2017-2018学年第一学期高二数学期中试卷

合集下载

2017-2018年江苏省南通市高二上学期期中数学试卷及答案

2017-2018年江苏省南通市高二上学期期中数学试卷及答案

2017-2018学年江苏省南通市高二(上)期中数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)命题p“∀x∈R,sinx≤1”的否定是.2.(5分)在等差数列{a n}中,a1=﹣1,a4=8,则公差d=.3.(5分)抛物线x2=2y的准线方程是.4.(5分)命题“若实数a满足a≤2,则a2≤4”的否命题是命题.(选填“真”或“假”之一)5.(5分)已知双曲线﹣=1的左、右焦点分别为F1,F2,点P在双曲线上,且PF1=4,则PF2的长为.6.(5分)已知等差数列{a n}的公差为2,且a2是a1和a5的等比中项,则a3的值为.7.(5分)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正+a2n<0”的条件.(填“充要条件、充分不必要条件、必要不整数n,a2n﹣1充分条件、即不充分也不必要条件”)8.(5分)设F1,F2是椭圆+=1(a>b>0)的左、右焦点,A为椭圆的上顶点,M为AF2的中点,若MF1⊥AF2,则该椭圆的离心率为.9.(5分)设等比数列{a n}的前n项和为S n,若=2,S4=4,则S8的值为.10.(5分)已知F是抛物线C:y2=12x的焦点,M是C上一点,FM的延长线交y轴于点N,若M是FN的中点,则FN的长度为.11.(5分)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF的边长为6的等边三角形(O为坐标原点),则该双曲线的方程为.12.(5分)已知数列{a n}中,a1=1,a2=4,a3=10,若{a n+1﹣a n}是等比数列,则=.i13.(5分)已知P为椭圆+=1上的动点,M,N为圆(x﹣2)2+y2=1上两点,且MN=,则|+|的取值范围是.14.(5分)设数列{a n}共有4项,满足a1>a2>a3>a4≥0,若对任意的i,j(1≤i≤j≤4,且i,j∈N*),a i﹣a j仍是数列{a n}中的某一项.现有下列命题:①数列{a n}一定是等差数列;②存在1≤i<j≤4,使得ia i=ja j;③数列{a n}中一定存在一项为0.其中,真命题的序号有.(请将你认为正确命题的序号都写上)二、解答题(本大题共6小题,共90分)15.(14分)命题p:方程+=1表示双曲线;命题q:∃x∈R,使得x2+mx+m+3<0成立.若“p且¬q”为真命题,求实数m的取值范围.16.(14分)设等差数列{a n}的前n项和为S,a2+a6=20,S5=40.(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a2.若b6=a k,求k的值.17.(14分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)与双曲线﹣y2=1有相同的焦点F1,F2,抛物线x2=2py(p>0)的焦点为F,且与椭圆在第一象限的交点为M,若MF1+MF2=2.(1)求椭圆的方程;(2)若MF=,求抛物线的方程.18.(16分)已知数列{a n}的前n项和为S n,满足S n=2﹣a n(n∈N*).数列{b n}满足(2n﹣1)b n﹣(2n+1)b n=0(n∈N*),且b1=1.+1(1)求数列{a n}和{b n}的通项公式;(2)设c n=a n•b n,求数列{c n}的前n项和为T n.19.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,AB为椭圆的一条弦(不经过原点),直线y=kx(k>0)经过弦AB 的中点,与椭圆C交于P,Q两点,设直线AB的斜率为k1.(1)若点Q的坐标为(1,),求椭圆C的方程;(2)求证:k1k为定值;(3)过P点作x轴的垂线,垂足为R,若直线AB和直线QR倾斜角互补.若△PQR的面积为2,求椭圆C的方程.20.(16分)已知数列{a n}的首项a1=a(a>0),其前n项和为S n,设b n=a n+a n+1(n∈N*).(1)若a2=a+1,a3=2a2,且数列{b n}是公差为3的等差数列,求S2n;(2)设数列{b n}的前n项和为T n,满足T n=n2.①求数列{a n}的通项公式;②若对∀n∈N*,且n≥2,不等式(a n﹣1)(a n1)≥2(1﹣n)恒成立,求a+1的取值范围.2017-2018学年江苏省南通市高二(上)期中数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)命题p“∀x∈R,sinx≤1”的否定是∃x∈R,sinx>1.【解答】解:根据题意我们直接对语句进行否定命题p“∀x∈R,sinx≤1”的否定是:∃x∈R,sinx>1.故答案为:∃x∈R,sinx>1.2.(5分)在等差数列{a n}中,a1=﹣1,a4=8,则公差d=3.【解答】解:a4=8=﹣1+3d,解得d=3.故答案为:3.3.(5分)抛物线x2=2y的准线方程是.【解答】解:因为抛物线的标准方程为:x2=2y,焦点在y轴上;所以:2p=2,即p=1,所以:=,所以准线方程y=﹣.故答案为:y=﹣.4.(5分)命题“若实数a满足a≤2,则a2≤4”的否命题是真命题.(选填“真”或“假”之一)【解答】解:命题的否命题为:“若实数a满足a>2,则a2>4”∵a>2∴a2>4∴否命题为真命题故答案为:真5.(5分)已知双曲线﹣=1的左、右焦点分别为F1,F2,点P在双曲线上,且PF1=4,则PF2的长为10.【解答】解:根据题意,双曲线的标准方程为﹣=1,其中a==3,点P在双曲线上,则有||PF 1|﹣|PF2||=2a=6,又由|PF1|=4,解可得|PF2|=10或﹣2(舍),则|PF2|=10;故答案为:10.6.(5分)已知等差数列{a n}的公差为2,且a2是a1和a5的等比中项,则a3的值为5.【解答】解:∵等差数列{a n}的公差为2,且a2是a1和a5的等比中项,∴,∴(a1+2)2=a1(a1+8),解得a1=1,∴a3=1+2×2=5.故答案为:5.7.(5分)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正+a2n<0”的必要不充分条件.(填“充要条件、充分不必要条件、整数n,a2n﹣1必要不充分条件、即不充分也不必要条件”)【解答】解:∵{a n}是首项为正数的等比数列,公比为q,∴当a1=1,q=﹣时,满足q<0,但此时a1+a2=1﹣=>0,则a2n﹣1+a2n<0不成立,即充分性不成立,+a2n<0,则a1q2n﹣2+a1q2n﹣1<0反之若a2n﹣1∵a1>0,∴q2n﹣2(1+q)<0,即1+q<0,则q<﹣1,即q<0成立,即必要性成立,则“q<0”是“对任意的正整数n,a2n+a2n<0”的必要不充分条件,﹣1故答案为:必要不充分8.(5分)设F1,F2是椭圆+=1(a>b>0)的左、右焦点,A为椭圆的上顶点,M为AF2的中点,若MF1⊥AF2,则该椭圆的离心率为.【解答】解:∵F1,F2是椭圆+=1(a>b>0)的左、右焦点,A为椭圆的上顶点,若M为AF2的中点,且MF1⊥AF2,则△F1F2A是等腰三角形,F1F2=F1A,即2c=a,故该椭圆的离心率e==,故答案为:.9.(5分)设等比数列{a n}的前n项和为S n,若=2,S4=4,则S8的值为12.【解答】解:∵等比数列{a n}的前n项和为S n,=2,S4=4,∴,解得q4=2,a1=﹣4(1﹣q),∴S8===12.故答案为:12.10.(5分)已知F是抛物线C:y2=12x的焦点,M是C上一点,FM的延长线交y轴于点N,若M是FN的中点,则FN的长度为9.【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1.5,则FN|=1.5+3=4.5,|FN|=2|FM|=2×4.5=9.故答案为:9.11.(5分)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF的边长为6的等边三角形(O为坐标原点),则该双曲线的方程为﹣=1.【解答】解:由题意可知,解得a=3,b=3,∴双曲线方程为=1.故答案为:=1.12.