3.2 代数式 (2)
3.2《代数式(2)》导学案
七年级数学导学案课题:§3.2代数式(2)班级 姓名 学号主备人:学习目标:1、了解单项式、单项式的系数、次数,多项式、多项式的项、次数,整式概念;2、能用代数式表示简单问题的数量关系;3、能解释一些简单代数式的实际背景或几何背景。
学习重点:对代数式意义的理解,准确表述单项式、多项式相关概念。
学习难点:叙述代数式的意义。
学习过程:一、自学指导:(一)知识回顾:1、像a -1、30a 、9b 、b+2c +2ac 等这样的式子都称为 ;注意:单独一个数或一个字母也是代数式。
2、书写代数式规范要求:①字母与字母、字母与数字的和(差),并且后面带单位时,要加括号; ②出现除法运算时,要写成分数形式;③字母与数字积时,数字写在字母的前面,之间的乘号可以用“·”,也可以省略不写;字母与字母积时,之间的乘号可以用“·”,也可以省略不写;数字与数字积时,之间的乘号不能省略。
3、填空:(1)小明买了单价分别为10元和12元的两种共8本,其中单价为10元的书a 本,应付 元;(2)比a 的21大5的数是 ; (3)一个两位数的个位数字是a ,十位数字是b ,这个两位数是 ;(二)阅读课本P70-71,完成下列问题:1、自学课本例1,理解解题过程;2、像0.55a 、0.35b 、0.15m 、0.8a 2等都是数与字母的积,这样代数式叫做 ;注意:单独一个数或一个字母也是 ;3、单项式中的 叫做单项式的系数;单项式中所有 的指数和叫做单项式的次数;4、自学课本例2,理解解题过程;5、几个单项式的和叫做 。
多项式中,每一个单项式叫做多项式的一个 ;多项式里含有几项,就把这个多项式叫做几项式,其中次数最高项的次数,叫做这个多项式的 ;不含字母的项叫做 。
4、单项式和多项式统称 。
二、合作探究:1、如果—mxy |n –1 |是关于x 、y 的一个单项式,且系数是2,次数是3,则m= ,n= ;2、如果3a 3b -4ab k +25是五次多项式,那么k = ;3、完成下列填空:(1)苹果每千克a 元,橘子每千克b 元,买5千克苹果、6千克橘子,应付 元;(2)小明每步长a m ,小亮每步长b m ,小明、小亮从小桥的两端相向而行,小明5步、小亮6步两人相遇,小桥长 m ;(3)a 个五边形、b 个六边形共有 条边;4、从所列的代数式,你有咋样的发现?5、仿照上面的发现,用不同方式解释代数式2(x +y )所表示的实际意义。
3.2代数式(2) 3.3整式
B. a 2 (2 3)
C. 1 ab
1 4
【拓展延伸】——情感体验,主题升华
完成课本 85 页 知识技能 1,2,3
2. 用代数式表示“ a 与比 b 小 10 的数的积”是( A. ab 10 B.
a 10 b
C. a (b 10)
温馨提示
注意:(1)“×”也可以写成 一般仍用 。
的面积为
2a 3bc
2、代数式的系数、项的回顾: 1 (1)代数式 a 2 b 的系数是 代数式- 4m n2 的系数是 3 (2)代数式 a b 的系数是
2 4
『能力训练提升』
【当堂训练】——技能拓展应用,搭建晋级平台 完成课本 82 页随堂练习.
4 st 3 代数式 的系数是 5
校 长 寄 语 : 优 化 教 学 模 式 , 构 建 高 效 课 堂 , 提 升 教 师 价 值 , 提 高 学 习 效 果 , 推 进 素 质 教 育 , 实 现 学 校 内 涵 式 发 展 。
计算出的结果
『知识学习探究』
【自主学习】建立自信,克服畏惧,尝试新知
前置准备:1. 下列各代数式书写规范的是( A. 3 a 1 )
『能力训练提升』
【当堂训练】——技能拓展应用,搭建晋级平台
完成课本 84 页随堂练习 1,2 D. 3xy 7 ) D. a (b 10)
教师点拨
1 2
,或者省略不写,但数与数之间相乘,
校 长 寄 语 : 优 化 教 学 模 式 , 构 建 高 效 课 堂 , 提 升 教 师 价 值 , 提 高 学 习 效 果 , 推 进 素 质 教 育 , 实 现 学 校 内 涵 式 发 展 。
田家庄中学 2012-2013 学年度第一学期七年级数学导学案 编号:022 班级: 小组: 姓名: 组内评价: 教师评价: 主备人:党伟 备课组长:亢晓荣 【合作探究】 提炼与归纳 提炼与归纳 3.3 整式 课 题 批注与反思 批注与反思 1 2 3 2 1 1 x2 1 2 1.在代数式- a ,5 a b ,ab, ( x y ) , ( a b ) , 中,其中 【学习目标】 3 4 a 2 7 1.在现实情景中进一步理解用字母表示数的意义,发展符号感。 单 项 式 有 ________________ 它 们 各 自 的 系 数 分 别 为 2.了解整式产生的背景和整式的概念,能求出整式的次数。 温馨提示 ____________ 【重点难点】 多项式有______________________________ 教学重点:整式的概念与整式的次数。 教学难点:整式的次数。 2.单项式的次数: 【实用说明与学法指导】 字 母 字母的指数 指数和 次 数 尝试练习法,讨论法,归纳法。 3x
苏科版七年级数学上册3.2《代数式(2)单项式、多项式的概念》
(2) (a+b)h
【讲解】:
(1)可设苹果a元/kg,香蕉b元/kg,那么3a+4b就表示3kg苹果和4kg香蕉的
总金额,则代数式20-(3a+4b)表示用20元钱买3kg苹果和4kg香蕉应找回的零钱。 (2)设a,b,h,分别表示一个梯形的上底、下底和高,那么代数式 12(a+b)
就表示这个梯形的面积.
