}{x6} + \frac{3}{x+2} =\frac{10}{x^24x12}$三、综合题11. 已知分式方程$\frac{2}{x1} + \frac{3}{x+2} =\frac{5}{x^2+x2}$的增根是$x=1$,求方程的解。
12. 已知分式方程$\frac{4}{x+3} \frac{1}{x2} =\frac{3}{x^2+x6}$的增根是$x=3$,求方程的解。
\frac{7}{x^23x4}$的增根是$x=4$,求方程的解。
14. 已知分式方程$\frac{6}{x+5} \frac{3}{x3} =\frac{5}{x^2+2x15}$的增根是$x=5$,求方程的解。
15. 已知分式方程$\frac{7}{x6} + \frac{1}{x+2} =\frac{8}{x^24x12}$的增根是$x=6$,求方程的解。
2021年九年级数学中考复习知识点专题突破训练:分式方程的增根(附答案)
![2021年九年级数学中考复习知识点专题突破训练:分式方程的增根(附答案)](https://img.taocdn.com/s3/m/70394bc26c175f0e7dd1378d.png)
2021年九年级数学中考复习知识点专题突破训练:分式方程的增根(附答案)1.分式方程有增根,则m的值为()A.0和2B.1C.1和﹣2D.22.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣23.方程的解为增根,则增根是()A.x=2B.x=0C.x=﹣1D.x=0或x=﹣1 4.若方程=1有增根,则它的增根是()A.0B.1C.﹣1D.1和﹣15.已知分式方程有增根,则增根是()A.x=1B.x=1或x=0C.x=0D.不确定6.若分式方程﹣=有增根,则m的值是.7.若关于x的分式方程+=2有增根,则m的值为.8.若分式方程﹣2=有增根,则m的值为.9.若关于x的分式方程有增根时,则m的值为.10.关于x的方程+=2有增根,则m=.11.解分式方程+=会产生增根,则m=.12.若关于x的分式方程=+1有增根,则m=.13.关于x的分式方程有增根,则m的值为.14.若解关于x的方程产生增根,则m的值为.15.当m=时,分式方程+3=有增根.16.(1)若解关于x的分式方程+=会产生增根,求m的值.(2)若方程=﹣1的解是正数,求a的取值范围.17.已知关于x的方程+=2有增根,求m的值.18.解方程:.19.计算:当m为何值时,关于x的方程+=会产生增根?20.关于x的方程:﹣=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.21.=有增根,求所有可能的t之和.22.m为何值时,关于x的方程+=会产生增根?23.关于x的方程﹣=有增根,求m的值.24.若关于x的方程+=有增根,求增根和m的值.25.若关于x的方程﹣=有增根,求增根和k的值.参考答案1.解:方程两边都乘(x﹣1)(x+1),得x(x+1)﹣(x﹣1)(x+1)=m,∵方程有增根,∴最简公分母(x﹣1)(x+1)=0,即增根是x=1或﹣1,把x=1代入整式方程,得m=2,把x=﹣1代入整式方程,得m=0,方程无解,∴m=2.故选:D.2.解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.3.解:化为整式方程为:2x+2=xm,整理得:(m﹣2)x=2,则可得x≠0,∵原方程有增根,∴最简公分母x(x+1)=0,解得x=0或﹣1.∵x≠0,∴增根是﹣1.故选:C.4.解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.5.解:去分母得:6x=x+5,解得:x=1,经检验x=1是增根.故选:A.6.解:去分母得,m﹣2(x﹣2)=x+2,∵方程﹣=有增根,∴x=±2,当x=2时,m=4;当x=﹣2时,m=﹣8;故答案为4或﹣8.7.解:方程两边都乘(x﹣3),得2﹣x﹣m=2(x﹣3)∵原方程增根为x=3,∴把x=3代入整式方程,得2﹣3﹣m=0,解得m=﹣1.故答案为:﹣1.8.解:方程的两边都乘以(x﹣3),得x﹣2﹣2(x﹣3)=m,化简,得原方程的增根为x=3,把x=3代入m=﹣x+4,得m=1,故答案为:1.9.解:,方程两边都乘(x﹣3)得x﹣5=﹣m,方程化简得m=﹣x+5,∵原方程增根为x=3,∴把x=3代入整式方程得m=2.故答案为:2.10.解:去分母得:5x﹣3﹣mx=2x﹣8,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:20﹣3﹣4m=0,快捷得:m=,故答案为:11.解:去分母得:2x﹣2﹣5x﹣5=m,由分式方程有增根,得到(x+1)(x﹣1)=0,解得:x=﹣1或x=1,把x=﹣1代入整式方程得:﹣2﹣2+5﹣5=m,即m=﹣4;把x=1代入整式方程得:2﹣2﹣5﹣5=m,即m=﹣10,则m=﹣10或﹣4,故答案为:﹣10或﹣412.解:=+1,两边乘x+2得到,3=m+x+2,∴x=1﹣m,∵分式方程有增根,∴x=﹣2,即1﹣m=﹣2,∴m=3,故答案为3.13.解:去分母得:7x+5x﹣5=2m﹣1,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:12﹣5=2m﹣1,解得:m=4,故答案为:414.解:方程两边同乘x﹣1得:x+3=m+1,解得:x=m﹣2,方程产生增根,当x﹣1=0,即x=1时,方程产生增根,∴m﹣2=1,∴m=3.故答案为:3.15.解:方程两边都乘以(x﹣1),得7+3(x﹣1)=m,∵原方程有增根,∴最简公分母(x﹣1)=0,解得x=1,把x=1代入7+3(x﹣1)=m,中,得m=7.故答案为:7.16.解:(1)方程两边都乘(x+2)(x﹣2),得2(x+2)+mx=3(x﹣2)∵最简公分母为(x+2)(x﹣2),∴原方程增根为x=±2,∴把x=2代入整式方程,得m=﹣4.把x=﹣2代入整式方程,得m=6.综上,可知m=﹣4或6.(2)解:去分母,得2x+a=2﹣x解得:x=,∵解为正数,∴,∴2﹣a>0,∴a<2,且x≠2,∴a≠﹣4∴a<2且a≠﹣4.17.解:方程两边都乘x﹣2,得2﹣(x+m)=2(x﹣2)∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=0.18.解:方程两边同乘以(x+2)(x﹣2),得:x+2﹣(x+2)(x﹣2)=4,整理,得:x2﹣x﹣2=0,解此方程,得:x1=2,x2=﹣1,经检验:x=2是增根,舍去x=﹣1是原方程的根,则原方程的根为x=﹣1.19.解:方程得两边都乘以(x+1)(x﹣1),得2(x﹣1)﹣5(x+1)=m.化简,得m=﹣3x﹣7.分式方程的增根是x=1或x=﹣1.当x=1时,m=﹣3﹣7=﹣10,当x=﹣1时,m=3﹣7=﹣4,当m=﹣10或m=﹣4时,关于x的方程+=会产生增根.20.解:(1)当a=3时,原方程为﹣=1,方程两边同时乘以(x﹣1)得:3x+1+2=x﹣1,解这个整式方程得:x=﹣2,检验:将x=﹣2代入x﹣1=﹣2﹣1=﹣3≠0,∴x=﹣2是原方程的解;(2)方程两边同时乘以(x﹣1)得ax+1+2=x﹣1,即(a﹣1)x=﹣4,当a≠1时,若原方程有增根,则x﹣1=0,解得:x=1,将x=1代入整式方程得:a+1+2=0,解得:a=﹣3,综上,a的值为﹣3.21.解:=有增根,说明0或﹣1可能是方程的根,即(x+1)2+x2=x+t,代入x=0,有t=1;代入x=﹣1,有t=2.故所有可能的t之和为3.22.解:原方程化为+=,方程两边同时乘以(x+2)(x﹣2)得2(x+2)+mx=3(x﹣2),整理得(m﹣1)x+10=0,∵关于x的方程+=会产生增根,∴(x+2)(x﹣2)=0,∴x=﹣2 或x=2,∴当x=﹣2时,(m﹣1)×(﹣2)+10=0,解得m=6,当x=2时,(m﹣1)×2+10=0,解得m=﹣4,∴m=﹣4或m=6时,原方程会产生增根.23.解:两边乘(x+2)(x﹣2)得到,x(x+2)﹣x﹣m=2x(x﹣2)①∵方程有增根,∴x=2或﹣2,x=2时,8﹣2﹣m=0,m=6,x=﹣2时,2﹣m=16,m=﹣14,经检验,m=6或﹣14均符合题意,∴m的值为6或﹣14.24.解:去分母得:﹣3(x+1)=m,由分式方程有增根,得到x2﹣1=0,即x=1或x=﹣1,把x=1代入整式方程得:m=﹣6;把x=﹣1代入整式方程得:m=0(此时方程无解,舍去),则增根为x=1,m=﹣6.25.解:最简公分母为3x(x﹣1),去分母得:3x+3k﹣x+1=﹣2x,由分式方程有增根,得到x=0或x=1,把x=0代入整式方程得:k=﹣;把x=1代入整式方程得:k=﹣.。
5.4.5分式方程的增根
![5.4.5分式方程的增根](https://img.taocdn.com/s3/m/60d1e3663069a45177232f60ddccda38376be18d.png)
一.选择题(共35小题)1.(2005•扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1D.1和﹣1【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.【解答】解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选:B.【点评】求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.2.(2017秋•常熟市期末)若关于x 的分式方程有增根,则m的值为()A.﹣2B.0C.1D.2【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程计算即可求出m的值.【解答】解:方程两边都乘以x﹣2,得:x+m﹣2m=3(x﹣2),∵方程有增根,第1页(共29页)∴x=2,将x=2代入整式方程,得:2+m﹣2m=0,解得:m=2,故选:D.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.3.(2017•聊城)如果解关于x 的分式方程﹣=1时出现增根,那么m的值为()A.﹣2B.2C.4D.﹣4【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【解答】解:﹣=1,去分母,方程两边同时乘以x﹣2,得:m+2x=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,m+4=2﹣2,m=﹣4,故选:D.【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.第2页(共29页)4.(2017•毕节市)关于x的分式方程+5=有增根,则m的值为()A.1B.3C.4D.5【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣1),得7x+5(x﹣1)=2m﹣1,∵原方程有增根,∴最简公分母(x﹣1)=0,解得x=1,当x=1时,7=2m﹣1,解得m=4,所以m的值为4.故选:C.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.5.(2017•河南模拟)若关于x的分式方程+=1有增根,则m的值是()A.m=0或m=3B.m=3C.m=0D.m=﹣1第3页(共29页)【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣4=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3﹣x﹣m=x﹣4,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:3﹣4﹣m=0,解得:m=﹣1,故选:D.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.6.(2017春•灌云县期末)若关于x 的方程+=0有增根,则m的值是()A.﹣2B.﹣3C.5D.3【分析】根据分式方程增根的定义进行选择即可.【解答】解:∵关于x 的方程+=0有增根,∴x﹣5=0,∴x=5,∴2﹣x+m=0,∴m=3,故选:D.【点评】本题考查了分式方程的增根,掌握分式方程增根的定义是解题的关键.第4页(共29页)7.(2017春•辉县市期末)若关于x 的方程=有增根,则m的值为()A.3B.2C.1D.