(5分)已知数列{a n}中,a1=1,a2=4,a3=10,若{a n+1﹣a n}是等比数列,则i=3049.【解答】解:∵数列{a n}中,a1=1,a2=4,a3=10,{a n+1﹣a n}是等比数列,∴a2﹣a1=3,a3﹣a2=6,﹣a n}是首项为3,公比为2的等比数列,∴{a n+1∴a4﹣a3=12,a4=12+10=22,a5﹣a4=24,a5=24+22=46,a6﹣a5=48,a6=48+46=94,a7﹣a6=96,a7=96+94=190,a8﹣a7=192,a8=192+190=382,a9﹣a8=384,a9=384+382=766,a10﹣a9=768,a10=768+766=1534,∴i=1+4+10+22+46+94+190+382+766+1534=3049.故答案为:3049.13.(5分)已知P为椭圆+=1上的动点,M,N为圆(x﹣2)2+y2=1上两点,且MN=,则|+|的取值范围是[3,13] .【解答】解:令Q为MN中的中点,则圆(x﹣2)2+y2=1的圆心C到MN的距离CQ==,又由C为椭圆+=1的焦点,故|PC|∈[2,6],则PQ|∈[2﹣,6+]=[,],|+|=|2|∈[3,13],故答案为:[3,13].14.(5分)设数列{a n}共有4项,满足a1>a2>a3>a4≥0,若对任意的i,j(1≤i≤j≤4,且i,j∈N*),a i﹣a j仍是数列{a n}中的某一项.现有下列命题:①数列{a n}一定是等差数列;②存在1≤i<j≤4,使得ia i=ja j;③数列{a n}中一定存在一项为0.其中,真命题的序号有①②③.(请将你认为正确命题的序号都写上)【解答】解:根据题意:对任意i,j(1≤i≤j≤4),有a i﹣a j仍是该数列的某一项,令i=j,则0为数列的某一项,即a4=0,则a3﹣a4=a3∈{a n},(a3>0).必有a2﹣a3=a3,即a2=2a3,而a1﹣a2=a2或a3,若a1﹣a2=a2,则a1﹣a3=3a3,而3a3≠a2,a3,a4,舍去;若a1﹣a2=a3∈{a n},此时a1=3a3,可得数列{a n}为:3a3,2a3,a3,0(a4>0);据此分析选项:易得①②③正确;故答案为:①②③二、解答题(本大题共6小题,共90分)15.(14分)命题p:方程+=1表示双曲线;命题q:∃x∈R,使得x2+mx+m+3<0成立.若“p且¬q”为真命题,求实数m的取值范围.【解答】解:若p为真命题,则(m+3)(m﹣4)<0,解得:﹣3<m<4,¬q:∀x∈R,使得x2+mx+m+3≥0,若¬q是真命题,则m2﹣4(m+3)≤0,解得:﹣2≤m≤6,若“p且¬q”为真命题,则p是真命题且¬q也是真命题,故﹣2≤m<4.16.(14分)设等差数列{a n}的前n项和为S,a2+a6=20,S5=40.(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a2.若b6=a k,求k的值.【解答】解:(1)∵等差数列{a n}的前n项和为S,a2+a6=20,S5=40.∴a2+a6=2a4=20,解得a4=10,S5=5a3=40,解得a3=8.∴d=a4﹣a3=10﹣8=2,a1=a3﹣2d=8﹣4=4,∴a n=a1+(n﹣1)d=4+(n﹣1)×2=2n+2.(2)∵等比数列{b n}满足b2=a3,b3=a2.∴b2=8,b3=16,∴q=,∴b6=a k=2k+2=8×24=128,解得k=63.17.(14分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)与双曲线﹣y2=1有相同的焦点F1,F2,抛物线x2=2py(p>0)的焦点为F,且与椭圆在第一象限的交点为M,若MF1+MF2=2.(1)求椭圆的方程;(2)若MF=,求抛物线的方程.【解答】解:(1)由条件得,解得a=,b=,∴椭圆方程为=1.(2)设M(x0,y0),则MF=y0+=,即p=﹣2y0,又M在椭圆上,∴x02+3y02=6,且x02=2py0,∴(7﹣4y0)y0+3y02=6,解得y0=1或y0=6(舍),∴p=,∴抛物线方程为x2=3y.18.(16分)已知数列{a n}的前n项和为S n,满足S n=2﹣a n(n∈N*).数列{b n}﹣(2n+1)b n=0(n∈N*),且b1=1.满足(2n﹣1)b n+1(1)求数列{a n}和{b n}的通项公式;(2)设c n=a n•b n,求数列{c n}的前n项和为T n.【解答】解:(1)数列{a n}的前n项和为S n,满足S n=2﹣a n(n∈N*).=2﹣a n+1,得到:S n+1则:a n=a n﹣a n+1,+1整理得:所以:数列{a n}是以1为首项,为公比的等比数列.则:.﹣(2n+1)b n=0(n∈N*),数列{b n}满足(2n﹣1)b n+1则:,所以:数列{}是常数列.则:{b n}的通项公式为:b n=2n﹣1.(2)由(1)得:c n=a n•b n=,则:+…+①所以:+…+②则:①﹣②得:)﹣,整理得:T n=.19.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,AB为椭圆的一条弦(不经过原点),直线y=kx(k>0)经过弦AB 的中点,与椭圆C交于P,Q两点,设直线AB的斜率为k1.(1)若点Q的坐标为(1,),求椭圆C的方程;(2)求证:k1k为定值;(3)过P点作x轴的垂线,垂足为R,若直线AB和直线QR倾斜角互补.若△PQR的面积为2,求椭圆C的方程.【解答】解:(1)由条件得:,解得a=2,b=,∴椭圆方程为=1.(2)证明:设AB的中点为(x0,y0),A(x1,y1),B(x2,y2),由于A,B为椭圆上的点,∴,,两式相减得:+=0,即=﹣•=﹣•,∵k1=,k=,∴k1=﹣,即k1k=﹣.∵e==,∴==,∴k1k=﹣.(3)设Q(s,t)(s>0,t>0),则P(﹣s,﹣t),R(﹣s,0),∴k QR==,∵直线AB和直线QR倾斜角互补,∴=﹣k1,又k1k=﹣,且k>0,∴k=,又S=st=2,=k=,△PQR∴s=2,t=,即Q(2,),∴=1,又,∴a=2,b=3,∴椭圆方程为.20.(16分)已知数列{a n}的首项a1=a(a>0),其前n项和为S n,设b n=a n+a n+1(n∈N*).(1)若a2=a+1,a3=2a2,且数列{b n}是公差为3的等差数列,求S2n;(2)设数列{b n}的前n项和为T n,满足T n=n2.①求数列{a n}的通项公式;1)≥2(1﹣n)恒成立,求a ②若对∀n∈N*,且n≥2,不等式(a n﹣1)(a n+1的取值范围.﹣b n=a n+2﹣a n=3,【解答】解:(1)由已知可得:b n+1∴数列{a n}的奇数项与偶数项分别成等差数列,且公差为3.∴a3﹣a1=2a2﹣a=2(a+1)﹣a=a+2=3,解得a=1.∴a1=1,a2=2.∴S2n=+=3n2.(2)①由T n=n2,n≥2时,b n=T n﹣T n﹣1=n2﹣(n﹣1)2=2n﹣1.n=1时,b1=T1=1.∴b n=a n+a n+1=2n﹣1.﹣n=﹣[a n﹣(n﹣1)],化为:a n+1∴数列{a n﹣(n﹣1)}为等比数列,公比为﹣1.首项为a.∴a n﹣(n﹣1)=a×(﹣1)n﹣1,即a n=n﹣1+a×(﹣1)n﹣1,②不等式(a n ﹣1)(a n +11)≥2(1﹣n )化为:a n a n +1﹣(a n +a n +1)+1≥2(1﹣n ),由a n +a n +1=2n ﹣1.∴不等式化为:a n a n +1≥0.当n 为奇数时,a n =a +(n ﹣1),a n +1=﹣a +n ,∴a n a n +1=[a +(n ﹣1)](﹣a +n )=﹣a 2+a +n (n ﹣1)≥0,即﹣a 2+a ≥﹣n (n ﹣1)对∀n ∈N *,且n ≥2恒成立. ∴﹣a 2+a ≥﹣6,解得﹣2≤a ≤3.当n 为偶数时,a n =﹣a +(n ﹣1),a n +1=a +n ,∴a n a n +1≥0,即﹣a 2+a ≥﹣n (n ﹣1)对∀n ∈N *,且n ≥2恒成立. ∴﹣a 2+a ≥﹣2,解得﹣2≤a ≤1.又a >0,可得a 的取值范围为:0<a ≤1.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2017-2018学年高二(上)期中数学试卷(文科)带答案精讲

