光电检测电路的设计

合集下载

微弱光信号的光电探测放大电路的设计

微弱光信号的光电探测放大电路的设计

微弱光信号的光电探测放大电路的设计对于各种微弱的被测量,例如弱光、弱磁、弱声、小位移、小电容、微流量、微压力、微振动和微温差等,一般都是通过相应的传感器将其转换为微电流或低电压,再经放大器放大其幅值以反映被测量的大小。

但是,由于被测量的信号很微弱,传感器的本底噪声、放大电路及测量仪器的固有噪声以及外界的干扰往往比有用信号的幅值大的多,同时,放大被测信号的过程也放大了噪声,而且必然还会附加一些额外的噪声,例如放大器的内部固有噪声和外部干扰的影响,因此,只有在有效地抑制噪声的条件下增大微弱信号的幅值,才能提取出有用信号。

本文针对检测微弱光信号的光电二极管放大电路,综合分析了其电路噪声、信号带宽及电路稳定性,在此基础上设计了一种低噪声光电信号放大电路,并给出电路参数选择方法。

1 基本电路光电二极管作为光探测器有两种应用模式如图1所示。

(1)光伏模式,如图1 (a)。

此时,光电二极管处于零偏置状态,不存在暗电流,低噪声,线性度好,因而适于精密领域。

本文就是以这种模式为例进行分析,实际应用中,这个电路一般还需在Rf上并联一个小电容Cs,从而使电路稳定。

(2)光导模式,如图1(b)。

这种模式需要给光电二极管加反向偏置电压,因而存在暗电流,产生噪声电流,同时因为非线性,一般应用在高速场合。

当光照射到光电二极管时,光电二极管产生一个与照明度成比例的微弱电流Ip,该电流流过跨接在放大器负输入端和输出端的反馈电阻Rf,将运算放大器视为理想放大器,根据理想运算放大器输入端的“虚断”特性,从而有E0=IpRf。

可以看出,光电二极管放大电路实际上是一个I/V转换电路。

这个电路看起来非常简单,只需一个反馈电阻,一个光电二极管和一个放大器便可实现。

从输出电压的线性表达式很容易推出,使反馈电阻Rf增大,将使得输出电压也成比例的增大。

经之前分析时,一般给出其典型值为100MΩ。

在下面的分析我们将看到,反馈电阻不但影响信号的带宽,而且影响整个电路噪声。

第4章光电信号检测电路1

第4章光电信号检测电路1

o
U b1
Ub2
Ub3 Uo 大的偏置电压会引起光电
二极管的反向击穿。
利用图解法确定输入电路的负载电阻和反向偏 置电压大小时,应根据输入光通量的变化范围和输 出信号的幅度要求使负载线稍高于转折点M,以便 得到不失真的最大电压输出,同时保证反向偏压不 大于器件的最大工作电压Umax。
2、解析计算法:对光电器件的非线性伏安特性进 行分段折线化,称为折线化伏安特性。
在线段MN有关系:
arctan G0
G0U0 GU0 Smax
O
U0
由此可得:
U0

S max G0 G

arctan G
N
Ub U0
arctan GL
0 Ub U
G0

G
S max U0
2、计算负载电阻和偏置电压:
i
为保证最大线性输出 条件,负载线和对应的伏
M I max
图解法的应用:
1、负载电阻的影响分析:
图中给出了Ub不变时, RL的大小对输出信号的影响:
io
RL1 RL2 RL3
RL 2
RL1
RL3 M Q
输入光通量不变时,负
0 载电阻的减小会增大输出信

0 0


号电流,而减小输出电压。
同时负载电阻的减小会受到
最大工作电流和功耗的限制。
5 10
U /V
15
光电倍增管
光电二极管
光电三极管
1、图解计算法:利用包含非线性元件的串联电路 的图解法对恒流源器件的输入电路进行计算。

U
I Ub
Ub
io
RL
I

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案目录一、内容描述 (2)二、光电二极管基本知识 (3)1. 光电二极管的工作原理 (4)2. 光电二极管的特性与参数 (4)三、光电二极管检测电路的工作原理 (6)1. 光电检测电路的基本概念 (7)2. 光电检测电路的工作原理详解 (7)四、设计方案 (9)1. 设计目标及要求 (10)2. 电路设计 (11)(1)电路拓扑结构 (12)(2)元器件选择与参数设计 (13)3. 信号处理与放大电路 (15)(1)信号输入与处理电路 (16)(2)信号放大电路 (17)4. 电源及辅助电路设计 (18)(1)电源电路设计 (20)(2)保护及指示电路设计 (21)五、实验验证与优化 (22)1. 实验设备与工具准备 (23)2. 实验操作流程及步骤说明 (24)3. 数据记录与分析处理 (25)4. 电路性能评估与优化建议 (26)六、实际应用场景及推广价值 (27)1. 实际应用场景分析 (28)2. 推广价值及市场前景展望 (29)七、总结与展望 (30)一、内容描述光电二极管检测电路是一种基于光电效应工作的电子检测电路,主要用于检测光信号的强度或光照度。

