重力势能和机械能守恒定律

重力势能和机械能守恒定律
重力势能和机械能守恒定律

“重力势能和机械能守恒定律”的典型例题

【例1】如图所示,桌面距地面0.8m,一物

体质量为2kg,放在距桌面0.4m的支架上.

(1)以地面为零势能位置,计算物体具有

的势能,并计算物体由支架下落到桌面过程

中,势能减少多少?

(2)以桌面为零势能位置时,计算物体具有的势能,并计算物体由支架下落到桌面过程中势能减少多少?

【分析】根据物体相对零势能位置的高度,直接应用公式计算即得.

【解】(1)以地面为零势能位置,物体的

高度h1=1.2m,因而物体的重力势能:

Ep1=mgh1=2×9.8×1.2J=23.52J

物体落至桌面时重力势能:

Ep2=mgh2=2×9.8×0.8J=15.68J

物体

重力势能的减少量:

△Ep=Ep1-Ep2=23.52J-15.68J=7.84J

而物体的重力势能:

物体落至桌面时,重力势能的减少量

【说明】通过上面的计算,可以看出,物体的重力势能的大小是相对的,其数值与零势能位置的选择有.而重力势能的变化是绝对的,它与零势能位置的选择无关,其变化值是与重力对物体做功的多少有关.当物体从支架落到桌面时重力做功:

【例2】质量为2kg的物体自高为100m处以5m/s的速度竖直落下,不计空气阻力,下落2s,物体动能增加多少?重力势能减少多少?以地面为重力势能零位置,此时物体的机械能为多少?(g取10m/s2)

【分析】物体下落时,只受重力作用,其加速度a=g,由运动学公式算出2s末的速度和2s内下落高度,即可由定义式算出动能和势能.

【解】物体下落至2s末时的速度为:

2s内物体增加的动能:

2s内下落的高度为:

重力势能的减少量:

此时物体离地面的高度为:

h′=H-h=(100-30)m=70m

以地面为零势能位置时,物体的机械能为:

【说明】抛出后,由于物体只受重力作用,整个运动过程中只有重力做功,物体的机械能守恒.刚抛出时,物体的机械能为:

在下落过程中,重力势能的减少量恰等于动能的增加量,即

△Ek=△Ep

【例3】质量为1.0kg的物体,自空中落下,以8.0m/s2的加速度经A点到达B 点,A、B相距0.75m.若物体在B点时的动能为8.0J,那么通过AB的过程中物体动能的增加量为多少?物体克服阻力做多少功?(取g=10m/s2)

【分析】由于下落的加速度a<g,在下落时一定受到阻力,根据牛顿第二定律,可算出阻力,于是即可得克服阻力的功.已知物体在B点的动能,可算出在B 点的速度,结合运动学公式算出A点的速度后,即可算出动能的增量.

【解】设下落中物体受到的阻力为f,由

mg-f=ma

得f=mg-ma=1.0(10-8)N=2N

物体克服阻力做功:

物体从A落到B的过程中,动能的增加量为:

△Ep=EkB-EkA=8.0J-2.0J=6.0J

【说明】物体从A落到B的过程中,势能减少:

△Ep=mgs=1×10×0.75J=7.5J

它大于物体动能的增加,可见其机械能不守恒.这是由于存在阻力的缘故.势能的减少与动能增加量之差恰等于物体克服阻力做的功,即

△Ep-△Ek=Wf

这也就是从A到B的过程中所减少的机械能.

【例4】如图所示,光滑圆管形轨道AB部分平直,BC部分是处于竖直平面内半径为R的半圆,圆管截面半径r《R,有一质量m,半径比r略小的光滑小球以水平初速v0射入圆管,(1)若要小球能从C端出来,初速v0多大?(2)在小球从C端出来的瞬间,对管壁压力有哪几种典型情况,初速v0各应满足什么条件?

【分析】小球在管内运动过程中,只有重力做功,机械能守恒,要求小球能从C 端射出,小球运动到C点的速度vc>0.根据机械能守恒定律即可算出初速v0.小球从C端射出时可能有三种典型情况:①刚好对管壁无压力;②对下管壁有压力;③对上管壁有压力.同理由机械能守恒可确定需满足的条件.

【解】(1)小球从A端射入后,如果刚好能到达管顶,则vc=0,由机械能守恒

因此,要求小球能从C端出来,必须使vc>0,所以入射速度应满足条件

(2)小球从C端出来的瞬间,可以有三种典型情况:

①刚好对管壁无压力,此时需满足条件

联立得入射速度

②对下管壁有压力,此时相应的入射速度为

③对上管壁有压力,相应的入射速度为

【例5】如图所示,劲度系数k1的轻质弹簧两端分别与质量为m1、m2的物块1、2栓接,劲度系数为k2的轻质弹簧上端与物块2栓接,下端压在桌面(不栓接),整个系统处于平衡状态.现施力将物块1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________.

【分析】设原来两弹簧压缩量分别为x1和x2,由物体的力平衡知

当施力将物块1缓慢上提至下面弹簧刚脱离桌面时,表示下面的弹簧已恢复原长,物块2升高的高度h2=x2,所以在此过程中,物块2的重力势能增加

此时,上面的弹簧受到拉伸,设其伸长量为x'1,由物块2的力平衡条件知,

则物块1在这过程中升高的高度为

所以,物块1的重力势能增加

【例6】关于机械能是否守恒的叙述,正确的是[ ]

A.作匀速直线运动的物体的机械能一定守恒

B.作匀变速运动的物体机械能可能守恒

C.外力对物体做功为零时,机械能一定守恒

D.只有重力对物体做功,物体机械能一定守恒

【分析】机械能守恒的条件是除重力对物体做功外,没有其它外力对物体做功,或其它外力对物体做功的代数和等于零.

当物体作匀速直线运动时,除重力对物体做功外,可能还有其他外力做功.如降落伞在空中匀速下降时,既有重力做功,又有阻力做功,机械能不守恒.

物体作匀变速运动时,可能只有重力对物体做功,如自由落体运动,此时物体的机械能守恒.

因物体所受的外力,指的是包括重力在内的所有外力,当外力对物体做功为零时,可能是处于有介质阻力的状态,如匀速下降的降落伞,所以机械能不一定守恒.【答】B,D.

【例7】某人以v0=4m/s的初速度,抛出一个质量为m的小球,测得小球落地时的速度大小为8m/s,则小球刚抛出时离开地面的高度为多少?取g=10m/

s2.空气阻力不计.

【分析】小球从抛出到落地过程中,不受阻力,只有重力做功,由小球的机械能守恒即可算出离地高度.

【解答】设小球抛出时的高度为h,落地速度为vt,取抛出和落地为始、末两状态,以地面为零势能位置,由机械能守恒定律得:

出结果,尽管答案相同,但是不正确的.这里的小球不一定作直线运动,必须根据机械能守恒求解.

【例8】如图所示,以速度v0=12m/s沿光滑地面滑行的小球,上升到顶部水平的跳板上后由跳板飞出,当跳板高度h多大时,小球飞行的距离s最大?这个距离是多少?(g=10m/s2)

【分析】小球上滑到跳板顶端的过程中,只有重力做功,机械能守恒.从跳板顶飞出,小球作平抛运动.

【解】设小球从跳板顶飞出的速度为v,由机械能守恒(取底部为势能的参考平面)

小球从顶端飞出后作平抛运动,其水平位移为

为了找出使水平位移s最大的条件,对上式作变换得

可见,当满足条件

小球飞出后的水平距离最大,其值为

【例9】图中圆弧轨道AB是在竖直平面内的1/4圆周,在B点,轨道的切线是水平的.一质点自A点从静止开始下滑,不计滑块与轨道间的摩擦和空气阻力,则在质点刚要到达B点时的加速度大小和刚滑过B点时的加速度大小分别为( )

A.0,g B.g,g C.2g,g D.2g,2g

【分析】质点从A到B的下滑过程中,只有重力做功,机械能守恒.取过B点的水平面为零势能面,设轨道半径为R,则有

质点从A到B是作变速圆周运动,当它刚到达B点瞬间的加速度为

联立(1),(2)两式得

质点刚滑过B点,仅受重力作用,其加速度大小为

【答】C.