2017-2018学年高二(上)期中数学试卷(文科)带答案精讲

2017-2018学年高二(上)期中数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.24.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.27.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.259.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.13.(5分)=.14.(5分)若正数a,b满足a+b=1,则+的最小值为.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.16.(5分)给出下列命题:以下命题正确的是(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.17.(5分)过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)【分析】分别求出集合A和集合B中不等式的解集,求出两个解集的公共部分即为两个集合的交集.【解答】解:由集合B可知x﹣1>0即x>1;由集合A可知|x|≤2即﹣2≤x≤2.所以B∩A={x|1<x≤2}故选C.【点评】本题是一道以求不等式的解集为平台,求集合交集的基础题,也是高考中的基本题型.2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b【分析】根据平面的基本性质,可判断A;根据面面垂直的性质定理可判断B;根据线面平行的判定定理可判断C;根据异面直线夹角的定义,可判断D【解答】解:三条直线两两相交,则这三条直线确定一个平面或三个平面,故A 错误;若平面α⊥β,且α∩β=l,由面面垂直的性质定理可得:过α内一点P与l垂直的直线垂直于平面β,故B正确;若直线m与平面α内的一条直线平行,则m∥α或m⊂α,故C错误;若直线a与直线b平行,且直线a⊥l,则l⊥b,故D错误;故选:B【点评】本题考查的知识点是命题的真假判断与应用,平面的基本性质,面面垂直的性质定理,线面平行的判定定理,异面直线夹角的定义,难度不大,属于基础题.3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.2【分析】首先根据已知题意分析圆心与半径.通过直线与圆相交构造一个直角三角形.直角边分别为半弦长,弦心距.斜边为半径.按照勾股定理求出半弦长,然后就能求出弦长.【解答】解:根据题意,圆为x2+y2﹣4y=0故其圆心为(0,2),半径为:2圆心到直线的距离为:d==由题意,圆的半径,圆心到直线的距离,以及圆的弦长的一半构成直角三角形故由勾股定理可得:l=2=2故选:B.【点评】本题考查直线与圆的方程的应用,首先根据圆分析出圆的要素,然后根据直线与圆相交时构造的直角三角形按照勾股定理求出结果.属于基础题4.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件【分析】对两个条件,“cosA+sinA=cosB+sinB”与“C=90°”的关系,结合三角函数的定义,对选项进行判断【解答】解:“C=90°”成立时,有A+B=90°,故一定有“cosA+sinA=cosB+sinB”成立又当A=B时cosA+sinA=cosB+sinB”成立,即“cosA+sinA=cosB+sinB”得不出“C=90°”成立所以“cosA+sinA=cosB+sinB”是“C=90°”的必要非充分条件故选B.【点评】本题考查充要条件,解答本题要熟练理解掌握三角函数的定义,充分条件,必要条件的定义,且能灵活运用列举法的技巧对两个命题的关系进行验证,本题考查了推理论证的能力,解题时灵活选择证明问题的方法是解题成功的保证.5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.2【分析】由三视图想象出空间几何体,代入数据求值.【解答】解:如图所示,四面体为正四面体.是由边长为1的正方体的面对角线围成.其边长为,则其表面积为4×(××)=2.故选D.【点评】本题考查了学生的空间想象力,属于中档题.7.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=【分析】由题意以及框图的作用,直接推断空白框内应填入的表达式.【解答】解:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是P=.故选:D.【点评】本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力,属于基础题.8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.25【分析】根据等差数列的性质,我们可将a k=a1+a2+a3+…+a7,转化为a k=7a4,又由首项a1=0,公差d≠0,我们易得a k=7a4=21d,进而求出k值.【解答】解:∵数列{a n}为等差数列且首项a1=0,公差d≠0,又∵a k=(k﹣1)d=a1+a2+a3+…+a7=7a4=21d故k=22故选A【点评】本题考查的知识点是等差数列的性质,其中根据a4是数列前7项的平均项(中间项)将a k=a1+a2+a3+…+a7,化为a k=7a4,是解答本题的关键.9.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣【分析】条件“||=||”是向量模的等式,通过向量的平方可得向量的数量积|2=||2,•=0,可得出垂直关系,接下来,如由直线与圆的方程组成方程组求出A、B两点的坐标,势必计算很繁,故采用设而不求的方法.【解答】解:由||=||得||2=||2,•=0,⊥,三角形AOB为等腰直角三角形,圆心到直线的距离为,即=,a=±2,故选C.【点评】若非零向量,,满足||=||,则.模的处理方法一般进行平方,转化成向量的数量积.向量是既有大小,又有方向的量,它既有代数特征,又有几何特征,通过向量可以实现代数问题与几何问题的互相转化,所以向量是数形结合的桥梁.10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3【分析】利用函数f(x)的单调性以及f(0)=3,f(3)=﹣1,求出集合P,Q 的解集,利用充分条件和必要条件的定义进行求解.【解答】解:∵f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,∴不等式﹣1<f(x+t)<3,等价为f(3)<f(x+t)<f(0),即3>x+t>0,解得﹣t<x<3﹣t,即P={x|﹣t<x<3﹣t}.由f(x)<﹣1得f(x)<f(3),即x>3,∴Q={x|x>3},∵“x∈P”是”x∈Q”的充分不必要条件,∴﹣t≥3,即t≤﹣3.故选:C.【点评】本题主要考查函数单调性的应用,考查充分条件和必要条件的应用,利用函数的单调性先求解集合P,Q的等价条件是解决本题的关键.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为12.【分析】由方差的性质得2(k2+3),2(k2+3)…2(k8+3)的方差为22×3=12.【解答】解:∵数据组k1,k2…k8的平均数为3,方差为3,∴2(k2+3),2(k2+3)…2(k8+3)的方差为:22×3=12.故答案为:12.【点评】本题考查方差的求法,是中档题,解题时要认真审题,注意方差性质的合理运用.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.【分析】甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题,先做出甲和乙都抽到判断题的概率,根据对立事件的概率公式得到结果.【解答】(2)甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题, ∵甲、乙二人依次都抽到判断题的概率为, ∴甲、乙二人中至少有一人抽到选择题的概率为1﹣= 故答案为:. 【点评】本小题主要考查等可能事件的概率计算及分析和解决实际问题的能力,考查对立事件的概率.13.(5分)= .【分析】考查已知条件和要求的表达式,不难得到结果.【解答】解:因为1﹣sin 2x=cos 2x ,所以又=,所以= 故答案为:【点评】本题是基础题,考查同角三角函数的基本关系式的应用,考查计算能力.14.(5分)若正数a ,b 满足a +b=1,则+的最小值为 . 【分析】变形利用基本不等式即可得出.【解答】解:∵正数a ,b 满足a +b=1,∴(3a +2)+(3b +2)=7.∴+===,当且仅当a=b=时取等号. ∴+的最小值为. 故答案为:.【点评】本题考查了基本不等式的性质,属于中档题.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.【分析】等比数列{a n}中,公比q=2,可得a1a10=a2a9=...=a5a6=.由log2a1+log2a2+...+log2a10=35,利用对数的运算性质可得log2(a1a2 (10)==35,化为=27,可得a1.再利用等比数列的前n项和公式即可得出.【解答】解:∵等比数列{a n}中,公比q=2,∴a1a10=a2a9=…=a5a6=.∵log2a1+log2a2+…+log2a10=35,∴log2(a1a2…a10)==35,∴=27,∴a1=.∴a1+a2+…+a10==.故答案为:.【点评】本题考查了对数的运算性质、等比数列的性质通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.16.(5分)给出下列命题:以下命题正确的是①③④(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.【分析】根据向量加减法的平行四边形法则及菱形的性质可判断①,根据向量数量积的定义,及充要条件的定义,可判断②;根据否命题的定义,可判断③;根据向量数量积运算法则及向量模的定义,可判断④【解答】解:①非零向量、满足||=||=||,则以,为邻边的平行四边形为菱形,且,的夹角为60°,根据菱形的对角线平分对角,可得与的夹角为30°,故①正确; ②•>0,、的夹角为锐角或0,故•>0,是、的夹角为锐角的必要不充分条件,故②错误;③命题“若m 2+n 2=0,则m=0且n=0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故③正确;④若()===0,即,即AB=AC ,则△ABC 为等腰三角形,故④正确.故答案为:①③④【点评】本题以命题的真假判断为载体考查了向量加减法的平行四边形法则及菱形的性质,向量数量积的定义,充要条件的定义,否命题的定义,向量数量积运算法则及向量模的定义,是向量与逻辑的综合应用,难度中档.17.(5分)过点(2,3)且与直线l 1:y=0和l 2:都相切的所有圆的半径之和为 42 .【分析】设出圆的圆心坐标与半径,利用条件列出方程组,求出圆的半径即可.【解答】解:因为所求圆与y=0相切,所以设圆的圆心坐标(a ,r ),半径为r ,l 2:化为3x ﹣4y=0. 所以,解②得a=﹣r ,或a=3r ,由a=﹣r 以及①可得:a 2+14a +13=0,解得a=﹣1或a=﹣13,此时r=3或r=39, 所有半径之和为3+39=42.由a=3r以及①可得:9r2﹣18r+13=0,因为△=﹣144,方程无解;综上得,过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为:42.故答案为:42.【点评】本题考查圆的方程的求法,计算准确是解题的关键,考查计算能力.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.【分析】(I)利用sin(C﹣A)=1,求出A,C关系,通过三角形内角和结合sinB=,求出sinA的值;(II)通过正弦定理,利用(I)及AC=,求出BC,求出sinC,然后求△ABC 的面积.【解答】解:(Ⅰ)因为sin(C﹣A)=1,所以,且C+A=π﹣B,∴,∴,∴,又sinA>0,∴(Ⅱ)如图,由正弦定理得∴,又sinC=sin(A+B)=sinAcosB+cosAsinB=∴【点评】本小题主要考查三角恒等变换、正弦定理、解三角形等有关知识,考查运算求解能力.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.=4a n+2,①由S n+1则当n≥2时,有S n=4a n﹣1+2,②=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),①﹣②得a n+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.【分析】(1)利用三角形中位线的性质,证明线线平行,从而可得线面平行;(2)先证明BD⊥平面PAC,即可证明平面PBD⊥平面PAC;(3)利用四棱锥P﹣ABCD的体积等于时,求出四棱锥P﹣ABCD的高为PA,利用PA⊥AB,即可求PB的长.【解答】(1)证明:∵在△PBD中,O、M分别是BD、PD的中点,∴OM是△PBD的中位线,∴OM∥PB,…(1分)∵OM⊄平面PAB,PB⊂平面PAB,…(3分)∴OM∥平面PAB.…(4分)(2)证明:∵底面ABCD是菱形,∴BD⊥AC,…(5分)∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.…(6分)∵AC⊂平面PAC,PA⊂平面PAC,AC∩PA=A,∴BD⊥平面PAC,…(8分)∵BD⊂平面PBD,∴平面PBD⊥平面PAC.…(10分)(3)解:∵底面ABCD是菱形,AB=2,∠BAD=60°,∴菱形ABCD的面积为,…(11分)∵四棱锥P﹣ABCD的高为PA,∴,得…(12分)∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB.…(13分)在Rt△PAB中,.…(14分)【点评】本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.【分析】(Ⅰ)利用点到直线的距离公式,结合勾股定理,建立方程,根据圆C 的面积小于13,即可求圆C的标准方程;(Ⅱ)分类讨论,设出直线方程与圆的方程联立,利用韦达定理,再假设∥,则﹣3(x1+x2)=y1+y2,即可得出结论.【解答】解:(I)设圆C:(x﹣a)2+y2=R2(a>0),由题意知,解得a=1或a=,…(3分)又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x﹣1)2+y2=4.…(6分)(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立,消去y得:(1+k2)x2+(6k﹣2)x+6=0,…(9分)∴△=(6k﹣2)2﹣24(1+k2)=3k2﹣6k﹣5>0,解得或.x 1+x2=,y1+y2=k(x1+x2)+6=,=(x1+x2,y1+y2),,假设∥,则﹣3(x1+x2)=y1+y2,∴,解得,假设不成立.∴不存在这样的直线l.…(13分)【点评】本题考查圆的方程,考查直线与圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,综合性强.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.【分析】(1)结合韦达定理用m把α,β的和、乘积表示出来,代入所求化简即可;(2)利用定义进行证明,在判断结果的符号时,要适当结合第一问m与α,β间的关系,将m用α,β替换,根据α,β与x1,x2的大小关系进行化简判断符号.(3)先假设存在,根据已知构造出取最值时的等式,只要取等号的条件存在,即存在.【解答】解:(1)由题意得,故.(2)∀x1,x2∈[α,β],x1<x2,可得,因为(x1﹣α)(x2﹣β)≤0,(x1﹣β)(x2﹣α)<0,两式相加得2x1x2﹣(α+β)(x1+x2)+2αβ<0;又因为,∴(x2﹣x1)[4x1x2﹣4﹣m(x1+x2)]<0.所以f(x1)﹣f(x2)<0,所以函数f(x)在[α,β]上为增函数.(3)函数在[α,β]上为增函数,所以.当且仅当时,等号成立,此时f(β)=2,即.结合可得m=0.综上可得,存在实数m=0满足题意.【点评】本题综合考查了函数的零点与方程的根之间的关系,即利用函数的观点解决方程的问题,或利用方程思想来解决函数问题.属于综合题,有一定难度.。

