相似三角形的证明方法(图形归纳)
(完整版)相似三角形的判定方法
![(完整版)相似三角形的判定方法](https://img.taocdn.com/s3/m/607f87f59b6648d7c0c74644.png)
(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
初三相似的图形知识点归纳总结
![初三相似的图形知识点归纳总结](https://img.taocdn.com/s3/m/f866b69b81eb6294dd88d0d233d4b14e85243eec.png)
初三相似的图形知识点归纳总结相似的图形在初中数学中占据非常重要的位置。
相似的图形具有相同的形状但不一定相等的大小。
在初三学习过程中,我们接触到了许多涉及相似图形的知识点。
本文将对初三相似的图形知识点进行归纳总结,以帮助同学们更好地理解和掌握这一内容。
一、相似三角形的判定条件1. AAA相似定理:如果两个三角形的对应角相等,则它们相似。
2. AA相似定理:如果两个三角形的一个角对应对应地相等,并且两个对应边成比例,则它们相似。
3. 相似三角形的对应边的比例关系:如果两个三角形相似,那么它们的对应边的长度之比等于相似比。
即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)二、相似三角形的性质和应用1. 相似三角形的边长比例性质:两个相似三角形的相应边的比等于它们的相似比。
即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)2. 相似三角形的高线比例性质:两个相似三角形的高线与底边之比等于相似比。
即\(\frac{h_1}{h_2} = \frac{AB}{A'B'} = \frac{BC}{B'C'} =\frac{CA}{C'A'}\)3. 相似三角形的面积比例性质:两个相似三角形的面积之比等于边长之比的平方。
即\(\frac{S_1}{S_2} = \left(\frac{AB}{A'B'}\right)^2 =\left(\frac{BC}{B'C'}\right)^2 = \left(\frac{CA}{C'A'}\right)^2\)4. 利用相似三角形性质解决实际问题。
如影子定理、塔楼高度的测量等。
完整版)相似三角形题型归纳
![完整版)相似三角形题型归纳](https://img.taocdn.com/s3/m/30f87e3203020740be1e650e52ea551811a6c95c.png)
完整版)相似三角形题型归纳1、在平行四边形ABCD中,点E为对角线AC上的一点,且AE∶EC=1∶3.将BE延长至与CD的延长线交于点G,与AD交于点F。
证明BF∶FG=1∶2.2、在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC的中点,E为AC上的一点。
点G在BE上,连接DG并延长至交AE于点F,且∠FGE=45°。
证明:(1)BD·BC=BG·BE;(2)AG⊥BE;(3)若E为AC的中点,则EF∶FD=1∶2.3、在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上的一点,连接BO交AD于点F,OE⊥OB交BC边于点E。
证明:(1)△ABF∽△COE;(2)当O为AC的中点时,求△ABC的面积;(3)当O为AC边中点时,求△ABC的面积。
4、在平行四边形ABCD和平行四边形ACED中,点R为DE的中点,BR分别交AC、CD于点P、Q。
写出各对相似三角形(相似比为1除外),并求出BP∶PQ∶QR的值。
5、在△ABC中,AD平分∠BAC,EM为AD的中垂线,交BC延长线于点E。
证明DE=BE·CE。
6、过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和E。
证明AE∶ED=2AF∶FB。
7、在Rt△ABC中,CD为斜边AB上的高,点M在CD 上,DH⊥BM且与AC的延长线交于点E。
证明:(1)△AED∽△CBM;(2)DE=DM。
8、在△ABC中,BD、CE分别是两边上的高,过D作DG⊥BC于点G,分别交CE及BA的延长线于点F、H。
证明:(1)DG=BG·CG;(2)BG·CG=GF·GH。
9、在平行四边形ABCD中,点P为对角线AC上的一点。
过P的直线与AD、BC、CD的延长线、AB的延长线分别相交于点E、F、G、H。
证明:AG∶GB=CP∶PD。
1、求证:如图,已知平行四边形ABCD中,点P在AC上,点Q在BC上,且AP=CQ。
三角形相似(含方法步骤)
![三角形相似(含方法步骤)](https://img.taocdn.com/s3/m/5fc0e61bc281e53a5802ff9d.png)
.相似三角形及相似条件1.【基础知识】1-1三角对应相等,三边对应成比例的三角形,叫相似三角形 1-2判定定理:定理1.两个角对应相等的两个三角形相似 定理2.三边对应成比例的两个三角形相似定理3.两边对应成比例且夹角相等的两个三角形相似1-3相似性质:相似三角形对应高的比,对应角的角平分线的比对应边的比周长比都等于相似比,面积比等于相似比的平方2. 【知识应用】题目要直接证明相似,边成比例或求边的比值,周长,面积的比值 方法:2-1.从问题中找出要证明的两个三角形,若没有则需作辅助线构造三角形2-2.若条件中出现角相等或平行线,垂线的,优先考虑用定理1 2-3.若条件中出现边长或边的比,则考虑定理2和定理32-4再根据所选定的定理,看还差什么条件,到已知中去找或者到图形中去找隐含条件,如对顶角,公共角,直角,公共边等从而证明出相似注意:1.写对应边比例式时,要遵循“横纵一致原则”即,横向看所有处在分子位置的边必须是属于同一个三角形,处在分母位置的边亦然,纵向看分子分母必须是一组对应边 2.在证明边成比例时,如果按步骤2-1仍然无法找到符合的三角形,则一般情况考虑用两组相似三角形,找出一个比例中间量,利用中间量证明边成比例 3.【综合应用】题目问边长3-1.看已知边和要求边同时出现在哪些三角形中,从而确定出相似的两个三角形 3-2.根据【知识应用】的方法,证明相似3-3利用对应边的比例关系,列出等式,解出所求注意:列比例关系时,一定要是对应边,再者等式两边比的先后顺序也要一致 【基础训练】1. 对应角___________,对应边_____________的三角形,叫做相似三角形.2. 如果~'''A B C A B C ∆∆,对应边6,''3,AB cm A B cm ==那么A B C ∆与'''A B C ∆的相似比为________;'''A B C ∆与A B C ∆的相似比为__________________3. A B C ∆的各边长之比为2:5:6,与其相似的另一个'''A B C ∆的最大边为18,cm 那么它的最小边为___________.4. 两个相似三角形的面积比为4:3,则相似比为_____________.5. ~''',ABC A B C ∆∆A B C ∆的三边长分别为3、4、5,'''A B C ∆的最大边长为15,则'''A B C S ∆=________.6. 下列说法正确的个数是( ) ① 相似三角形的对应角相等,对应边相等. ② 三角形全等是相似的特殊情况;③ 全等三角形是相似比等于1的相似三角形..0A .1B .2C .3D7. A B C ∆的三边长为3:4:5,与它相似的'''A B C ∆的最短边长为6,则'''A B C ∆的周长是( ).12A .18B .24C .36D8.两个相似多边形的相似比是2:3,它们的面积之差是302,cm 那么它们的面积之和为( )2.74A cm 2.76B c m 2.78C c m 2.80D c m9.下列说法错误的是( ).A 两个全等的三角形一定相似 .B 两个直角三角形一定相似.C 两个相似三角形的对应角相等,对应边成比例 .D 相似的两个三角形不一定全等10. ~''',ABC A B C ∆∆如果0055,100,A B ∠=∠=则'C ∠的度数等于( ).A 055 .B 0100 .C 025 .D 030【典型例题】例1.