(5)
1 a
+8
(3)
2 xy
(6)-3x2+2x2-1
【讲解】:多项式有(1)(4)(6);整式有(1)(2)(4)(6)
【方法小结】单项式和多项式统称为整式,判断一个代数式是 否是整式就看是否是单项式或多项式,关键是看分母中是否含 有字母,按照目前的知识没有字母的就是整式,多项式的识别要 注意一下几点; (1)分母中不含字母; (2)含加、减、除运算。
小明走5步、小亮走8步两人相遇,小桥长______m; (3)a个五面体、b个八面体共有______个面.(教材第72页的“议一议”)
答案:列出的代数式都是5a+8b
总结提升
回顾反思
单项式有关概念: 数字与字母的积所组成的代数式叫做单项式,单独的一个数或一个
字母也是单项式.单项式中的数字因数叫做它的系数.单项式中所有字 母的指数的和叫做它的次数. 多项式有关概念:
课堂练习
1.多项式 1+2xy-3xy² 的次数及最高次项的系数分别是( A )
A 3,-3
B 2,-3
C 5,-3
D 2, 3
2.如果整式xn-2 -5x+2是关于x的三次三项式,那么n等于( C )
A3
B4
C5
D6
3.2 代数式 - 第2课时课件(共15张PPT)
常见问题中常用的数量关系:
①路程=速度×时间;②工作量=工作效率×工作时间;③总价=单价×数量,总产量=单产量×数量;④各种特殊图形的面积和周长公式;⑤利息=本金×利率×期数;⑥利润=成本×利润率;⑦利润=售价-成本.
随堂练习
1.某种品牌的计算机,进价为m元,加价n元后作为定价出售,如果五一期间按定价的八折销售,则五一期间的售价为 ( )A.(m+0.8n)元 B.0.8n元C.0.8(m+n)元 D.(m+n+0.8)元2.
例题引入
已知参加甲、乙两地植树的同学分别为52人和23人,现从甲、乙两地共抽调12人到丙地植树.如果从甲地抽调x人,请用含x的代数式分别表示甲乙两地剩下的人数.
解:由题意,从乙地抽调(12-x)人.所以,甲地剩下的人数为(52-x)人,乙地剩下的人数为[23-(12-x)]人.
例1
例2
已知一桶食用油装满油时,桶和油的质量一共是a kg;当油用去一半时,桶和油的质量一共是b kg.(1)当桶里装满油时,写出表示油的质量的代数式.(2)写出表示桶的质量的代数式.
C
B
3.
(24 000-5x)
拓展提升
1.
B
2.
解:
归纳小结
用代数式表示实际问题中的数量关系时,必须注意:1.抓住关键词语,确定所求问题与已知条件之间的数量关系.2.理清问题中的语句的层次,明确运算顺序.3.若用“和”“差”表示后式子后面有单位,式子要放到括号内.
同学们再见!
授课老师:
时间:2024年9月15日
解:(1)由题意,一半油的质量为(a-b)kg.所以,当桶里装满油时,油的质量为2(a-b)kg.(2)桶的质量为[a-2(a-b)]kg.
3.2 代数式(2)
辆车所走的路程.
(3)某种数学资料每本要10元,英语资料每本要5元,小 明买了x本数学资料,y本英语资料,则(10x+5y)表示共 用了多少钱.
2.将三个边长为a cm的正方体,拼成一个长方体,求这 个长方体的体积. a 解: a3×3=3a3
a
a
a
a
a a×3a×a=3a3
a
3a
【3】在某地,人们发现某种蟋蟀叫的次数与温度之间有 如下的近似关系:用蟋蟀1分钟叫的次数除以7,然后再 加上3,就近似地得到该地当时的温度(℃). (1)用代数式表示该地当时的温度.