2017-2018学年高二(上)期中数学试卷带答案精讲

2017-2018学年高二(上)期中数学试卷带答案精讲

2017-2018学年高二(上)期中数学试卷一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目的要求的.请将答案填涂在答题卡上对应题号后的框内,答在试卷上无效)1.(5分)用“辗转相除法”求得459和357的最大公约数是()A.3 B.9 C.17 D.512.(5分)以下赋值语句书写正确的是()A.2=a B.a=a+1 C.a*b=2 D.a+1=a3.(5分)某学校高中部组织赴美游学活动,其中高一240人,高二260人,高三300人,现需按年级抽样分配参加名额40人,高二参加人数为()A.12 B.13 C.14 D.154.(5分)有下面的程序,运行该程序,要使输出的结果是30,在处应添加的条件是()A.i>12 B.i>10 C.i=14 D.i=105.(5分)在样本方差的计算公式s2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2]中,数字10和20分别表示样本的()A.样本容量,方差 B.平均数,样本容量C.标准差,平均数 D.样本容量,平均数6.(5分)如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为()A.B.C.D.7.(5分)将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为91,现场做的7个得分的茎叶图(如图)后来有一个数据模糊,无法辨认,在图中用x表示,则x的值为()A.0 B.4 C.5 D.78.(5分)在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为()A.B.C.D.9.(5分)从有2个红球和2个黒球的口袋内任取2个球,互斥而不对立的两个事件是()A.至少有一个黒球与都是黒球B.至少有一个红球与都是红球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球10.(5分)下表提供了某厂节能降耗技术改造后在生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:若根据上表提供的数据用最小二乘法可求得y对x的回归直线方程是=0.7x+0.35,则表中m的值为()A.4 B.4.5 C.3 D.3.511.(5分)学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次是[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数和平均成绩分别是()A.45,67 B.50,68 C.55,69 D.60,7012.(5分)用秦九韶算法计算多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6在x=﹣4时的值时,V3的值为()A.﹣845 B.220 C.﹣57 D.34二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题卡对应题号的位置上,答错位置、书写不清,模棱两可均不得分)13.(5分)假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.14.(5分)将二进制数101101(2)化为十进制数,结果为;再将结果化为8进制数,结果为.15.(5分)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于.16.(5分)某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填,输出的s=.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.请将答案填在答题卡上对应题号的指定区域内)17.(10分)如图,在Rt△ABC中,AB=4,BC=3,点P在边BC上沿B→C运动,求△ABP的面积小于4的概率.18.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.19.(12分)甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.20.(12分)某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.(Ⅰ)求图中a的值,并估计日需求量的众数;(Ⅱ)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.(ⅰ)将S表示为x的函数;(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.21.(12分)运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.22.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x +a ,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:b=,a=﹣b .参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目的要求的.请将答案填涂在答题卡上对应题号后的框内,答在试卷上无效)1.(5分)用“辗转相除法”求得459和357的最大公约数是()A.3 B.9 C.17 D.51【分析】用459除以357,得到商是1,余数是102,用357除以102,得到商是3,余数是51,用102除以51得到商是2,没有余数,得到两个数字的最大公约数是51.【解答】解:∵459÷357=1…102,357÷102=3…51,102÷51=2,∴459和357的最大公约数是51,故选D.【点评】本题考查辗转相除计算最大公约数,本题是一个基础题,是在算法案例中出现的一个案例,近几年在新课标中出现,学生掌握的比较好,若出现一定会得分.2.(5分)以下赋值语句书写正确的是()A.2=a B.a=a+1 C.a*b=2 D.a+1=a【分析】根据赋值语句的格式,逐一进行分析,即可得到答案.【解答】解:由赋值语句的格式我们可知,赋值语句的赋值号左边必须是一个变量,而右边的运算符号与平常书写的运算符号有所不同.A中左侧是常数,不是变量,格式不对;B中满足赋值语句的格式与要求,正确;C与D中左侧是运算式,不对;故选:B.【点评】本题考查赋值语句,通过对赋值语句定义和格式的把握直接进行判断即可,属于基础题.3.(5分)某学校高中部组织赴美游学活动,其中高一240人,高二260人,高三300人,现需按年级抽样分配参加名额40人,高二参加人数为()A.12 B.13 C.14 D.15【分析】根据分层抽样的定义,即可得到结论.【解答】解:∵高一240人,高二260人,高三300人,∴按年级抽样分配参加名额40人,高二参加人数为×40=13,故选:B.【点评】本题考查了分层抽样的定义和应用问题,是基础题.4.(5分)有下面的程序,运行该程序,要使输出的结果是30,在处应添加的条件是()A.i>12 B.i>10 C.i=14 D.i=10【分析】先根据输出的结果推出循环体执行的次数,再根据s=2+4+6+…+10=30得到程序中UNTIL后面的“条件”.【解答】解:因为输出的结果是30,即s=2+4+6+…+10,需执行5次,则程序中UNTIL后面的“条件”应为i>10.故选B.【点评】本题主要考查了直到型循环语句,语句的识别问题是一个逆向性思维,一般认为学习是从算法步骤(自然语言)至程序框图,再到算法语言(程序).如果将程序摆在我们的面前时,从识别逐个语句,整体把握,概括程序的功能.5.(5分)在样本方差的计算公式s2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2]中,数字10和20分别表示样本的()A.样本容量,方差 B.平均数,样本容量C.标准差,平均数 D.样本容量,平均数【分析】方差计算公式:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],n表示样本容量,为平均数,根据此公式即可得到答案.【解答】解:由于S2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2],所以样本容量是10,平均数是20.故选:D.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.(5分)如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为()A.B.C.D.【分析】根据题意,在图中的四个方格中填入数字的方法种数共有43种,对于A、B两个方格,由于其大小有序,则可以在l、2、3、4中的任选2个,大的放进A 方格,小的放进B方格,由组合数公式计算可得其填法数目,对于另外两个方格,每个方格有4种情况,由分步计数原理可得其填法数目,最后由分步计数原理,计算可得填入A方格的数字大于B方格的数字的填法种数,利用古典概型的概率计算公式求概率.【解答】解:根据题意,在图中的四个方格中填入数字的方法种数共有44=256种,对于A、B两个方格,可在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,有C42=6种情况,对于另外两个方格,每个方格有4种情况,则共有4×4=16种情况,则填入A方格的数字大于B方格的数字的不同的填法共有16×6=96种,则填入A方格的数字大于B方格的数字的概率为p=.故选D.【点评】本题考查古典概型及其概率计算公式,考查排列、组合的运用,注意题意中数字可以重复的条件,这是易错点,此题是基础题,也是易错题.7.(5分)将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个得分的平均分为91,现场做的7个得分的茎叶图(如图)后来有一个数据模糊,无法辨认,在图中用x表示,则x的值为()A.0 B.4 C.5 D.7【分析】根据茎叶图提供的数据,去掉1个最高分和1个最低分后,利用公式求平均数可得x的值.【解答】解:选手的7个得分中去掉1个最高分96,去掉1个最低分86,剩余5个得分为88,93,90,94,(90+x);它们的平均分为=91,∴x=0;故选:A.【点评】本题考查了利用茎叶图求平均数的问题,是基础题.8.(5分)在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为()A.B.C.D.【分析】使2x∈[2,4]的区间为[1,2],由此能求出使得2x∈[2,4]的概率.【解答】解:∵2=2¹,4=22∴使2x∈[2,4]的区间为[1,2],∵x∈[1,6],且[1,6]长为5,[1,2]长为1∴使得2x∈[2,4]的概率p=.故选:B.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意几何概型的合理运用.9.(5分)从有2个红球和2个黒球的口袋内任取2个球,互斥而不对立的两个事件是()A.至少有一个黒球与都是黒球B.至少有一个红球与都是红球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球【分析】利用互斥事件和对立事件的概念求解.【解答】解:在A中,至少有一个黒球与都是黒球能同时发生,两个事件不是互斥事件;在B中,至少有一个红球与都是红球能同时发生,两个事件不是互斥事件;在C中,至少有一个黒球与至少有1个红球能同时发生,两个事件不是互斥事件;在D中,恰有1个黒球与恰有2个黒球不能同时发生,可以同时不发生,两个事件是互斥而不对立事件.故选:D.【点评】本题考查互斥而不对立的两个事件的判断,是基础题,解题时要认真审题,注意互斥事件和对立事件的概念的合理运用.10.