①已知~,ABC ACD ∆∆且5,4,AD BD ==则A C D ∆与A B C ∆的相似比是________. ②在R t A B C ∆中,D 是A C 的中点,D E 垂直于斜边,AB 点E 为垂足,则~,ABC ADE ∆∆若10,4,AB AE ==则AD =___________.1题图 2题图 3题图 4题图③如图所示,G 为A B C ∆的重心,作//D G A C 交B C 于,D 作//E G A B 交B C 于,E 则G D E ∆的面积与A C B ∆的面积比为___________.④ 如图所示,在A B C ∆中,//,DE BC 且分A B C ∆为面积相等的两个部分,则:D E B C =_. ⑤如果111~,ABC A B C ∆∆且相似比为2,3111222~A B C A B C ∆∆且相似比为5,4则A B C ∆与222A B C ∆的相似比是( ) 5.6A 6.5B 5.6C 或658.15D例2.如图所示,已知~,4,2,ACP ABC AC AP ∆∆==求A B 的长.例3、①一个三角形的三边长分别为5,12和13,与其相似的三角形的最大边长为39,那么较大三角形的周长是多少?两个三角形的周长比是多少?②已知一个三角形框架,其边长分别为4,5,6,现在要做一个与其相似的三角形框架,已知现有一根长为2的木条,则其他两根木条应取多长?例4.已知,边长为2的正三角形,//,:1:4,BC D ABC ABC D E BC S S ∆∆=求C E 的长.例5.如图,在A B C ∆中,,AB AC =B D 为腰A C 上的高.求证:212C D C A B C ⋅=例 6.①如图,梯形A B C D 中,0//,90,A B D C B E ∠=为B C 上一点,且,A E E D ⊥若12,BC =7,:1:2,DC BE EC ==求A B 的长.②已知如图,在梯形A B C D 中,0//,90,7,2,3,AD BC A AB AD BC ∠====在线段A B 上是否存在点P ,使得以,,P A D 为顶点的三角形与以,,P B C 为顶点的三角形相似?若不存在,说明理由;若存在,求出这样的P 点有几个,并计算出A P 的长度.例7.如图所示,在A B C ∆中,090,6C AC ∠==厘米,8B C =厘米,斜边10A B =厘米,点P 从点B 出发,沿B C 向点C 以2厘米秒的速度移动,点Q 从点C 出发,沿C A 向点A以1厘米秒的速度移动,如果,P Q 分别从,B C 同时出发.(1)经过多少秒时,~;CPQ CBA ∆∆(2)经过多少秒时,以,,C P Q 为顶点的三角形与A B C ∆相似.例8.如图,一个边长为3厘米、4厘米、5厘米的直角三角形的一个顶点与正方形顶点B 重合,另两个顶点分别在正方形的两条边,AD DC 上,那么这个正方形的面积是___平方厘米.【课堂练习】1、如果~,ABC FDE ∆∆则A ∠=_________,C ∠=_______,A B B C=___________.2、如图,~,10,13,8,ABC DCA AB BC AC ∆∆===则AD =_____,D C =______.3、如图A D 是A B C ∆的角平分线,,,12,20,BE AD CF AD CF BE ⊥⊥==64,AB AC +=则A B =_______.2题 3题4、直角三角形斜边上的高分斜边为3:2两段,斜边上的高为6,cm 则斜边上的中线长为____.5、已知~''',ABC A B C ∆∆且:''1:1,AB A B =则A B C ∆和'''A B C ∆的关系是________.6、已知~,ABC DEF ∆∆且3,2A B D E=则这两个三角形对应中线之比为________,面积之比为__________.7、在A B C ∆中,12,8,AB cm AC cm ==点,D E 分别在,AB AC 上,如果AD E ∆与A B C ∆能够相似,且4A D cm =时,则A E =______________cm .8、E 是平行四边形A B C D 的B C 边上一点,A E 交B D 于,F 且:4:5,BE EC =求B F F D和A F F E的值.9、在锐角A B C ∆中,F 是A C 上一点,且1,2A F G F C=是B F 中点,连结A G 并延长,交B C与.E (1)求B E E C的值。
相似三角形证明方法
![相似三角形证明方法](https://img.taocdn.com/s3/m/a310e5088e9951e79b8927e7.png)
相似三角形证明方法方法一:直接寻求相似三角形只要根据题目给定的条件寻找出线段成比例,或者角相等利用判定定理直接找出来.例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则 ∽ ∽ 。
例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线, 求证:△ABC ∽△BCD方法二:利用中间线段代换当要证明的结论中的一条线段与其他线段之间的关系难以确定时我们可以利用等线段代换,从而容易找到相应的关系。
例1、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF •AC=BC •FE例2:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM ⊥BC 于点E ,交BA 的延长线于点D 。
求证:(1)MA 2=MD •ME ;(2)MDMEAD AE =22命题 1 如图,如果∠1=∠2,那么△ABD ∽△ACB ,A B C DEF G 1234ABCD ABCDEM12AB CDEFKAB2=AD•AC。
命题2 如图,如果AB2=AD•AC,那么△ABD∽△ACB,∠1=∠2。
A BCD1例3:如图△ABC中,AD为中线,CF为任一直线,CF交AD于E,交AB于F,求证:AE:ED=2AF:FB。
方法三:证明比例式或等积式的主要方法有“三点定形法”.1.横向定型法欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB和BC,三个字母找到一幕中BEF△的三个顶点.因此只需证ABC EBF△∽△.2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB和BC中的三个字母A B C,,恰为ABC△的顶点;右边的比两条线段是DE和EF中的三个字母D E F,,恰为DEF△的三个顶点.因此只需证ABC DEF△∽△.3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
相似三角形证明技巧(整理)
![相似三角形证明技巧(整理)](https://img.taocdn.com/s3/m/102d563b5acfa1c7aa00cca2.png)
相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2 找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。
具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。
有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。
例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。
相似三角形题型归纳总结非常全面
![相似三角形题型归纳总结非常全面](https://img.taocdn.com/s3/m/d2fb3802f90f76c660371a1a.png)