2
(5)一台电视机原价a元,现按原价的9折出售,这台电
视机现在的售价为_____元; 0.9a
(6)一个长方形的长是0.9,宽是a,这个长方形面积是 ___. 0.9a
用含有字母的式子填空: 6a2 a3 1.边长为a的正方体的表面积为____,体积为_____. 2.铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍,
解:(1)用c表示蟋蟀1分ห้องสมุดไป่ตู้叫的次数,则该地当时的 c 温度为 +3. 7
【4】用代数式填空 12n (1)每包书有12册,n包书有___册;
1 ah 2 (2)底边长为a,高为h的三角形的面积是____;
a h (3)一个长方体的长和宽都是a,高是h,它的体积是_____;
1.1km (4)产量由m千克增长10%,就达到_______ 千克;
示为__________; a-2和a-4
(2) x是一个三位数,在它后面加上2所形成的四位数可表示 为________,在它前面加上3所形成的四位数是__________. 10x+2 3 000+x
3.2 代数式(第2课时)
【教学目标】〖知识与技能〗1、了解代数式的分类以及整式、分式、单项式、多项式的概念; 2、理解单项式的系数和次数、多项式的次数与项数的概念;〖过程与方法〗通过引导学生思考、分析、对比,使学生加深对相关概念的理解。
〖情感、态度与价值观〗培养学生的观察分析和比较归纳的能力。
【教学重点】代数式的分类及整式、单项式、、多项式的概念 【教学难点】多项式的项数和次数概念的理解 【教学过程】 一、自学质疑:1、什么叫做整式、分式?2、什么叫做单项式?单项式的系数?单项式的次数?3、什么叫做多项式?多项式的项、常数项、多项式的次数? 二、交流展示:观察下列代数式,你能对它们进行适当分类吗?2222156232522125ba b a a a xy m n c ab ab -+--+,,,,,,,,0 三、互动探究:如何对代数式进行分类?根据交流展示内容,由学生分析归纳,老师总结。
四、精讲点拨:【点拨】 1、代数式的分类:代数式可以分为整式和分式。
整式:在代数式中,或者没有除法,或者虽有除法,但除式(或分母)中不含字母。
像这样的代数式叫做整式。
如;上述的5ab ,21xy+52 , -2 , 156a ,0 分式:在代数式中,不但有除法,而且除式(或分母)中含有字母。
像这样的代数式叫做分式。
如;上述的c ab 2 , m n ,a 2-3 ,2222ba b a -+ 整式可以分为单项式和多项式。
2、单项式:(1)单项式:不含有加减运算的整式,叫做单项式。
如:7436.05322322z y x n m a x ,,,-。
单独一个数或一个字母, 例如3,52-,a 等,也叫单项式。
(2)、单项式的系数:单项式里的数字因数,叫做单项式的系数。
它通常写在字母的前面。
3.2 代数式(第2课时)如7436.05322322z y x n m a x ,,,-的系数,分别为2、53-.、036、74。
x a -和2的系数分别为1和—1。
3.2代数式的值(第二课时)教学设计2024-2025学人教版(2024版)七年级数学上册
教学反思与改进
我发现一些学生在代数式求值时,仍然会犯一些基本的错误,比如忘记乘以字母的系数,或者在化简时忽略了一些基本的代数规则。这些问题让我意识到,尽管学生们在课堂上能够跟随我的讲解,但在实际操作时,他们可能并没有完全理解代数式的运算逻辑。
5.解答以下实际问题:
-某商店举行打折活动,原价为150元,打九折后的价格是150 * 90% = 135元。
-小明有30元,他想买一个价值25元的商品,他还剩30 - 25 = 5元。
解答:设打折后的价格为x元,根据题意可得原价的80%等于打折后的价格,即120 * 80% = x。化简得到x = 96。所以打折后的价格是96元。
6.总结与布置作业(5分钟)
同学们,通过本节课的学习,我们掌握了代数式的乘法和除法运算规则,并能够运用这些规则解决实际问题。希望大家能够课后复习本节课的内容,并完成课后作业,巩固所学知识。
3.2代数式的值(第二课时)教学设计2024-2025学人教版(2024版)七年级数学上册
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间
课程基本信息
1.课程名称:3.2代数式的值(第二课时)教学设计
2.教学年级和班级:2024-2025学年人教版(2024版)七年级数学上册
3.授课时间:1课时
4.教学时数:45分钟
3.随堂测试:通过对学生的随堂测试情况进行分析,发现大部分学生能够掌握代数式的乘法和除法运算规则,并能够运用这些规则解决实际问题。但仍有部分学生在运算过程中出现错误,需要进一步加强对运算规则的掌握。
初中数学苏科版七年级上册第三章 代数式3.2 代数式-章节测试习题(2)