(5分)下表提供了某厂节能降耗技术改造后在生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:若根据上表提供的数据用最小二乘法可求得y对x的回归直线方程是=0.7x+0.35,则表中m的值为()A.4 B.4.5 C.3 D.3.5【分析】先求样本中心点,再代入回归直线方程,即可求得m的值.【解答】解:由题意,,∵y对x的回归直线方程是=0.7x+0.35,∴2.5+0.25m=3.15+0.35,∴m=4.故选A.【点评】本题考查回归直线方程,解题的关键是利用回归直线方程恒过样本中心点,属于基础题.11.(5分)学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次是[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数和平均成绩分别是()A.45,67 B.50,68 C.55,69 D.60,70【分析】根据频率分布直方图,利用频率、频数与样本容量的关系,求出该班的学生数,再计算平均成绩.【解答】解:根据频率分布直方图,得;低于60分的频率是(0.005+0.01)×20=0.3,所以该班的学生人数为=50,;所以,该班的平均成绩为:30×0.005×20+50×0.01×20+70×0.02×20+90×0.015×20=68.故选:B.【点评】本题考查了频率分布直方图的应用问题,也考查了频率=的应用问题,考查了求平均数的计算问题,是基础题目.12.(5分)用秦九韶算法计算多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6在x=﹣4时的值时,V3的值为()A.﹣845 B.220 C.﹣57 D.34【分析】由于多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6=(((((3x+5)x+6)x+79)x﹣8)x+35)x+12,可得当x=﹣4时,v0=3,v1=3×(﹣4)+5=﹣7,v2,v3即可得出.【解答】解:∵多项式f(x)=12+35x﹣8x2+79x3+6x4+5x5+3x6=(((((3x+5)x+6)x+79)x﹣8)x+35)x+12,当x=﹣4时,∴v0=3,v1=3×(﹣4)+5=﹣7,v2=﹣7×(﹣4)+6=34,v3=34×(﹣4)+79=﹣57.故选:C.【点评】本题考查了秦九韶算法计算多项式的值,考查了计算能力,属于基础题.二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题卡对应题号的位置上,答错位置、书写不清,模棱两可均不得分)13.(5分)假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你衣次写出最先检测的5袋牛奶的编号785,667,199,507,175(下面摘取了随机数表第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.【分析】找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.【解答】解:找到第8行第7列的数开始向右读,第一个符合条件的是785,第二个数916它大于800要舍去,第三个数955也要舍去,第四个数667合题意,这样依次读出结果.故答案为:785、667、199、507、175【点评】抽样方法,随机数表的使用,考生不要忽略.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.14.(5分)将二进制数101101(2)化为十进制数,结果为45;再将结果化为8进制数,结果为55(8).【分析】根据二进制转化为十进制的方法,分别用每位数字乘以权重,累加后即可得到结果;根据“除8取余法”的方法转化为对应的八进制数即可得到结果.【解答】解:101101(2)=1×20+0×21+1×22+1×23+0×24+1×25=1+4+8+32=45..又45=8×5+5,∴45=55(8)故答案为:45,55.(8)【点评】本题以进位制的转换为背景考查算法的多样性,解题的关键是熟练掌握进位制的转化规则,属于基础题.15.(5分)将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于60.【分析】根据比例关系设出各组的频率,在频率分布表中,频数的和等于样本容量,频率的和等于1,求出前三组的频率,再频数和建立等量关系即可.【解答】解:设第一组至第六组数据的频率分别为2x,3x,4x,6x,4x,x,则2x+3x+4x+6x+4x+x=1,解得,所以前三组数据的频率分别是,故前三组数据的频数之和等于=27,解得n=60.故答案为60.【点评】本小题考查频率分布直方图的基础知识,熟练基本公式是解答好本题的关键,属于基础题.16.(5分)某篮球队6名主力队员在最近三场比赛中投进的三分球个数如表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填i<7(或i≤6),输出的s=51.【分析】由题意该程序框图实际上是求该6名队员在最近三场比赛中投进三分球总数,故循环次数为6,由于第一次进行循环时,循环变量的初值为1,步长为1,故最后一次进入循环的终值应为6,故不难得到判断框中的条件及输出结果.【解答】解:由题意该程序框图实际上是求该6名队员在最近三场比赛中投进三分球总数,故判断框应填i≤6或i<7,输出s的值为:9+13+11+7+5+6=51.故答案为:i<7(或i≤6),51.【点评】本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.请将答案填在答题卡上对应题号的指定区域内)17.(10分)如图,在Rt△ABC中,AB=4,BC=3,点P在边BC上沿B→C运动,求△ABP的面积小于4的概率.【分析】利用线段的长度与面积的关系,直接利用几何概型求解即可.【解答】解:点P在BC边上沿B→C运动,落在BC上的任何一点都是等可能的.全部基本事件可用BC表示.…(2分)设事件M 为“△ABC面积小于4”,则事件M包含的基本事件可用长度为2的线段BP 表示,…(4分)由几何概型可知:即所求事件的概率为.…(10分)【点评】本题主要考查了几何概型.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关解.18.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(Ⅰ)从该班随机选1名同学,求该同学至少参加一个社团的概率;(Ⅱ)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【分析】(Ⅰ)先判断出这是一个古典概型,所以求出基本事件总数,“至少参加一个社团”事件包含的基本事件个数,从而根据古典概型的概率计算公式计算即可;(Ⅱ)先求基本事件总数,即从这5名男同学和3名女同学中各随机选1人,有多少中选法,这个可利用分步计数原理求解,再求出“A1被选中,而B1未被选中”事件包含的基本事件个数,这个容易求解,然后根据古典概型的概率公式计算即可.【解答】解:(Ⅰ)设“至少参加一个社团”为事件A;从45名同学中任选一名有45种选法,∴基本事件数为45;通过列表可知事件A的基本事件数为8+2+5=15;这是一个古典概型,∴P(A)=;(Ⅱ)从5名男同学中任选一个有5种选法,从3名女同学中任选一名有3种选法;∴从这5名男同学和3名女同学中各随机选1人的选法有5×3=15,即基本事件总数为15;设“A1被选中,而B1未被选中”为事件B,显然事件B包含的基本事件数为2;这是一个古典概型,∴.【点评】考查古典概型的概念,以及古典概型的概率的求法,分步计数原理的应用.19.(12分)甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.【分析】由题意知本题是一个几何概型,试验发生包含的所有事件对应的集合是Ω={(x,y)|0<x<60,0<y<60}做出集合对应的面积是边长为60的正方形的面积,写出满足条件的事件A═{(x,y)|0<x<60,0<y<60,|x﹣y|≤15}对应的集合和面积,根据面积之比得到概率.【解答】解:由题意知本题是一个几何概型,∵试验发生包含的所有事件对应的集合是Ω={(x,y)|0<x<60,0<y<60}集合对应的面积是边长为60的正方形的面积SΩ=60×60,而满足条件的事件对应的集合是A={(x,y)|0<x<60,0<y<60,|x﹣y|≤15}得到S A=60×60﹣(60﹣15)×(60﹣15)∴两人能够会面的概率P==,∴两人能够会面的概率是.【点评】本题的难点是把时间分别用x,y坐标来表示,从而把时间长度这样的一维问题转化为平面图形的二维面积问题,转化成面积型的几何概型问题.20.(12分)某种产品特约经销商根据以往当地的需求情况,得出如图该种产品日需求量的频率分布直方图.(Ⅰ)求图中a的值,并估计日需求量的众数;(Ⅱ)某日,经销商购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元.设当天的需求量为x件(100≤x≤150),纯利润为S元.(ⅰ)将S表示为x的函数;(ⅱ)根据直方图估计当天纯利润S不少于3400元的概率.【分析】(I)根据所有小矩形的面积之和为1,求得第四组的频率,再根据小矩形的高=求a的值;(II)利用分段函数写出S关于x的函数;根据S≥3400得x的范围,利用频率分布直方图求数据在范围内的频率及可得概率.【解答】解:(Ⅰ)由直方图可知:(0.013+0.015+0.017+a+0.030)×10=1,∴a=0.025,∵,∴估计日需求量的众数为125件;(Ⅱ)(ⅰ)当100≤x<130时,S=30x﹣20(130﹣x)=50x﹣2600,当130≤x≤150时,S=30×130=3900,∴;(ⅱ)若S≥3400由50x﹣2600≥3400得x≥120,∵100≤x≤150,∴120≤x≤150,∴由直方图可知当120≤x≤150时的频率是(0.030+0.025+0.015)×10=0.7,∴可估计当天纯利润S不少于3400元的概率是0.7.【点评】本题考查了由频率分布直方图求频率与众数,考查了分段函数的值域与定义域,在频率分布直方图中小矩形的高=,所有小矩形的面积之和为1.21.(12分)运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.【分析】(I)算法的功能是求f(x)=的值,根据输入实数x 的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7求得a 、b ;(II )分别在不同的段上求得函数的值域,再求并集.【解答】解:(Ⅰ)由程序框图知:算法的功能是求f (x )=的值,∵输入x=﹣1<0,输出f (﹣1)=﹣b=2,∴b=﹣2.∵输入x=3>0,输出f (3)=a 3﹣1=7,∴a=2. ∴. (Ⅱ)由(Ⅰ)知:①当x <0时,f (x )=﹣2x >1,∴; ②当x ≥0时,f (x )=2x ﹣1>1,∴x >1.综上满足不等式f (x )>1的x 的取值范围为或x >1}.【点评】本题借助考查选择结构程序框图,考查了分段函数求值域,解题的关键是利用程序框图求得分段函数的解析式.22.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程=x +a ,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:b=,a=﹣b .【分析】(1)利用题目条件直接画出散点图即可.(2)利用条件求解回归直线方程的参数,即可.(3)利用回归直线方程求解推出结果即可.【解答】解:(1)散点图如图所示,…(3分)(2)由表中数据得:=52.5,=3.5,=3.5;=54,∴===0.7,,==3.5﹣0.7×3.5=1.05,∴=0.7x+1.05 …(8分)(3)将x=10代入回归直线方程,得=0.7×10+1.05=8.05(小时)预测加工10个零件需要8.05小时.…(12分)【点评】本题考查回归直线方程的求法,散点图的画法,考查计算能力.。