相似三角形题型归纳一、比例的性质:二、成比例线段的概念:1.比例的项:在比例式cr.b = c:d(即纟=上)中,a, d称为比例外项,b, c称为比例内项.特别地,h d在比例式a\b = b.c(即上=?)中,b称为a, c的比例中项,满足b2=ac・b c2.成比例线段:四条线段6 b, G d中,如果Q和b的比等于C和d的比,即- = 那么这四条线b d段a, b, c, d叫做成比例线段,简称比例线段.3.黄金分割:如图,若线段M上一点C,把线段朋分成两条线段AC和BC (AC >BC),且使AC是和BC的比例中项(即AC2 =AB BC),则称线段AB被点C黄金分割,点C叫线段&8 的黄金分割点,其中AC = ^1AB^Q.61SAB , = Q0.382AB, AC AB2 2的比叫做黄金比.(注意:对于线段A3而言,黄金分割点有两个.)•••A C B4三.平行线分线段成比例定理1.平行线分线段成比例定理两条直线被三条平行线所截.所得的对应线段成比例.简称为平行线分线段成比例立【小结】若将所截出的小线段位置靠上的(如&B )称为上,位置靠下的称为下,两条线段合成的线段称为全,则可以形象的表示为二=二,空=刍 r r 全全2.平行线分线段成比例定理的推论平行于三角形一边的直线,截其它两边(或两边的延长线),所得的对应线段成比例.如AE AF AE EF --- = ---- ----△ABCsMBC ZB = ZB', ZC = ZC rZA = ZA\AB _ BC _ AC A^ = WC = A^CAB DEBC EF如AF BEAC ABAE _AF AE _AF EB^FC AB^AC—=SL EFT/BC & FAA'EB FC ABAABC △A'B'C' AM、AH AD AABC BC A!M f A!H rA!D9AA0C B f C AB _ BC _ AC AM _ AH _ AD 7^ = ^C = A^C= =A^r = A7T=WD;AABC /\A!B f C AB BC AC AB + BC + AC ;而一而一而一A® + B'C' + AC 一△ △>△ = Z4‘ ZZ? = ZZT AABC s MBC砂B'C' A'C'SC S MBCAB ACA® AC ZA_ZA△ABCs/WBC4DE // BC oHADE sAABC o A° - AE - DE AB AC BCA BA AB 〃CD o'AOB s HCOD O 竺=竺=竺CD OC ODDG _ AN△ABC AADG S^ABC BC ZBAC = 90° /\ADGsHEBDs&GCsMBCE MF CAE4A A A A3/AABD ^ACADZB = ZCADZC = ZBADAB 2 =AD 2+BD 2 AC 2 = AD 2 + CD 2 BC 2 ==AB 2 + AC 2C CE//AD BAE CE//AD Z1 = Z£ Z2 = Z3 AD ZBAC Z1 =Z2AE = ACCE 〃AD^ =竺竺=竺AE CD AC CDAB1.BDAABC S MDEAB DE = BC CDED 丄 BD AC 丄 ECBDAABC s*DE s AACEZABC = ZCDE = ZACE Z^ABC sMDE AB DE = BC CDAB BC AC CD^^DE^CE CBDAABC s*DE s AACEAD ACMBCMCDE & =忑 C BD BJCDAB ACZABC = ZACEAABC ZA4CAB BD AC = CDEAB BCAD C3/A F;VEAw/nBMCBMCEN BM .EN BM EF // BCEF // BC 一NF MC NF MCAABC ABACAB BD AC = CD条件变为比例形式: 走気,由于妙心180。
如何证明两个三角形相似
![如何证明两个三角形相似](https://img.taocdn.com/s3/m/7fa6abb64bfe04a1b0717fd5360cba1aa9118c14.png)
如何证明两个三角形相似在数学的世界里,三角形是一个非常基础且重要的图形。
而证明两个三角形相似,是我们解决许多几何问题的关键步骤。
那到底怎样才能证明两个三角形相似呢?让我们一起来探讨一下。
首先,我们得了解什么是相似三角形。
相似三角形指的是对应角相等,对应边成比例的三角形。
简单来说,如果两个三角形的形状相同,但大小不一定相同,那么它们就是相似三角形。
接下来,我们看看证明两个三角形相似的方法。
方法一:两角分别相等的两个三角形相似。
这是一个非常重要且常用的方法。
如果一个三角形的两个角分别与另一个三角形的两个角相等,那么这两个三角形相似。
比如说,在三角形 ABC 和三角形 DEF 中,如果角 A 等于角 D,角 B 等于角 E,那么这两个三角形就是相似的。
为什么呢?因为三角形的内角和是 180 度,当两个角分别相等时,第三个角必然也相等。
三个角都相等,三角形的形状就确定了,所以它们相似。
方法二:两边成比例且夹角相等的两个三角形相似。
假设在三角形 ABC 和三角形 DEF 中,AB 与 DE 的比值等于 AC 与DF 的比值,并且角 A 等于角 D,那么这两个三角形相似。
这个方法的关键在于“夹角相等”。
因为如果两边成比例,但是夹角不相等,那么三角形的形状就会不同,也就不相似了。
方法三:三边成比例的两个三角形相似。
如果三角形 ABC 的三条边 AB、BC、AC 与三角形 DEF 的三条边DE、EF、DF 的比值都相等,那么这两个三角形相似。
这个方法比较直观地反映了三角形边的比例关系对相似性的决定作用。
为了更好地理解这些方法,我们通过几个例子来具体分析一下。
例 1:在三角形 ABC 和三角形 DEF 中,角 A 等于 50 度,角 B 等于 60 度,角 D 等于 50 度,角 E 等于 60 度。
证明这两个三角形相似。
因为角 A 等于角 D 等于 50 度,角 B 等于角 E 等于 60 度,根据“两角分别相等的两个三角形相似”,所以三角形ABC 相似于三角形DEF。
相似三角形及其判定(知识点串讲)(解析版)
![相似三角形及其判定(知识点串讲)(解析版)](https://img.taocdn.com/s3/m/0f1dd119590216fc700abb68a98271fe910eaf91.png)
专题11 相似三角形及其判定知识网络重难突破知识点相似三角形的判定一、相似三角形的判定方法①定义:各角对应相等,各边对应成比例.②平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.③有两个角对应相等.④两边对应成比例,且夹角相等.⑤三边对应成比例.二、相似三角形基本图形1、8字型有一组隐含的等角(对顶角),此时需从已知条件或图中隐含条件通过证明得另一对角相等(AB、CD不平行,∠A=∠C)(AB∥CD)2.A字型有一个公共角(图①、图②)或角有公共部分(图③,∠DAF+∠BAD=∠DAF+∠EAF),此时需要找另一对角相等或相等角的两边对应成比例3.双垂直型有一个公共角及一个直角 (图①为母子型的特殊形式AC2=AD·AB仍成立,另CD2=AD·BD)4.三垂直型结论推导,如图①,∠D+∠DBA=∠E+∠EBC=∠DBA+∠EBC=90°,∴∠EBC=∠D,∠E=∠DBA,且一组直角相等,用任意两组等角即可证得三角形相似【典例1】(2019秋•保山期末)如图,在△ABC中,点P在边AB上,则在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【点拨】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解析】解:当∠ACP=∠B,∵∠A=∠A,所以△APC∽△ACB;当∠APC=∠ACB,∵∠A=∠A,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A所以△APC∽△ACB;当AB•CP=AP•CB,即PC:BC=AP:AB,而∠P AC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.