章节测试题1.【答题】式子x+y,﹣2x,ax2+bx﹣c,0,,﹣a,中()A. 有5个单项式,2个多项式B. 有4个单项式,2个多项式C. 有3个单项式,3个多项式D. 有5个整式【答案】B【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式有4个:﹣2x,0,,﹣a;多项式有2个:x+y,ax2+bx﹣c.选B.2.【答题】多项式的次数及最高次项的系数分别是().A. 2,-3B. 5,-3C. 3,3D. 3,-3【答案】D【分析】利用多项式的相关定义进而分析得出答案.【解答】多项式是几个单项式的和,每一个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,所以的次数为最高单项式的次数为,最高次项的系数为.选D.3.【答题】一个长方形的周长是40,若长方形的一边用字母x表示,则长方形的面积是()A. x(20﹣x)B. x(40﹣x)C. x(40﹣2x)D. x(20+x)【答案】A【分析】根据题意列出代数式即可.【解答】∵长方形的周长为40,一边长为x,∴与长为的边相邻的另一边长为(20﹣x),∴长方形的面积=x(20﹣x).选A.4.【答题】下列说法中正确的是().A. a是单项式B. 的系数是2C. 的次数是1D. 多项式的次数是4【答案】A【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】选项A. a是单项式,正确.选项 B. 的系数是,错误.选项C. 的次数是,错误.选项 D. 多项式的次数是2,错误.所以选A.5.【答题】在代数式x2+5,﹣1,x2﹣3x+2,π,,中,整式有()A. 3个B. 4个C. 5个D. 6个【答案】C【分析】根据多项式与单项式统称为整式,判断即可.【解答】根据整式的概念知:x2+5,﹣1,x2﹣3x+2,π,是整式,选C.6.【答题】下列说法正确的是()A. 单项式a2b的次数为2B. 单项式的系数是C. 0是单项式D. 多项式1-xy+2x2y是五次三项式【答案】C【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】A. 单项式a2b的次数为3,故A选项错误;B. 单项式的系数是,故B选项错误;C. 0是单项式,正确;D. 多项式1-xy+2x2y是三次三项式,故D选项错误,选C.7.【答题】多项式4x3﹣3x2y4+2x﹣7的项数与次数分别是()A. 4,9B. 4,6C. 3,9D. 3,10【答案】B式的系数.【解答】多项式4x3﹣3x2y4+2x﹣7有4个项,次数为6.选B.8.【答题】在代数式3、4+a、a2﹣b2、、中,单项式的个数是()A. 2个B. 3个C. 4个D. 5个.【答案】A【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式的定义:“表示数与字母乘积的式子叫做单项式,单独的一个数或字母也是单项式”分析可知,上述式子中,3、是单项式,共2个;选A.9.【答题】对于单项式2×105a,下列说法正确的是()A. 系数为2,次数为1B. 系数为2,次数为6C. 系数为2×105,次数为1D. 系数为2×105,次数为0【答案】C个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式2×105a的系数为2×105,次数为1.选C.10.【答题】(3m-2)x2y n+1是关于x,y的五次单项式,且系数为1,则m,n的值分别是()A. 1,4B. 1,2C. 0,5D. 1,1【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】由题意得:,解得.选B.11.【答题】在代数式x2+5,-1,-3x+2,π,,,5x中,整式有()A. 3个B. 4个C. 5个D. 6个【答案】C【分析】根据多项式与单项式统称为整式,判断即可.【解答】根据整式的定义:单项式、多项式的统称,故整式有x2+5,−1,−3x+2,π,5x,共5个.选C.12.【答题】代数式x+yz,4a,mn3+ma+b,-x,1,3xy2,,,中()A. 有5个单项式,4个多项式B. 有8个整式C. 有9个整式D. 有4个单项式,3个多项式【答案】D【分析】本题考查了单项式、多项式以及整式的定义,注意是整式而不是分式.【解答】单项式有:4a,x,1,3xy2,共4个;多项式有:x+yz,mn3+ma+b,,共3个;整式有:x+yz,4a,mn3+ma+b,−x,1,3xy2,共7个;分式有:,,共2个。
3.2代数式求值(2)
一、情境引入
(3)试预测成年后你的身高.
二、探索发现 温度的换算
生活中,有两种表示温度的方法—— 摄氏和华氏. 如果用c表示摄氏温度,f表示 华氏温度,那么他们之间的关系是
5 c ( f 32) 9
二、探索发现
5 例1:已知 c ( f 32) ,分 9 别求出当 ƒ=68,98.6 时c的值.
七、布置作业
1、必做题 习题3.3:问题解决 第2、3题 数学理解 第1题 2、选做题 习题3.3:联系拓广 第1题
二、探索发现 输入 x
-3
×6
输出
6(x-3)
输入 -3 -2 -1 0 1 2 3
输出 -36 -30 -24
-18 -12 -6 0
三、例题解析
例2:填写下表,并观察下列两个 代数式的值的变化情况:
三、例题解析
(1)随着n的值逐渐变大,两个代数式的值 如何变化? 随着n的值的增大,每个代数式的值都是 增加的趋势。
二、探索发现
1、可先代入后计算,代入步骤必不可少. 2、在将数字代入字母的过程中,有时要适
当地加入运算符号或括号,如数字间相乘关系要
加入乘号,当代入负数时要添上括号,当幂的底
数是分数、负数时,它的底数一定要加括号.
二、探索发现
输入
输出
输入 -3 -2 -1 0 1 2 3
输出 -21 -15 -9 -3 3 9 15
球上自由下落所需的时间. 解:当h = 20米时,由表中的数据估计:
t (地球) ≈ 2 (秒) , t (月球) ≈ 5 (秒)
五、智力闯关
第一关
班里同学按4个同学一组进行分组,做 一个传数游戏. 第一个同学任意报一个数给 第二个同学,第二个同学把这个数加1传给 第三个同学,第三个同学再把听到的数平方 后传给第四个同学,第四个同学把听到的数 减去1报出答案.