该电路通过光电二极管将光信号转换为电信号,进而实现对光信号的测量、监控和控制。

本文将详细介绍光电二极管检测电路的工作原理及设计方案。

在光电二极管检测电路中,光电二极管作为核心元件,其工作原理主要基于光电效应。

当光线照射到光电二极管时,光子能量被材料中的电子吸收,从而使电子从价带跃迁到导带,形成电子空穴对,产生光生电流。

通过测量光生电流的大小,可以反映光照度的强弱。

根据不同的应用场景和需求,光电二极管检测电路的设计方案也有所不同。

常见的设计方案包括:直接测量法:通过测量光电二极管产生的光生电流来直接反映光照度。

这种方法简单直观,但受限于光电二极管的响应速度和灵敏度,适用于低光照度测量。

信号放大法:通过对光电二极管产生的光生电流进行放大处理,可以提高测量灵敏度和精度。

一种实用的光电检测电路设计与实现

一种实用的光电检测电路设计与实现

e ,tas a u h s ot o n sa e k r s n , n a t— itr a a i . T i p p rp o o e o lt to n t e r i l h s s c h r mi g s w a e i a a d b d a i su b c p ct o c gl n d y hs a e rp s d a c mp ee meh d o h d s ig a d r aii go h te e t c d tc in c ru t b s d o er s a c n t e o t a b rg ss n o y t m.Ha i g s c e i n n e lz f oo lc r e e t i i, a e n t e e r h o h p il f e a e s rs se n g n p i o c h c i v n u h a v n a e ssmpi i f i u t t c u e sr n r ci ai n to gp r bl y t e d sg p l d w d l h ld o p d a t g s a i l t o r i sr t r , t g p a t l y a d s n o a i t ,h e i n i a p i i ey i t e f e f — cy c c u o c t r t i s e n i o t a f e a e sr il i rg s s n o .Th x e me t e f s te c re t e s a c r c p a t ai d rl i t fte d sg . c b e e p r n r e h o r cn s , c u a y, r c i l y a ei l y o e in i vi i c t n b a i h K e r s: a e e t n;o t a b r s n o ;a s r t n s e tu o t a f e a e s r h t ee t c d tcin cr u t y wo d g s d tc i o p i l e e s r b o i p c r m p i l i rg s s n o ;p o o lcr ee t i i c f i p o c b i o c

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案光电二极管检测电路是一种将光信号转换为电信号的装置,它广泛应用于各种光学测量和控制领域。

其工作原理是基于光电二极管的光电效应,通过将光信号照射到光电二极管上,使其产生电流输出,从而实现对光信号的检测。

设计一种光电二极管检测电路需要考虑以下几个方面:1.光电二极管的选择:要根据具体的应用需求选择合适的光电二极管。

通常,选择感光面积大、光谱响应范围广、响应速度快、噪声低的光电二极管。

2.光电二极管的放大电路:由于光电二极管输出的光电流较小,需要经过放大电路放大后才能得到可用的电信号。

常见的放大电路有共射放大电路和差动放大电路。

共射放大电路适用于单端输入,输出电压幅度大,但可能存在信号漂移和温漂的问题;差动放大电路适用于双端输入,具有较高的共模抑制比,但需要两个光电二极管。

3.滤波电路和信号处理:为了滤除噪声和杂散信号,可以在输出端串联一个滤波电路,如低通滤波器或带通滤波器。

如果需要对光信号进行进一步的处理,如放大、转换、逻辑判决等,可以根据具体需求添加相应的电路模块。

4.驱动电路:光电二极管通常需要外部电路来提供正向电流,以确保其正常工作。

驱动电路可以采用简单的电流源电路,或使用恒流源,以保持光电二极管工作在恒定的工作点。

5.反馈电路:为了提高光电二极管的线性度和动态范围,可以添加反馈电路。

常见的反馈电路有负反馈和光电二极管自反馈两种。

负反馈电路可以减小非线性失真,提高稳定性和抗干扰能力;光电二极管自反馈电路可以提高光电二极管的速度和线性度。

6.实际布局和封装:在设计光电二极管检测电路时,需要考虑电路的实际布局和封装,以保证信号的完整性和稳定性。

同时,要保持电路的抗干扰能力和可靠性。

总之,光电二极管检测电路的设计需要综合考虑光电二极管的特性、放大电路、滤波电路、信号处理电路、驱动电路、反馈电路等多个方面的因素。

根据具体应用需求和预算,选择合适的器件和电路方案,并进行合理的布局和封装,可以实现高性能、低噪声和稳定可靠的光电二极管检测电路。

高速差分光电检测电路的设计

高速差分光电检测电路的设计
析 , 给 出 电路 的测试 方法及 测试 结果 . 最后
光信息或借助于光提取其他信息的重要手段【 卜引.
光 电检测就 是把调 制 到光载波 上 的有用 信号解 调 出 来, 实现光 信号 到电信 号的转 换 . 光 电检 测 的一 个应 用就是 作为 连续变 量量 子密 钥分 发系统 的信 号 接 收 器 l5. 续 变 量 量 子 密 钥 4 j连 ' 分配 实验 中采用微 弱光 脉冲代 替单光 子 脉 冲作 为信
高 速 差 分 光 电 检 测 电 路 的 设 计
陈 楚, 张雅 虹 , 黄春 晖
福州 300 ) 5 0 2
( 福州大学物理与信息工程学院 , 福建