﹣1【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:m﹣1=﹣x,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m=﹣1,故选:D.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.(2017春•建德市期末)若分式方程﹣=3有增根,则m的值为()A.﹣1B.1C.2D.3【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【解答】解:分式方程去分母得:x+2m=3x﹣6,由分式方程无解,得到x﹣2=0,即x=2,把x=2代入整式方程得:2+2m=0,解得:m=﹣1,故选:A.第5页(共29页)【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9.(2017春•新城区校级期末)若关于x 的分式方程有增根,则m的值为()A.3B.﹣C.D.【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出值m的值.【解答】解:去分母得:x﹣2x+6=m2,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:m2=3,解得:m=±,故选:D.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.10.(2017春•泗阳县期末)解关于x 的分式方程﹣1=时会产生增根,则增根可能为()A.0或3B.3C.0D.以上都不对【分析】根据分式方程增根的定义得出x=0或3,再检验是不是整式方程x(2m+x)﹣x(x ﹣3)=2(x﹣3)的根即可解决问题.【解答】解:去分母得到x(2m+x)﹣x(x﹣3)=2(x﹣3)①第6页(共29页)∵关于x 的分式方程﹣1=时会产生增根,∴x(x﹣3)=0,∴x=0或x﹣3=0,∴x=0或3,x=0代入①,左右不等,说明x=0不是整式方程①的根,0不可能是增根,∴增根只能是3,故选:B.【点评】本题考查了分式方程的增根,掌握增根的定义是解题的关键,11.(2017春•吉安县期末)若解分式方程=产生增根,则m=()A.1B.0C.﹣4D.﹣5【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x+4),得x﹣1=m,∵原方程增根为x=﹣4,∴把x=﹣4代入整式方程,得m=﹣5,故选:D.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;第7页(共29页)②把增根代入整式方程即可求得相关字母的值.12.(2017春•任城区期末)若分式方程有增根,则m等于()A.3B.﹣3C.2D.﹣2【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程即可求出m的值.【解答】解:分式方程去分母得:x﹣3=m,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=﹣2,故选:D.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.13.(2017春•宝安区校级期末)解方程会产生增根,则m等于()A.﹣10B.﹣10或﹣3C.﹣3D.﹣10或﹣4【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:2x﹣2﹣5x﹣5=m,即﹣3x﹣7=m,由分式方程有增根,得到(x+1)(x﹣1)=0,即x=1或x=﹣1,把x=1代入整式方程得:m=﹣10,把x=﹣1代入整式方程得:m=﹣4,故选:D.第8页(共29页)【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.(2016秋•娄星区期末)已知关于x的方程﹣=0的增根是1,则字母a的取值为()A.2B.﹣2C.1D.﹣1【分析】去分母得出整式方程,把x=1代入整式方程,即可求出答案.【解答】解:﹣=0,去分母得:3x﹣(x+a)=0①,∵关于x的方程﹣=0的增根是1,∴把x=1代入①得:3﹣(1+a)=0,解得:a=2,故选:A.【点评】本题考查了分式方程的增根,能理解增根的意义是解此题的关键.15.(2017春•锦江区期末)解关于x 的方程=产生增根,则常数a的值等于()A.2B.﹣3C.﹣4D.﹣5【分析】先把分式方程化为整式方程得到x=a+6,由于原分式方程有增根,则增根只能为2,然后在整式方程中当x=2时,求出对应的a的值即可.【解答】解:去分母得x﹣6=a,第9页(共29页)解得x=a+6,因为关于x 的方程=产生增根,所以x=2,即a+6=2,解得a=﹣4.故选:C.【点评】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.16.(2016秋•孝南区期末)如果方程有增根,那么m的值为()A.1B.2C.3D.无解【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣3)=0,得到x=3,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣3),得x=3m.∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3.m=x=1,故选:A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.第10页(共29页)17.(2016秋•肇源县期末)去分母解关于x 的方程=时产生增根,则m的值为()A.m=1B.m=﹣1C.m=2D.m无法求出【分析】分式方程去分母转化为整式方程,由分式方程有增根确定出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:x﹣3=m,解得:x=m+3,由分式方程有增根,得到x=2,则有m+3=2,解得:m=﹣1,故选:B.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.18.(2017春•东阳市期末)已知关于x 的方程有增根,则k=()A.﹣1B.1C.﹣2D.除﹣1以外的数【分析】分式方程去分母转化为整式方程,由分式方程有增根得到x﹣1=0,求出x的值,代入整式方程计算即可求出k的值.【解答】解:去分母得:k+1=﹣x,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:k=﹣2,故选:C.第11页(共29页)【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.19.(2017春•历下区期末)若关x 的分式方程﹣1=有增根,则m的值为()A.3B.4C.5D.6【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:2x﹣x+3=m,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:m=6,故选:D.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20.(2017春•普宁市期末)若分式方程=2+有增根,则a的值为()A.5B.4C.3D.0【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出x的值,代入整式方程计算即可求出a的值.【解答】解:去分母得:x+1=2x﹣8+a,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:a=5,第12页(共29页)故选:A.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.21.(2017春•昆山市期末)若分式方程+1=有增根,则a的值是()A.1B.2C.3D.4【分析】根据分式方程增根的定义进行选择即可.【解答】解:∵分式方程+1=有增根,∴x﹣3=0,∴x=3,∴1+x﹣3=a﹣x,∴a=4,故选:D.【点评】本题考查了分式方程的增根,掌握分式方程增根的定义是解题的关键.22.(2017秋•滦南县期中)若关于x 的分式方程=有增根,则m的值是()A.﹣3B.1C.2D.3【分析】分式方程去分母转化为整式方程,由分式方程无解确定出m的值即可.【解答】解:去分母得:x﹣2=m,由分式方程有增根,得到x﹣3=0,即x=3,第13页(共29页)把x=3代入整式方程得:m=1,故选:B.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.23.(2017秋•新泰市期中)若关于x 的方程﹣=0有增根,则m的值是()A.3B.2C.1D.﹣1【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:m﹣1﹣x=0,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=2,故选:B.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.24.(2017秋•文登区期中)关于x 的方程有增根,则m的值为()A.﹣4B.6C.﹣4和6D.0【分析】把所给方程转换为整式方程,进而把可能的增根代入求得m的值即可.【解答】解:最简公分母为x2﹣4,当x2﹣4=0时,x=±2.去分母得:2(x+2)+mx=3(x﹣2),第14页(共29页)当增根为x=2时,8+2m=0,解得m=﹣4;当增根为x=﹣2时,﹣2m=3×(﹣4),解得m=6;故选:C.【点评】考查增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.25.(2017秋•环翠区校级期中)若关于x 的方程+1=0有增根,则a的值是()A.1B.﹣1C.3D.4【分析】分式方程去分母转化为整式方程,由分式方程有增根得到x的值,代入整式方程计算即可求出a的值.【解答】解:分式方程去分母得:ax﹣1+x﹣1=0,整理得:(a+1)x=2,由分式方程有增根,得到a+1=0,即a=﹣1,故选:B.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.26.(2017春•桑植县期中)若分式方程有增根,则a的值是()A.1B.0C.﹣1D.3【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计第15页(共29页)算即可求出a的值.【解答】解:去分母得:1+3x﹣6=a﹣x,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入得:1+6﹣6=a﹣2,解得:a=3,故选:D.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.27.(2017春•江阴市期中)若关于x 的分式方程=2﹣有增根,则m的值为()A.﹣3B.2C.3D.不存在【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣3),得x=2(x﹣3)+m,方程化简,得m=﹣x+6∵原方程增根为x=3,∴把x=2代入整式方程,得m=3,故选:C.第16页(共29页)【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.28.(2017春•江阴市校级月考)若关于x的分式方程=3﹣有增根,则m的值为()A.﹣5B.5C.2D.不存在【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:x=3x﹣15+m,由分式方程有增根,得到x﹣5=0,即x=5,把x=5代入整式方程得:m=5,故选:B.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.29.(2017春•吴江区校级月考)如果关于x 的方程=1﹣有增根,那么m的值等于()A.﹣3B.﹣2C.﹣1D.3【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边同乘以x﹣3,得第17页(共29页)2=x﹣3﹣m①.