【典例2】如图,BD、CE是△ABC的两条高,AM是∠BAC的平分线,交BC于M,交DE于N,求证:(1)△ABD∽△ACE;(2)=.【点拨】(1)先根据有两组角对应相等的两个三角形相似,判定△ABD∽△ACE;(2)先相似三角形的性质,得出=,再根据∠DAE=∠BAC,判定△ADE∽△ABC,进而得到=,再根据∠CAM=∠EAN,判定△ACM∽△AEN,得到=,最后等量代换即可得到=.【解析】证明:(1)∵BD、CE是△ABC的两条高,∴∠ADB=∠AEC=90°,∵∠DAE=∠BAC,∴△ABD∽△ACE;(2)∵△ABD∽△ACE,∴=,即=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴=,且∠ACB=∠AED,∵AM是∠BAC的平分线,∴∠CAM=∠EAN,∴△ACM∽△AEN,∴=,∴=.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:有两组角对应相等的两个三角形相似,两组对应边的比相等且夹角对应相等的两个三角形相似.【典例3】(2019秋•七里河区期末)如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.【点拨】(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE边BE的高即可求解;(2)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.【解析】解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G如图∴DF∥AG,=∵AB=AC=10,BC=16∴BG=8,∴AG=6.∵AD=BE=t,∴BD=10﹣t,∴=解得DF=(10﹣t)∵S△BDE=BE•DF=7.5∴(10﹣t)•t=15解得t=5.答:t为5秒时,△BDE的面积为7.5cm2.(2)存在.理由如下:①当BE=DE时,△BDE∽△BCA,∴=即=,解得t=,②当BD=DE时,△BDE∽△BAC,=即=,解得t=.答:存在时间t为或秒时,使得△BDE与△ABC相似.【点睛】本题考查了相似三角形的判定和性质、等腰三角形的性质,解决本题的关键是动点变化过程中形成不同的等腰三角形.【变式训练】1.(2020•浙江自主招生)如图,在4×4的正方形网格中,画2个相似三角形,在下列各图中,正确的画法有()A.1个B.2个C.3个D.4个【点拨】根据相似三角形的判定定理逐一判断即可得.【解析】解:第1个网格中两个三角形对应边的比例满足==,所以这两个三角形相似;第2个网格中两个三角形对应边的比例==,所以这两个三角形相似;第3个网格中两个三角形对应边的比例满足===,所以这两个三角形相似;第4个网格中两个三角形对应边的比例==,所以这两个三角形相似;故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握三角形相似的判定并根据网格结构判断出三角形的三边的比例是解题的关键2.(2019秋•奉化区期末)如图,P为线段AB上一点,AD与BC交与点E,∠CPD=∠A=∠B,BC交PD与点F,AD交PC于点G,则下列结论中错误的是()A.△CGE∽△CBP B.△APD∽△PGD C.△APG∽△BFP D.△PCF∽△BCP【点拨】由相似三角形的判定依次判断可求解.【解析】解:∵∠CPD=∠A=∠B,且∠APD=∠B+∠PFB=∠APC+∠CPD,∴∠APC=∠BFP,且∠A=∠B,∴△APG∽△BFP,故选项C不合题意,∵∠A=∠CPD,∠D=∠D,∴△APD∽△PGD,故选项B不合题意,∵∠B=∠CPD,∠C=∠C,∴△PCF∽△BCP,故选项D不合题意,由条件无法证明△CGE∽△CBP,故选项A符合题意,故选:A.【点睛】本题考查了相似三角形的判定,牢固掌握相似三角形的判定是本题的关键.3.(2019秋•萧山区期末)如图,∠ACB=∠BDC=90°.要使△ABC∽△BCD,给出下列需要添加的条件:①AB∥CD;②BC2=AC•CD;③,其中正确的是()A.①②B.①③C.②③D.①②③【点拨】利用相似三角形的判定依次判断即可求解.【解析】解:①若AB∥CD,∴∠ABC=∠BCD,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故①符合题意;②若BC2=AC•CD,∴,且∠ACB=∠BDC=90°,无法判定△ABC∽△BCD,故②不符合题意;③若,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故③符合题意;故选:B.【点睛】本题考查了相似三角形的判定,灵活掌握相似三角形的判定方法是本题的关键.4.(2019秋•新华区校级月考)如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形,图中与△HBC相似的三角形为()A.△HBD B.△HCD C.△HAC D.△HAD【点拨】设正方形ABGH的边长为1,先运用勾股定理分别求出HB、HC的长,将其三边按照从大到小的顺序求出比值,再分别求出四个选项中每一个三角形三边的比值,根据三组对应边的比相等的两个三角形相似求解即可.【解析】解:设正方形ABGH的边长为1,运用勾股定理得HB=,HC=,则HC:HB:BC=::1.A、∵HB=,BD=2,HD=,∴HD:BD:HB=:2:=::1,∴HC:HB:BC=HD:BD:HB,∴△HBC∽△DBH,故本选项正确;B、∵HC=,CD=1,HD=,∴HD:HC:CD=::1,∴HC:HB:BC≠HD:HC:CD,∴△HBC与△HCD不相似,故本选项错误;C、∵HA=1,AC=2,HC=,HC:AC:HA=:2:1,∴HC:HB:BC≠HC:AC:HA,∴△HBC与△HAC不相似,故本选项错误;D、∵HA=1,AD=3,HD=,HD:AD:HA=:3:1,∴HC:HB:BC≠HD:AD:HA,∴△HBC与△HAD不相似,故本选项错误.故选:A.【点睛】本题考查了相似三角形的判定,判定两个三角形相似的一般方法有:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.本题还可以利用方法(3)进行判定.5.(2018秋•秀洲区期末)如图,点D在△ABC的边AC上,若要使△ABD与△ACB相似,可添加的一个条件是∠ABD=∠C(答案不唯一)(只需写出一个).【点拨】两组对应角相等,两三角形相似.在本题中,两三角形共用一个角,因此再添一组对应角即可【解析】解:要使△ABC与△ABD相似,还需具备的一个条件是∠ABD=∠C或∠ADB=∠ABC等.故答案为:∠ABD=∠C(答案不唯一).【点睛】此题考查了相似三角形的判定.注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.6.(2019秋•崇川区校级月考)如图,∠A=∠B=90°,AB=7,BC=3,AD=2,在边AB上取点P,使得△P AD与△PBC相似,则满足条件的AP长为 2.8或1或6.【点拨】根据相似三角形的性质分两种情况列式计算:①若△APD∽△BPC②若△APD∽△BCP.【解析】解:∵∠A=∠B=90°①若△APD∽△BPC则=∴=解得AP=2.8.②若△APD∽△BCP则=∴=解得AP=1或6.∴则满足条件的AP长为2.8或1或6.故答案为:2.8或1或6.【点睛】本题考查了相似三角形的判定与性质,明确相关判定与性质及分类讨论,是解题的关键.7.(2019秋•临安区期末)如图,点B、D、E在一条直线上,BE交AC于点F,=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BCF.