要: 为配合连续变量量子密钥 分配实验 , 本实验设计了一个光信号检测电路 , 在参考相关设计 资料 的基础 上 , 采用新 型器
件, 实现 了光信号的高速差分检测 . 从光检测器件基本原理 人手 , 讨论实 验方案 , 再对设计 电路 的各个模块 进行分析 , 最后 给
vcs h ih s e d df r n il p ia sg a ee t n i a he e .S atn t h a i p i c l o p i l ie ,t ehg —p e i e e t tcl in l tci c i d f ao d o s v trigwi t eb s r i e fo t a h c n p c
光 电检 测技 术是 一 种 非 接触 测 量 的 高新 技 术 ,
将传统 的光 学技术 与现 代 电子 技 术 相 结合 , 获取 是
计 思想 优化 电路结 构 , 用新 型器件 , 采 设计 出一个 适 用于连续 变 量量子 密钥 分配 实验 的高速差 分光 电检 测电路 . 中从 基 本 原 理 出发 , 电路 设 计 进 行 分 文 对

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案

光电二极管检测电路的工作原理及设计方案•导读: 本文论述了光电二极管检测电路的组成及工作原理,给出了光电二极管、前置运放、反馈网络的SPICE子模型及系统模型;着重分析了系统稳定性、噪声特性以及提高稳定性和减小噪声的方法。

提供了采用通用电路摹拟软件SPICE进行相关性能摹拟的实例。

o光检测电路SPICE摹拟稳定性噪声特性•光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。

许多精密应用领域需要检测光亮度并将之转换为实用的数字信号。

光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。

在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。

而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。

看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。

为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。

本文将分析并通过摹拟验证这种典型应用电路的稳定性及噪声性能。

首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SP IC E摹拟程序,它会很形象地说明电路原理。

以上两步是完成设计过程的开始。

第三步也是最重要的一步(本文未作讨论)是制作实验摹拟板。

1 光检测电路的基本组成和工作原理设计一个精密的光检测电路最常用的方法是将一个光电二极管跨接在一个CMOS 输入放大器的输入端和反馈环路的电阻之间。

这种方式的单电源电路示于图1中。

在该电路中,光电二极管工作于光致电压(零偏置)方式。

光电二极管上的入射光使之产生的电流ISC从负极流至正极,如图中所示。

由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻RF。

输出电压会随着电阻RF两端的压降而变化。

图中的放大系统将电流转换为电压,即VOUT = ISC ×RF (1)图1 单电源光电二极管检测电路式(1)中,VOUT是运算放大器输出端的电压,单位为V;ISC是光电二极管产生的电流,单位为A;RF是放大器电路中的反馈电阻,单位为W 。

光电探测_电路实验报告

光电探测_电路实验报告

一、实验目的1. 了解光电探测的基本原理和电路组成。

2. 掌握光电探测器电路的设计方法和实验技能。

3. 熟悉光电探测器的性能测试方法,并分析实验结果。

二、实验原理光电探测器是将光信号转换为电信号的器件,其基本原理是光电效应。

当光照射到光电探测器上时,会产生光生电子,从而在探测器两端产生电信号。

本实验主要研究光电二极管和光敏电阻两种光电探测器。

三、实验仪器与设备1. 光源:LED灯、激光器等。

2. 光电探测器:光电二极管、光敏电阻等。

3. 放大器:低频放大器、高频放大器等。

4. 测量仪器:示波器、万用表、信号发生器等。

5. 实验电路板:包含光电探测器、放大器、电源等组件。

四、实验内容及步骤1. 光电二极管特性测试(1)搭建实验电路,将光电二极管与低频放大器相连,并接入电源。

(2)调整光源,使光照射到光电二极管上。

(3)使用示波器观察光电二极管输出信号的波形和幅度。

(4)改变光源强度,观察光电二极管输出信号的变化,分析光电二极管的响应特性。

2. 光敏电阻特性测试(1)搭建实验电路,将光敏电阻与低频放大器相连,并接入电源。

(2)调整光源,使光照射到光敏电阻上。

(3)使用示波器观察光敏电阻输出信号的波形和幅度。

(4)改变光源强度,观察光敏电阻输出信号的变化,分析光敏电阻的响应特性。

3. 光电探测器电路设计(1)根据实验要求,设计光电探测器电路,包括光电探测器、放大器、滤波器等组件。

(2)搭建实验电路,并接入电源。

(3)调整电路参数,使光电探测器电路满足实验要求。

4. 光电探测器电路性能测试(1)使用示波器观察光电探测器电路输出信号的波形和幅度。

(2)调整光源强度,观察光电探测器电路输出信号的变化,分析电路性能。

五、实验结果与分析1. 光电二极管特性测试结果(1)光电二极管输出信号随光源强度增加而增强,符合光电效应原理。

(2)光电二极管输出信号具有较好的线性关系,适合用于光电检测。

2. 光敏电阻特性测试结果(1)光敏电阻输出信号随光源强度增加而减小,符合光敏电阻特性。

第六章光电检测电路的设计

第六章光电检测电路的设计
GL G0 •U 0 /(U b U 0 )
S max /[U b (1 G / G0 ) S max / G0 ]