3.2代数式(2)
课题:第三章第二节代数式(二)课型:新授课教学目标:1.会求代数式的值.2.会利用代数式求值推断代数式所反映的规律.重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.难点:正确地求出代数式的值.教法及学法指导:本节课设计了六个教学环节:第一环节:创设情境,导入新课;第二环节:建立模型,讲解新课;第三环节:反馈练习,巩固新知;第四环节:拓展练习,综合实践;第五环节:课堂小结,检测题;第六环节:布置作业.把全班分成6个小组(每小组6人)进行小组竞学,合作交流,培养学生的探究能力与合作交流意识,提高分析问题.解决问题的能力.课前准备:教师准备:制作课件.学生准备:(提前一天布置)①预习课文,想一想:本节讲述了哪几个知识点?你最多能掌握哪几个?还有什么困惑?②完成随堂练习及习题【设计意图】意在让学生提前预习,提前做课后随堂练习及习题,提高课堂教学效率,拒绝低效课堂.教学过程:一、情境互动,教学引入师:同学们两周前刚刚体检完都知道咱们现在的身高,那么你们能猜到咱们成年以后的身高吗?生1:能,给自己的父母差不多.生2:不好猜!有的和父母的身高相差很大.师:同学们说的都很好,现在老师给你们看一个研究报告,你们就能预测你们成年后的身高:据报纸记载,一位医生研究得出由父母身高预测子女成年后身高的公式是:儿子身高是由父母身高的和的一半,再乘以1.08;女儿的身高是父亲身高的0.923倍加上母亲身高的和再除以2 .(1)已知父亲身高是a 米,母亲身高是b 米,试用代数式表示儿子和女儿的身高 (2)五年级女生小红的父亲身高是1.75米,母亲的身高是1.62米;六年级男生小明的父亲的身高是1.70,母亲的身高是1.62,试预测成年以后小明与小红谁个子高? (3)试预测成年后你的身高.(幻灯片演示引例)(教师巡回,学生独立完成,利用投影展示) 生:(1)解:儿子的身高:(a +b )/2米. 女儿的身高:(0.923a +b )/2米. 生:(2)小红的身高:(0.923×1.75+1.62)/2=1.617米. 小明的身高:(1.70+1.62)/2=1.66米 生:老师我预测我的身高是1.6米. 生:我预测我的身高是1.58米. 生:我的是1.85米.师:同学们做的都很好,通过做题我们发现在探讨了代数式之后,不仅能用字母与代数式表示数量关系,还能解释一些代数式的实际背景或几何意义.今天我们就来研究第二节的第二课时:代数式求值.【设计意图】七年级学生正处于生长发育阶段的关键期,大部分学生对自己的身高非常关注。
3.2代数式(2)
2
注:单项式的系数要
连同其前面的符号
2
2a bc xy t
2
b 5 2 xy vt 7 3
系数
5 8 -2 1 -1 7
2 3
1
次数
成人票10元 学生票5元
(1)某动物园的门票价格是 : 成人票每张10元,学生票每张 5元。一个旅游团有成人 x 人、 学生 y 人,那么该旅游团应付 多少门票费?
例2(3)如图,直角三角形三边的长分别 为a㎝、b㎝、5㎝,它的面积是多少? 斜边上的高是多少?
1 2 abcm 解:该直角三角形的面积是 2
b
a
ab 斜边上的高为 cm 5
a b 像0.9a,0.8b, 2a,15 15%m, 2a , , 等都是 2 数与字母的乘积, 这样的代数式叫 单项式
2
注:单独一个数或一个字母也是单项式
单项式中的数字因数叫做这个单项式的系数
1 2 2 1 例 : 单项式4x,-7xy , a b 的系数分别是4, 7, 3 3
2
单项式中所有字母的指数的和叫做这个单项式的 次数.
如果一个单项式只含有字母因数,它的系数就是1或者-1,
例如ab就是1·ab,系数是1 再如-n就是-1·n,系数是-1
定义:几个单项式的和叫做多项式 其中每个单项式叫做多项式的项
例:a+b这个多项式由两项组成,它的项是a,b
2x-3y这个多项式的项是2x,-3y 注: 在说多项式的项的时候要连同前面的符号 次数最高项的次数,叫做这个多项式的次数.
单项式和多项式统称整式
下列代数式中哪些是单项式? 哪些是 多项式?如果是单项式,它的系数又是多少?
t
3.2代数式 第2课时 教案(北师大版七年级上)
(2)七年级女生小红的父亲身高是1.72米,母亲的身高是1.65米;七年级男生小明的父亲的身高是1.70,母亲的身高是1.62,试预测成年以后小明与小红谁个子高?(3)试预测成年后你的身高。
展示教材中的“数值转换机”.要求学生:⑴写出图1.的输出结果;⑵找出图
教
学
过
程
二、例题点拨,实践探究
2.的转换步骤。
讨论“议一议”.在讨论过程中,鼓励学生根据已有的信息作估计,判断变化特征和趋势,并给出适当的说理过程。
三、随堂练习,突破难点
班级同学按4个同学一组进行分组。第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案。如果第一个同学报给第二个同学的数是5,第四个同学报出的答案是35,这个结果对吗?