∵原方程有增根,∴x﹣3=0,即x=3.把x=3代入①,得m=﹣2.故选:B.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.30.(2017秋•太仓市校级月考)若分式方程=﹣2有增根,则m的值为()A.2B.3C.1D.﹣1【分析】先把分式方程化为整式方程得到m=x﹣1﹣2(x﹣2),再利用增根的定义得到x=2,然后把x=2代入m=x﹣1﹣2(x﹣2)中可计算出m的值.【解答】解:去分母得m=x﹣1﹣2(x﹣2),因为原方程有增根,则增根为x=2,把x=2代入m=x﹣1﹣2(x﹣2)得m=2﹣1=1.故选:C.【点评】本题考查了分式方程的增根:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.第18页(共29页)31.(2017春•南关区校级月考)若分式方程+2=0有增根,则a的值是()A.a=2B.a=C.a=﹣D.a=﹣3.【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【解答】解:去分母得:ax+2a+1+2x2﹣8=0,由分式方程有增根,得到x=2或x=﹣2,把x=2代入整式方程得:4a+1=0,即a=﹣;把x=﹣2代入整式方程,无解,则a的值为﹣,故选:C.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.32.(2017春•惠安县校级月考)若关于x 的分式方程+1=有增根,则k的值为()A.2B.﹣2C.1D.3【分析】去分母化分式方程为整式方程,将增根x=2代入整式方程即可得.【解答】解:去分母,得:3+x﹣2=k,∵分式方程有增根,∴增根为x=2,第19页(共29页)将x=2代入整式方程,得:k=3,故选:D.【点评】本题主要考查分式方程的增根,熟练掌握增根的定义是解题的关键.33.(2017春•下城区校级月考)若分式方程=3+有增根,则a的值为()A.4B.2C.1D.0【分析】根据分式方程的解法即可求出a的值.【解答】解:去分母可得:x=3(x﹣4)+ax=把x=代入x﹣4=0,由于方程有增根,∴x﹣4=0∴﹣4=0,解得:a=4故选:A.【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.34.(2017秋•浦东新区月考)关于x 的分式方程有增根,则m的值为()第20页(共29页)A.2B.﹣1C.0D.1【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣2),得2x+m﹣3=3x﹣6∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,4+m﹣3=0.解得m=﹣1.故选:B.【点评】本题考查了分式方程的增根,让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.35.(2017春•雁塔区校级月考)已知关于x 的方程有增根,则m的值为()A.﹣3B.1C.1或0D.3或﹣5【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x(x﹣1)=0,得到x=0或x=1,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘x(1﹣x),得3(x﹣1)+6x=x﹣m,第21页(共29页)化简,得8x=3﹣m.∵原方程有增根,∴最简公分母x(1﹣x)=0,解得x=0或x=1,当x=0时,m=3,当x=1时,m=﹣5.故m的值为3或﹣5.故选:D.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.二.填空题(共13小题)36.(2013秋•祁阳县校级期中)若方程有增根,则a的值可能是6.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣5)(x﹣6)=0,得到x=5或6,然后代入化为整式方程的方程算出a的值.【解答】解:方程两边都乘(x﹣5)(x﹣6),得x(x﹣6)=(x﹣a)(x﹣5)∵原方程有增根,∴最简公分母(x﹣5)(x﹣6)=0,第22页(共29页)解得x=5或6,当x=5时,﹣1=0,这是不可能的.当x=6时,a=6,故a的值可能是6.【点评】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.37.(2009•邵东县自主招生)38.(2007•福州校级自主招生)若方程有增根x=2,则m=﹣6.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x+2)(x﹣2),得x﹣m﹣x(x+2)=2(x+2)(x﹣2)∵原方程增根为x=2,∴把x=2代入整式方程,得m=﹣6.【点评】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.第23页(共29页)39.(2005•烟台)已知方程有增根,则k=﹣.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(2+x)(2﹣x)=0,所以增根是x=2或﹣2,把增根代入化为整式方程的方程即可求出k的值.【解答】解:方程两边都乘(2+x)(2﹣x),得1+2×(2+x)(2﹣x)=﹣k(2+x)∵原方程有增根,∴最简公分母(2+x)(2﹣x)=0,∴增根是x=2或﹣2,当x=2时,k=﹣;当x=﹣2时,k无解.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.40.已知分式方程有增根,则a=0.【分析】先求得增根,再将分式方程化为整式方程,将增根代入求得a的值即可.【解答】解:∵有增根,第24页(共29页)∴x=﹣3或3,3a﹣a|x|=x2+4x+3,即x2+4x+3=0,解答x=﹣1或﹣3,∴﹣3为增根,原方程的解为:x=﹣1,当x=﹣1时,原分式方程为:,∴a=0.故答案为:0.【点评】本题考查分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.41.(2017•沭阳县校级二模)42.(2017•宿迁)若关于x 的分式方程=﹣3有增根,则实数m的值是1.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母,得:m=x﹣1﹣3(x﹣2),由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程可得:m=1,故答案为:1.第25页(共29页)【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.43.(2017•黄石港区校级模拟)若关于x 的方程有增根,则m的值是4.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣2)=0,得到x=2,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣2),得x+2=m∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=2+2+4,故答案为:4.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.46.(2017春•姑苏区期末)47.(2017春•金堂县期末)若关于x 的分式方程+=3有增根,则a=4.【分析】根据解分式方程的步骤可得到一个一元一次方程,由条件可知该方程的根即分式的第26页(共29页)分母为0的值,可求得a的值.【解答】解:方程两边同时乘(x﹣1),可得1﹣ax+3x=3(x﹣1),整理可得ax=4,∵分式方程有增根,∴方程的根为x=1,∴a=4,故答案为:4【点评】本题主要考查分式方程的增根,掌握分式方程的增根使其分母为0是解题的关键.48.(2017春•峄城区期末)三.解答题(共2小题)49.当k为何值时,关于x 的方程=+1,(1)有增根;(2)解为非负数.【分析】(1)根据分式方程有增根,得到最简公分母为0,代入整式方程计算即可求出k的值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x,根据解为非负数求出k 的范围即可.【解答】解:(1)分式方程去分母得:(x+3)(x﹣1)=k+(x﹣1)(x+2),由这个方程有增根,得到x=1或x=﹣2,第27页(共29页)将x=1代入整式方程得:k=0(舍去);将x=﹣2代入整式方程得:k=﹣3,则k的值为﹣3.(2)分式方程去分母得:(x+3)(x﹣1)=k+(x﹣1)(x+2),去括号合并得:x=k+1,根据题意得:k+1≥0且k+1≠1,k+1≠﹣2,解得:k≥﹣1且k≠0,k≠﹣3.故当k≥﹣1且k≠0时,关于x 的方程=+1解为非负数.【点评】此题考查了分式方程的解,以及分式方程的增根,弄清题意是解本题的关键.50.(2017秋•凤庆县期末)若解关于x的分式方程+=会产生增根,求m的值.【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出m的值即可.【解答】解:去分母得:2x+4+mx=3x﹣6,由分式方程有增根,得到(x+2)(x﹣2)=0,解得:x=2或x=﹣2,当x=2时,4+4+2m=0,即m=﹣4;当x=﹣2时,﹣2m=﹣12,即m=6,综上,m的值是﹣4或6.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式第28页(共29页)方程;②把增根代入整式方程即可求得相关字母的值.第29页(共29页)。
中考数学专项练习分式方程的增根(含解析)
![中考数学专项练习分式方程的增根(含解析)](https://img.taocdn.com/s3/m/ee0eb6fb4b35eefdc9d333b8.png)
中考数学专项练习分式方程的增根(含解析)【一】单项选择题1•以下关于分式方程增根的说法正确的选项是〔〕A. 使所有的分母的值都为零的解是增根 B.分式方程的解为零就是增根C. 使分子的值为零的解就是增根D. 使最简公分母的值为零的解是增根2•解关于x的方程产生增根,那么常数的值等于〔〕A. —1B. —2C. 1D. 23•关于x的方程- =0有增根,那么m的值是〔〕A. 2B. -2C. 1D. -14•假设关于x的分式方程有增根,那么k的值是〔〕A.B. -2flC. 2D. 1x 2m5. 假设关于x的分式方程-m= 无解,那么m的值为〔〕A. m=3B. m=32C. m=1D. m=1 或x-3 m6. 解关于x的方程 = 产生增根,那么常数m的值等于〔〕A. -1B. -2C. 1D. 22-j___ m_A. 37. 如果关于x的方程无解,那么m 等于〔〕A. 32 B. 4C.3C. 51in8•分式方程 +1= 有增根,那么m 的值为〔)A. 0和 2B. 1C. 2D. 0_L ,9.解关于x 的分式方程 时不会产生增根,那么m 的取值是〔 〕A. m H 1B. m H — 1C. m H 0D. m H 士 12T_ vH10.假设解分式方程产生增根,那么m 的值是〔 〕A.或-2B. 或2C. 1或D. 1或213 r+趴11•假设关于x的分式方程—f + =1有增根,那么m的值是〔〕A. m=0 或m=3B. m=3C. m=D. m= - 112. 以下说法中正确的说法有〔〕〔1〕解分式方程一定会产生增根;〔2〕方程「匚27=0的根为x=2; 丄_J_〔3〕x+ >-〕=1+ 一】是分式方程.A. 0个B.1个C.2个D.3个13. 假设关于x的方程有增根,求a 的值〔〕A. 0B. -C. 1D. -2【二】填空题1 214. 假设关于x的分式方程二- 有增根,那么k的值为15. 如果-3是分式方程缶+X不的增根,那么a= _____________ _•16. 关于X的分式方程总T - r+2 =0无解,那么m= _______ .17. 关于x的方程戸+1= 口有增根,那么m的值为_______________ •18. 假设分式方程Ll I F _-有增根,那么这个增根是________________口419. 假设关于x方程T = x=2 +1无解,那么a的值为_____________ •20. 