【点拨】(1)根据相似三角形的判定定理证明;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【解析】(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E、在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BCF.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019春•广陵区校级月考)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)当M点运动到什么位置时Rt△ABM∽Rt△AMN,并请说明理由.【点拨】(1)理由等角的余角相等证明∠MBA=∠NMC,然后根据直角三角形相似的判定方法可判断Rt△ABM∽Rt△MCN;(2)利用勾股定理可得到AM=2,由于Rt△ABM∽Rt△MCN,利用相似比可计算出MN=,接着证明=,从而可判断Rt△ABM∽Rt△AMN.【解析】(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠AMB+∠NMC=90°,而∠AMB+∠MAB=90°,∴∠MBA=∠NMC,∴Rt△ABM∽Rt△MCN;(2)解:当M点运动到BC为中点位置时,Rt△ABM∽Rt△AMN.理由如下:,∵四边形ABCD为正方形,∴AB=BC=4,BM=MC=2,∴AM=2,∵Rt△ABM∽Rt△MCN,∴==2,∴MN=AM=,∵==,==,∴=,而∠ABM=∠AMN=90°,∴Rt△ABM∽Rt△AMN.【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.两组对应边的比相等且夹角对应相等的两个三角形相似.也考查了正方形的性质.巩固训练1.(2019•崇明区一模)如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE 的是()A.∠B=∠D B.∠C=∠AED C.=D.=【点拨】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解析】解:∵∠BAD=∠CAE,∴∠DAE=∠BAC,∴A,B,D都可判定△ABC∽△ADE选项C中不是夹这两个角的边,所以不相似,故选:C.【点睛】此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.2.(2020•上虞区校级一模)已知△ABC是正三角形,点D是边AC上一动点(不与A、C重合),以BD为边作正△BDE,边DE与边AB交于点F,则图中一定相似的三角形有()对.A.6 B.5 C.4 D.3【点拨】根据相似三角形的判定定理,两个等边三角形的3个角分别相等,可推出△ABC∽△EDB,根据对应角相等推出△BDC∽△BFE∽△DF A.△BDF∽△BAD.【解析】解:图中的相似三角形是△ABC∽△EDB,△BDC∽△BFE,△BFE∽△DF A,△BDC∽△DF A,△BDF∽△BAD.理由:∵△ABC和△BDE是正三角形,∴∠A=∠C=∠ABC=60°,∠E=∠BDE=∠EBD=60°,∴△ABC∽△EDB,可得∠EBF=∠DBC,∠E=∠C,∴△BDC∽△BFE,∴∠BDC=∠BFE=∠AFD,∴△BDC∽△DF A,∴△BFE∽△DF A,∵∠DBF=∠ABD,∠BDF=∠BAD,∴△BDF∽△BAD.故选:B.【点睛】本题主要考查相似三角形的判定定理及有关性质的运用,关键在于根据图中两个等边三角形,找出相关的相等关系,然后结合已知条件,得出结论.3.(2019秋•市中区期末)如图,Rt△ABC中,∠C=90°,∠B=60°,BC=4,D为BC的中点,E为AB 上的动点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE与△ABC相似时,t的值为4或7或9.【点拨】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,当∠EDB=90°或∠DEB=90°,得出△BDE和△ABC相似,可求得BE的长,则可求得t的值.【解析】解:在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4,∴AB=2BC=8,∵D为BC中点,∴BD=2,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=t,BE=BC﹣AE=8﹣t,当∠EDB=90°时,则有AC∥ED,∴△BDE∽△BCA,∵D为BC中点,∴E为AB中点,此时AE=4,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故答案为:4或7或9.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.4.(2019秋•海淀区期末)如图,⊙O是△ABC的外接圆,D是的中点,连结AD,BD,其中BD与AC 交于点E.写出图中所有与△ADE相似的三角形:△CBE,△BDA.【点拨】根据两角对应相等的两个三角形相似即可判断.【解析】解:∵=,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为△CBE,△BDA.【点睛】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020•成都模拟)如图,BC是⊙O的弦,A是劣弧BC上一点,AD⊥BC于D,若AB+AC=10,⊙O的半径为6,AD=2,则BD的长为2或4.【点拨】作直径AE,连接CE,证明△ABD∽△AEC,得,设AB=x,则AC=10﹣x,列方程可得AB的长,最后利用勾股定理可解答.【解析】解:作直径AE,连接CE,∴∠ACE=90°,∵AD⊥BC,∴∠ADB=90°,∴∠ADB=∠ACE,∵∠B=∠E,∴△ABD∽△AEC,∴,设AB=x,则AC=10﹣x,∵⊙O的半径为6,AD=2,∴,解得:x1=4,x2=6,当AB=4时,BD===2,当AB=6时,BD===4,∴BD的长是2或4;故答案为:2或4.【点睛】本题考查了圆周角定理,相似三角形的性质和判定,正确作辅助线,构建相似三角形是本题的关键.6.(2020•雨花区校级一模)如图,AB为⊙O的直径,点C、D在⊙O上,AC=3,BC=4,且AC=AD,弦CD交直径AB于点E.(1)求证:△ACE∽△ABC;(2)求弦CD的长.【点拨】(1)由垂径定理可知∠AEC=90°,然后根据相似三角形的判定即可求出答案.(2)根据相似三角形的性质可知AC2=AE•AB,从而可求出AE=,再由勾股定理以及垂径定理即可求出CD的长度.【解析】解:(1)∵AC=AD,AB是⊙O的直径,∴CD⊥AB,∴∠AEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BAC=∠BAC+∠B=90°,∴∠ACE=∠B,∴△ACE∽△ABC.(2)由(1)可知:,∴AC2=AE•AB,∵AC=3,BC=4,∴由勾股定理可知:AB=5,∴AE=,∴由勾股定理可知:CE=,∴由垂径定理可知:CD=2CE=.【点睛】本题考查相似三角形,解题的关键是熟练运用勾股定理,相似三角形的性质与判定,圆周角定理,本题属于中等题型.7.(2018秋•姜堰区校级月考)如图,点B、D、E在一条直线上,BE与AC相交于点F,==.(1)求证:∠BAD=∠CAE;(2)若∠BAD=21°,求∠EBC的度数:(3)若连接EC,求证:△ABD∽△ACE.【点拨】(1)根据相似三角形的性质定理得到∠BAC=∠DAE,结合图形,证明即可;(2)根据相似三角形的性质即可得到结论;(3)根据相似三角形的判定和性质即可得到结论.【解析】(1)证明:∵==.