四、师生交流,归纳小结
教师启发学生回顾本课学习内容,总结收获,布置作业。
布置作业
练习册代数式(2)
教学后记
本节课内容较为简单,学生掌握良好,课上反应热烈。
课时教案
第周星期第节年月日
课题
3.2代数式(第2课时)
教学
目标
知识与技能:会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法;会利用代数式求值推断代数式所反映的规律;能解释代数式值的实际意义。
过程与方法:经历观察、试验、猜想等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点,形成解决问题的一些基本策略。
情感与态度:通过“做数学”,体会数学活动充满着探索性、创造性,发展学生的实践能力与创新精神。
教
北师大版七年级数学上册 3 2代数式(第二课时) 同步导练(含答案)
3.2代数式(二)基础导练1. 代数式2a-b 表示的意义是_____________________________.2. 列代数式:⑴设某数为x,则比某数大20%的数为_______________.⑵a 、b 两数的和的平方与它们差的平方和________________.3. 有一棵树苗,刚栽下去时,树高 2.1米,以后每年长0.3米,则n 年后的树高为________________,计算10年后的树高为_________米.4. 某音像社对外出租光盘的收费方法是:每张光盘在出租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后第n 天(n >2的自然数)应收租金_________________________元.5. 观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4------请你将猜想到的规律用自然数n(n ≥1)表示出来______________________.6. 一个两位数,个位上的数是a ,十位上的数字比个位上的数小3,这个两位数为_________,当a=5时,这个两位数为_________.7. 某品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价为( ).A . 0.7a 元B .0.3a 元C .a 310 元D . a 710元 8. 根据下列条件列出的代数式,错误的是( ). A . a 、b 两数的平方差为a 2-b 2 B . a 与b 两数差的平方为(a-b)2C. a 与b 的平方的差为a 2-b 2 D . a 与b 的差的平方为(a-b)29. 如果,0)1(22=-++b a 那么代数式(a+b)2005的值为( ).A . –2005B . 2005C . -1D . 110. 笔记本每本m 元,圆珠笔每支n 元,买x 本笔记本和y 支圆珠笔,共需( ).A . ( mx+ny )元B . (m+n)(x+y) C. (nx+my )元 D . mn(x+y) 元11. 当x=-2,y=3时,代数式4x 3-2y 2的值为( ).A . 14B . –50C . –14D . 50 能力提升12. 已知代数式3a 2-2a+6的值为8, 求1232+-a a 的值.13. 当a=-1,b=-21,c=211时,求代数式b 2-4ac 的值,并指出求得的这个值是哪些数的平方. 14.人在运动时的心跳速率通常和人的年龄有关.如果用a 表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220-a).⑴ 正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少? ⑵ 一个45岁的人运动时10秒心跳的次数为22次,请问他有危险吗?为什么?15. 给出下列程序:⇒ ⇒若输入x=1时,输出的值为-2,求输入x=-2时,输出的值是多少?参考答案:1.2a 与b 的差2.⑴(1+10%)x ⑵(a+b)2 +(a-b)23. 2.1+0.3n 5.14.1.6+0.5(n-2)6.n 2+n=n(n+1) 6.10(a-3)+a 257.D8.C9.C 10.A 11.B 12. ∵3a 2-2a +6=8 13. b 2-4ac=(-21)2-4×(-1)×23=425 ∴ 3a 2-2a=2 ∵(±25)2=425 ∴1232=-a a ∴425是±25的平方. ∴.2111232=+=+-a a 14. ⑴b=0.8(220-14)=164.8答:正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数164次.⑵b=0.8(220-45)=140, ∵22×6=132 132<140 ∴他没有危险.15.4.。
3.2代数式(2)-求值
(3)代数式中省略了乘号时,代入数值以 后必须添上乘号。(还原乘号)
反馈练习:
1、如图,是一个简单的数值运算程序示的程序计算函数值。若 输入的值为1.5,则输出的结果为0.5 .
3、在如图所示的运算流程中,若输出的 数y=3,则输入的数x=_5_或__6__。
的输出结果和图2的运算过程。
输入x
×6 图1 6x
-3 输出 6x-3
输入x -3 ?
图2 ?
x-3
?
×6
输出6(x-3)
输入 -2
-1 2
0
0.26
1 3
5 4.5
2
图1的输出 -15 -6 -3 -1.44 -1 12 24
图2的输出 -30 -21 -18 -16.44 -16 -3 9
研究代数式的值的意义
1.若a+2b-7=0,
求:(1)a+2b-3= 4 (2)-2a-4b+1= -13
2.若代数式2x2+3x+7的值是8,则代 数式4x2+6x+15的值是_1_7_____
3. 已知 a b=7,求 (2 a b) a b 的值。 a b 13 20 a b 3(a b) 21
小结:本节课你的收获是什么?