假设方程(WXD _________________ —1有增根,那么它的增根是, m=【三】解答题2 丄加_n21. 当m为何值时,解方程会产生增根?2 作m22. 计算:当m为何值时,关于x的方程+ = 会产生增根?【一】单项选择题1•以下关于分式方程增根的说法正确的选项是〔〕A. 使所有的分母的值都为零的解是增根 B.分式方程的解为零就是增根C. 使分子的值为零的解就是增根D. 使最简公分母的值为零的解是增根【考点】分式方程的增根T-3 _ HI2•解关于x的方程产生增根,那么常数的值等于〔1 2〕A. —B.B. 1C. 2【考点】分式方程的增根【解析】【解答】解:方程两边同乘x-1,得x-3=m,因为方程有增根, 所以x=1,把x=1代入x-3=m,所以m=-2;应选B.【分析】因为增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值.nr-1 x3.关于x的方程- =0有增根,那么m的值是〔〕A. 2B. -C. 1D. -1【考点】分式方程的增根【解析】【解答】解:方程两边都乘〔x-1〕,得m - 1 - x=0,T方程有增根,•••最简公分母x -仁0,即增根是x=1 ,把x=1代入整式方程,得m=2.应选A、【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x -仁0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.空_1_1_上4•假设关于x的分式方程有增根,那么k的值是〔〕A.B. -2C. 2D. 1【考点】分式方程的增根【解析】【解答】解:方程两边都乘〔x-5〕,得x - 6+x - 5= - k,T原方程有增根,最简公分母〔x - 5〕=0,解得x=5,当x=5 时,k=1.应选:D、【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母〔x-5〕=0,得到x=5,然后代入化为整式方程的方程算出k 的值.x2m5. 假设关于x的分式方程-m= 无解,那么m的值为〔〕A. m=3B. m=32C. m=13D. m=1 或【考点】分式方程的增根【解析】【分析】方程两边都乘以〔x-3)得到x-m〔x-3)=2m,整理得〔1x 2WJ-m)x+m=0,由于关于x的分式方程-m= 无解,那么x-3=0,解得x=3,然后把x=3代入〔1-m)x+m=0可求出m的值.【解答】去分母得x-m〔x-3)=2m,整理得〔1-m)x+m=0,当1-m=0, 即卩m=1 时,〔1-m)x+m=0 无解,*T关于x的分式方程-m= 无解,二x-3=0,解得x=3,「•〔1-m) x 3+m=0,二m=.应选D、【点评】此题考查了分式方程的解先把分式方程化为整式方程,解整式方程,假设整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;假设整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.x-3 m6. 解关于x的方程 = 产生增根,那么常数m的值等于〔〕A. -1B. -2C. 1D. 2【考点】分式方程的增根【解析】解;方程两边都乘〔x-1),得x-3=m,T方程有增根, •••最简公分母x-1=0,即增根是x=1 , 把x=1代入整式方程,得m=-2.应选:B、【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.此题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7. 如果关于x的方程肓丄尋无解,那么m等于〔〕A. 3B. 4C. -3D. 5【考点】分式方程的增根【解析】【分析】关于x的方程无解,即分式方程去掉分母化为整式方程,整式方程的解就是方程的增根,即x=5,据此即可求解。
中考复习——分式方程的增根与无解问题(解析版)
![中考复习——分式方程的增根与无解问题(解析版)](https://img.taocdn.com/s3/m/186e1f0780eb6294dc886c55.png)
中考复习——分式方程的增根与无解问题一、选择题1、关于x的分式方程71x-+3=1mx-有增根,则增根为().A. x=1B. x=-1C. x=3D. x=-3答案:A解答:方程两边都乘(x-1),得7+3(x-1)=m,∵原方程有增根,∴最简公分母x-1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.2、若关于x的分式方程23x-+3x mx+-=1有增根,则m的值为().A. 3B. 0C. -1D. -3答案:C解答:方程两边都乘(x-3),得2-(x+m)=x-3,∵原方程有增根,∴最简公分母x-3=0,解得x=3,当x=3时,m=-1,选C.3、关于x的分式方程322mx x---=1有增根,则m的值().A. m=2B. m=1C. m=3D. m=-3答案:D解答:去分母得:m+3=x-2,由分式方程有增根,得到x-2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=-3.选D.4、若关于x 的分式方程24x m x +-+2xx -=1有增根,则m 的值是( ). A. m =2或m =6 B. m =2C. m =6D. m =-2或m =-6答案:A解答:∵关于x 的分式方程24x m x +-+2xx -=1有增根, ∴x =±2是方程x +m -x (x +2)=4-x 2的根, 当x =2时,2+m -2(2+2)=4-4, 解得:m =6,当x =-2时,-2+m =4-4, 解得:m =2. 选A.5、关于x 的分式方程71x x -+5=211m x --有增根,则m 的值为( ).A. 1B. 3C. 4D. 5答案:C解答:方程两边都乘(x -1), 得7x +5(x -1)=2m -1, ∵原方程有增根, ∴最简公分母x -1=0, 解得x =1,当x =1时,7=2m -1, 解得m =4, 所以m 的值为4. 6、若关于x 的方程31x -=1-1k x-无解,则k 的值为( ).A. 3B. 1C. 0D. -1答案:A解答:方程两边都乘x -1, 得:3=x -1+k , ∵原方程有增根,∴最简公分母x-1=0,解得x=1,当x=1时,k=3.故k的值为3.选A.7、关于x的方程321xx-+=2+1mx+无解,则m的值为().A. -5B. -8C. -2D. 5答案:A解答:去分母得:3x-2=2x+2+m,由分式方程无解,得到x+1=0,即x=-1,代入整式方程得:-5=-2+2+m,解得:m=-5,选A.8、关于x的方程12xx--=2mx-+2无解,则m的值是().A. -1B. 0C. 1D. 2答案:C解答:去分母得x-1=m+2(x-2),解得x=3-m,当x=2时分母为0,方程无解,即3-m=2,m=1时方程无解.选C.9、若关于x的方程32233x mxx x-----=-1无解,则m的值为().A. 1B. 3C. 1或53D.53答案:C解答:两边同时乘x-3,得3-2x+mx-2=-x+3,∴(m-1)x=2.①当m=1时,0=2矛盾,∴无解.②当m ≠1时,x =21m -, ∴方程无解. ∴方程有增根, ∴x =3,即21m -=3, ∴m =53.综上所述m =1或53. 选C. 10、若分式232x a x x --+12x -=2x无解,则实数a 的取值为( ).A. 0或2B. 4C. 8D. 4或8答案:D 解答:解方程:232x a x x --+12x -=2x,去分母,得3x -a +x =2(x -2), 去括号,得3x -a +x =2x -4, 移项,得3x +x -2x =-4+a , 合并同类项,得2x =-4+a , 系数化为1,得x =42a -, 又∵原分式方程无解, ∴42a -=0或2, ∴a =4或8. 选D.11、若关于x 的方程12x =3k x +无解,则k 的值为( ).A. 0或12B. -1C. -2D. -3答案:A解答:去分母得:x +3=2kx , ∴(2k -1)x =3,当k =12时,(2k -1)x =3无解,即原方程无解. 由分式方程无解,得到2x (x +3)=0, 解得:x =0或x =-3.把x =0代入整式方程得:3=0,无解. 把x =-3代入整式方程得:-6k =0,解得k =0. 综上所述,k 的值为0或12. 选A. 二、填空题 12、若关于x 的方程32x x --=2mx-有增根,则m =______. 答案:1解答:方程两边都乘(x -2),得x -3=-m , ∵方程有增根,∴最简公分母x -2=0,即增根是x =2, 把x =2代入整式方程,得m =1. 故答案为:1. 13、关于x 的方程23x x m--=0有增根.则m =______. 答案:9 解答:要使方程23x x m--=0有增根,则x =3使x 2-m =0, 得m =9. 14、分式方程233m x x---=1有增根,则m =______. 答案:-2解答:去分母得:m +2=x -3,由分式方程有增根,得到x -3=0,即x =3, 把x =3代入整式方程得:m +2=0, 解得m =-2. 故答案为:-2.15、若关于x 的分式方程31x a x x---=1无解,则a =______. 答案:1或-2解答:去分母得x 2-ax -3x +3=x 2-x ,(a +2)x =3, ①去分母后的整式方程无解,∴a +2=0,a =-2; ②解为增根,舍去,∴x =1,a =1, x =0,不符合题意. 16、若关于x 的分式方程3x x --2=3mx -有增根,则m 的值为______. 答案:3解答:方程两边都乘x -3, 得x -2(x -3)=m . ∵原方程有增根, ∴最简公分母x -3=0, 解得x =3, 当x =3时,m =3. 故m 的值是3. 17、若关于x 的方程22x -+2x m x+-=2有增根,则m 的值是______. 答案:0解答:方程两边都乘以(x -2), 得2-x -m =2(x -2), ∵分式方程有增根, ∴x -2=0, 解得x =2, ∴2-2-m =2(2-2), 解得m =0.18、已知关于x 的分式方程21x ax +-=1无解,则a 的值为______. 答案:-2 解答:21x ax +-=1 方程两边同乘以x -1,得移项及合并同类项,得 x =-1-a ,∵关于x 的分式方程21x ax +-=1无解, ∴x -1=0,得x =1, ∴-1-a =1,得a =-2. 故答案为:-2. 19、关于x 的分式方程2m x -+2xx-=2无解,则实数m 的值为______. 答案:2解答:去分母得:m -x =2x -2, 把x =2,代入得:m -2=22-2, 解得:m =2.20、如果关于x 的分式方程25x x --=5mx-无解,m 的值为______. 答案:-3解答:将原分式方程整理为整式方程:x =2-m , ∵分式方程无解,∴分式方程有增根x =5, ∴m =-3.21、关于x 的分式方程2142m x x --+=0无解,则m =______. 答案:0或-4解答:方程去分母得:m -(x -2)=0,解得:x =2+m ,∴当x =2时分母为0,方程无解,即2+m =2,∴m =0时方程无解.当x =-2时分母为0,方程无解,即2+m =-2,∴m =-4时方程无解.综上所述,m 的值是0或-4. 22、若分式方程2111x mx x x +-+-=11x x +-无解,则m 的值是______. 答案:-3或-5或-1解答:方程去分母得:x (x -1)-(mx +1)=(x +1)(x +1), 解得:x (3+m )+2=0,当x =0时整式方程无解,即m =-3, ∴当x =1时分母为0,方程无解,∴当x =-1时分母为0,方程无解, 即m =-1.故答案为:-3或-5或-1. 23、若关于x 的分式方程52a x -+=2xx++3无解,那么a 的值为______. 答案:7 解答:52a x -+=2xx++3, 去分母得:5-a =x +3(x +2), 将x =-2代入上式得:5-a =-2, 所以a =7. 故答案为:7.24、若关于x 的分式方程32xx --1=32m x +-有增根,则m 的值为______.