2017-2018高二(上学期)期中考试数学(理科)试题附详细答案

2017-2018高二(上学期)期中考试数学(理科)试题附详细答案

2017-2018高二(上学期)期中考试数学(理科)试题考试说明:1.考试时间 120分钟 2.试题总分 150分一、选择题(12*5=60)1.空间三条直线互相平行,由每两条平行线确定一个平面,则可确定平面的个数为( ) A .3B .1或2C .1或3D .2或32. 若空间三条直线a ,b ,c 满足a ⊥b ,b ∥c ,则直线a 与c ( ) A .一定平行 B .一定相交 C .一定是异面直线D .一定垂直3.若直线l 的倾斜角为120,则直线l 的斜率是( )A.33 B. 33- C. 3 D. 3- 4.过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ) A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0D .x -2y +5=05.一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱6.如图,在四面体D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列结论正确的是( ) A .平面ABC ⊥平面ABD B .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE 7.两条异面直线在同一个平面上的正投影不可能是( )A .两条相交直线B .两条平行直线C .两个点D .一条直线和直线外一点8.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)9.下列四个命题中,正确命题的个数是( )个① 若平面//α平面β,直线//m 平面α,则//m β; ② 若平面α⊥平面γ,且平面β⊥平面γ,则//αβ;③ 平面α⊥平面β,且l αβ= ,点A α∈,A l ∉,若直线AB l ⊥,则AB β⊥; ④ 直线m n 、为异面直线,且m ⊥平面α,n ⊥平面β,若m n ⊥,则αβ⊥. A.0 B.1 C.2 D. 310.如图,在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在( )A .直线AB 上 B .直线BC 上C .直线AC 上D .△ABC 内部11.已知M =⎩⎨⎧⎭⎬⎫(x ,y )|y -3x -2=3,N ={(x ,y )|ax +2y +a =0},且M ∩N =∅,则a =( ) A .-6或-2 B .-6 C .2或-6D .-212.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点,设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围( )A.1⎤⎥⎣⎦B.1,⎤⎥⎣⎦C.⎣⎦D.1,⎤⎥⎣⎦二、填空题(4*5=20)13.已知两点(2,0)A -,(0,4)B ,则线段AB 的垂直平分线方程是________. 14若直线1:260l ax y ++=和直线()()22:110l x a y a +-+-=平行,则a = 。

2017-2018学年河南省洛阳市高二上学期期中数学试题(解析版)

2017-2018学年河南省洛阳市高二上学期期中数学试题(解析版)