传数游戏
规则:班级同学按4个同学一 概括
组进行分组,做一个传数
游戏。第一个同学任意报
x
一个数给第二个同学,第
二个同学把这个数加1传给
第三个同学,第三个同学
x 1
再把听到的数平方后传给
第四个同学,第四个同学
x 12
把听到的数减去1报出答案。
3.2 代数式的值(2课时)-第一课时 求代数式的值 课件 人教版数学七年级上册
知识梳理
代数式的值:用数值代替代数式中的字母,按照代数式中的_运__算___关系 计算得出的结果.
当字母取不同的数值时,代数式的值一般也不同.
目标素养 导航
新知预习 导学
重点直击 导析
素养达标 导练
5
课前自测
1.当x = 2时,代数式3x的值为( D ) .
A.1
B.2
C.3
D.6
2.当x = 3,y = 2时,代数式x + y的值为( C ) .
求代数式的值时,省略的乘号要还原;当代入的数值是 负数或分数时,要合理地添加括号.
目标素养 导航
新知预习 导学
重点直击 导析
素养达标 导练
10
针对训练
1.(教材第80页练习第1题变式)填图:
−3 1 5 7
目标素养 导航
新知预习 导学
重点直击 导析
素养达标 导练
11
知识点二 用整体代入法求代数式的值
素养达标 导练
17
7.某地出租车的收费标准如下:3 km以内(包括3 km)为起步价,收费 10元;超过3 km的部分每千米收费2.4元. (1)小明乘出租车行驶了2.3 km,他应付车费_1_0__元. (2)用x(单位:km)表示出租车行驶的路程,且x > 3,请你用含x的 代数式表示应付的车费;并求出当x = 7时,应付的车费是多少元. 解:当x > 3时,应付的车费为[10 + 2.4(x − 3)]元. 当x = 7时,10 + 2.4(x − 3) = 10 + 2.4 × (7 − 3) = 19.6. 所以当x = 7时,应付的车费是19.6元.
目标素养 导航
新知预习 导学
3.2代数式(2)--
思考
先填空,再请说出你所列式子的运算含义. 1.边长为x的正方形的周长是 4x . 2.一辆汽车的速度是v千米/小时,行驶t小时 所走过的路程为 vt 千米。 6a2 ,体积为 a3 . 3.如图正方体的表面积为 4.设n表示一个数,则它的相反数是 -n . 2 5.半径为r的圆面积是 πr .
a
b
(2)窗户中能射进阳光部分的面积是多少?
16
b
2
ab
16
b
2
随堂练习
1、
ab b2 有 2 项、次数是 2 ; 16 1 4 a b 1 是 3 项 4 次式。 2 一般的我们把多项式按照某个字母
的指数从大到小的顺序书写: • 2、下列多项式是几次几项式? 如: -m4+m3-3m2n+0.2mn+1 • 指出它们的最高次项和常数项.
1 2 2 3 3 4 4 a, a , a , a 呢 ? 2 4 8 16
提高探究
提高探究
1.多项式
5x y (m 2)xy 3x
m 2
如果的次数为5次,则m为多少? 如果多项式只有二项,则m为多少?
提高探究
(反馈) 4x – 2b是四 次二 项式,试求a, b的值.
提高探究
1 2 3 k 1 1 2 7 x y 与 x y 的次数相同, 3 2 求 K的 值 .
5.尽可能多的写出系数为-3,含有x、y、 z三个字母的四次单项式.
6.观察下列单项式:
1 1 2 1 3 1 4 a, a , a , a 2 3 4 5
(1)第2007项是什么? (2)第n项是什么?
(1)2 x 1 3x
3.2代数式第2课时代数式求值(教案)
-代数式求值的步骤:明确求解过程中每一步的操作要领,如先进行括号内的运算,再进行乘除运算,最后进行加减运算。
-生活实例的引入:结合实际情境,让学生体会代数式求值在生活中的应用,如购物打折、行程计算等。
举例:在讲解代入法时,以代数式2x+3为例,当x=4时,代数式的值是多少?强调将x=4代入式子中,得到2*4+3=11。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了代数式求值的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对代数式求值的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解代数式求值的基本概念。代数式求值是指将具体的数值代入含有变量的代数式中,计算出代数式的结果。它是解决生活中各种计算问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。假设你有3个苹果,每个苹果的价格是5元,我们要计算你买苹果一共花了多少钱。这个案例展示了代数式求值在实际中的应用,以及它如何帮助我们解决问题。
4.培养学生的数学应用意识,将代数式求值应用于生活实际问题,体会数学在生活中的价值;
5.培养学生的团队合作意识,通过小组讨论与合作,共同解决代数式求值问题,提高沟通与协作能力。
三、教学难点与重点
1.教学重点
-代数式求值的基本概念:强调代数式求值的意义和实际应用,使学生理解代数式的值是随着其中变量的取值而变化的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生
学习目标 预 习 展 示 互 动 生成 达 标
成
列代数式应注意的问题: (3) 数字与字母相乘时数字写在
前面,乘号省略不写,字母与
字母相乘时乘号省略不写。
拓 展 谈谈收获
(4) 在代数式中出现除法时,用
分数线表示。
生
学习目标 预 习 展 示 互 动 生成 达 标
成
拓 展 谈谈收获
对于较复杂的数量关系,应按下述规律 列代数式: (1)列代数式,要以不改变原题叙述的数 量关系为准(代数式的形式不唯一); (2)要善于把较复杂的数量关系,分解成 几个基本的数量关系; (3)把用日常生活语言叙述的数量关系, 列成代数式,是为今后学习列方程解应 用题做准备,要求大家一定要牢固掌握.