R
=1/
L
G
L
已知时,可计算偏置电源
电压 U b为
用解析法计算输入电路
U b S max(GL G0 ) / GL (G0 G)
a) 确定线性区 b) 计算输出信号
3)计算输出电压幅度 由图b,当输入光通量由Φmin变化到Φmax时,输出电压
b) 相对探测灵敏度曲线 1-检测型Si光电二极管
2-照相用Si光电二极管 3-平面型Si光电池 4-光电三极管
5-台面型光电二极管 6-视见函数
7-CdS光敏电阻
2)探测器的光电转换特性和入射辐射能量的大小相匹配
根据光电系统辐射源的发光强度、传输介质和目标的传输 及调制损耗、接收光学系统接收孔径的限制及反射吸收等损失 的影响,可以计算出入射到探测器光敏面上的实际辐射能量, 通常它们是很微弱的,探测器的选择应充分利用这些有用的信 号能量,为此要考虑:
为了提高传输效率,无畸变地变换光电信号,光电检测器 件不仅要和被测辐射源及光学系统,而且要和后续的电子系统 在特性和工作参数上相匹配,使每个相互连接的器件都处于最 佳的工作状态。光电检测器件和光路的匹配是在对辐射源和光 路进行光谱分析和能量计算的基础上,通过合理选择光路和器 件的光学参数来实现的,这要涉及到工程光学的内容。而光电 检测器件和电路的匹配则应根据选定的光电检测器件的参数, 通过正确选择和设计电路来完成。
载电阻RL的减小会增大输出信号电流 而使输出电压减小。但RL的减小会受 到最大工作电流和功耗的限制。为了
提高输出信号电压应增大RL ,但过大 的RL会使负载线越过特性曲线的转折 点M进入非线性区,而在这个范围内