【说明】必须注意,物体的加速度跟所受外力是一个瞬时关系,一旦外力变化,加速度随即变化.图中质点刚到达B点时,受到轨道向上的弹力和竖直向下的重力作用,产生的加速度指向过B点竖直向上的方向,即指向圆心.刚滑过B 点,轨道支持力为零,仅受重力作用,产生的加速度竖直向下.

物体的速度则由于惯性,力图保持不变,图中质点在刚到达B

【例10】如图1所示,ABC和AD是两上高度相等的光滑斜面,ABC由倾角不同的两部分组成,且AB+BC=AD,两个相同的小球a、b从A点分别沿两侧斜面由静止滑下,不计转折处的能量损失,则滑到底部的先后次序是[ ]]

A.a球先到B.b球先到

C.两球同时到达D.无法判断

【分析】小球沿两斜面下滑过程中,都只有小球的重力做功,机械能守恒,因此,a、b两球滑到底端的速度大小一定相等,即vC=vD.

在AD斜面上取AB′=AB(图2),由于AB部分比AB′部分陡些,小球滑到B点的速度必大于滑到B′点的速度,即

vB>vB′.

因此,两球在AB与AB′段、BC与B′D段上的平均速度的大小必然是

由于对应的斜面长度

AB=AB′,BC=B′D.

所以通过它们的时间长短必然是

tAB<tAB′,tBC<tB′D.

也就是说,沿ABC斜面的小球先滑到底部.

【答】A.

【说明】本题还可以画出v-t图作出更简捷的判断.如图3所示,为沿ABC和AD下滑小球a、b的v-t图.由于AB+BC=AD,则图线下方与t轴间的面积应相等,也就是图中划有斜线的两部分面积相等,显然,两球运动时间必然是ta<tb.

图3

【例11】如图1,一个质量为m的小球拴在全长L的细线上做成一个单摆,把小球从平衡位置O拉至A,使细线与竖直方向成θ角,然后轻轻释放.若在悬点O′的正下方有一颗钉子P,试讨论,钉子在何处时,

(1)可使小球绕钉来回摆动;

(2)可使小球绕钉做圆周运动.

【分析】小球摆动过程中,只有小球的重力做功.当不考虑细线碰钉时的能量损失时,无论小球绕钉来回摆动,或绕钉做圆周运动,小球的机械能都守恒.【解】(1)小球绕钉来回摆动时,只能摆到跟开始位置A等高的地方,因此,钉子P的位置范围只能在过A点的水平线与竖直线OO′的交点上方(图2),即钉子离悬点O′的距离h应满足条件0≤h≤Lcosθ.

(2)设钉子在位置P′时刚好使小球能绕钉做圆周运动,圆半径R=P′O,设小球在最高点C的速度为vc,并规定最低处O为重力势能的零位置(图3),由A、C两位置时的机械能守恒EA=EC,即

又因为刚好能越过C点做圆运动,此时绳中的张力为零,由重力提供向心力,即

所以钉子P′离悬点O′的距离

如果钉子位置从P′处继续下移,则小球将以更大的速度越过圆周的最高点,此时可由绳子的张力补充在最高点时所需的向心力,仍能绕钉子做圆周运动.所以,能绕钉做圆运动时钉子离悬点的距离h′应满足条件

【说明】由本题的解答可知,位置P是小球能绕钉来回摆动的最纸位置;位置P′是小球能绕钉做圆周运动的最高位置.如钉子在PP′之间,则悬线碰钉后,先绕钉做圆运动,然后将在某一位置上转化为斜抛运动.

【例12】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多).在圆管中有两个直径比细管内径略小的小球(可视为质点).A 球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1,m2,R与v0应满足的关系式是______.

【分析】A球运动到最低点时,由外壁对它产生的弹力NA和A球重力m1g的合力作为向心力,即

A球对外壁产生的压力NA′大小等于NA,方向沿半径背离圆心(图1).

要求对圆管的合力为零,B球在最高点时也必须对外壁(不可能是内壁)产生一个等量的压力NB′.因此,B球在最高点有向外壁挤压的作用,由外壁对它产

生的弹力NB和球重m2g的合力作为向心力(图2).设B球在最高点的速度为vB,据向心力公式和机械能守恒有

根据题意NA′=NB′,即要求

【例13】如图所示,半径为r,质量不计的圆盘盘面与地面相垂直,圆心处有一个垂直盘面的光滑水平固定轴O,在盘的最右边缘固定有一个质量为m的小球A,在O点的正下方离O点r/2处固定一个质量也为m的小球B.放开盘让其自由转动,问:

(1)当A球转到最低点时,两小球的重力势能之和减少了多少?

(2)A球转到最低点时的线速度是多少?

(3)在转动过程中半径OA向左偏离竖直方向的最大角度是多少?

【分析】两小球势能之和的减少,可选取任意参考平面(零势能位置)进行计算.由于圆盘转动过程中,只有两个小球重力做功,根据机械能守恒即可列式算出A 球的线速度和半径OA最大偏角.

【解】(1)以通过O的水平面为零势能位置,开始时和A球转到最低点时两球重力势能之和分别为

∴两球重力势能之和减少

(2)由于圆盘转动过程中,只有两球重力做功、机械能守恒,因此,两球重力势能之和的减少一定等于两球动能的增加.设A球转到最低点时,A、B两球的速度分别为vA、vB,则

因A、B两球固定在同一个圆盘上,转动过程中的角速度(设为ω)相同.由

得vA=2vB.

代入公式,得

(3)设半径OA向左偏离竖直线的最大角度为θ如图,该位置的机械能和开始时机械能分别为

由机械能守恒定律E1=E3,即

即2cosθ=1+sinθ.

两边平方得

4(1-sin2θ)=1+sin2θ+2sinθ,5sin2θ+2sinθ-3=0,

【例14】一个质量为m的木块,从半径为R、质量为M的1/4光滑圆槽顶端由静止滑下,在槽被固定和可沿着光滑平面自由滑动两情况下,如图,木块从槽口滑出时的速度大小之比为[ ]

【分析】槽固定时,木块下滑过程中只能有重力做功,木块的机械能守恒,木块在最高处的势能全部转化为滑出槽口时的动能.由

得木块滑出槽口的速度

槽可动时,当木块开始下滑到脱离槽口的过程中,对木块和槽所组成的系统,水平方向不受外力,水平方向的动量守恒.设木块滑出槽口时的速度为v2,槽的速度为u,则

mv2+Mu=0

又木块下滑时只有重力做功,机械能守恒,木块在最高处的势能转化为木块滑出槽口时的动能和圆槽的动能,即

联立两式得木块滑出槽口的速度

因此,两情况下滑出槽口的速度之比

【答】D.

【例15】如图,长为L的光滑平台固定在地面上,平台中央有两小物体A和B,彼此接触靠在一起,A的上表面有一半径为R(R L)、顶端距台面高h的圆槽,槽顶有一小物体C,A、B、C三者质量均为m,现使物体C由静止沿圆槽下滑,且运动过程中它始终与圆槽接触,求

1.A和B刚分离时,B的速度;

2.A和B分离后,C能达到距平台的最大高度.

【分析】物体C下滑时,C对A作用力的水平分力向右,推动A、B一起向右加速运动.当C滑至圆槽底部时,C对A作用力的水平分力为零,A、B两者向右的加速过程结束,速度达到最大.以后,C将沿圆槽上滑,C对A作用力的水平分力向左,A将开始做减速运动,而B则沿平台匀速向右.因此,C滑至圆槽底部的时刻就是A、B即将分离的时刻.