∴△ABC~△ADE;∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE;(2)解:∵△ABC~△ADE,∴∠ABC=∠ADE,∵∠ABC=∠ABE+∠EBC,∠ADE=∠ABE+∠BAD,∴∠EBC=∠BAD=21°;(3)证明:连接CE,∵△ABC~△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE,∵=.∴△ABD∽△ACE.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019秋•江阴市期中)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)试探究t为何值时,△BPQ的面积是cm2;(3)直接写出t为何值时,△BPQ是等腰三角形;(4)连接AQ,CP,若AQ⊥CP,直接写出t的值.【点拨】(1)由勾股定理可求AB的长,分两种情况讨论,由相似三角形的性质可求解;(2)过点P作PE⊥BC于E,由平行线分线段成比例可得PE=3t,由三角形的面积公式列出方程可求解;(3)分三种情况讨论,由等腰三角形的性质可求解;(4)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解析】解:(1)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB===10cm,∵△BPQ与△ABC相似,且∠B=∠B,∴或,当时,∴,∴t=1,当,∴,∴t=;(2)如图1,过点P作PE⊥BC于E,∴PE∥AC,∴,∴PE==3t,∴S△BPQ=×(8﹣4t)×3t=,∴t1=或t2=;(3)①当PB=PQ时,如图1,过P作PE⊥BQ,则BE=BQ=4﹣2t,PB=5t,由(2)可知PE=3t,∴BE===4t,∴4t=4﹣2t,∴t=②当PB=BQ时,即5t=8﹣4t,解得:t=,③当BQ=PQ时,如图2,过Q作QG⊥AB于G,则BG=PB=t,BQ=8﹣4t,∵△BGQ∽△ACB,∴,∴解得:t=.综上所述:当t=或或时,△BPQ是等腰三角形;(3)过P作PM⊥BC于点M,AQ,CP交于点N,如图3所示:则PB=5t,∵AC⊥BC∴△PMB∽△ACB,∴=∴BM=4t,PM=3t,且BQ=8﹣4t,BC=8,∴MC=8﹣4t,CQ=4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴,∴∴t=【点睛】此题是相似形综合题,主要考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,等腰三角形的性质,由三角形相似得出对应边成比例是解题的关键.。
相似三角形证明技巧(整理)
![相似三角形证明技巧(整理)](https://img.taocdn.com/s3/m/8561958b84254b35eefd34cf.png)
相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①______________________ :② _______________________ :③_______________________________ .二、两个三角形相似的六种图形:条件DE"BC喙件务条件Afi/DE 無件厶Q条件AD是RtABC斜边上的高只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决•三、三角形相似的证题思路:判定两个三角形相似思路:1 )先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单;2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例;3)若无对应角相等,则只考虑三组对应边是否成比例;「------ ►a)已知一对等彳找另一角两角对应相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似f 三边对应成比例,两三角形相似e )相似形的传递性 若△ sA,© s △,则厶“△四、“三点定形法”, 即由有关线段的三个不同的端点来确定三角形的方法。
具体做法是:先看比例 式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个 三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个 不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。
有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线复杂化,效果并不好,应当运用基本规律去解决问题。
例1、已知:如图,A ABC 中,CE 丄AB,BF 丄AC.求证:AE ACAF BAb )己知两边对应成比找第三边也对应成比例找一个直角 斜边、直角边对应成比例,两个直角三角形相似C )己知一个直 找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2d )有等腰关 找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3(判断“横定”还是“竖定”?例2、如图,CD是Rt△KBC的斜边 AB上的高,/ BAC的平分线分别交BC、CD于点E、F, AC AE=AF AB吗?说明理由。
相似三角形知识点及典型例题
![相似三角形知识点及典型例题](https://img.taocdn.com/s3/m/d0782f64dd88d0d232d46a86.png)
相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法〔1〕定义法:对应角相等,对应边成比例的两个三角形相似。
〔2〕平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
〔3〕判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似。
〔4〕判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似。
〔5〕判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为:三边对应成比例,两三角形相似。
〔6〕判定直角三角形相似的方法:①以上各种判定均适用。
②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,那么有射影定理如下:〔1〕〔AD〕2=BD·DC,〔2〕〔AB〕2=BD·BC ,〔3〕〔AC〕2=CD·BC 。
注:由上述射影定理还可以证明勾股定理。
即〔AB〕2+〔AC〕2=〔BC〕2。
典型例题:例1 如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF∴EC 2=EG· EF,故EB 2=EF·EG 【解题技巧点拨】此题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的根本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的根本图形中是证明此题的关键。
第13讲 相似三角形判定定理的证明
![第13讲 相似三角形判定定理的证明](https://img.taocdn.com/s3/m/53c3613a6d175f0e7cd184254b35eefdc8d3152b.png)
第13讲 相似三角形判定定理的证明课程标准1.了解相似三角形判定定理的证明过程,会选择恰当的方法证明两个三角形相似;2.会作辅助线来证明两个三角形相似,掌握证明过程。