如何设计一个简单的光电传感器电路

如何设计一个简单的光电传感器电路

如何设计一个简单的光电传感器电路设计一个简单的光电传感器电路可以实现对光的检测和测量。

光电传感器电路由光电二极管和相关元件组成,能够将光信号转换为电信号。

接下来将介绍一个简单的光电传感器电路设计。

1. 光电二极管光电二极管是光电传感器电路的核心部件。

光电二极管的作用是将光信号转换为电信号。

一般常用的光电二极管有PIN型光电二极管和PN型光电二极管。

在这个简单的电路设计中,我们选择使用PN型光电二极管。

2. 光敏电阻光敏电阻也是光电传感器电路中重要的元件之一。

光敏电阻的电阻值会随着光照的强弱而发生改变。

在设计中,我们将光敏电阻与光电二极管串联连接,通过测量电阻值的变化来间接测量光的强弱。

3. 运算放大器为了使光电信号能够被电路检测到并输出,需要使用运算放大器来放大信号。

运算放大器是一种具有高增益和低失真的放大器,能够增强电路的灵敏度和稳定性。

4. 电源与滤波电路为了确保电路正常工作,需要为电路供电,并通过滤波电路去除杂散信号和噪声。

一般选用5V的直流电源,并通过低通滤波器滤除高频噪声。

5. 输出装置为了能够直观地观察到光电传感器的输出结果,可以选择添加一个LED或蜂鸣器等输出装置。

通过输出装置的亮灭或声音来反映光强的变化。

在设计光电传感器电路时,需要注意以下几点:1. 光敏元件的选择:根据实际需求选择合适的光敏元件,如光敏电阻、光电二极管等。

2. 电源电压的选择:根据电路元件的工作电压范围选择合适的电源电压。

3. 输出信号的处理:可以根据实际需求使用运算放大器、比较器等对输出信号进行处理和判断。

4. 接地和屏蔽:在布线过程中,确保良好的接地和屏蔽,减少干扰信号的影响。

5. 光源的选择:根据实际需求选择合适的光源,如白光LED、红外LED等。

综上所述,设计一个简单的光电传感器电路需要考虑光敏元件的选择、电源电压、输出信号的处理以及接地和屏蔽等因素。

根据实际需求和具体情况,可以进行相应的调整和优化,以实现更加稳定和准确的光电传感器电路。

光电信号检测电路设计

光电信号检测电路设计

光电信号检测电路设计在设计光电信号检测电路之前,需要确定以下几个关键参数:光电信号的波长、光电传感器的输出特性、所需的电信号增益和滤波要求。

一般来说,光电信号检测电路由以下几个基本组成部分组成:光电传感器、放大电路、滤波电路和输出电路。

首先,选择一个合适的光电传感器。

根据所需的光电信号波长和灵敏度要求,选择合适的光电传感器。

常见的光电传感器有光敏二极管、光敏电阻和光电三极管等。

接下来,设计一个放大电路来放大光电传感器的输出信号。

放大电路可以使用运放来实现,运放具有高增益和低失真的特点。

放大电路应该将光电传感器的微弱信号放大到适合后续处理和控制的程度。

为了提高信号质量和去除噪声,滤波电路也是必要的。

滤波电路可以选择合适的滤波器来实现,常见的滤波器有低通滤波器和带通滤波器等。

滤波器可以去除高频噪声和不需要的信号成分,以保证输出信号的准确性和稳定性。

最后,设计一个输出电路来输出检测到的光电信号。

输出电路可以选择合适的接口电路或控制电路来实现,以满足所需的输出要求。

在设计光电信号检测电路时,需要考虑以下几个方面:1.光电传感器的选择和特性,如波长、灵敏度、响应时间等。

2.放大电路的设计,包括放大倍数的选择、输出电阻的确定等。

3.滤波电路的设计,包括滤波器类型的选择、截止频率的确定等。

4.输出电路的设计,包括输出接口电路的选择、输出信号类型的确定等。

5.对电路进行仿真和实验验证,以确保其性能和可靠性。

总体来说,光电信号检测电路设计是一个涉及多个方面的复杂工程,需要综合考虑各种因素来实现预期的功能。

只有在充分理解和应用相关电路理论的基础上,才能设计出性能稳定、有效可靠的光电信号检测电路。

光电探测器的驱动电路设计与优化

光电探测器的驱动电路设计与优化

光电探测器的驱动电路设计与优化光电探测器是一种普遍的集成电路,用于检测光信号。

在电子产品和信息处理中使用广泛,例如在高速数据通信、数字摄像机、无线电子书等方面。

这些设备的性能取决于光电探测器的检测能力和驱动电路的质量。

在本篇文章中,我们将专注于光电探测器的驱动电路设计与优化。

我们将探索光电探测器的工作原理,驱动电路的构成方式,以及如何优化电路的性能。

一。

光电探测器的工作原理在光电探测器中,光信号被转换为电信号。

其本质是将光信号-电信号转换的过程。

光电探测器的工作原理是光电效应,即当光子照射到半导体晶体中时,会形成电子-空穴对。

然后,这些电子和空穴开始在半导体中移动,形成电流信号。

光电探测器常用的材料有硅、锗、InGaAs和HgCdTe等。

它们的工作模式基本相同,都是将光子转换为电子,然后检测电子的流。

二。

驱动光电探测器的电路设计光电探测器电路可以分为放大器电路、滤波器电路和功率驱动电路等。

在这里,我们将重点介绍功率驱动电路。

驱动电路用于提供电源和参数控制,确保光电探测器在其设计范围内工作。

驱动电路的质量直接关系到光电探测器的性能。

驱动电路中的电源可以是单电源或双电源。

单电源通常包含一个电容器、一个稳压器和一个电阻器。

这种电路及其简单,但是通常具有较高的噪声水平。

双电源是基于两个供电源的电路,稳定性好、噪声水平低。

常见的设计中包括稳压二极管、三端稳压器、DC-DC转换器等组成的电路,以及多级滤波器、误码率测试电路,以提高电路的稳定性和精度。

在驱动电路的设计过程中,应该优先考虑光电探测器的输入电阻、输出电流、功率消耗等因素。

三。

如何优化光电探测器的驱动电路1. 采用高品质元器件元器件是驱动电路的核心部分,因此如果您想改善探测器的性能,元器件的质量是至关重要的。

因此,建议购买质量可靠的封装元件。

2. 配置合适的滤波器滤波器可以滤除干扰信号,提高整个系统的信噪比。

为了获得更加清晰的信号,应该在电路中设置合适的滤波器,以滤除不需要的信号。

光电二极管检测电路的工作原理及设计措施

光电二极管检测电路的工作原理及设计措施

光电二极管检测电路的工作原理及设计措施光电二极管的光电效应是指当光线照射到光电二极管的PN结时,光子能量会导致PN结电场的变化,进而导致电流的改变。

根据该原理,光电二极管检测电路的设计应包括光电二极管的电路连接、前置放大电路、滤波电路和输出电路。

首先,光电二极管的电路连接应考虑到光电二极管的极性。

光电二极管有正负两个电极,其中负极为阴极,阳极为正极。

在连接电路时,应使阴极接入地线,阳极接入电路的输入端。

接下来,前置放大电路是为了放大光电二极管的输出信号。

一般可以采用运算放大器作为前置放大电路的核心部件。

运算放大器的正极接入电路的输出端,负极接入电路的输入端,通过调整放大电路的放大倍数,可以对光电二极管的输出信号进行放大。

为了减少干扰信号的影响,需要在光电二极管检测电路中设置滤波电路。

滤波电路可以选择低通滤波器或带通滤波器,根据实际需要选择合适的滤波频率。

滤波电路可以有效地排除电器干扰信号和高频干扰信号,提高光电二极管检测电路的信噪比。

最后,输出电路是将检测到的光信号转化为需要的输出结果的部分。

输出电路的设计可以根据具体应用场景的需求来确定,可以是显示、控制、报警等功能。

输出电路可以通过电压比较器、时钟电路等实现,以便于实现对光信号的处理和控制。

在设计光电二极管检测电路时,需要注意以下几个方面的设计措施。

首先,对于光电二极管的波长特性,应选择合适的光电二极管,使其能够高效地转换光信号。

其次,对于传输线路的设计应尽量缩短其长度,以减小传输过程中的干扰。

同时,还需要考虑光电二极管的工作环境和周围光源的影响,避免产生误差。

此外,还应注意光电二极管的偏置电路的设计,使其能够稳定地工作。

最后,光电二极管检测电路的布局应合理安排,尽量减小电线的交叉和干扰。

在设计时需要考虑到信号的传输和接收的距离,以及与其他电路的干扰。

总之,光电二极管检测电路是一种能够将光信号转化为电信号并进行处理的电路。

在设计中需要考虑光电二极管的电路连接、前置放大电路、滤波电路和输出电路,并采取相应的设计措施以确保电路的正常工作。

(完整版)第四章光电信号检测电路

(完整版)第四章光电信号检测电路

制约关系
1.图解计算法:利用包含非线性元件的串联电路的
图解法对恒流源器件的输入电路进行计算。
基本电路
Ub
io
RL
U
I Ub
I
RL
IQ
I
0
Q
0
0
负载线方程:
U I Ub IRL
负载线与对应输入光通量为
o
arctan1 RL
U UQ U
Ub Uo
Φ0时的器件的伏安特性曲线交点Q,即为输入电路的静态
4.1 光电检测电路的设计要求
设计原则: 保证光电器件和后续电路最佳的工作 状态。使整个检测电路满足下列要求:
1. 光电转换能力强: 光电灵敏度、线性范围。 2. 动态响应能力快: 频率响应 3. 信号检测能力强: 信噪比(SNR)、等效噪声功率(NEP)。 4. 稳定性、可靠性好: 工作要求(精度 重复性)
工作点,当Φ0下降ΔΦ时,在负载电阻RL上产生的 电U 压信号输出和 的I 电流信号输出。
可借助图解法合理地选择电路参数, 如最 大工作电流、最大工作电压和最大耗散功率。
图解法的应用:电路分析 光电开关
io 1R.L负2 载RL1 电RRL2L阻1 R功L的3耗限影制响0 分析:R响L:的图大中小给对出输了出Ub信不号变的时影,
图解法的应用
1. 由ΔΦ和ΔI选择RL和Ub稍高于转换点M, 以便 有最大不失真电压输出。 2. 利用输出的线性关系, 确定RL和Ub 3. 同时保证Ub不大于器件最大工作电压Umax
M
2.解析计算法:对光电器件的非线性伏安特性进行 分段折线化,称为折线化伏安特性。
折线化的画法
i
i
M
arctan G