把A、B、C三个物体组成的系统作为研究对象,C下滑过程中,系统在水平方向不受外力,动量守恒.同时,整个系统无重力和弹力以外的力作功,机械能守恒.联合应用这两条守恒定律,即可得解.

【解】规定以水平向右为正方向,由C刚开始滑下和C滑至圆槽底部两时刻的动量守恒,

0=mvA+mvB-mvC.(1)

又由于整个系统无重力和弹力以外的力作功,机械能守恒,当取槽底为零势能位置时,

且vA=vB.

由(1)、(3)两式,得vC=2vB,代入(2)式,即得

2.C沿圆槽上滑,至某一最高点时,A、C两者无相对运动,设此时共同速度为v,其方向为水平向左,仍以A+B+C为研究对象,由C刚开始滑下至C、A两者相对静止两时刻动量守恒(此时B以速度vB沿平台匀速右滑),则

0=mvB-2mv.(4)

又由整个系统的机械能守恒,当取平台为零势能位置时,则

【说明】确定A、B两物体何时分离,是解答前半题的关键,此外在应用动量守恒定律时,可始终以A+B+C为研究对象,其初动量恒为零,列式较为简单.【例16】在光滑的水平面上有运动的物体A,其质量为mA,动能为Eka,另有静止的物体B,其质量为mB.在物体B的一个侧面固定一个劲度系数为k的轻质弹簧.如图所示.若物体A冲向弹簧并推动物体B,且相互作用过程中没有能损耗,问

(1)mA、mB之间的关系满足什么条件,物体A传给B的动能最大?最大值是多少?

(2)如果相互作用后,物体A、B的速率相等,那么mA∶mB=?

(3)如果相互作用后,物体A、B的动能相等,那么mA∶mB=?

(4)相互作用过程中,弹簧的最大压缩量为多少?

【分析】取物体A和B(包括弹簧)组成的系统为研究对象,物体A、B相互作用的过程中,所受到的合外力为零,因此,系统的动量守恒,且题目给定相互作用过程中没有能量损耗,这就意味着系统的机械能守恒.在运用动量守恒和机械能守恒建立方程时,要注意选择合适的两个时刻.(1)~(3)问涉及相互作用结束时物体的动能、速率,要选择相互作用始、末两状态建立方程.而(4)问中要求解弹簧的最大压缩量,当然此时刻并非是弹簧作用的结束,但可以选此时刻和初始时刻,来建立方程求解相关问题.

【解】设物体A、B相互作用前,A的速度是v0,作用后A、B的速度分别为vA′和vB′.

据动量守恒定律有

据机械能守恒定律有

联立(1)、(2)两式解得

(1)物体A传给B的动能,即相互作用后B的动能为

由此可知,当mA=mB时,E′KB取最大值,且最大值为EKA,

若vA′=vB′时,有

解得,-mA=mB,物体的质量不可能有负值,此解无意义.

若vA′=vB′时,有

解得mB=3mA,即mA∶mB=1∶3.

vA′和vB′后整理得

两解都合题意.

(4)当弹簧压缩量最大时,物体A、B间没有相对运动,即A和B的速度相等,若其速度为v.据动量守恒和机械能守恒有

联立(3)、(4)两式解得

【说明】

(1)数学是解决物理问题的工具,通常物理问题中求最大值的一类习题,实质上就是数学上求函数极值的问题.为此,第(1)问中,首先要写出动能E′KB 的函数表达式,继而根据函数的性质确定其极值.

(2)用数学方法求出的解具有更普遍的意义,这些解是否符合题意,且明确的物理意义,还必须加以分析,本题(2)问中,有一个解出现了“负质量”,这在物理中是不存在的,必须舍去.但在(3)问中,通过解方程也得到两个解,而这两个解则都合题意,则应保留.

(3)在解第(4)问时,建立动量守恒和机械能守恒的方程时,选择了相互作用的初始时刻和相互作用过程中间的一个时刻,而不是相互作用末时刻.这正是运用了动量守恒和机械能守恒是对全过程而言的性质.

[例17]小球A、B分别固定在长度均为L的轻线、轻杆的下端,杆的上端分别固定于O点,且均能绕O点无摩擦地转动。要求小球能绕过最高点,求小球在最低点的最小速度v1、v2各为多大?

[分析]线或杆对小球的弹力,在小球绕O点做圆周运动的过程中,始终与瞬时速度相垂直,所以弹力不做功,只有重力作功,小球的机械能守恒,要注意到线与杆对球约束的差异,线可受拉力不能受压力,所以A球达最高点线的拉力的最小值为零,线不可能给球以支持力,球速不能小于;杆可受拉力也可受压力,所以B球达最高点杆可以给球以支持力,球速允许等于零。

[解]要求A球作圆周运动达到最高点,并具有最小的速度,则要求线处于要松而又未松的临界状态,即拉球的弹力等于零的状态。A球在最高点受的重力提供向心力

由机械能守恒定律,设球的最低点重力势能为零,即

要求B球达到最高点,且具有最小的速度,杆可以给球支持力F,当F=mg时,v=0,由机械能守恒定律,

[说明]通过本例可看到线和杆对球约束的不同,反映到达最高点临界条件不同。

[例18]在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”,这类反应的前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到

最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失)。已知A、B、C三球的质量为均为m,

(1)求弹簧长度刚被锁定后A球的速度。

(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能

[分析]全部运动过程可分阶段来研究。运用动量守恒定律时,要选好相互作用的系统,注意整个过程中,能量的转化。

[解]

(1)设C球与B球粘连成D时,D的速度为v1,由动量守恒,有

mv0=(m+m)v1 ①

当弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒,有

2mv1=3mv2 ②

由①、②两式得A的速度

(2)设弹簧长度被锁定后,贮存在弹簧中的势能为EP,由能量守恒,有

撞击P后,A与D的动能都为零,解除锁定后,当弹簧恢复到自然长度时,势能全部转变成D的动能,设D的速度为v3,则有

以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长,设此时的速度为v4,由动量守恒,有

2mv3=3mv4 ⑥

当弹簧伸到最长时,其势能最大,设此势能为EP’,由能量守恒,有

重力势能和机械能守恒定律的典型例题

“重力势能和机械能守恒定律”的典型例题 【例1】如图所示,桌面距地面0.8m,一物 体质量为2kg,放在距桌面0.4m的支架上. (1)以地面为零势能位置,计算物体具有的 势能,并计算物体由支架下落到桌面过程中, 势能减少多少? (2)以桌面为零势能位置时,计算物体具有的势能,并计算物体由支架下落到桌面过程中势能减少多少? 【分析】根据物体相对零势能位置的高度,直接应用公式计算即得. 【解】(1)以地面为零势能位置,物体的高 度h1=1.2m,因而物体的重力势能: Ep1=mgh1=2×9.8×1.2J=23.52J 物体落至桌面时重力势能: E p2=mgh2=2×9.8×0.8J=15.68J 物体重力势能的减少量: △E p=E p1-Ep2=23.52J-15.68J=7.84J

而物体的重力势能: 物体落至桌面时,重力势能的减少量 【说明】通过上面的计算,可以看出,物体的重力势能的大小是相对的,其数值 与零势能位置的选择有.而重力势能的变化是绝对的,它与零势能位置的选择无关,其变化值是与重力对物体做功的多少有关.当物体从支架落到桌面时重力做功: 【例2】质量为2kg的物体自高为100m处以5m/s的速度竖直落下,不计空气 阻力,下落2s,物体动能增加多少?重力势能减少多少?以地面为重力势能零位置,此时物体的机械能为多少?(g取10m/s2) 【分析】物体下落时,只受重力作用,其加速度a=g,由运动学公式算出2s末的速度和2s内下落高度,即可由定义式算出动能和势能. 【解】物体下落至2s末时的速度为: 2s内物体增加的动能: 2s内下落的高度为:

第七章_机械能守恒定律知识点总结

机械能知识点总结 一、功 1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对 物体做了功。 2条件:. 力和力的方向上位移的乘积 3公式:W=F S cos θ W ——某力功,单位为焦耳(J ) F ——某力(要为恒力) ,单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m ) θ——力与位移的夹角 4功是标量,但它有正功、负功。某力对物体做负功,也可说成“物体克服某力做功”。 功的正负表示能量传递的方向,即功是能量转化的量度。 当)2 ,0[π θ∈时,即力与位移成锐角,力做正功,功为正; 当2 π θ= 时,即力与位移垂直,力不做功,功为零; 当],2 ( ππ θ∈时,即力与位移成钝角,力做负功,功为负; 5功是一个过程所对应的量,因此功是过程量。 6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。 7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。 即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ 没有做功的情况一般有以下几种: (1)劳而无功。如人用100N 的力推石头没动。 (2)不劳无功。如在光滑水平面上的物体靠惯性做匀速直线运动。 (3)垂直无功。当物体受力的方向与该物体的运动方向垂直时,如手提水桶在水平面上匀速前进。 例1、下列情况中,有力对物体做功的是( ) A 、用力推车,车不动 B 、小车在光滑的水平面上匀速运动 C 、举重运动员举着杠铃沿着水平方向走了1m. D 、苹果从树上落下 例2、在100m 深的矿井里,每分钟积水9m 3 ,要想不让水留在矿井里,应该用至少多大功率的水泵抽水? 解:每分钟泵抽起水的重力G=gV 水ρ,水泵克服重力做功gVh W 水ρ=,完成这些功所需时间秒60=t ∴t gVh t W p 水ρ= = =60 100 98.91013???? =147000W=147(kW ) 二、功率 1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。 2公式:t W P = (平均功率) θυcos F P =(平均功率或瞬时功率) 3单位:瓦特W 4分类: 额定功率:指发动机正常工作时最大输出功率 实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。 5应用: (1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F = 时,速度不再增大达到最大值m ax υ,则f P /max =υ。 (2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m a x υ,则 f P /m a x =υ。 【例1】下列关于功率的说法正确的是( ) A.物体做功越多,功率越大 B.物体做功时间越短,功率越大 C.物体做功越快,功率越大 D.物体做功时间越长,功率越大 功率大,做功一定快,但做功不一定多(需控制时间)。 三、动能 1概念:物体由于运动而具有的能量,称为动能。 2动能表达式:22 1 υm E K = 3动能定理(即合外力做功与动能关系):12K K E E W -= 4理解:①合F 在一个过程中对物体做的功,等于物体在这个过程中动能的变化。 ②合F 做正功时,物体动能增加;合F 做负功时,物体动能减少。 ③动能定理揭示了合外力的功与动能变化的关系。 4适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。 5应用动能定理解题步骤: a 确定研究对象及其运动过程 b 分析研究对象在研究过程中受力情况,弄清各力做功 c 确定研究对象在运动过程中初末状态,找出初、末动能 d 列方程、求解。 四、势能:相互作用的物体凭借其位置而具有的能量叫势能,势能是系统所共有的。 一)重力势能 1定义:物体由于被举高而具有的能,叫做重力势能。 2公式:mgh E P = h ——物体具参考面的竖直高度 3参考面 a 重力势能为零的平面称为参考面; b 选取:原则是任意选取,但通常以地面为参考面 若参考面未定,重力势能无意义,不能说重力势能大小如何 选取不同的参考面,物体具有的重力势能不同,但重力势能改变与参考面的选取无关。 4标量,但有正负。 重力势能为正,表示物体在参考面的上方; 重力势能为负,表示物体在参考面的下方; 重力势能为零,表示物体在参考面的上。 5单位:焦耳(J ) 6重力做功特点:物体运动时,重力对它做的功之跟它的初、末位置有关,而跟物体运动的路径无关。 7重力做功与重力势能的关系:21P P G E E W -=

高一物理知识讲解 机械能守恒定律 提高 专题含答案解析

机械能守恒定律 【学习目标】 1.明确机械能守恒定律的含义和适用条件. 2.能准确判断具体的运动过程中机械能是否守恒. 3.熟练应用机械能守恒定律解题. 4.知道验证机械能守恒定律实验的原理方法和过程. 5.掌握验证机械能守恒定律实验对实验结果的讨论及误差分析. 【要点梳理】 要点一、机械能 要点诠释: (1)物体的动能和势能之和称为物体的机械能.机械能包括动能、重力势能、弹性势能。 (2)重力势能是属于物体和地球组成的重力系统的,弹性势能是属于弹簧的弹力系统的,所以,机械能守恒定律的适用对象是系统. (3)机械能是标量,但有正、负(因重力势能有正、负). (4)机械能具有相对性,因为势能具有相对性(须确定零势能参考平面),同时,与动能相关的速度也具有相对性(应该相对于同一惯性参考系,一般是以地面为参考系),所以机械能也具有相对性. 只有在确定了参考系和零势能参考平面的情况下,机械能才有确定的物理意义. (5)重力势能是物体和地球共有的,重力势能的值与零势能面的选择有关,物体在零势能面之上的势能是正值,在其下的势能是负值.但是重力势能差值与零势能面的选择无关. (6)重力做功的特点: ①重力做功与路径无关,只与物体的始、未位置高度筹有关. ②重力做功的大小:W =mgh . ③重力做功与重力势能的关系:P G W E =-△. 要点二、机械能守恒定律 要点诠释: (1)内容:在只有重力或弹力做功的物体系统内动能和势能可以相互转化,但机械能的总量保持不变,这个结论叫做机械能守恒定律. (2)守恒定律的多种表达方式. 当系统满足机械能守恒的条件以后,常见的守恒表达式有以下几种: ①1122k P k P E E E E +=+,即初状态的动能与势能之和等于末状态的动能与势能之和. ②P k E E =-△△或P k E E =-△△,即动能(或势能)的增加量等于势能(或动能)的减少量. ③△E A =-△E B ,即A 物体机械能的增加量等于B 物体机械能的减少量. 后两种表达式因无需选取重力势能零参考平面,往往能给列式、计算带来方便. (3)机械能守恒条件的理解. ①从能量转化的角度看,只有系统内动能和势能相互转化,无其他形式能量之间(如内能)的转化 ②从系统做功的角度看,只有重力和系统内的弹力做功,具体表现在: a .只有重力做功的物体,如:所有做抛体运动的物体(不计空气阻力),机械能守恒. b .只有重力和系统内的弹力做功.如图(a)、(b)、右图所示.

第4章 功和能 机械能守恒定律习题

第4章 功和能 机械能守恒定律习题 4-5 如图所示,A 球的质量为m ,以速度 v 飞行,与一静止的球B 碰撞后,A 球 的速度变为1 v ,其方向与 v 方向成90°角。B 球的质量为5m ,它被碰撞后以速 度2 v 飞行,2 v 的方向与 v 间夹角为arcsin(35)θ=。求: (1)两球相碰后速度1 v 、2 v 的大小; (2)碰撞前后两小球动能的变化。 解:(1)由动量守恒定律 12A A B m v m v m v =+ 即 12 12255c o s 5s i n m v i m v j m v m v j m v i m v j θθ=-+=-++ 于是得 2125cos 5sin mv mv mv mv θθ=??=? 21215cos 4335sin 5454v v v v v v v θθ= ====??= (2)A 球动能的变化 222 221111317()2224232 kA E mv mv m v mv mv ?=-=-=- B 球动能的变化 2222111505()22432 kB B E m v m v mv ?=-=?=