答案:3解答:方程两边都乘(x -2),得3x -x +2=m +3, ∵原方程有增根,∴最简公分母x -2=0,解得x =2,把x =2代入3x -x +2=m +3,得3×2-2+2=m +3,解得m =3. 25、关于x 的方程3mx x -=33x -无解,则m 的值是______. 答案:1或0解答:去分母得mx =3,∵x =3时,最简公分母x -3=0,此时整式方程的解是原方程的增根, ∴当x =3时,原方程无解,此时3m =3,解得m =1, 当m =0时,整式方程无解. ∴m 的值为1或0时,方程无解. 故答案为:1或0. 三、解答题26、若关于x 的分式方程31x a x x---=1无解,求a 的值. 答案:a =1或a =-2.解答:去分母得:x(x-a)-3(x-1)=x(x-1),去括号得:x2-ax-3x+3=x2-x,移项合并得:(a+2)x=3,(1)把x=0代入(a+2)x=3,∴a无解,当x=1代入(a+2)x=3,解得a=1,(2)(a+2)x=3,当a+2=0时,0×x=3,x无解,即a=-2时,整式方程无解,综上所述,当a=1或a=-2时,原方程无解,故答案为:a=1或a=-2.27、当a为何值时,关于x的方程ax=()21xx x+-无解?答案:1或-2解答:方程两边同乘x(x-1)得:a(x-1)=x+2,整理得:(a-1)x=2+a(i)当a-1=0,即a=1时,原方程无解;(ii)当a-1≠0,原方程有增根x=0或1,当x=0时,2+a=0,即a=-2;当x=1时,a-1=2+a,无解,即当a=1或-2时原方程无解.28、已知关于x的分式方程21x-+()()12mxx x-+=12x+.(1)已知m=4,求方程的解.(2)若该分式方程无解,试求m的值.答案:(1)x=-1.(2)m的值可能为-1、1.5或-6.解答:(1)方程两边同时乘以(x+2)(x-1),去分母并整理得5x=-5,解得x=-1,经检验,x =-1是原方程的解.(2)方程两边同时乘以(x +2)(x -1), 去分母并整理得(m +1)x =-5, ∵原分式方程无解,∴m +1=0或(x +2)(x -1)=0, 当m +1=0时,m =-1; 当(x +2)(x -1)=0时, 解得:x =-2或x =1, 当x =-2时,m =1.5; 当x =1时,m =-6;所以m 的值可能为-1、1.5或-6. 29、已知关于x 的分式方程1xx --1=()()12m x x -+ (1)m 为何值时,这个方程的解为x =2? (2)m 为何值时,这个方程有增根? 答案:(1)m =4.(2)m =3.解答:(1)分式方程去分母得:x (x +2)-(x -1)(x -2)=m , 将x =2代入得:8-4=m ,即m =4.(2)分式方程去分母得:x (x +2)-(x -1)(x -2)=m , 将x =1代入得:m =3;将x =-2代入得:m =0(舍去). 则m =3.30、已知关于x 的方程111m xx x ----=0无解,方程x 2+kx +6=0的一个根是m . (1)求m 和k 的值.(2)求方程x 2+kx +6=0的另一个根.答案:(1)m =2,k =-5.(2)方程的另一个根为3. 解答:(1)∵关于x 的方程111m xx x ----=0无解, ∴x -1=0, 解得x =1,方程去分母得:m -1-x =0,把x=1代入m-1-x=0得:m=2.把m=2代入方程x2+kx+6=0得:4+2k+6=0,解得:k=-5.(2)方程x2-5x+6=0,(x-2)(x-3)=0,∴x1=2,x2=3,∴方程的另一个根为3.。
分式方程的增根与无解问题专题练习(解析版)
![分式方程的增根与无解问题专题练习(解析版)](https://img.taocdn.com/s3/m/b7ba25ae7e21af45b207a8c6.png)
分式方程的增根与无解问题专题练习一、分式方程的增根问题 1、关于x 的分式方程522x mx x -=++有增根,则m 的值为( ).A. 0B. -5C. -2D. -7答案:D解答:原分式方程去分母得:x -5=m , ∵方程有增根, ∴x +2=0即x =-2, ∴m =-2-5=-7. 选D.2、关于x 的方程1xx --1=()()21a x x +-有增根,那么a =( ).A. -2B. 0C. 1D. 3答案:D解答:去分母得:x (x +2)-(x +2)(x -1)=a , 由分式方程有增根,得到x +2=0或x -1=0, 解得:x =-2或x =1,把x =-2代入整式方程得:a =0,经检验不合题意,舍去; 把x =1代入整式方程得:a =3, 选D3、已知关于x 的方程22x mx +-=3有增根,则m 的值为______. 答案:-4 解答:∵22x mx +-=3, ∴2x +m =3x -6, ∴x =m +6. 又∵有增根, ∴m +6=2, ∴m =-4.4、若分式方程2111x m x x ----=1有增根,则m 的值是______. 答案:3 解答:2111x m x x ----=1, 同乘以x -1得: 2x -(m -1)=x -1, 2x -x =-1+m -1, x =m -2.∵该分式方程存在增根,即x -1=0,x =1, ∴m -2=1, ∴m =3.5、已知关于x 的分式方程1x mx +-=2有增根,则m 的值为______. 答案:-1解答:原方式可化为2(x -1)=m +x . 当原分式方程有增根时,x =1. 将x =1代入得m +1=0. 解得m =-1. 6、已知关于x 的方程311x kx x ----=2有增根,则增根为______,k 的值为______. 答案:1;-2解答:原方程去分母,整理,得k =-x -1. ∵原方程有增根,而原方程的最简公分母为x -1. ∴由x -1=0可知原方程的增根为x =1. 当x =1时,k =-1-1=-2.因此,原方程的增根为1,k 的值为-2. 故答案为:1;-2. 7、若关于x 的分式方程12x x ++=2mx -有增根,则增根为______. 答案:2或-2解答:∵原方程有增根, ∴最简公分母(x +2)(x -2)=0,解得x=-2或2.故答案为2或-2.8、已知方程21 4x-+2=2kx-有增根,则k=______.答案:1 4解答:原方程去分母,得1+2(x2-4)=k(x+2)①,∵原方程有增根,∴x+2=0或x-2=0,∴x=-2或2.把x=-2代入①,得,方程无解.把x=2代入①,得,1+2×(22-4)=k(2+2),解得k=14.故答案为14.9、若关于x的方程21x x -+25kx x-+=211kx--有增根,则k的值为______.答案:3,6或9解答:去分母,得:x+1+(k-5)(x-1)=(k-1)x ①若x=1为增根,则:1+1+0=k-1,k=3,②若x=-1为增根,则:-1+1-2(k-5)=-(k-1),得:k=9,③若x=0为增根,则:0+1-(k-5)=0,k=6,综上,k的值为3,6或9.10、若关于x 的分式方程2611mx x ---=1有增根,则增根是______. 答案:x =1解答:去分母,得:6-m (x +1)=x 2-1, 移项,得:7-m (x +1)=x 2, 当x =-1时,原方程无解, 则x =1为原方程的增根. 11、关于x 的分式方程12mx x +-=-1有增根,求m 的值. 答案:-12. 解答:方程两边都乘(x -2),得mx +1=-(x -2), ∵原方程有增根, ∴最简公分母x -2=0, 解得x =2,当x =2时,2m +1=-(2-2),解得m =-12. 12、若关于x 的方程33x -+29ax x -=43x +有增根,求a 的值.答案:a =-6或a =8.解答:化为整式方程得:3(x +3)+ax =4(x -3), 整理得ax =x -21,再将x =3,x =-3分别代入ax =x -21中,得a =-6或a =8. 二、分式方程的无解问题 13、关于x 的方程321x x -+=2+1mx +无解,则m 的值为( ).A. -5B. -8C. -2D. 5答案:A解答:去分母得:3x -2=2x +2+m , 由分式方程无解,得到x +1=0, 即x =-1,代入整式方程得:-5=-2+2+m , 解得:m =-5, 选A.14、若分式方程31xx+=1mx++2无解,则m=().A. -3B. -2C. -1D. 0答案:A解答:31xx+=1mx++2,3x=m+2x+2,x=m+2,∵x=-1是原方程的增根,原方程无解,∴m+2=-1,∴m=-3.选A.15、关于x的分式方程23m xx+--1=2x无解,则m的值为().A. -1.5B. 1C. -1.5或2D. -0.5或-1.5答案:D解答:23m xx+--1=2x,方程两边都乘以x(x-3),得:x(x+2m)-x(x-3)=2(x-3),整理,得:(2m+1)x=-6,x=-621 m+,∵原分式方程无解,∴2m+1=0或-621m+=3或-621m+=0.解得:x=-0.5或x=-1.5,选D.16、关于x的方程12xx--=1mx-+1无解,则m的值是().A. 0B. 0或1C. 1D. 2答案:B解答:解分式方程12xx--=1mx-+1,整理得(x-1})2}=m(x-2)+(x-1)(x-2),(1-m )x =1-2m ,当m =1时,整式方程无解; 当m ≠1时,x =121mm--. ∵当x =1或x =2时,x 为原方程的増根, 当x =1时,解得m =0; 当x =2时,方程121mm--=2无解. ∴当m =0或1时,原方程无解, 选B.17、若关于x 的方程323x x --+23mxx+-=-1无解,则m 的值为( ).A. 3B. -3C. -53或-1 D. 0答案:C解答:去分母得:3-2x -2-mx =-x +3整理为:( )(1+m )x =-2 该整式方程无解时,原分式方程无解,此时m =-1该整式方程有解,此解恰好是原分式方程的增根,此时m =-53. 18、若分式方程31a x --=2无解,则a =______. 答案:3 解答:31a x --=2, 解得:a =2x +1, ∵x =1时,方程无解, ∴a =2×1+1=3. 19、若方程52m x --+1=12x -无解,则m =______. 答案:4 解答:52m x --=12x --1. 52m x --=()122x x ---.52m x --=32x x --.5-m =3-x . x =-2+m .当x =2时,方程无解. ∴-2+m =2. ∴m =4.20、若关于x 的方程3m x -+2=43xx --无解,则m 的值为______. 答案:1 解答:3m x -+2=43xx -- m +2(x -3)=4-x m +2x -6=4-x 3x =10-m∵方程无解,可知x =3. ∴9=10-m , ∴m =1.21、若关于x 的分式方程1x k x +-=4x+1无解,则k 的值是______. 答案:3或-1解答:化整式方程得:x 2+kx =4x -4+x 2-x , 化简得:(k -3)x =-4.当k -3=0时,整式方程无解,即k =3时,分式方程无解. 当k -3≠0时,整式方程的解x =43k-为分式方程增根1时, 即k =-1时分式方程无解, ∴k =3或-1.22、若关于x 的分式方程23kx x -+532x-=4无解,则k 的值为______. 答案:8或103解答:去分母,得:kx -5=4(2x -3), kx -5=8x -12, kx -8x =-7,当k =8时,原方程无解,当k ≠8时,x =78k --, ∵无解, ∴2x -3=0,∴x =32, ∴78k --=32, ∴k =103,综上,k 的值为8或103. 23、关于x 的方程2ax x -=42x -+1无解,求a 的值.答案:a =1或2.解答:方程去分母得:ax =4+x -2, 解得:(a -1)x =2,∴当a -1=0即a =1时,整式方程无解,分式方程无解, 当a ≠1时,x =21a -, x =2时分母为0,方程无解, 即21a -=2,a =2时方程无解, 综上,当a =1或2时,原分式方程无解. 24、已知关于x 的分式方程2211a a x x x x---++=0无解,求a 的值. 答案:a =12,0,-1时,原方程无解. 解答:方程两边同时乘x (x +1),得: ax -(2a -x -1)=0, 整理得(a +1)x =2a -1,当a =-1时,整式方程无解,原分式方程无解; 当整式方程的解是原分式方程的增根时, 将x =0或x =-1代入整式方程,解得a =12或a =0. 综上所述,a =-1,12或0.。