基于激光编码调制的光电检测电路设计

基于激光编码调制的光电检测电路设计
光编码调制控制 电路 的工作 原理。
1 方 案 设 计
1 1 光 敏 三极 管检 测 电 路 .
最常用 的光 电检 测 电路是 利 用光 敏 三极 管作 为光 电
接收传感器 的, 如图 1 所示 。当有激光信号时 , 光敏三极管 Q 导通 , Q 基极为低 电平 , Q 则 导 通 。此 时 , A输 出为低 电平 ; 反之 , A为高 电平 。因此 , 以根 据 A的电平输 出情 可 况来检测激光信号 。
摘 要 : 对 光 敏 三极 管 检 测 电 路 存 在 易 受 太 阳 光 干 扰 、 针 响应 慢 的 问 题 , 出 了一 种 基 于 红 外 遥 控 芯 片 S 9 4 A 的 提 C 18
激光 编码 调制光电检测 电路 。通过分析 激光编码调制技术 原理 , 设计 了激光编码 发射 电路和调制接 收 电路 。实 验结果表 明 , 设计 的检测 电路抗 干扰能力强 、 响应快 , 足设计要求 。 满
激光编码调制技术应用 于光 电检测 电路 中 , 以极 大地提 可 高 光 电检 测 的抗 干 扰 能 力 , 快 实 时 响 应 速 度 … 。 加
12 激 光 编 码 调 制检 测 电 路 . 激光编码调制检测 电路通 常使用专 用 的配对编 、 解码
芯片组成 电路 , 完成对设 备 的远 程控制 。图 2所 示是激 来
1 22 .. 数 据 编 码
图 1 示 电路 中通 过调节 R的阻 值可 以提高 光 电检 所 测 的灵敏度。但随着灵敏 度的提 高 , 检测 电路 引进太 阳光
的干 扰 也 同 步 增 强 ; 降 低 灵 敏 度 , 会 使 检 测 电 路 的 响 而 则
收 稿 日期 :0 0— 9—1 21 0 5

TDLAS_气体激光遥测高灵敏光电探测电路设计

TDLAS_气体激光遥测高灵敏光电探测电路设计

文章编号 2097-1842(2024)01-0198-11TDLAS 气体激光遥测高灵敏光电探测电路设计裴梓伊1,2,胡朋兵2,3,潘孙强2,3,戚海洋2,3,刘素梅2,3,刘 东1 *(1. 浙江大学 光电科学与工程学院 极端光学技术与仪器全国重点实验室, 浙江 杭州310027;2. 浙江省计量科学研究院, 浙江 杭州310018;3. 浙江省能源与环境保护计量检测重点实验室, 浙江 杭州310018)摘要:针对气体激光遥测光信号微弱、环境因素干扰强等特点,结合波长调制技术,设计和研究了用于TDLAS 激光遥测的高灵敏度光电探测电路(Highly Sensitive Photoelectric Detection Circuit, HSPDC)。

基于波长调制技术,确定了TDLAS 信号噪声抑制方法;采用光电二极管理想模型,分析了光电探测电路的线性响应特性并确定了光电二极管的关键参数;基于级联放大原理设计、仿真并对HSPDC 进行测试。

结果表明:所设计HSPDC 的光功率检测下限为0.11 nW ,信号衰减仅为0.79 dB(f =10 kHz),截止频率较现有108 V/A 跨阻放大电路高一个数量级,可用于高速调制微弱光信号的探测。

搭建了气体激光遥测系统,当调制频率为3 kHz 时,激光遥测系统获得了良好的检测性能,检测灵敏度达到88.66 mV/ppm ,检测限优于0.565 ppm ,线性拟合度R 2为0.999 6。