碰撞过程动能的变化 2222 12111222232 k B E mv m v mv mv ?=+-=- 或如图所示,A 球的质量为m ,以速度u 飞行,与一静止的小球B 碰撞后,A 球的速度变为1v 其方向与u 方向成090,B 球的质量为5m ,它被撞后以速度2v 飞行,2v 的方向与u 成θ (5 3arcsin =θ)角。求: (1)求两小球相撞后速度12υυ、的大小; (2)求碰撞前后两小球动能的变化。 解 取A 球和B 球为一系统,其碰撞过程中无外力作用,由动量守恒定律得 水平: 25cos mu m υθ= (1) 垂直: 2105sin m m υθυ=- (2) 联解(1)、(2)式,可得两小球相撞后速度大小分别为 134 u υ= 214u υ= 碰撞前后两小球动能的变化为 22232 7214321mu mu u m E KA -=-??? ??=? 22 32504521mu u m E KB =-?? ? ????=? 4- 6在半径为R 的光滑球面的顶点处,一物体由静止开始下滑,则物体与顶点的高度差h 为多大时,开始脱离球面? 解:根据牛顿第二定律 2 2c o s c o s v m g N m R v N m g m R θθ-==- 物体脱离球面的条件是N=0,即 2 c o s 0v m g m R θ-= 由能量守恒 图

机械能守恒定律高考专题复习

第八章机械能守恒定律专题 考纲要求: 1.弹性势能、动能和势能的相互转化——一Ⅰ级 2.重力势能、重力做做功与重力势能改变的关系、机械能守恒定律——一Ⅱ级 3.实验 验证机械能守恒定律 知识达标: 1.重力做功的特点 与 无关.只取决于 2 重力势能;表达式 (l )具有相对性.与 的选取有关.但重力势能的改变与此 (2)重力势能的改变与重力做功的关系.表达式 .重力做正功时. 重力势能 .重力做负功时.重力势能 . 3.弹性势能;发生形变的物体,在恢复原状时能对 ,因而具有 . 这种能量叫弹性势能。弹性势能的大小跟 有关 4.机械能.包括 、 、 . 5.机械能守恒的条件;系统只 或 做功 6 机械能守恒定律应用的一般步骤; (1)根据题意.选取 确定研究过程 (2)明确运动过程中的 或 情况.判定是否满足守恒条件 (3)选取 根据机械能守恒定律列方程求解 经典题型: 1.物体在平衡力作用下的运动中,物体的机械能、动能、重力势能有可能发生的是 A 、机械能不变.动能不变 B 动能不变.重力势能可变化 C 、动能不变.重力势能一定变化 D 若重力势能变化.则机械能变化 2.质量为m 的小球.从桌面上竖直抛出,桌面离地高为h .小球能到达的离地面高度为H , 若以桌面为零势能参考平面,不计空气气阻力 则小球落地时的机械能为 A 、mgH B .mgh C mg (H +h ) D mg (H-h ) 3.如图,一小球自A 点由静止自由下落 到B 点时与弹簧接触.到C 点时弹簧被压缩到最 短.若不计弹簧质量和空气阻力 在小球由A -B —C 的运动过程中 A 、小球和弹簧总机械能守恒 B 、小球的重力势能随时间均匀减少 C 、小球在B 点时动能最大 D 、到C 点时小球重力势能的减少量等于弹簧弹性势能的增加量 4、如图,固定于小车上的支架上用细线悬挂一小球.线长为L .小车以速度V 0做匀 速直线运动,当小车突然碰到障障碍物而停止运动时.小球上升的高度的可能值是. A. 等于g v 202 B. 小于g v 202 C. 大于g v 202 D 等于2L A B C

《机械能守恒定律》单元测试题及答案

《机械能守恒定律》单元测试题 一、选择题。(本大题共有12小题,每小题4分,共48分。其中,1~8题为单选题,9~12题为多选题) 1、下列说法正确的是( ) A 、一对相互作用力做功之和一定为零 B 、作用力做正功,反作用力一定做负功 C 、一对平衡力做功之和一定为零 D 、一对摩擦力做功之和一定为负值 2、如图所示,一块木板可绕过O 点的光滑水平轴在竖直平面内转动,木板上放有一木块, 木板右端受到竖直向上的作用力F ,从图中实线位置缓慢转动到虚线位置,木块相对木板不 发生滑动.则在此过程中( ) A .木板对木块的支持力不做功 B .木板对木块的摩擦力做负功 C .木板对木块的摩擦力不做功 D .F 对木板所做的功等于木板重力势能的增加 3、三个质量相同的物体以相同大小的初速度v 0在同一水平面上分别进行竖直上抛、沿光滑斜面上滑和斜上抛.若不计空气阻力,它们所能达到的最大高度分别用H 1、H 2和H 3表示,则( ) A .H 1=H 2=H 3 B .H 1=H 2>H 3 C .H 1>H 2>H 3 D .H 1>H 2=H 3 4、如图所示,质量为m 的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F 时,转动半径为R ,当拉力逐渐减小到F 4时,物体仍做匀速圆周运动,半径 为2R ,则外力对物体所做功的绝对值是( ). A.FR 4 B. 3FR 4 C.5FR 2 D .0 5、质量为m 的物体,从静止出发以g /2的加速度竖直下降h ,下列几种说法正确的是( ) ①物体的机械能增加了 21mg h ②物体的动能增加了2 1 mg h ③物体的机械能减少了2 1 mg h ④物体的重力势能减少了mg h A .①②③ B .②③④ C .①③④ D .①②④ 6、如图所示,重10 N 的滑块在倾角为30°的斜面上,从a 点由静止下滑,到b 点接触到一个轻弹簧。滑块压缩弹簧到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点,已知ab =0.8m ,bc =0.4m ,那么在整个过程中叙述不正确的是( ) A .滑块动能的最大值是6 J B .弹簧弹性势能的最大值是6 J C .从c 到b 弹簧的弹力对滑块做的功是6 J D .滑块和弹簧组成的系统整个过程机械能守恒

机械能守恒定律

机械能守恒定律 一、教法建议 抛砖引玉 我们建议:本单元的数学采用下述的三个步骤顺序进行 第一步:通过演示实验使学生认识到机械能的转化与守恒是客观存在的。 演示的项目可以选用下列一些内容: ①将小球竖直上抛——让学生观察动能转化为重力势能的过程;当小球达到最高点后自由落下——让学生观察重力势能转化为动能的过程。 ②用细绳拴小球构成“单摆”,使单摆往复摆动——让学生观察摆球在竖直面内沿圆弧线摆动过程中重力势能与动能之间的交替转化。 ③旋动“麦克斯韦滚摆”——使学生观察“滚摆”的重力热能与动能之间的交替转化。在此过程中既有因滚摆重心上下变化的移动动能的变化,也有滚摆绕轴的转动动能的变化,可以开阔学生的眼界,提高学生的兴趣,但不必对其中的转动动能作定量讲述。(注:在很多中学的物理实验室中都有“麦克斯韦滚摆”这种数学仪器。如果没有,借一成品进行仿制也不很困难。) ④拨动“弹簧振子”——使学生观察弹性势能与动能之间的相互转化。不必对弹性势能作定量的讲述。 作这些演示实验的目的是为了使学生认识到:“机械能守恒定律”是在科学实验的基础上总结出来的,是客观存在的,并不是单纯依靠数理推导得出的。 第二步:在“功能原理”的基础上,推导出“机械能守恒定律”的数学表达形式,并说明此定律成立的条件。 在本章第二单元中,我们导出“功能原理“最简单的数学表达形式: W F =ΔE 在此基础上,我们就可以导出下面的“机械能守恒定律”的最简单的数学表达形式: 当W F =0时——定律的条件 则ΔE=0——定律的结论 这种表达形式虽然简单,但是不便于应用,因此我们可以再写出本章第二单元中导出的“功能原理”的展开形式: ?? ? ??+-??? ??+=-02022121mgh mv mgh mv fs Fs i i 将W F =Fs-fs 代入上式可得: ?? ? ??+-??? ??+=02022121mgh mv mgh mv W i i F 在此基础上,我们就可以导出“机械能守恒定律”的展开形式: 当W F =0时——定律的条件 则 02022 121mgh mv mgh mv t i +=+ (注:关于W F =0的物理意义,我们将在后面“指点迷津”中作专题说明。) 第三步:通过例题和习题,使学生更深入具体地理解定律的物理意义,并能正确灵活地用于解答有关的物理问题。 我们将在后面的“学海导航”中讲述少量的例题,并在“智能显示”中提供大量的习题。请同学们不要先看答案,而应独立思考,求解以后再进行核对,并从中总结出思维方法来。 指点迷津 1.W F =0的物理意义是什么?在W F 中包括什么?不包括什么? 首先说明:这个论题有些超过了课本中讲述的内容,但是对于物理基础较好的学生是很有益处的,可以提高他们的理解能力;对于物理基础较差的学生也可作尝试性阅读,若感觉困难,可以不学。 在本章第二单元的推导过程和专题论述中,同学们已经知道:“功能原理”中的W F 是不包含重力做功W G 的。因此W F =0的意义就有下列两种说法(注意:说法虽不同,但本质相同):