(3) a的60%与b的2倍的和;
拓 展 谈谈收获
(4) a除以2的商与b除3的商的和.
展 示
学习目标 预 习 展 示 互 动 生成 达 标
拓 展 谈谈收获
问题3:用代数式表示: (1)甲乙两数和的2倍; (2)甲数的1/3与乙数的1/2的差; (3)甲乙两数的平方和; (4)甲乙两数的和与甲乙两数的差 的积; (5)乙甲两数之和与乙甲两数的差 的积.
达 标
学习目标 预 习 展 示 互 动 生成 达 标
拓 展 谈谈收获
1、用代数式表示: (1) 体校里男生人数占学生总数的 60%,女生人数是a,学生总数是多少? (2) 体校里男生人数是x,女生人数 是y,教练人数与学生人数之比是 1:10,教练人数是多? 2、已知一个长方形的周长是24厘 米,一边是a厘米, 求: (1) 这个长方形另一边的长; (2) 这个长方形的面积.
展 示
学习目标 预 习 展 示 互 动 生成 达 标
问题1: 用代数式表示乙数:
(1) 乙数比x大5;
(2) 乙数比x的2倍小3;
拓 展 谈谈收获
(3) 乙数比x的倒数小7;
(4) 乙数比x大16%
展
学习目标 预 习 展 示 互 动 生成 达 标
示
问题2:用代数式表示: (1) x与y的和;
(2) x的平方与y的立方的差;
成
拓 展 谈谈收获
列代数式应注意的问题: (1) 要分清语言叙述中关键词语的 意义,理清它们之间的数量关系。 如要注意题中的“大”,“小”, “增加”,“减少”,“倍”, “倒数”,“几分之几”等词语与 代数式中的加,减,乘,除的运算 间的关系。 (2) 弄清运算顺序和括号的使用. 一般按“先读先写”的原则列代数
展
学习目标 预 习 展 示 互 动 生成 达 标
示
问题4:用代数式表示:
(1)被3整除得n的数; (2)被5除商m余2的数.
拓 展 谈谈收获
展
学习目标 预 习 展 示 互 动 生成 达 标
示
拓 展 谈谈收获
问题5:设字母a表示一个数,用 代数式表示: (1)这个数与5的和的3倍; (2)这个数与1的差的 1/5 ; (3)这个数的5倍与7的和的一半; (4)这个数的平方与这个数的1/3 的和.
(1)用字母表示数更具有普遍性 . (2) 好记、好写, 比文字表达式 简洁、方便 .
拓 展 谈谈收获
预
学习目标 预 习 展 示 互 动 生成 达 标
习
拓 展 谈谈收获
2、填空: (1)小明100m赛跑时用了ts,那么小 明跑完100m的平均速度是________. (2)长方形的周长是16cm ,一边长为 acm,这个长方形的面积是_______. (3)某校七年级有m名学生,其中女 生人数是全年级学生人数的51%, 则女生人数是_________.
谈谈收获
学习目标 预 习 展 示 互 动 生成 达 标
拓 展 谈谈收获
• 对自己说,你有什么收获! • 对教师说,你有什么疑惑! • 对同学说,你有什么提示!
互 动
学习目标 预 习 展 示 互 动 生成 达 标
拓 展 谈谈收获
问题6:设教室里座位的行数是 m,用代数式表示: (1)教室里每行的座位数比座位 的行数多6,教室里总共有多少 个座位? (2)教室里座位的行数是每行座 位数的2/3 ,教室里总共有多少 个座位?
生
学习目标 预 习 展 示 互 动 生成 达 标
拓 展
学习目标 预 习 展 示 互 动 生成 达 标
拓 展 谈谈收获
1.一种商品每件成本a元,按 成本增加22%定出价格,每 件售价多少元?后来因库存 积压减价,按原价的85%出 售,现售价多少元?每件还 能盈利多少元?
拓 展
学习目标 预 习 展 示 互 动 生成 达 标
拓 展 谈谈收获
2.一个两位数, 它的十位数字 比个位数字大, 如果把十位数 字与个位数字的位置交换, 把 原来的两位数减去新得到的 两位数, 试问所得的差能被9 整除吗? 请说明理由.
大庆65中学创新课堂教学模式
3.2 代数式(2)
学习目标
学习目标 预 习 展 示 互 动 生成 达 标
பைடு நூலகம்拓 展 谈谈收获
学生在了解代数 式概念的基础上,能 把简单的与数量有关 的词语用代数式表示 出来。
预
学习目标 预 习 展 示 互 动 生成 达 标
习
1、我们已经学习了用字母表示 数, 用字母表示数有什么好处?