研究表明,研制的HSPDC 光电探测电路具有响应速度快、检测灵敏度高等优点,可集成化,能满足气体激光遥测应用需求。

关 键 词:光电探测;跨阻放大;TDLAS ;开放光路;激光遥测中图分类号:O433.1;O433.4 文献标志码:A doi :10.37188/CO.2023-0107Design of a highly sensitive photoelectric detection circuitfor TDLAS gas laser telemetryPEI Zi-yi 1,2,HU Peng-bing 2,3,PAN Sun-qiang 2,3,QI Hai-yang 2,3,LIU Su-mei 2,3,LIU Dong 1 *(1. State Key Laboratory of Extreme Photonics and Instrumentation , College of Optical Scienceand Engineering , Zhejiang University , Hangzhou 310027, China ;2. Zhejiang Institute of Metrology , Hangzhou 310018, China ;3. Key Laboratory of Energy and Environmental Protection Measurement ofZhejiang Province , Hangzhou 310018, China )* Corresponding author ,E-mail : ******************.cnAbstract : Aming at the characterstics of weak gas laser telemetry optical signals and strong interference from environmental factors, a Highly Sensitive Photoelectric Detection Circuit (HSPDC) for TDLAS laser tele-收稿日期:2023-06-25;修订日期:2023-07-20基金项目:2022 年度“尖兵”“领雁”研发攻关计划项目(No. 2022C03065,No. 2022C03162,No. 2022C03084);浙江省市场监督管理局雏鹰计划 培育项目(No. CY2023001);浙江省市场监督管理局科研计划项目(No. QN2023419)Supported by the “Pioneer ” and “Leading Goose ” R&D Program of Zhejiang (No. 2022C03065,No.2022C03162,No. 2022C03084); Science and Technology Plan Program, Eagle Plan Training Program of Mar-keting Surveillance & Administration Bureau of Zhejiang Province (No. QN2023419, No. CY2023001)第 17 卷 第 1 期中国光学(中英文)Vol. 17 No. 12024年1月Chinese OpticsJan. 2024metry based on wavelength modulation technology has been designed and investigated. In addition, a noise suppression method for TDLAS signals based on wavelength modulation technology was determined. The photodiode ideal model is utilized to analyze the linear response characteristics of the photodetector circuit and determine the essential photodiode parameters. Based on the cascade amplification principle, the HSP-DC is designed, simulated, and tested, achieving a lower limit of optical power detection of 0.11 nW, a sig-nal attenuation of 0.79 dB (f=10 kHz). The cutoff frequency is one order of magnitude higher than the exist-ing 108 V/A cross-impedance amplification circuit. Therefore, the HSPDC is applicable for high-speed modu-lation of weak optical signals. The laser telemetry system exhibits excellent detection performance at a modu-lation frequency of 3 kHz, with a detection sensitivity of 88.66 mV/ppm, a detection limit of less than 0.565 ppm, and a linear fit R2 of 0.999 6. The study demonstrates that the HSPDC photoelectric detection cir-cuit has the advantages of fast response, high detection sensitivity and accuracy. Thus, it can be integrated to meet the needs of gas laser telemetry applications.Key words: photoelectric detection;transimpedance amplification;TDLAS;open light path;laser telemetry1 引 言近年来,环境保护受到人们越来越多的关注,痕量/微量气体检测[1]、颗粒物检测[2]、尘埃气溶胶检测[3]、海洋水质检测[4]乃至气溶胶-水云特性检测[5-6]等相关领域均迎来了蓬勃的发展。

反射式光电检测电路课程设计报告

反射式光电检测电路课程设计报告

铜陵学院课程设计报告课程名称:电子线路CAD课程设计设计名称:反射式光电检测电路设计姓名:学号:班级:成绩:指导教师:起止日期:课程设计任务书本设计利用光电二极管与光敏二极管构成光信号的接收装置,将光信号转化为电信号,再将所得微弱电信号处理为可用电信号。

在当今的电子电路设计中,传感器被越来越广泛的应用于各种检测电路,其中为了通过检测光信号的变化来达到对电路的控制的功能常常应用到各种电动车的黑线循迹之中,因而特在此研究光电检测电路模型。

本电路最基础的部分为光信号接收电路,首先我们通过该电路的功能要求,绘制电路原理图,列元器件清单,并生成相应的PCB图,再按图焊接电路,最后检测电路是否达到预期功能。

通过本次光电检测电路的设计,可以使参与者了解各种光电二极管,光敏二极管的属性及使用方法,掌握电路焊接的全过程及焊接机巧,以及计算机辅助设计(CAD)的方法,熟悉电路设计的全过程,并将理论应用于实践,为参与者将来设计其他功能的电路提供了宝贵的实践经验。

前言主要说明为什么要从事本设计工作(课题意义),本课题相关技术的现状与特点,拟采用的方案或路线。

可以有以下的一些内容:(设计任务书和主要技术指标和要求)1. 本课题的背景、目的、意义。

2. 本课题的技术指标或设计要求、研究方案、技术路线与特点。

注意:(1) 不要与摘要雷同;(2) 学科中的常识内容、科普内容不必赘述。

在现代高科技时代,越来越多的功能性机器人被应用到各个领域,但是机器人要实现自动导引功能和避障功能就必须要感知导引线和障碍物,感知导引线相当给机器人一个视觉功能,在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调节,目前我国已将检测技术列入优先发展的科学技术之一。