机械能附其守恒定律知识点总结与题型归纳

功和能、机械能守恒定律 第1课时功功率 考点1.功 1.功的公式:W=Fscosθ 0≤θ< 90°力F对物体做正功, θ= 90°力F对物体不做功, 90°<θ≤180°力F对物体做负功。 特别注意:①公式只适用于恒力做功②F和S是对应同一个物体的; ③某力做的功仅由F、S决定, 与其它力是否存在以及物体的运动情况都无关。 2.重力的功:W =mgh ——只跟物体的重力及物体移动的始终位置的高度差有关,跟移动的路径无关。G 3.摩擦力的功(包括静摩擦力和滑动摩擦力) 摩擦力可以做负功,摩擦力可以做正功,摩擦力可以不做功, 一对静摩擦力的总功一定等于0,一对滑动摩擦力的总功等于 - fΔS 4.弹力的功 (1)弹力对物体可以做正功可以不做功,也可以做负功。 、 1/2 kx(xx(2)弹簧的弹力的功——W = 1/2 kx –2211合力的功——有22为弹簧的形变量) 两种方法:5. )先求出合力,然后求总功,表达式为(1 θS ×cosΣΣW=F×)合力的功等于各分力所做功的代数和,即(2 +WW+W+……ΣW=312变力做功: 基本原则——过程分割与代数累积6. E求之;合1)一般用动能定理W=Δ(K , 过程无限分小后,可认为每小段是恒力做功(2)也可用(微元法)无限分小法来求. 图线下的“面积”计算F-S(3)还可用FSFW?SF对 , 的平均作用力4)(或先寻求做,做功意味着能量的转移与转化,7.做功意义的理解问题:解决功能问题时,把握“功是能量转化的量度”这一要点 ,相应就有多少能量发生转移或转化多少功图象如图所示。下列表述正确的是物体在合外力作用下做直线运动的v一t1.例内,合外力做正功0—1s.在A B.在0—2s内,合外力总是做负功C.在1—2s内,合外力不做功内,合外力总是做正功3s —0.在D. 考点2.功率 W?P,所求出的功率是时间定义式:t内的平均功率。 1.t2.计算式:P=Fvcos θ , 其中θ是力F与速度v间的夹角。用该公式时,要求F为恒力。 (1)当v为即时速度时,对应的P为即时功率;

高三物理机械能守恒定律测试题及答案

高三物理机械能守恒定律测试题及答案 1.下列说法正确的是 ( ) A .如果物体(或系统)所受到的合外力为零,则机械能一定守恒 B .如果合外力对物体(或系统)做功为零,则机械能一定守恒 C .物体沿光滑曲面自由下滑过程中,机械能一定守恒 D .做匀加速运动的物体,其机械能可能守恒 2.如图所示,木板OA 水平放置,长为L ,在A 处放置一个质量为m 的物体,现绕O 点缓 慢抬高到A '端,直到当木板转到与水平面成α角时停止转动.这时物体受到一个微小的干 扰便开始缓慢匀速下滑,物体又回到O 点,在整个过程中( ) A .支持力对物体做的总功为αsin mgL B .摩擦力对物体做的总功为零 C .木板对物体做的总功为零 D .木板对物体做的总功为正功 3.静止在粗糙水平面上的物块A 受方向始终水平向右、大小先后为F 1、F 2、F 3的拉力作用做直线运动,t =4s 时停下,其速度—时间图象如图所示,已知物块A 与水平面间的动摩擦因数处处相同,下列判断正确的是( ) A .全过程中拉力做的功等于物块克服摩擦力做的功 B .全过程拉力做的功等于零 C .一定有F 1+F 3=2F 2 D .可能有F 1+F 3>2F 2 4.质量为m 的物体,由静止开始下落,由于空气阻力,下落的加速度为 g 5 4,在物体下落 h 的过程中,下列说法正确的是 ( ) A .物体动能增加了 mgh 54 B .物体的机械能减少了 mgh 54 C .物体克服阻力所做的功为mgh 51 D .物体的重力势能减少了mgh 5.如图所示,木板质量为M ,长度为L ,小木块的质量为m ,水平地面光滑,一根不计质量的轻绳通过定滑轮分别与M 和m 连接,小木块与木板间的动摩擦因数为μ.开始时木块静止在木板左端,现用水平向右的力将m 拉至右端,拉力至少做功为 ( )

高中物理机械能守恒定律知识点总结

高中物理机械能守恒定律知识点总结

高中物理机械能守恒定律知识点总结(一) 一、功 1.公式和单位:,其中是F和l的夹角.功的单位是焦耳,符号是J. 2.功是标量,但有正负.由,可以看出: (1)当0°≤<90°时,0<≤1,则力对物体做正功,即外界给物体输送能量,力是动力; (2)当=90°时,=0,W=0,则力对物体不做功,即外界和物体间无能量交换. (3)当90°<≤180°时,-1≤<0,则力对物体做负功,即物体向外界输送能量,力是阻力.3、判断一个力是否做功的几种方法 (1)根据力和位移的方向的夹角判断,此法常用于恒力功的判断,由于恒力功W=Flcosα,当α=90°,即力和作用点位移方向垂直时,力做的功为零. (2)根据力和瞬时速度方向的夹角判断,此法常用于判断质点做曲线运动时变力的功.当力的方向和瞬时速度方向垂直时,作用点在力的方向上位移是零,力做的功为零. (3)根据质点或系统能量是否变化,彼此是否有能量的转移或转化进行判断.若有能量的变化,或系统内各质点间彼此有能量的转移或转化,则必定有力做功. 4、各种力做功的特点 (1)重力做功的特点:只跟初末位置的高度差有关,而跟运动的路径无关. (2)弹力做功的特点:对接触面间的弹力,由于弹力的方向与运动方向垂直,弹力对物体不做功;对弹簧的弹力做的功,高中阶段没有给出相关的公式,对它的求解要借助其他途径如动能定理、机械能守恒、功能关系等. (3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关,它可以做负功,也可以做正功,做正功时起动力作用.如用传送带把货物由低处运送到高处,摩擦力就充当动力.摩擦力

机械能守恒定律应用中的几种模型

机械能守恒定律应用中的几种模型 机械能守恒定律属于教学中的重点知识,在实际问题中我们如果能正确建立几种典型的机械能守恒的模型,将有利于对此类问题的分析和解决. (1)轻连绳模型 【典例1】如图所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计摩擦,系统由静止开始 运动过程中(). A.M、m各自的机械能分别守恒 B.M减少的机械能等于m增加的机械能C.M减少的重力势能等于m增加的重力势能 D.M和m组成的系统机械能守恒 解析M下落过程中,绳的拉力对M做负功,M的机械能减少;m上升过程,绳的拉力对m做正功,m的机械能增加,A错误;