2018初三数学第二章分式方程增根无解问题专项训练(附答案详解)
![2018初三数学第二章分式方程增根无解问题专项训练(附答案详解)](https://img.taocdn.com/s3/m/ca508b6a26284b73f242336c1eb91a37f11132c0.png)
2018初三数学第二章 分式方程增根无解问题专项训练(附答案详解) 1.当m 取何值时,方程的解为正数?的解为正数?2.若关于的方程的解为正数,求的取值范围.的取值范围.3.若关于的方程无解,求的值4.若关于x 的方程233x k x x =+--无解,求k 的值.的值.5.已知关于x 的方程x ax x x x x =---+2)2(42无解,求a 的值?的值?6.已知关于x 的分式方程有一个正数解,则k 的取值范围为________.7.当____________时,解分式方程会出现增根.会出现增根.8.已知关于的分式方程无解,则的值是________.9.若数a 使关于x 的不等式组有且仅有四个整数解,且使关于y 的分式方程=2有非负数解,则满足条件的整数a 的值是_____.1010...当m=____m=____时时,关于x 的分式方程213x m x +=--无解;方程0211=+-x 的解是的解是 11.若关于的方程无解,则的值为___________.1212.当.当m=时,方程1121=--+x m mx 的解与方程34=+xx 的解互为相反数的解互为相反数.. 1313.如果关于.如果关于x 的方程xm x x -=--552无解,则m 等于(等于( ) A.3 B. 4 C.-3 D.51414.若分式方程.若分式方程a x a x =-+1无解,则a 的值是的值是 ( ) A.A.-1-1-1 B. 1 C.±1 D.-2 15.若a 使关于x 的不等式组0{ 2432x a x x --+<<()至少有三个整数解,且关于x 的分式方程3a x x +-+23x -=2有正整数解,a 可能是(可能是( ) A. ﹣3 B. 3 C. 5D. 8 16.若方程()()6111mx x x -+--=1有增根,则它的增根是(有增根,则它的增根是( ) A. 0 B. 1 C. ﹣1 D. 1和﹣1 17.若分式方程1x a a x -=+无解,则a 的值为(的值为( ) A. 0 B. -1 C. 0或-1 D. 1或-11818.关于.关于x 的方程211x a x +=-的解是正数,则a 的取值范围是的取值范围是 A .a >->-1 1 B .a >->-11且a ≠0 0 C C .a <-<-1 1 D .a <-<-11且a ≠-≠-22 19.若关于x 的分式方程=2的解为非负数,则m 的取值范围是的取值范围是A. m >-1B. m ≥-1C. m >-1且m ≠1D. m ≥-1且m ≠1 20.已知关于x 的方式方程3133x a x -=-的解是非负数,那么a 的取值范围是(的取值范围是( ) A. a >1 B. a ≥1且a ≠3 C. a ≥1且a ≠9D. a ≤1 21.若关于x 的方程的解为正数,则m 的取值范围是(的取值范围是( )A. m <4B. m >4C. m <4且m≠2m≠2D. m >0且m≠2m≠222.已知关于x 的分式方程的解是非负数,则m 的取值范围是(的取值范围是( )A. m >2B. B. m≥2m≥2C. m >2且m≠3D. D. m≥2m≥2且m≠3 23.若数a 使关于x 的不等式组,有且仅有四个整数解,且使关于y 的分式方程=2有整数解,则所有满足条件的整数a 的值之和是(的值之和是( )A. 50B. ﹣20C. 20D. -50 24.若关于x 的分式方程的解为正整数,且关于x 的不等式组有解且最多有6个整数解,则满足条件的所有整数a 的值之和是(的值之和是() A. 4 B. 0 C. -1D. -3 25.已知关于x 的方程有正根,则实数a 的取值范围是(的取值范围是( )A. a <0且a ≠﹣3B. a >0C. a <﹣3D. a <3且a ≠﹣3答案详解:1.且分析:把分式方程化为整式方程,根据解为正数,得出m 的取值范围.的取值范围.详解:方程去分母得,4x (x-1)-m=(2x+1)2,,由题意,得,由题意,得,∴ 且点拨:本题考查了分式方程的解,本题考查了分式方程的解,以及一元一次不等式,以及一元一次不等式,以及一元一次不等式,掌握方程和不等式的解法是解答本掌握方程和不等式的解法是解答本题的关键题的关键..2.的取值范围为 且.分析:直接解分式方程,再利用解为正数列不等式,解不等式得出m 的取值范围,进而得出答案.出答案.详解:方程两边同乘以得,,∵>0,∴>0,∴ ,∵,∴的取值范围为 且.点拨:本题考查了分式方程的解以及不等式的解法,正确解分式方程是解题关键. 3.分析:该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.母后,整式方程无解. 详解:去分母得:x (x-a )-3(x-1)=x (x-1),),去括号得:x 2-ax-3x+3=x 2-x ,移项合并得:(a+2)x=3.(1)把x=0代入(a+2)x=3,∴a 无解;无解;把x=1代入(a+2)x=3,解得a=1;(2)(a+2)x=3,当a+2=0时,0×0×x=3x=3,x 无解无解即a=-2时,整式方程无解.时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.时,原方程无解.故答案为a=1或a=-2.点拨:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.4.3k =解析:本题主要考查了分式方程的解本题主要考查了分式方程的解. .关于x 的分式方程无解,即分式方程去掉分母化为整式方程,整式方程的解就是方程的增根,即x=3x=3,据此即可求解,据此即可求解,据此即可求解解:去分母得:解:去分母得:x-2x-2x-2((x-3x-3))=k =k解得:解得:x=6-k x=6-k x=6-k根据题意得:根据题意得:6-k=36-k=36-k=3解得:解得:k=3k=3k=35.a=-2a=-2试题分析:关于x 的方程xa x x x x x =---+2)2(42无解,即分式方程去掉分母化为整式方程,整式方程的解就是方程的增根,即x=2或x=0x=0,据此即可求解.,据此即可求解.,据此即可求解.因为原方程无解,所以最简公分母x(x-2)=0x(x-2)=0,,x=2或x=0x=0;;原方程去分母并整理得a(x-2)-4=0a(x-2)-4=0;;将x=0代入得a(0-2)-4=0a(0-2)-4=0,解得,解得a=-2a=-2;;将x=2代入得a ·0-4 =0,a 无解,无解,故综上所述a=-2.a=-2.点拨:点拨:分式方程无解,既要考虑分式方程有增根的情形,分式方程无解,既要考虑分式方程有增根的情形,分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.增又要考虑整式方程无解的情形.增根问题可按如下步骤进行:根问题可按如下步骤进行:①让最简公分母为0确定增根;确定增根;②化分式方程为整式方程;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.③把增根代入整式方程即可求得相关字母的值.6.k <6且k≠3分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.解不等式,可得答案,并注意分母不分零.详解:,方程两边都乘以(x-3),得,得x=2(x-3)+k ,解得x=6-x=6-k≠3k≠3, 关于x 的方程程有一个正数解,有一个正数解,∴x=6-k >0,k <6,且k≠3, ∴k 的取值范围是k <6且k≠3.故答案为:k <6且k≠3.点拨:点拨:本题主要考查了解分式方程、本题主要考查了解分式方程、本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.的范围是解此题的关键.7.2分析:分式方程的增根是分式方程转化为整式方程的根,分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为且使分式方程的分母为0的未知数的值.的值.详解:分式方程可化为:x-5=-m ,由分母可知,分式方程的增根是3,当x=3时,3-5=-m ,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;确定增根;②化分式方程为整式方程;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.③把增根代入整式方程即可求得相关字母的值.8.1分析:根据分式方程无解,可得分式方程的增根是整式方程的解,根据方程的解满足方程,可得关于的方程,根据解方程,可得答案.的方程,根据解方程,可得答案.详解:两边都乘以(x -3),得,得分式方程的增根是x =3.将x =3代入得解得故答案为:1.9.﹣2分析:分别求出使不等式组有四个整数解的a 的范围和使方程有非负数解的a 的范围,综合这两个范围求整数a 的值.详解:解不等式组,可得,∵不等式组有且仅有四个整数解,∵不等式组有且仅有四个整数解,∴﹣1≤<0,∴﹣4<a ≤﹣2,解分式方程=2,可得y =,又∵分式方程有非负数解,又∵分式方程有非负数解,∴y ≥0,且y ≠2,即≥0,≠2,解得a ≥﹣2且a ≠2,∴﹣2≤a ≤3,且a ≠2,∴满足条件的整数a 的值为﹣2,故答案为﹣2.点拨:本题考查了求不等式组中的字母系数的范围及求分式方程的整数解的方法,本题考查了求不等式组中的字母系数的范围及求分式方程的整数解的方法,求分式方求分式方程中的字母系数的范围时要注意字母系数既要满足题中的条件,又要不使分母等于0.1010.-.-.-6,6,12解答:解:方程213x m x +=--两边同乘以(两边同乘以(x-3x-3x-3),),), 得2x+m=-x+32x+m=-x+3,,整理得,整理得,m=-3x+3m=-3x+3m=-3x+3,,当x-3=0即x=3时,方程m=-3x+3有解,但它是原分式方程的增根,所以原方程无解,∴m=-6m=-6.. 原式0211=+-x ,x-1=21-,得x=1211.1解析:本题主要考查了分式方程的解.把原方程去分母化为整式方程,求出方程的解得到x 的值,由分式方程无解得到分式方程的分母为0,求出x 的值,两者相等得到关于m 的方程,求出方程的解即可得到m 的值.的值. 解:去分母得:x-2=m+2(x-3),整理得:x=4-m ,∵原方程无解,得到x-3=0,即x=3,∴4-m=3,解得m=1.1212..m=-3m=-3试题分析:先解方程34=+xx 得到x 的值,再根据两个方程的解互为相反数即可得到方程1121=--+x m mx 的解,从而得到m 的值。
分式方程的增根和无解(含答案)
![分式方程的增根和无解(含答案)](https://img.taocdn.com/s3/m/4eccb962bceb19e8b8f6bafa.png)