知识点01 相似三角形判定定理的证明(一)相似三角形的判定定理1的证明过程已知:如图,在△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B ′.求证:△ABC ∽△A′B′C′.证明:在△ABC 的边AB (或它的延长线)上截取AD=A′B′,过点D 作BC 的平行线,交AC 于点E, 则∠ADE=∠B ,∠AED=∠C,(.AD AEAB AC=平行于三角形一边的直线与其他两边相交,截得的对应线段成比例) 过点D 作AC 的平行线,交BC 与点F,则(AD CFAB CB =平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴AE CFAC CB=∵DE ∥BC,DF ∥AC,∴四边形DFCE 是平行四边形. ∴DE=CF. ∴AE:AC=DE:CB ∴AD AE DEAB AC BC==. 而∠ADE=∠B,∠DAE=∠BAC,∠AED=∠C, ∴△ADE ∽△ABC.∵∠A=∠A′,∠ADE=∠B=∠B′,AD=A′B′, ∴△ADE ∽△A′B′C′.知识精讲目标导航∴△ABC ∽△A′B′C′.(二)相似三角形的判定定理2的证明过程 已知:在△ABC 和△A ′B′C′中,∠A=∠A′,''''AB ACA B A C =,求证:△ABC ∽△A′B′C′.证明:在△ABC 的边AB (或它的延长线)上截取AD=A′B′,过点D 作BC 的平行线,交AC 于点E, 则∠B=∠ADE,∠C=∠AED,∴△ABC ∽△ADE(两角分别相等的两个三角形相似). ∴AB ACAD AE=. ∵''''AB ACA B A C =,AD=A′B′, ∴''AB ACAD A C =∴''AC ACAE A C =∴AE=A ′C′ 而∠A=∠A ′ ∴△ADE ≌△A ′B ′C ′. ∴△ABC ∽△A ′B ′C ′.(三)相似三角形的判定定理3的证明过程 已知:在△ABC 和△A ′B′C′中,''''''AB BC ACA B B C A C ==.求证:△ABC ∽△A′B′C′.证明:在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A′B′,AE=A′C′,连接DE. ∵''''AB ACA B A C =,AD=A′B′,AE=A′C′,∴AB ACAD AE=而∠BAC=∠DAE,∴△ABC ∽△ADE(两边成比例且夹角相等的两个三角形相似). ∴AB BCAD DE=又''''AB BCA B B C =,AD= A′B′, ∴''AB BCAD B C =∴''BC BCDE B C =∴DE=B′C′,∴△ADE ≌△A′B′C′, ∴△ABC ∽△A′B′C′.知识点02 证明相似三角形的一般思路(1)有平行线——用平行线的性质,找“等角”(用判定定理1)。
三角形相似的判定方法
![三角形相似的判定方法](https://img.taocdn.com/s3/m/c15adf7833687e21af45a951.png)
三角形相似的判定方法三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则AD=BD·DC,AB=BD·BC ,AC=CD·BC 。
22二相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:BC(1)如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)(2)B(3)(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。
(有“反A共A角型”、“反A共角共边型”、“蝶型”)A4DCDEADE1E(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”DEB(D)B(4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。
(完整)相似三角形常见题型解法归纳,推荐文档
![(完整)相似三角形常见题型解法归纳,推荐文档](https://img.taocdn.com/s3/m/7f8ee25d81c758f5f71f6716.png)
A 字形,A’形,8字形,蝴蝶形,双垂直,旋转形双垂直结论:射影定理:角边是这条直角边在斜边上的射影和斜边的比例中项⑴△ACD∽△CDB→AD:CD=CD:BD→CD 2=AD•BD ⑵△ACD∽△ABC→AC:AB=AD:AC →AC 2=AD•AB ⑶△CDB∽△ABC→BC:AC=BD:BC →BC 2=BD•AB结论:⑵÷⑶得AC 2:BC 2=AD:BD结论:面积法得AB•CD=AC•BC→比例式 证明等积式(比例式)策略1、直接法:找同一三角形两条边变化:等号同侧两边同一三角形 三点定形法2、间接法: ⑴3种代换 ①等线段代换; ②等比代换; ③等积代换; ⑵创造条件 ①添加平行线——创造“A”字型、“8”字型 ②先证其它三角形相似——创造边、角条件相似判定条件:两边成比夹角等、两角对应三边比 相似终极策略:遇等积,化比例,同侧三点找相似; 四共线,无等边,射影平行用等比; 四共线,有等边,必有一条可转换; 两共线,上下比,过端平行条件边。
彼相似,我角等,两边成比边代换。
(3)等比代换:若是四条线段,欲证,可先证得(是两条线段)然d c b a ,,,dc b a =fe b a =fe ,后证,这里把叫做中间比。
dc f e =fe ①∠ABC =∠ADE .求证:AB ·AE =AC ·AD②△ABC 中,AB=AC ,△DEF 是等边三角形,求证:BD•CN=BM•CE .③等边三角形ABC 中,P 为BC 上任一点,AP 的垂直平分线交AB 、AC 于M 、N 两点。
求证:BP •PC=BM•CN☞有射影,或平行,等比传递我看行斜边上面作高线,比例中项一大片①在Rt△ABC 中,∠BAC=90°,AD⊥BC 于D ,E 为AC 的中点,求证:AB•AF=AC•DF②ABCD③梯形ABCD 中,AD//BC ,作BE//CD,求证:OC 2=OA.OE☞四共线,看条件,其中一条可转换;①Rt △ABC 中四边形DEFG 为正方形。
(完整版)相似三角形证明技巧(整理)
![(完整版)相似三角形证明技巧(整理)](https://img.taocdn.com/s3/m/e0f8397d4afe04a1b171de43.png)
相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2 找顶角对应相等 判定定理1找底角对应相等 判定定理1 找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。
具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。
有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。
例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。
相似三角形复习——比例式、等积式的几种常见证明方法
![相似三角形复习——比例式、等积式的几种常见证明方法](https://img.taocdn.com/s3/m/f12b47bd6f1aff00bed51e9a.png)
图3 例3如图3,△ABC中,DE∥BC,BE与CD交于点O, AO与DE、BC分别交于点N、M,试说明:. 利用等
比式代 换
AN AD DE AM AB BC
AN ON AM OM
图3
ON OE DE OM OB BC
例3.如图,已知:在△ABC中,∠BAC=900, AD⊥BC,E是AC的中点,ED交AB的延长线于F
A
BDEຫໍສະໝຸດ C如上图, ∠BAC=120°, △ADE是 等边三角形,小丽发现图中有些线 段是其他两条线段的比例中项,你 知道小丽说的是哪些线段吗? 它们 分别是哪些线段的比例中项吗?