对M、m组成的系统,机械能守恒,易得B、D正确;M减少的重力势能并没有全部用于m重力势能的增加,还有一部分转变成M、m的动能,所以C错误. 答案BD 点评:此类问题要认清物体的运动过程,注意物体运动到最高点或最低点时速度相同。 (2)轻连杆模型 【典例2】质量分别为m和M(其中M=2m)的两个小球P和Q,中间用轻质杆固定连接,在杆的中点O处有一个固定转轴,如图所示.现在把杆置于水平位置后自由释放,在Q球顺时针摆动到最低位置的过程中,下列 有关能量的说法正确的是(). A.Q球的重力势能减少、动能增加,Q球和地球组成的系统机械能守恒 B.P球的重力势能、动能都增加,P球和地球组成的系统机械能不守恒 C.P球、Q球和地球组成的系统机械能守恒

D.P球、Q球和地球组成的系统机械能不守恒 解析Q球从水平位置下摆到最低点的过程中,受重力和杆的作用力,杆的作用力是Q 球运动的阻力(重力是动力),对Q球做负功;P球是在杆的作用下上升的,杆的作用力是动力(重力是阻力),对P球做正功.所以,由功能关系可以判断,在Q球下摆过程中,P球重力势能增加、动能增加、机械能增加,Q球重力势能减少、机械能减少;由于P球和Q球整体只有重力做功,所以系统机械能守恒.本题的正确答案是B、C. 答案BC 点评:此类问题应注意在运动过程中各个物体之间的角速度、线速度的关系. (3)轻弹簧模型 【典例3】 如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上

高中物理机械能守恒定律知识点总结

高中物理机械能守恒定律知识点总结(一) 一、功 1.公式和单位:,其中是F和l的夹角.功的单位是焦耳,符号是J. 2.功是标量,但有正负.由,可以看出: (1)当0°≤<90°时,0<≤1,则力对物体做正功,即外界给物体输送能量,力是动力; (2)当=90°时,=0,W=0,则力对物体不做功,即外界和物体间无能量交换. (3)当90°<≤180°时,-1≤<0,则力对物体做负功,即物体向外界输送能量,力是阻力.3、判断一个力是否做功的几种方法 (1)根据力和位移的方向的夹角判断,此法常用于恒力功的判断,由于恒力功W=Flcosα,当α=90°,即力和作用点位移方向垂直时,力做的功为零. (2)根据力和瞬时速度方向的夹角判断,此法常用于判断质点做曲线运动时变力的功.当力的方向和瞬时速度方向垂直时,作用点在力的方向上位移是零,力做的功为零. (3)根据质点或系统能量是否变化,彼此是否有能量的转移或转化进行判断.若有能量的变化,或系统内各质点间彼此有能量的转移或转化,则必定有力做功. 4、各种力做功的特点 (1)重力做功的特点:只跟初末位置的高度差有关,而跟运动的路径无关. (2)弹力做功的特点:对接触面间的弹力,由于弹力的方向与运动方向垂直,弹力对物体不做功;对弹簧的弹力做的功,高中阶段没有给出相关的公式,对它的求解要借助其他途径如动能定理、机械能守恒、功能关系等. (3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关,它可以做负功,也可以做正功,做正功时起动力作用.如用传送带把货物由低处运送到高处,摩擦力就充当动力.摩擦力

的大小不变、方向变化(摩擦力的方向始终和速度方向相反)时,摩擦力做功可以用摩擦力乘以路程来计算,即W=F·l. (1)W总=F合lcosα,α是F合与位移l的夹角; (2)W总=W1+W2+W3+?为各个分力功的代数和; (3)根据动能定理由物体动能变化量求解:W总=ΔEk. 5、变力做功的求解方法 (1)用动能定理或功能关系求解. (2)将变力的功转化为恒力的功. ①当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程的乘积,如滑动摩擦力、空气阻力做功等; ②当力的方向不变,大小随位移做线性变化时,可先求出力对位移的平均值=2F1+F2,再由W=lcosα计算,如弹簧弹力做功; ③作出变力F随位移变化的图象,图线与横轴所夹的?°面积?±即为变力所做的功; ④当变力的功率P一定时,可用W=Pt求功,如机车牵引力做的功. 二、功率 1.计算式 (1)P=tW,P为时间t内的平均功率. (2)P=Fvcosα 5.额定功率:机械正常工作时输出的最大功率.一般在机械的铭牌上标明. 6.实际功率:机械实际工作时输出的功率.要小于等于额定功率. 方恒定功率启动恒定加速度启动

2021届高三物理一轮复习力学功和能机械能守恒定律功能关系专题练习

2021届高三物理一轮复习力学功和能机械能守恒定律功能关系专题练习一、填空题 1.在雅典奥运会上,我国举重运动员取得了骄人的战绩.在运动员举起杠铃过程中,是___________能转化为杠铃的___________能. 2.如图所示,某兴趣小组希望通过实验求得连续碰撞中的机械能损失,做法如下:在光滑水平面上,依次有质量为m,2m,3m……10m的10个小球,排列成一直线,彼此间有一定的距离,开始时后面的九个小球是静止的,第一个小球以初速度v0向着第二个小球碰去,结果它们先后全部粘合到一起向前运动.求全过程中系统损失的机械能为__________, 3.一小物体以100J的初动能滑上斜面,当动能减少80J时,机械能减少32J,则当物体滑回原出发点时动能为__________ J 4.在某一高度用细绳提着一质量m=0.2kg的物体,由静止开始沿竖直方向运动过程中物体的机械能与位移关系的E,x图象如图所示,图中两段图线都是直线.取g=10m/s2,物体在0,6m过程中,速度一直_______(增加、不变、减小);物体在x=4m时的速度大小为________, 5.重为20N的物体从某一高度自由落下,在下落过程中所受的空气阻力为2N,则物体在下落1m的过程中,物体的重力势能减少了________,克服阻力做功________,物体动能增加了_________, 6.如图所示,一个质量为m的小球用细线悬挂于O点,用手拿着一根光滑的轻质细杆靠着线的左侧水平向右以速度v匀速移动了距离L,运动中始终保持悬线竖直,这个过程中小球的速度为是_________,手对轻杆做的功为是_________. 7.一只排球在A点被竖直抛出,此时动能为20 J,上升到最大高度后,又回到A点,动能变为12 J,假设排球在整个运动过程中受到的阻力大小恒定,A点为零势能点,则在整个运动过程中,排球的动能变为10 J 时,其重力势能的可能值为________,_________, 8.如图所示,水平传送带的运行速率为v,将质量为m的物体轻放到传送带的一端,物体随传送带运动到另一端。若传送带足够长,则整个传送过程中,物体动能的增量为_________,由于摩擦产生的内能为 _________,

整理高中物理机械能守恒定律典例解题技巧

机械能守恒专题 一、单个物体的机械能守恒 判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。 (2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。 所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。 (1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。 例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求 物体落地时的速度大小? 分析:物体在运动过程中只受重力,也只有重力做功,因此物体 的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等 2202 121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类 在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。 例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少? 分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等 θsin 2120?==mgs mgh mv 得:θ sin 220g v s = (3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。