由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
布。 因此,只有这些衰减环节的光谱分布尽可能地相互覆盖才
可能最充分地利用入射通量。
下页中列出了典型光源和探测器光谱的对应曲线
典型光源和探测器光谱的对应曲线
a) 相对光谱辐射亮度曲线 1-太阳光 2-日光灯 3-GaP型LED 4-GaAsP型LED 5-双波段LED 6-钨丝灯(2854K) 7-GaAs型LED
前置放大器
输入电路的设计应根据电信号的性质、大小,光学的和器 件的噪声电平等初始条件以及输出电平和通频带等技术要求来 确定电路的连接形式和工作参数,保证光电器件和后级电路最 佳的工作状态,并最终使整个检测电路满足下列技术要求:
1)灵敏的光电转换能力:使给定的输入光信号在允许的非 线性失真条件下有最佳的信号传输系数,得到最大的功率、电 压或电流输出。
I()SI ()()d
0
SI () ——探测器对波长λ的电流灵敏度
在辐射源和探测器之间存在选择性衰减环节(如介质传输、 光学系统和滤光器)时探测器的有效输出为
I()SI()a()O()f() O()d
0
式中,Φo(λ)是由辐射源发出的复合光通量, a ()、 O () f ( ) 分别是传输介质、光学系统和滤光器的透过率光谱分
为了提高传输效率,无畸变地变换光电信号,光电检测器 件不仅要和被测辐射源及光学系统,而且要和后续的电子系统 在特性和工作参数上相匹配,使每个相互连接的器件都处于最 佳的工作状态。光电检测器件和光路的匹配是在对辐射源和光 路进行光谱分析和能量计算的基础上,通过合理选择光路和器 件的光学参数来实现的,这要涉及到工程光学的内容。而光电 检测器件和电路的匹配则应根据选定的光电检测器件的参数, 通过正确选择和设计电路来完成。
检测器件是沟通光学和电子系统的接口环节,它既是光路 元件又是电路元件,有着光学和电子学的双重属性。作为光路 元件,它是光信号接收器,是前级光学系统的输出端口;作为 电路元件,它是信号发生器,是后续电子系统的输入端口。正 是由于利用了光电检测器件的双重属性,才建立了光路和电路 的联系,使彼此间得以连通。因此,光电检测器件类型的选择 和工作状态的确定对光电系统的工作品质至关重要,是系统设 计的一个重要问题。
2)快速的动态响应能力:满足信号通道所要求的频率选择 性或对瞬变信号的快速响应。
3)最佳的信号检测能力:具有为可靠检测所必需的信噪比 或最小可检测信号功率。
4)长期工作的稳定性和可靠性。
根据这些要求,检测电路的设计通常包括的步骤为:电路 静态计算、电路动态计算和噪声估算。
一、光电检测电路的静态设计
①使探测器有足够高的探测率 D*,以确保获得一定裕度
的信噪比。
②探测器有合适的灵敏度S,以保证对应于入射辐射通量 的微小变化,有足够幅度的电信号输出。
③使入射通量的变化中心处于探测器光电特性的线性范围 内,以确保获得良好的线性检测。
典型光电检测器件的探测率比较曲线
3)使检测器件和光信号的调制形式、信号频率及波形相匹 配,以保证得到良好的时间响应和没有频率失真的输出波形。
光电检测器件的选择要点:
1)检测器件和辐射源及光学系统在光谱特性上匹配
光电系统中光载波信号的能量来源是辐射源或光源。它 们可分作两类,即自然光源和人造光源。辐射能量由光源经 测试目标、传输介质、接收光学系统被光电检测器接收。为 了提高有用光信号的能量利用,要求检测器的光谱灵敏度分 布和辐射源的光谱辐射度分布以及各传输环节的光谱透过率 分布相覆盖。实际上,在含有许多光谱分量的复合光通量 Φ(λ)作用下、探测器的复合输出I(λ)是由单色辐射通量 作用下的输出值在整个光谱分布范围内的积分值确定的,即
为作到这一点,首先要选择有良好的时间特性或频率特 性的光电器件,此外也取决于电路动态参数的选择。
4)使检测器件和输入电路在电特性上匹配以得到良好的电 信号输出。
这包括:足够的转换系数和线性范围、快速的动态响应、 良好的信噪比。
5)使检测器件具有长期工作的可靠性和对工作环境的适应 能力。
为使器件工作可靠,需要使器件在额定条件下使用。这 些条件包括额定功耗、工作电压以及工作环境温度等。器件 的装置空间、受光面积、电源设备、价格等在某些情况下甚 至是选择器件的主要考虑因素,需要根据待设计系统的要求 和条件优先选定。
几种典型光电检测器件特性参数的定性比较
2、恒流源型光电器件输射光信号的性质和大小 来选择输入电路形式,并估算电路工作状态和器件参数,在保 证信号不失真的情况下获得最大的光电转换能力,同时要使之 和后级放大电路相匹配以利于信号的进一步传输。
检测电路的静态设计包括光电器件的选择和输入电路的 静态计算。 本节内容包括:
光电检测器件的选择要点;
恒流源型光电器件输入电路的静态计算;
光伏型光电器件输入电路的静态计算;
可变电阻型光电器件输入电路的静态计算;
检测器件和放大电路的连接。
1、光电检测器件的选择要点
在以信息检测和信号传送为目的的光电系统中,光电检测 器件的作用是将载有被测信息的光辐射能量变换为电能,并在 实现这种变换的过程中完成信息的传递。
第七章 光电检测电路的设计
对于大多数的光电装置,光电器件需要通过检测电路才能 实现光电信号的变换作用。通常,光电检测电路是由光电检 测器件、输入电路和前置放大器组成。
光电检测器件 输入电路
输入电路是连接光电器件和电信 号放大器的中间环节,它的基本作用 是为光电器件提供正常的电路工作条 件,进行电参量的变换(例如将电流 和电阻转换为电压),同时完成和前 置放大器的电路匹配。
b) 相对探测灵敏度曲线 1-检测型Si光电二极管
2-照相用Si光电二极管 3-平面型Si光电池 4-光电三极管
5-台面型光电二极管 6-视见函数
7-CdS光敏电阻
2)探测器的光电转换特性和入射辐射能量的大小相匹配
根据光电系统辐射源的发光强度、传输介质和目标的传输 及调制损耗、接收光学系统接收孔径的限制及反射吸收等损失 的影响,可以计算出入射到探测器光敏面上的实际辐射能量, 通常它们是很微弱的,探测器的选择应充分利用这些有用的信 号能量,为此要考虑:
相关文档
最新文档