2017-2018学年河南省洛阳市高二(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.365.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.166.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.368.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.1811.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.15.(5分)如图所示,在圆内接四边形ABCD中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD的面积为.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.2017-2018学年河南省洛阳市高二(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}【分析】解不等式得出集合A、B,根据并集的定义写出A∪B.【解答】解:集合A={x|x2﹣x﹣6<0}={x|(x+2)(x﹣3)<0}={x|﹣2<x<3},B={x|x2+2x﹣8>0}={x|(x+4)(x﹣2)>0}={x|x<﹣4或x>2},则A∪B={x|x<﹣4或x>﹣2}.故选:D.【点评】本题考查了解不等式与集合的运算问题,是基础题.2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【分析】由,利用正弦定理可得tanA=tanB=tanC,再利用三角函数的单调性即可得出.【解答】解:由正弦定理可得:=,又,∴tanA=tanB=tanC,又A,B,C∈(0,π),∴A=B=C=,则△ABC是等边三角形.故选:D.【点评】本题考查了正弦定理、三角函数的单调性,考查了推理能力与计算能力,属于中档题.3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c【分析】对于A,根据不等式的性质即可判断,举反例即可判断B,C,D【解答】解:A、∵a﹣b>0,c2>0,∴>0B、∵a﹣b>0,∴(a﹣b)2>0,又c2≥0,∴(a﹣b)2c≥0,本选项不一定成立,C、c=0时,ac=bc,本选项不一定成立;D、当a=﹣1,b=﹣2,c=﹣3时,a+c=﹣4,b﹣c=1,显然不成立,本选项不一定成立;故选A【点评】此题考查了不等式的性质,利用了反例的方法,是一道基本题型.4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.36【分析】先求出公比q,即可求出答案.【解答】解:设公比为q,由a1=6,a1+a2+a3=78,可得6+6q+6q2=78,解得q=3或q=﹣4(舍去),∴a2=6q=18,故选:B【点评】本题考查了等比数列的通项公式,属于基础题.5.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.16【分析】直接利用函数的关系式及均值不等式求出函数的最小值.【解答】解:正实数a,b满足2a+3b=1,则=(2a+3b)()=+9≥13+12=25,故的最小值为25.故选:D.【点评】本题考查的知识要点:函数的关系式的恒等变换,均值不等式的应用.6.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.【分析】作出示意图,根据等腰三角形锐角三角函数的定义即可求出继续航行的路程.【解答】解:设海岛位置为A,海伦开始位置为B,航行8n mile后到达C处,航行到D处时,海岛在正北方向,由题意可知BC=8,∠ABC=15°,∠BCA=150°,∠ADC=90°,∠ACD=30°,∴∠BAC=15°,∴AC=BC=8,∴CD=AC•cos∠ACD=4.故选C.【点评】本题考查了解三角形的应用,属于基础题.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.36【分析】运用等差数列的通项公式,以及等比数列的中项的性质,化简整理解方程即可得到k的值.【解答】解:等差数列{a n}的公差d≠0,且a2=﹣d,可得a1=a2﹣d=﹣2d,则a n=a1+(n﹣1)d=(n﹣3)d,若a k是a6与a k+6的等比中项,即有a k2=a6a k+6,即为(k﹣3)2d2=3d•(k+3)d,由d不为0,可得k2﹣9k=0,解得k=9(0舍去).故选:C.【点评】本题考查等差数列的通项公式和等比数列中项的性质,考查化简整理的运算能力,属于基础题.8.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]【分析】要使函数有意义,则2﹣1≥0,解得即可.【解答】解:要使函数有意义,则2﹣1≥0,即x2+ax+1≥0,∴△=a2﹣4≤0,解得﹣2≤a≤2,故选:D【点评】本题考查了函数的定义域和不等式的解法,属于基础题.9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.【分析】已知等式利用正弦定理化简,再利用诱导公式及两角和与差的正弦函数公式化简,求出tanB的值,确定出B的度数,利用三角形面积公式求出ac的值,利用余弦定理,基本不等式可求b的最小值.【解答】解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.【点评】此题考查了正弦、余弦定理,基本不等式以及三角形的面积公式,熟练掌握定理及公式是解本题的关键,属于中档题.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.18【分析】由于S15==15a8>0,a8+a9<0,可得a8>0,a9<0,进而得出.【解答】解:∵S15==15a8>0,a8+a9<0,∴a8>0,a9<0,∴S16==8(a8+a9)<0,则使<0成立的最小自然数n的值为16.故选:B.【点评】本题考查了等差数列的通项公式与求和公式及其性质、不等式的性质,考查了推理能力与计算能力,属于中档题.11.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.【分析】由约束条件作出可行域,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.结合直线与圆的位置关系求得答案.【解答】解:∵不等式组(r为常数)表示的平面区域的面积为π,∴圆x2+y2=r2的面积为4π,则r=2.由约束条件作出可行域如图,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.设过P的圆的切线的斜率为k,则切线方程为y﹣2=k(x+3),即kx﹣y+3k+2=0.由=2,解得k=0或k=﹣.∴z=的最小值为1﹣=﹣.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016=a n2+a n=a n(a n+1)≥6,推导出=,从而【分析】a n+1,进而T m=m﹣(﹣)<m﹣,由此能求出正整数m的最大值.【解答】解:由a n﹣a n=a n2,得a n+1=a n2+a n=a n(a n+1)≥6,+1∴=,∴=﹣,∴++…+=(﹣)+(﹣)+…+(﹣)=﹣∈(0,),∵,∴T m==m﹣(﹣)=m﹣+<m﹣+=m﹣∵T m<2018,∴m﹣<2018,∴m<2018+∴正整数m的最大值为2018,故选:B【点评】本题考查了数列递推关系、放缩法,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是(﹣1,1).【分析】先根据不等式组画出可行域,再验证哪些当横坐标、纵坐标为整数的点是否在可行域内.【解答】解:根据不等式组画出可行域如图:由图象知,可行域内的点的横坐标为整数时x=﹣1,纵坐标可能为﹣1或﹣2即可行域中的整点可能有(﹣1,1)、(﹣1,2),经验证点(﹣1,1)满足不等式组,(﹣1,2)不满足不等式组,∴可行域中的整点为(﹣1,1),故答案为:(﹣1,1),【点评】本题考查一元二次不等式表示的区域,要会画可行域,同时要注意边界直线是否能够取到,还要会判断点是否在可行域内(点的坐标满足不等式组时,点在可行域内).属简单题.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.【分析】利用三角恒等变换求出A,再利用正弦定理得出C.【解答】解:∵sinA+cosA=2,即2sin(A+)=2,∵0<A<π,∴A+=,即A=,由正弦定理得:,即,∴sinC=,∴C=或C=(舍).故答案为:.【点评】本题考查了正弦定理,属于基础题.15.(5分)如图所示,在圆内接四边形ABCD 中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD 的面积为 6.【分析】利用余弦定理可求BD 2=5﹣4cosA=25+24cosA ,解得cosA=,结合范围0<A <π,利用同角三角函数基本关系式可求sinA ,利用三角形面积公式即可计算得解.【解答】解:∵四边形ABCD 圆内接四边形, ∴∠A +∠C=π,∵连接BD ,由余弦定理可得BD 2=AB 2+AD 2﹣2AB•AD•cosA=36+25﹣2×6×5cosA=61﹣60cosA , 且BD 2=CB 2+CD 2﹣2CB•CD•cos (π﹣A ) =9+16+2×3×4cosA=25+24cosA , ∴61﹣60cosA=25+24cosA , ∴cosA= 又0<A <π, ∴sinA=.∴S 四边形ABCD =S △ABD +S △CBD =AB•AD•sinA +CD•CB•sin (π﹣A )=×6×5×+×3×4×=6,故答案为:6【点评】本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式的应用,考查了转化思想和数形结合思想的应用,属于中档题.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.S n=S n﹣1﹣S n,可得数列{}是首项为1,公差为的等【分析】由已知得S n﹣1差数列,从而能求【解答】解:∵2a n+S n2=a n S n,∴S n2=a n(S n﹣2),a n=S n﹣S n﹣1(n≥2),∴S n2=(S n﹣S n﹣1)(S n﹣2),S n=S n﹣1﹣S n,…①即S n﹣1•S n≠0,由题意S n﹣1•S n,得﹣=,将①式两边同除以S n﹣1∵a1=l,∴=1∴数列{}是首项为1,公差为的等差数列,∴=1+(n﹣1)=(n+1)∴S n=,∴S10=,故答案为:【点评】本题考查数列的递推公式和前n项和,属于中档题三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.【分析】(1)直接利用关系式的恒等变换,转化为余弦定理的形式,进一步求出B的值.(2)利用正弦定理已知条件求出结果.【解答】解:(1)△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.则:,由于:0<B<π,解得:B=.(2)由于,所以:a=2c,由及a2+c2﹣b2=﹣ac.得到:a2+c2+ac=7.解得:a=2,c=1.【点评】本题考查的知识要点:余弦定理的应用,正弦定理的应用.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.【分析】(1)当方程有两个负根时,利用判别式△≥0和根与系数的关系求出a的取值范围;(2)根据方程有一个正根和一个负根时,对应二次函数满足f(0)<0,由此求出实数a的取值范围.【解答】解:方程x2+2(a+2)x+a2﹣1=0的判别式为△=4(a+2)2﹣4(a2﹣1)=16a+20,当△=16a+20≥0时,设方程x2+2(a+2)x+a2﹣1=0两个实数根为x1、x2,则x1+x2=﹣2(a+2),x1x2=a2﹣1;(1)∵方程x2+2(a+2)x+a2﹣1=0有两个负根,∴,解得,即a>1或﹣≤a<﹣1,∴实数a的取值范围是[﹣,﹣1)∪(1,+∞);(2)∵方程x2+2(a+2)x+a2﹣1=0有一个正根和一个负根,∴对应二次函数满足f(0)=a2﹣1<0,解得﹣1<a<1,∴实数a的取值范围是(﹣1,1).【点评】本题考查了一元二次方程根的分布情况以及判别式和根与系数的关系应用问题,是中档题.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.【分析】(1)设数列{a n}的公比为q,(q>0),由题意列方程组求得首项和公比,则数列{a n}的通项公式可求;(2)由{b n}的前n项和求得通项,代入,然后利用错位相减法求其前n项和T n.【解答】解:(1)设数列{a n}的公比为q,(q>0),由a1+a2=6,a1a2=a3,得,解得a1=q=2.∴;(2)当n=1时,b1=S1=1,当n≥2时,b n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1,∴,∴,,∴=,∴.【点评】本题考查数列递推式,考查了错位相减法求数列的前n项和,是中档题.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?(1)设AM=x米,AN=y米,则x+y=400,△AMN的面积S=xysin120°=xy,【分析】利用基本不等式,可得结论;(2)由题意得,即x+y=600,要使竹篱笆用料最省,只需MN最短,利用余弦定理求出MN,即可得出结论.【解答】解:设AM=x米,AN=y米,则(1)x+y=400,A=120°,△AMN的面积S=xysin120°=xy≤,当且仅当x=y=200时取等号;(2)由题意得150x+1.5y•100=90000,即x+y=600,要使竹篱笆用料最省,只需MN最短,所以MN2=x2+y2﹣2xycos120°=x2+y2+xy=(x+y)2+y2﹣xy=360000﹣xy所以x=y=300时,MN有最小值300.∴AM=AN=300米时,所用费用最少为3×5000=15000元.【点评】本题考查利用数学知识解决实际问题,考查三角形面积的计算,余弦定理的运用,属于中档题.21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.【分析】(1)利用余弦定理列出关系式,代入已知等式变形求出sinA的值,即可确定出角A的大小;(2),由(1)可得A,由正弦定理可得,从而利用三角函数恒等变换的应用可得2b﹣c=2sin(B﹣),结合B的范围B,可得2b﹣c 取值范围.【解答】解:(1)由(b2+c2﹣a2)tanA=bc.及余弦定理b2+c2﹣a2=2bccosA,得sinA=∵△ABC为锐角三角形,∴A=.(2)由正弦定理可得,∴2b﹣c=4sinB﹣2sinC=4sinB﹣2sin()=3sinB﹣cosB=2sin(B﹣).∵△ABC为锐角三角形,∴,∴∴,2∴2b﹣c的取值范围为(0,3)【点评】本题主要考查了三角函数恒等变换的应用,考查了正弦定理,正弦函数的图象和性质在解三角形中的应用,属于中档题.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.【分析】(1)由已知可得2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,进而可得数列{b n}为等差数列,并得到{b n}的通项公式;(2)存在n=1,使得不等式成立,且9≤λ≤10,利用对勾函数和反比例函数的图象性质,可得答案.【解答】解:(1)∵数列{a n}的前n项和为S n,且S n=4﹣a n﹣.∴当n=1时,a1=S1=4﹣a1﹣,即a1=1,=4﹣a n﹣1﹣.当n≥2时,S n﹣1则a n=S n﹣S n﹣1=a n﹣1﹣a n﹣,即2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,即2n﹣1•a n﹣2n﹣2•a n﹣1=1,∵b n=2n﹣1•a n,即{b n}是以1为首项,以1为公差的等差数列;即b n=n;(2)由(1)知:⇔,根据对勾函数的性质,可得:在n=3时取最小值,由反比例函数的性质,可得:在n=1时取最大值10;当n=1时,9≤λ≤10;当n=2时,6≤λ≤5,不存在满足条件的λ值;当n=3时,≤λ≤,不存在满足条件的λ值;当n≥4时,不存在满足条件的λ值;综上可得:存在n=1,使不等式成立,9≤λ≤10.【点评】本题考查的知识点是数列与不等式及函数的综合应用,难度中档.。