分式方程的增根和无解一、单选题(共10道,每道10分)1.关于x的分式方程有增根,则m的值为( )A. B.C. D.答案:D解题思路:分析:解分式方程首先需要化成整式方程,分式方程有增根,即整式方程有解,并且使得分式方程的最简公分母为零.解:方程两边同时乘以最简公分母x-1,得:,解得.∵分式方程有增根,∴,m=7.故选D.试题难度:三颗星知识点:分式方程增根无解问题2.分式方程的解为增根,则增根可能是( )A.x=2B.x=0C.x=-1D.x=0或x=-1答案:C解题思路:分析:解分式方程首先需要化成整式方程,分式方程有增根,即整式方程有解,并且使得分式方程的最简公分母为零.解:方程两边同时乘以最简公分母,得:,即,∵分式方程有增根,∴∴或,当时,不能求解m的值,当时,可得:,所以,此时.故选C.试题难度:三颗星知识点:分式方程增根无解问题3.关于x的分式方程产生增根,则m及增根x的值分别为( )A.,B.,C.,D.,答案:A解题思路:解:方程两边同时乘以最简公分母,得:,即,∵分式方程有增根,∴,解得,此时x=-3.故选A.试题难度:三颗星知识点:分式方程增根无解问题4.已知关于x的分式方程有增根,则m的值是( )A.1B.-1C.3D.5答案:B解题思路:解:方程两边同时乘以,得:,即,∵分式方程有增根,∴,即,解得,故选B.试题难度:三颗星知识点:分式方程增根无解问题5.若解关于x的分式方程有增根x=-1,则a的值为( )A.3B.-3C.3或1D.-3或-1答案:B解题思路:解:方程两边同时乘以,得,即,∵分式方程有增根x=-1,∴,故选B.试题难度:三颗星知识点:分式方程增根无解问题6.若关于x的分式方程无解,则m的值为( )A. B.1C.或2D.或答案:D解题思路:分析:解分式方程首先需要化成整式方程,分式方程无解,有两种情况,①整式方程本身无解;②整式方程有解,但使得分式方程的最简公分母为零(即为增根).解:方程两边同时乘以,得,整理得,∵原分式方程无解,①整式方程无解,即,不成立,无解,此时,,②整式方程有解,但使得分式方程的最简公分母为零(即为增根).此时,,得,方程有增根,解得,.综上,当或时,原分式方程无解.故选D.试题难度:三颗星知识点:分式方程增根无解问题7.若分式方程无解,则m的值为( )A.8B.C. D.12答案:C解题思路:解:方程两边同时乘以,得,整理得,∵原分式方程无解,而整式方程始终有解,所以使得分式方程的最简公分母为零.方程有增根,解得,.综上,当时,原分式方程无解.故选C.试题难度:三颗星知识点:分式方程增根无解问题8.若关于x的分式方程无解,则a的值为( )A. B.C.或或D.答案:D解题思路:解:方程两边同时乘以,得,整理得,原分式方程无解,应包含两种情况:①整式方程无解,即,不成立,无解,此时,②整式方程有解,但使得分式方程的最简公分母为零.此时,,得,方程有增根,解得,.综上,当或时,原分式方程无解.故选D.试题难度:三颗星知识点:分式方程增根无解问题9.已知关于x的分式方程的解是非正数,则a的取值范围是( )A. B.C. D.答案:B解题思路:解:分式方程化为整式方程得,解得.∵解为非正数,∴,∴,又∵方程有解,∴,即,即,故选B.试题难度:三颗星知识点:解分式方程10.若关于x的分式方程的解为正数,则m的取值范围是( )A.m>-5B.m<-5C.m≥-5D.m>-5且m≠-2答案:D解题思路:解:分式方程化为整式方程得,解得.∵解为正数,∴,∴,又∵方程有解,∴,即,即,故选D.试题难度:三颗星知识点:解分式方程。
习题:分式方程及增根、无解(含答案)
![习题:分式方程及增根、无解(含答案)](https://img.taocdn.com/s3/m/7696573cde80d4d8d05a4f00.png)
当堂检测1.2. 解方程11322x x x-=---答案:2x =是增根原方程无解。
3. 关于x 的方程12144a x x x -+=--有增根,则a =-------答案:7 4.5. 解关于x 的方程15m x =-下列说法正确的是(C ) A.方程的解为5x m =+ B.当5m >-时,方程的解为正数C.当5m <-时,方程的解为负数D.无法确定4.若分式方程1x a a x +=-无解,则a 的值为-----------答案:1或-1 5. 若分式方程=11m x x +-有增根,则m 的值为-------------答案:-1 6.分式方程121m x x =-+有增根,则增根为------------答案:2或-1 7. 关于x 的方程1122k x x +=--有增根,则k 的值为-----------答案:18. 若分式方程x a a a+=无解,则a 的值是----------答案:0 9.若分式方程201m x m x ++=-无解,则m 的取值是------答案:-1或1-210. 若关于x 的方程(1)5321m x m x +-=-+无解,则m 的值为-------答案:6,10 11. 若关于x 的方程311x m x x --=-无解,求m 的值为-------答案:12.解方程21162-x 2312x x x -=---答案67x =- 13.解方程2240x-11x -=-14. 解方程2212525x x x -=-+15. 解方程222213339x x x x --=-+-16. 关于x的方程21326x mx x-=--有增根,则m的值-----答案:m=2或-217.当a为何值时,关于x的分式方程311x ax x--=-无解。
答案:-2或1。
知识点143 分式方程的增根(解答)
![知识点143 分式方程的增根(解答)](https://img.taocdn.com/s3/m/bc64fafee45c3b3567ec8bba.png)
知识点143 分式方程的增根(解答)1、m2、m3的关系是m3=m1+m2﹣15 .考点:分式方程的增根。
专题:计算题。
分析:解分式方程,根据方程有增根求得m的值即可,根据规律即可得出结论.第三问设方程的三根为a,b,c 且a+b=c,再求得对应的m.即可得出它们之间的关系.解答:解:探究1:方程两边都乘(x﹣3),得3x+5(x﹣3)=﹣m∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3,当x=3时,m=﹣9,故m的值是﹣9.探究2:方程两边都乘(x﹣3),得3x+5(x﹣3)=﹣m∵原方程的根为x=﹣1,∴m=23,探究3:由(1)(2)得x=,方程的三个对应根为a,b,c且a+b=c,即可得出对应的m,m1=15﹣8a,m2=15﹣8b,m3=15﹣8c,探究4:∵a+b=c,∴+=,整理得m3=m1+m2﹣15,故答案为m3=m1+m2﹣15.点评:本题考查了分式方程的增根,解分式方程要验根,但解含有字母参数的分式方程不用验根.17.解方程:=1+.考点:分式方程的增根。
专题:计算题。
分析:找到最简公分母(y+2)(y﹣2),方程两边同乘以最简公分母,然后化为整式方程求解.解答:解:去分母得:y+2=y2﹣4+4,…(2分)∴y2﹣y﹣2=0,…(1分)∴y1=2,y2=﹣1,…(2分)经检验知:y1=2是增根,舍去,y2=﹣1是原方程的根,…(1分)∴原方程的根是y=﹣1.点评:本题考查了分式方程的解法以及分式方程的增根,注:解分式方程要检验.18.已知方程有增根x=1,求k的值.考点:分式方程的增根。
专题:计算题。
分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x+1)(x﹣1)=0,得到x=1或﹣1,然后代入化为整式方程的方程算出k的值.解答:解:方程两边都乘(x+1)(x﹣1),得2(x﹣1)+k(x+1)=6∵原方程有增根x=1,∴当x=1时,k=3,故k的值是3.点评:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.使分式方程产生增根,则k的值为﹣8或8 ,增根为x=﹣4或4 .考点:分式方程的增根。
分式中的增根问题专项训练题
![分式中的增根问题专项训练题](https://img.taocdn.com/s3/m/5a8729c6f605cc1755270722192e453610665bde.png)
分式中的增根问题专项训练题分式中的增根问题专项训练题一、增根问题1.若分式方程 $m+\frac{4}{x+2}=2$ 有增根,则 $m$ 的值是多少?2.若关于 $x$ 的方程 $\frac{1}{x-2}+\frac{1}{x+3}=x$ 有增根,则该增根为多少?3.若关于 $x$ 的分式方程 $\frac{x+2}{x-3}-\frac{2}{x+1}=1$ 有增根,则 $x$ 的值为多少?4.关于 $x$ 的方程 $\frac{3x-1}{x-2}-\frac{2}{x+1}=x$ 有增根,则该增根为多少?5.关于 $x$ 的分式方程 $\frac{x-1}{x+2}+\frac{2}{x-3}=1$ 有增根,则 $x$ 的值为多少?6.若方程 $x^2-5x+m=0$ 有增根,则 $m$ 的值为多少?7.若分式方程 $\frac{k-1}{k-5}-\frac{1}{k+1}=1$ 有增根,则 $k$ 的值为多少?8.若分式方程$\frac{k-11}{k-5}=-\frac{1}{x^2-x}$ 有增根,则 $k$ 的值和增根分别为多少?9.关于 $x$ 的方程 $\frac{m+x}{x-3}=\frac{2x+3}{x+6}$ 有增根,则 $m$ 的值为多少?10.若分式方程 $\frac{1}{x-2}+\frac{1}{x+2}=1$ 有增根,则该增根为多少?11.关于 $x$ 的方程 $\frac{1}{x-2}+\frac{1}{x+2}=2$ 有增根,则 $k$ 的值为多少?12.已知关于 $x$ 的分式方程 $\frac{m}{x-3}+\frac{2}{x+2}=2$ 有增根,则 $m$ 的值为多少?13.若关于 $x$ 的方程 $\frac{m}{x-2}+2=1$ 有增根,则$m$ 的值为多少?14.若关于 $x$ 的方程 $\frac{x}{x-2}+\frac{1}{x+3}=1$ 有增根,则 $x$ 的值为多少?二、有解问题1.已知关于 $x$ 的分式方程 $\frac{m}{x-2}+1=1$ 的解是非负数,则 $m$ 的取值范围为什么?2.关于 $x$ 的分式方程 $\frac{2}{x-1}+\frac{3}{x+2}=1$ 的解是正数,则$m$ 的取值范围是多少?3.关于 $x$ 的方程 $\frac{x+1}{x-3}+\frac{1}{x+2}=m$ 的解是负数,则 $m$ 的取值范围为什么?4.若关于 $x$ 的方程 $\frac{m}{x-2}+\frac{1}{x+3}=1$ 有解,则 $m$ 的取值范围为什么?三、无解问题1.若关于 $x$ 的分式方程 $\frac{a}{x-2}+\frac{1}{x+3}=1$ 无解,则 $a$ 的值是多少?2.已知关于 $x$ 的方程 $\frac{m}{x-2}+\frac{1}{x+3}=1$ 无解,则 $m$ 的值为多少?3.当 $m=2$ 时,关于 $x$ 的方程 $\frac{1}{x-2}+\frac{1}{x+3}=2-\frac{1}{x}$ 无解,求 $x$ 的值。
分式方程的增根、正根、负根、无解问题专题训练
![分式方程的增根、正根、负根、无解问题专题训练](https://img.taocdn.com/s3/m/5d03d7505e0e7cd184254b35eefdc8d376ee140b.png)
分式方程的增根、正根、负根、无解问题专题训练一、选择题1.关于x的方程有增根,那么a的值为()A.1B.﹣4C.﹣1或﹣4D.1或42.关于x的分式方程+=3有增根,则实数m的值是()A.2B.﹣1C.3D.43.若关于x的方程﹣=0有增根,则m的值为()A.﹣5B.0C.1D.24.方程﹣3=有增根,则m的值为()A.B.±3C.﹣3D.35.若关于x的分式方程﹣=1有增根,则增根为()A.1B.0C.1和0D.不确定6.若关于x的分式方程+=1有增根,则m的值是()A.m=6B.m=2C.m=2或m=6D.m=2或m=−6 7.已知关于x的分式方程﹣=1有增根,则k=()A.﹣3B.1C.2D.3二.填空题8.若关于x的分式方程有增根,则a的值为.9.关于x的方程=1有增根,则a的值是.10.关于x的方程有增根,则增根是;且k的值是.11.若关于x的分式方程有增根x=1,则k的值为.12.已知关于x的分式方程+2=﹣有增根,则这个增根的值是.13.若方程+=2有增根x=﹣1,则k=.14.一们同学在解关于x的分式方程的过程中产生了增根,则可以推断a的值为.三、解答题15.(1)方程=3﹣有增根,则m的值为.(2)若关于x的方程+2=有增根,试求k的值.16.若分式方程有增根x=﹣1,求k的值.17.已知关于x的分式方程.(1)若分式方程有增根,求m的值;(2)若分式方程的解是正数,求m的取值范围.18.关于x的分式方程:.(1)当m=3时,求此时方程的根;(2)若这个关于x的分式方程会产生增根,试求m的值.(3)若关于x的分式方程的增根为x=3,求a的值.19.若关于y的不等式组无解,且关于x的分式方程的解为负数,则所有满足条件的整数a的值之和是多少?20.若关于x的一元一次不等式组的解集为x>1,且关于y的分式方程的解是正整数,则所有满足条件的整数a的值之和是多少?。
分式方程增根题目
![分式方程增根题目](https://img.taocdn.com/s3/m/a67e795011661ed9ad51f01dc281e53a580251e7.png)