比例式得:
,由等式左边得
到△CDF,由等式右边得到△EDC,
这样只要证明这两个三角形相似就
可以得到要证的等积式了。因为
∠CDE是公共角,只需证明
∠DCE=∠F就可证明两个三角形相
似。
例2如图2,在△ABC中,AB=AC,直线DF与AB交于D,与
BC交于E,与AC的延长线交于F.图2 试说明:. DE EF
求证:
。
分 析:比例式左边AB,AC 在△ABC中,右边DF、AF在 △ADF中,这两个三角形不相 似,因此本题需经过中间比进 行代换。通过证明两套三角形 分别相似证得结论。
“双垂直”指:
“Rt△ABC中,
∠BCA=900,
CD⊥AB于D”,(如
图)在这样的条件下
有下列结论:
A
C
D
B
(1)△ADC∽△CDB∽△ACB (2)由△ADC∽△CDB得CD2=AD·BD (3)由△ADC∽△ACB得AC2=AD·AB (4)由△CDB∽△ACB得BC2=BD·AB (5)由面积得AC·BC=AB·CD (6)勾股定理 我们应熟记这些结论,并能灵活运用。
相似三角形常见题型解法归纳
![相似三角形常见题型解法归纳](https://img.taocdn.com/s3/m/8c81ee7268eae009581b6bd97f1922791688be92.png)
相似三角形常见题型解法归纳文章已经整理好了,具体改写如下:本文介绍了几种几何形状,包括A字形、A’形、8字形、蝴蝶形、双垂直和旋转形。
在双垂直结论中,根据射影定理,直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
同时,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
根据这些结论,可以得出以下比例式证明等积式的策略:1、直接法:找同一三角形两条边变化,等号同侧两边同一三角形三点定形法。
2、间接法:⑴三种代换:①等线段代换;②等比代换;③等积代换;⑵创造条件:①添加平行线——创造“A”字型、“8”字型;②先证其它三角形相似——创造边、角条件。
在相似终极策略中,若遇到等积,可以化比例,同侧三点找相似;四共线,无等边,射影平行用等比;四共线,有等边,必有一条可转换;两共线,上下比,过端平行条件边。
若彼相似,可以我角等,两边成比边代换。
在等比代换中,若a、b、c、d是四条线段,欲证ac=bd,可以先证得ae=bf(e、f是两条线段),然后证ec=fd,这里把e/f叫做中间比。
最后,文章给出了三个具体的例子来说明这些几何结论的应用。
1.在三角形ABC中,AD是角ABC的角平分线。
证明证明:由角平分线定理可知,2.在三角形ABC中,AB=AC。
证明证明:连接DE并延长交AB于F。
由角平分线定理可知3.在三角形ABC中,AB>AC,AD=AE,直线DE和BC 的延长线交于点P。
证明:证明:连接AP。
由角平分线定理可知4.在三角形ABC中,BF交AD于E。
1)若2)若3)1)连接CF并延长交AB于G。
由XXX定理可知.2)连接CF并延长交AB于G。
同理可得.3)同理可得.5.在三角形ABC中,D、E分别为BC的三等分点,AC 边上的中线BM交AD于P,交AE于Q,若BM=10cm,求BP、PQ、QM的长。
连接DE并延长交AB于F,连接CF并延长交AB于G。
由三分线定理可知6.在三角形ABC中,AC=BC,F为底边AB上的一点,连结AD并延长交BC于E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
∴△ABE∽△ACD
∴∠AEB=∠ADC
而∠AEB=∠EAD+∠ADE
∠ADC=∠BDC+∠ADE
∴∠EAD=∠BDC
典例精解
模型四:“子母型” 如图,△ABC 中,∠A=∠DBC,BC= 2 ,SΔBCD∶SΔABC=2∶3,则 CD=______.
C
D
A
B
典例精解
模型五:一线三等角型
如图,△ACB为等腰直角三角形,点O是斜边AB的中点,∠EOF=45° ⑴求证:△AOE∽△BFO ⑵若AB=4,求AE·BF的值.
旋转型
“子母型”
一线三等角型
解:∵四边形ABCD是平行四边形
∴BC∥AD,BC=AD
A
E
D ∴△EDF∽△CBF
F
∴DF:BF=DE:BC
另推得DE:BC=2:5
B
C
∴DF:BF=2:5
而BF=15 cm ∴DF=6 cm
典例精解
模型三:旋转型
如图,已知 E 是四边形 ABCD 的对角线 BD 上一点,且 AB AC ,∠EAB AE AD
模型二:“X”字型
如 图 , 已 知 E 是 □ABCD 中 AD 边 上 一 点 , 且 AE:DE = 3:2,CE 交 BD 于 点 F,BF = 15cm ,求DF的长.
A
E
D
F
B
C
如 图 , 已 知 E 是 □ABCD 中 AD 边 上 一 点 , 且 AE:DE = 3:2,CE 交 BD 于 点 F,BF = 15cm ,求DF的长.
=∠DAC,求证:∠EAD=∠BDC. A D
E
B
C
如图,已知 E 是四边形 ABCD 的对角线 BD 上一点,且 AB AC ,∠EAB AE AD
=∠DAC,求证:∠EAD=∠BDC.
A
D
证明:∵
AB AE
AC AD
,∠∴EAABB= ∠AEDAC AC AD
E B
又∵∠EAB=∠DAC
如图,△ACB为等腰直角三角形,点O是斜边AB的中点,∠EOF=45° ⑴求证:△AOE∽△BFO ⑵若AB=4,求AE·BF的值.
C
⑵解:∵△AOE∽△BFO
E
F
3
∴AE∶BO=AO∶BF ∴AE•BF=AO•BO
2
1
另由已知条件得AO=BO=2
A
O
B ∴AE•BF=4
课堂小结
“A”字型
“X”字型
优翼微课
初中数学知识点精讲课程
相似三角形中的基本模型
你会从复杂的几何图形中快速找到相似 的三角形吗?
A
D
E
A
E
D
F
B
CB
C
典例精解
模型一:“A”字型 如图,DE∥BC,BADD=12,则AEEC=__________,DBCE=__________.
A
D
E
B
C
典例精解
C
E
F
A
O
Bபைடு நூலகம்
如图,△ACB为等腰直角三角形,点O是斜边AB的中点,∠EOF=45° ⑴求证:△AOE∽△BFO ⑵若AB=4,求AE·BF的值.
C
⑴证明:∵△ACB为等腰直角三角形
E
F
3
∴∠A=∠B=45° ∠3+∠2=135°
2
1
∵∠EOF=45°
A
O
B ∴∠1+∠2=135°
∴∠3=∠1
∴△AOE∽△BFO