机械能守恒定律一

机械能守恒定律一 1. 下列所述的实例中(均不计空气阻力),机械能守恒的是() A.水平路面上汽车刹车的过程 B.投出的实心球在空中运动的过程 C.人乘电梯加速上升的过程 D.木箱沿粗糙斜面匀速下滑的过程 2. 将地面上静止的货物竖直向上吊起,货物由地面运动至最高点的过程中,图象如图所示.以下判断正确的是() A.前内货物处于失重状态 B.最后内货物处于失重状态 C.货物的总位移为 D.前内与最后内货物的平均速度相同 3. 下列关于功和能的说法正确的是() A.作用力做正功,反作用力一定做负功 B.物体在合外力作用下做变速运动,动能一定发生变化 C.若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒 D.竖直向上运动的物体重力势能一定增加,动能一定减少 4. 一个人站在阳台上,以相同的速率分别把三个球竖直向下、竖直向上、水平抛出,不计空气阻力,则三球落地时的速率() A.上抛球最大 B.下抛球最大 C.平抛球最大 D.一样大 5. 一个质量为的滑块以初速度沿光滑斜面向上滑行,重力加速度为,以斜面底端为参考平面,当滑块从斜面底端滑到高为的地方时,滑块的机械能为() A. B. C. D. 6. 把、两小球在离地面同一高度处以相同大小的初速度分别沿水平方向和竖直方向抛出,不计空气阻力,如图所示,则下列说法正确的是() A.两小球落地时速度相同 B.两小球落地时,重力的瞬时功率相同 C.从开始运动至落地,重力对两小球做的功相同 D.从开始运动至落地,重力对两小球做功的平均功率相同 7. 下列叙述中正确的是() A.物体所受的合外力为零时,物体的机械能守恒 B.物体只受重力、弹力作用,物体的机械能守恒 C.在物体系内,只有重力、弹力做功,物体系机械能守恒 D.对一个物体系,它所受外力中,只有弹力做功,物体系机械 能守恒 8. 图示为儿童蹦极的照片,儿童绑上安全带,在两根弹性绳的 牵引下上下运动。在儿童从最高点下降到最低点的过程中() A.重力对儿童做负功 B.合力对儿童做正功 C.儿童的机械能守恒 D.绳的弹性势能增大 9. 下列遵守机械能守恒定律的运动是() A.平抛物体的运动 B.雨滴匀速下落 C.物体沿斜面匀速下滑 D.竖直平面内匀速运动的物体 10. 如图所示,斜坡式自动扶梯将质量为的小华从地面送 到高的二楼,取,在此过程中小华的() A.重力做功为,重力势能增加了 B.重力做功为,重力势能增加了 C.重力做功为,重力势能减小了 D.重力做功为,重力势能减小了 11. 在下列所述实例中,若不计空气阻力,机械能守恒的是() A.抛出的铅球在空中运动的过程 B.木箱沿粗糙斜面匀速下滑的过程 C.汽车在关闭发动机后自由滑行的过程 D.电梯加速上升的过程 12. 如图所示,踢毽子是一项深受大众喜爱的健身运动项目。 在某次踢毽子的过程中,毽子离开脚后,恰好沿竖直方向向上 运动,毽子在运动过程中受到的空气阻力不可忽略。毽子在上 升的过程中,下列说法正确的是()

高一物理机械能守恒定律练习试题及答案解析知识讲解

机械能守恒定律计算题(基础练习) 班别:姓名: 1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F开始提升原来静止的质量为m=10kg的物体,以大小为a=2m/s2的加速度匀加速上升,求头3s内力F做的功.(取g=10m/s2) 图5-1-8 2.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?

图5-3-1 3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求: ①5s 内拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s 2) 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. F mg 图5-2-5

h 1 h 2 图5-4-4 5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平 地面上,两桶内装有密度为ρ的同种液体, 阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功? 图5-3-2

第4章功和能机械能守恒定律习题说课材料

第 4 章功和能机械能守恒定律习题

第4章功和能机械能守恒定律习题 4-5如图所示, A 球的质量为m,以速度v飞行,与一静止的球B碰撞后,A球的速度变为V1,其方向与v方向成90°角。B球的质量为5m,它被碰撞后以速度V.2飞行,V2的方向与v间夹角为arcsin(3.;5)。求: (i)两球相碰后速度V i、V2的大小; (2)碰撞前后两小球动能的变化 v v 1 v? ------------------- v 5cos 5“ sin2 4 v 3 3 v-i 5v2 sin 5 v 4 5 4 2A球动能的变化 解: 于是得 mv 5mv? cos mq 5mv2si n (1)由动量守恒定律 5mv2cos 5mv2sin

B 球动能的变化 2 1 1 2 5 2 E kB m B v ; 0 5m(—v)2 mv 2 2 2 4 32 碰撞过程动能的变化 或如图所示,A 球的质量为m ,以速度u 飞行,与一静止的小球 度变为W 其方向与u 方向成900,B 球的质量为5m ,它被撞后以速度 V 2飞行,v 2的方向 3 arcs in )角。求: 5 (1)求两小球相撞后速度 「 2的大小; 碰撞前后两小球动能的变化为 1 3u 2 1 2 7 2 E KA m — mu mu KA 2 4 2 32 2 L 1厂 u 5 2 E KB 5m — 0 -- mu 2 4 32 4- 6在半径为R 的光滑球面的顶点处,一物体由静止开始下滑,则物体与顶点 的高度差h 为多大时,开始脱离球面? 解:根据牛顿第二定律 1m(3v)2 2 4 2 mv 2 2 mv 32 1 2 2 1 2 二 mv -m B v 2 mv 2 2 2 2 2 mv 32 B 碰撞后,A 球的速 水平: mu 5m 2 cos (1) 垂直: 0 5m 2sin m j (2) 联解(1) 、(2 )式,可得两小球相撞后速度大小分 别为 3u 1 4 1 2 4u A c r V] k (2)求碰撞前后两小球动能的变化。 解取A 球和B 球为一系统,其碰撞过程中无外力作用,由动量守恒定律得 图

高中物理机械能守恒定律知识点总结

高中物理机械能守恒定 律知识点总结 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高中物理机械能守恒定律知识点总结(一)一、功 1.公式和单位:,其中是F和l的夹角.功的单位是焦耳,符号是J. 2.功是标量,但有正负.由,可以看出: (1)当0°≤<90°时,0<≤1,则力对物体做正功,即外界给物体输送能量,力是动力; (2)当=90°时,=0,W=0,则力对物体不做功,即外界和物体间无能量交换. (3)当90°<≤180°时,-1≤<0,则力对物体做负功,即物体向外界输送能量,力是阻力. 3、判断一个力是否做功的几种方法 (1)根据力和位移的方向的夹角判断,此法常用于恒力功的判断,由于恒力功W=Flcosα,当α=90°,即力和作用点位移方向垂直时,力做的功为零. (2)根据力和瞬时速度方向的夹角判断,此法常用于判断质点做曲线运动时变力的功.当力的方向和瞬时速度方向垂直时,作用点在力的方向上位移是零,力做的功为零. (3)根据质点或系统能量是否变化,彼此是否有能量的转移或转化进行判断.若有能量的变化,或系统内各质点间彼此有能量的转移或转化,则必定有力做功. 4、各种力做功的特点 (1)重力做功的特点:只跟初末位置的高度差有关,而跟运动的路径无关. (2)弹力做功的特点:对接触面间的弹力,由于弹力的方向与运动方向垂直,弹力对物体不做功;对弹簧的弹力做的功,高中阶段没有给出相关的公式,对它的求解要借助其他途径如动能定理、机械能守恒、功能关系等.

(3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关,它可以做负功,也可以做正功,做正功时起动力作用.如用传送带把货物由低处运送到高处,摩擦力就充当动力.摩擦力的大小不变、方向变化(摩擦力的方向始终和速度方向相反)时,摩擦力做功可以用摩擦力乘以路程来计算,即W=F·l. (1)W总=F合lcosα,α是F合与位移l的夹角; (2)W总=W1+W2+W3+?为各个分力功的代数和; (3)根据动能定理由物体动能变化量求解:W总=ΔEk. 5、变力做功的求解方法 (1)用动能定理或功能关系求解. (2)将变力的功转化为恒力的功. ①当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程的乘积,如滑动摩擦力、空气阻力做功等; ②当力的方向不变,大小随位移做线性变化时,可先求出力对位移的平均值=2F1+F2,再由W=lcosα计算,如弹簧弹力做功; ③作出变力F随位移变化的图象,图线与横轴所夹的?°面积?±即为变力所做的功; ④当变力的功率P一定时,可用W=Pt求功,如机车牵引力做的功. 二、功率 1.计算式 (1)P=tW,P为时间t内的平均功率. (2)P=Fvcosα 5.额定功率:机械正常工作时输出的最大功率.一般在机械的铭牌上标明. 6.实际功率:机械实际工作时输出的功率.要小于等于额定功率.

相关文档
最新文档