分式方程增根题目一、解分式方程:(x - 1)/(x + 1) = 1 - 2/(x + 1),该方程的增根是A. x = 0B. x = 1C. x = -1D. x = 2(答案) C二、分式方程:2/(x - 1) = 4/(x2 - 1) + 1 的增根为A. x = 0B. x = 1C. x = -1D. x = 2(答案) B三、考虑分式方程:(x + 2)/(x - 2) - 8/(x2 - 4) = 1,它的增根是A. x = 0B. x = 2C. x = -2D. x = 4(答案) B, C (注:此方程有两个增根x=2和x=-2,若题目要求单选,则根据常规理解选第一个有效增根x=2即B)四、对于分式方程:3/(x + 1) = (x + 3)/(x2 - 1),其增根为A. x = 0B. x = 1C. x = -1D. x = -3(答案) C五、解方程:(2x - 1)/(x2 - 1) = 1/(x + 1),找出它的增根A. x = 0B. x = 1C. x = -1D. x = 1/2(答案) B六、分式方程 (x + 5)/(x2 + x) = (x + 1)/(x + 1) + 3/x 的增根是A. x = 0B. x = 1C. x = -1D. x = 5(答案) A, C (注:此方程理论上有两个增根x=0和x=-1,但x=0通常不被视为有效增根因为它使分母为0,若单选则选C)七、考虑方程:(3x - 2)/(x2 - 4) = (x - 1)/(x + 2),它的增根是A. x = 0B. x = 2C. x = -2D. x = 3(答案) C八、分式方程 (x2 - 4x + 3)/(x2 - 1) = (x - 3)/(x - 1) - 1 的增根为A. x = 0B. x = 1C. x = -1D. x = 3(答案) B, C (注:此方程在x=1和x=-1处均可能产生增根,但x=1是使分母为0的点,通常不被视为有效解,若单选则优先考虑题目要求的解的有效性选C)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专项练习分式方程的增根(含解析)【一】单项选择题1.以下关于分式方程增根的说法正确的选项是〔〕A.使所有的分母的值都为零的解是增根 B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根2.解关于x的方程产生增根,那么常数的值等于〔〕A.-1B.-2C.1D.23.关于x的方程﹣=0有增根,那么m的值是〔〕A.2B.-2C.1D.-14.假设关于x的分式方程有增根,那么k的值是〔〕A.-1B.-2C.2D.15.假设关于x的分式方程−m=无解,那么m的值为〔〕A.m=3B.m=C.m=1D.m=1或6.解关于x的方程=产生增根,那么常数m的值等于〔〕A.-1B.-2C.1D.27.如果关于x的方程无解,那么m等于〔〕A.3B.4C.-3D.58.分式方程+1=有增根,那么m的值为〔)A.0和2B.1C.2D.09.解关于x的分式方程时不会产生增根,那么m的取值是〔〕A.m≠1B.m≠﹣1C.m≠D.m≠±110.假设解分式方程产生增根,那么m的值是〔〕A.或B.或2C.1或2D.1或11.假设关于x的分式方程+ =1有增根,那么m的值是〔〕A.m=0或m=3B.m=3C.m=D.m=﹣112.以下说法中正确的说法有〔〕〔1〕解分式方程一定会产生增根;〔2〕方程=0的根为x=2;〔3〕x+ =1+ 是分式方程.A.0个B.1个C.2个D.3个13.假设关于x的方程有增根,求a的值〔〕A.0B.-1C.1D.-2【二】填空题14.假设关于x的分式方程= ﹣有增根,那么k的值为___ _____15.如果﹣3是分式方程的增根,那么a=________.16.关于x的分式方程- =0无解,那么m=________.17.关于x的方程+1= 有增根,那么m的值为________.18.假设分式方程有增根,那么这个增根是________19.假设关于x方程= +1无解,那么a的值为________.20.假设方程有增根,那么它的增根是________,m= ________;【三】解答题21.当m为何值时,解方程会产生增根?22.计算:当m为何值时,关于x的方程+ = 会产生增根?【一】单项选择题1.以下关于分式方程增根的说法正确的选项是〔〕A.使所有的分母的值都为零的解是增根 B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根【考点】分式方程的增根2.解关于x的方程产生增根,那么常数的值等于〔〕A.-1B.-2C.1D.2【考点】分式方程的增根【解析】【解答】解:方程两边同乘x-1,得x-3=m,因为方程有增根,所以x=1,把x=1代入x-3=m,所以m=-2;应选B.【分析】因为增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值.3.关于x的方程﹣=0有增根,那么m的值是〔〕A.2B.-2C.1D.-1【考点】分式方程的增根【解析】【解答】解:方程两边都乘〔x﹣1〕,得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.应选A、【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x﹣1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.4.假设关于x的分式方程有增根,那么k的值是〔〕A.-1B.-2C.2D.1【考点】分式方程的增根【解析】【解答】解:方程两边都乘〔x﹣5〕,得x﹣6+x﹣5=﹣k,∵原方程有增根,∴最简公分母〔x﹣5〕=0,解得x=5,当x=5时,k=1.应选:D、【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母〔x﹣5〕=0,得到x=5,然后代入化为整式方程的方程算出k的值.5.假设关于x的分式方程−m=无解,那么m的值为〔〕A.m=3B.m=C.m=1D.m=1或【考点】分式方程的增根【解析】【分析】方程两边都乘以〔x-3)得到x-m〔x-3)=2m,整理得〔1 -m)x+m=0,由于关于x的分式方程−m=无解,那么x-3=0,解得x =3,然后把x=3代入〔1-m)x+m=0可求出m的值.【解答】去分母得x-m〔x-3)=2m,整理得〔1-m)x+m=0,当1-m=0,即m=1时,〔1-m)x+m=0无解,∵关于x的分式方程−m=无解,∴x-3=0,解得x=3,∴〔1-m)×3+m=0,∴m=.应选D、【点评】此题考查了分式方程的解先把分式方程化为整式方程,解整式方程,假设整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;假设整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.6.解关于x的方程=产生增根,那么常数m的值等于〔〕A.-1B.-2C.1D.2【考点】分式方程的增根【解析】解;方程两边都乘〔x-1),得x-3=m,∵方程有增根,∴最简公分母x-1=0,即增根是x=1,把x=1代入整式方程,得m=-2.应选:B、【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.此题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.如果关于x的方程无解,那么m等于〔〕A.3B.4C.-3D.5【考点】分式方程的增根【解析】【分析】关于x的方程无解,即分式方程去掉分母化为整式方程,整式方程的解就是方程的增根,即x=5,据此即可求解。
【解答】去分母得2-x=-m,由题意得,方程的增根为x=5,那么2-5=-m,解得m=3,应选A、【点评】分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形。
8.分式方程+1=有增根,那么m的值为〔)A.0和2B.1C.2D.0【考点】分式方程的增根【解析】【分析】先去分母得出1+x-2=m,根据方程有增根求出x=2,代入以上方程即可求出m的值.【解答】方程两边都乘以x-2得:1+x-2=m,∵分式方程+1=有增根,∴x-2=0,x=2,把x=2代入1+x-2=m得:m=1,应选B、【点评】此题考查了对分式方程的解的理解和运用,主要考查学生对说分式方程有增根的理解,题目比较好,但是一道比较容易出错的题目9.解关于x的分式方程时不会产生增根,那么m的取值是〔〕A.m≠1B.m≠﹣1C.m≠D.m≠±1【考点】分式方程的增根【解析】【解答】解:分式方程去分母,得:1+x﹣1=﹣m,当x﹣1=0时,方程有增根,此时x=1,代入整式方程得:1+1﹣1=﹣m,解得:m=﹣1,那么分式方程不会产生增根时,m≠﹣1,应选B、【分析】分式方程去分母转化为整式方程,求出分式方程有增根时m的值,即可确定出不会产生增根m的取值.10.假设解分式方程产生增根,那么m的值是〔〕A.或B.或2C.1或2D.1或【考点】解分式方程,分式方程的增根【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x〔x+1〕=0,得到x=0或,然后代入化为整式方程的方程算出m的值:方程两边都乘x〔x+1〕,得.∵原方程有增根,∴最简公分母x〔x+1〕=0,解得x=0或.当x=0时,m=;当x=时,m=1.应选D、11.假设关于x的分式方程+ =1有增根,那么m的值是〔〕A.m=0或m=3B.m=3C.m=D.m=﹣1【考点】分式方程的增根【解析】【解答】解:去分母得:3﹣x﹣m=x﹣4,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:3﹣4﹣m=0,解得:m=﹣1,应选D、【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣4 =0,求出x的值,代入整式方程求出m的值即可.12.以下说法中正确的说法有〔〕〔1〕解分式方程一定会产生增根;〔2〕方程=0的根为x=2;〔3〕x+ =1+ 是分式方程.A.0个B.1个C.2个D.3个【考点】分式方程的定义,分式方程的解,分式方程的增根【解析】【解答】解:①解分式方程不一定会产生增根;②方程=0的根为x=2,分母为0,所以是增根;所以①②错误,根据分式方程的定义判断③正确.应选:B、【分析】根据分式方程的定义、增根的概念的定义解答.13.假设关于x的方程有增根,求a的值〔〕A.0B.-1C.1D.-2【考点】分式方程的增根【解析】【解答】解:方程两边都乘〔x﹣1〕,得ax+1﹣〔x﹣1〕=0∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,a=﹣1,故a的值可能是﹣1.应选B、【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母〔x﹣1〕=0,得到x=5或6,然后代入化为整式方程的方程算出a的值.【二】填空题14.假设关于x的分式方程= ﹣有增根,那么k的值为___ _____【考点】分式方程的增根15.如果﹣3是分式方程的增根,那么a=________.【考点】分式方程的增根16.关于x的分式方程- =0无解,那么m=________.【考点】解分式方程,分式方程的增根17.关于x的方程+1= 有增根,那么m的值为________.【考点】分式方程的增根18.假设分式方程有增根,那么这个增根是________【考点】分式方程的增根19.假设关于x方程= +1无解,那么a的值为________.【考点】分式方程的解,分式方程的增根20.假设方程有增根,那么它的增根是________,m= ________;【考点】分式方程的增根【解析】【解答】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母〔x+1〕〔x-1〕=0,所以增根可能是x=1或-1.方程两边都乘〔x+1〕〔x-1〕,得6-m〔x+1〕=〔x+1〕〔x-1〕,把x=1代入解得m=3.【分析】使分式方程的分母为0的根就是分式方程的增根。
假设方程有增根,那么〔x+1〕〔x-1〕=0,解得增根可能是x=1或-1。
方程两边都乘〔x+1〕〔x-1〕,化分式方程为整式方程,把x=1或-1代入整式方程即可求解。
【三】解答题21.当m为何值时,解方程会产生增根?【考点】分式方程的增根【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.22.计算:当m为何值时,关于x的方程+ = 会产生增根?【考点】分式方程的增根。