2017-2018市统考高二上学期数学期中考试卷答案

2017-2018市统考高二上学期数学期中考试卷答案
a 0,b 0
3a b 2 ba
3
当且仅当
3a b
b a
,即
b
3a 时等号成立
\
3a a
+b ib
的最小值为
2
34
答案: 2 3 4
三.解答题(本大题共 5 小题,共 52 分,解答需要写出文字说明、证明过程或演算步骤)
17、已知 ABC 的三个顶点坐标分别是 A(2, 1), B(2,1),C(1,3) . (I)求边 AB 高所在直线的点斜式方程; (II)求边 AB 上的中线所在直线的一般式方程. 考点:直线方程
B. 2 3 5 2 10 2
C. 11 3 5 2
D. 11 2
考点:三视图
解析:由三视图还原直观图可知,该几何体为底面是直角三角形的直三棱锥,解得该几何体表面积
为 5 3 5 2 10 2
答案:A
11.若关于 x 的方程 x m 1 x2 有两个不同实数根,则实数 m 的取值范围是( )
带入可得 3 2 4
答案:A
7. 如图, OAB 是 OAB 用斜二测画法画出来的直观图,其中 OB 4,AC 6,AC // y ,则 OAB
的面积( )
A.6
B.12
C.24
D.48
考点:斜二测画法
解析:根据直观图的画法可以得到 OAB 的底为 4,高为 12,所以面积为 24
答案: C
ìx - y + 3³ 0 8.已知实数 x, y 满足条件 íïx + y ³ 0 ,则 z x 2y 的最大值为( )
16.如图,三棱锥 P ABC 中, PA,PB,PC 两两垂直, PA PB PC 2 ,设点 K 是 ABC 内一点,现定义 f K x, y, z ,其中

2017_2018学年高二数学上学期期中联考试题

2017_2018学年高二数学上学期期中联考试题

年高二上学期期中考试数学试题2017.11本试卷分I 卷选择题(60分)II 卷非选择题(90分),满分150分,时间120分钟第I 卷(选择题60分)一.选择题:本大题共12个小题每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.在△ABC 中,a =3,b =5,sin A =13,则sin B =()A.15B.59C.53D .1 2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为()A .锐角三角形B .直角三角形C .钝角三角形D .不确定 3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于()A .8B .10C .12D .144. 如图从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于()1)m -2180(.B 1)m -3240(.A 1)m+330(.1)m D -3120(.C 5.在△ABC 中,若a 2-b 2=3bc 且sin A +B sin B=23,则A =()A.π6B.π3C.2π3D.5π66.已知等差数列{a n }的公差为-2,且a 2,a 4,a 5成等比数列,则a 2=()A .-4B .-6C .-8D .87.有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要()A .6秒钟B .7秒钟C .8秒钟D .9秒钟8.若a >b >0,c <d <0,则一定有()A.a d >b cB.a d <b cC.a c >b dD.a c <b d9.若数列{a n }的通项公式是a n =(-1)n·(3n -2),则a 1+a 2+…+a 10=()A .15B .12C .-12D .-1510. 某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B .16万元C .17万元D .18万元11. 已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则()A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>012. 若直线2ax +by -2=0(a >0,b >0)平分圆x 2+y 2-2x -4y -6=0的周长,则2a +1b 的最小值是()A .2-2B.2-1C .3+22D .3-2 2第II 卷(非选择题共90分)二.填空题:本大题共4个小题,每小题5分,共20分,把答案填在题横线上 13. 已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则a =________.14.已知不等式(k -2)x 2-2(k -2)x -4<0恒成立,则实数k 的取值范围是________. 15. 在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________.16.在△ABC 中,sin A ,sin B ,sin C 依次成等比数列,则B 的取值范围是________. 三.解答题:本大题共6个小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤17.(本小题满分10分)已知f (x )=-3x 2+a (6-a )x +6. (1)解不等式f (1)>0 ,求a 的范围(2)若不等式f (x )>b 的解集为(-1,3),求实数a 、b 的值. 18.(本小题满分12分)。

河南省某重点高中2017-2018学年高二数学上学期期中试卷理及答案【word版】.doc

河南省某重点高中2017-2018学年高二数学上学期期中试卷理及答案【word版】.doc

2017-2018学年上期高二期中考试理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 中,角的对边分别为,已知,,,则()A. B. C. D.【答案】C【解析】在△ABC中,,∴则,∴由正弦定理可得:故选C2. 等比数列中,若,,则()A. 64B. -64C. 32D. -32【答案】A【解析】数列是等比数列,,,即解得那么故选A.3. 已知等差数列中,公差,,,则()A. 5或7B. 3或5C. 7或-1D. 3或-1【答案】D【解析】在等差数列中,公差,,,得,解得或.故选D.4. 中,,,,则()A. 15B. 9C. -15D. -9【答案】B..................故选B.5. 已知成等比数列,且曲线的顶点是,则等于()A. 5B. 6C. 7D. 12【答案】B【解析】把配方得得到顶点坐标为,即由成等比数列,则,故选B.6. 已知等差数列的公差为整数,首项为13,从第五项开始为负,则等于()A. -4B. -3C. -2D. -1【答案】A【解析】在等差数列中,由,得,得,∵公差为整数,.故选A.7. 已知中,角的对边分别为,已知,,若三角形有两解,则边的取值范围是()A. B. C. D.【答案】C【解析】,要使三角形有两解,就是要使以为圆心,半径为2的圆与有两个交点,当时,圆与相切;当时交于点,也就是只有一解,,即由正弦定理以及.可得:的取值范围是故选C.8. 中,角的对边分别为,已知,则的形状是()A. 等腰三角形B. 直角三角形C. 等腰三角形或直角三角形D. 等腰直角三角形【答案】C当时,的形状是等腰三角形,当时,即,那么,的形状是直角三角形.故选C.【点睛】本题考查正弦定理和三角形内角和定理的运用.解题的关键是得到一定要注意分类讨论.9. 已知中,,则()A. B. C. D.【答案】D【解析】根据正弦定理化简已知等式得:,又为三角形的内角,则.故选D【点睛】此题考查了正弦定理,以及余弦定理的运用,熟练掌握定理是解本题的关键.10. 《九章算术》中有“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”这个问题中,甲所得为()A. 钱B. 钱C. 钱D. 钱【答案】B【解析】设甲、乙、丙、丁、戊所得钱分别为,则,解得,又,则,故选B.11. 设为等差数列,,公差,则使前项和取得最大值时正整数等于()A. 4或5B. 5或6C. 6或7D. 8或9【答案】B【解析】设等差数列{a n}的首项为公差为解得a或(舍去)则,故使前项和取最大值的正整数是5或6.故选B.12. 已知锐角中,角的对边分别为,若,,则的面积的取值范围是()A. B. C. D.【答案】C【解析】∵,,∴由题为锐角,可得∵由正弦定理可得,可得:,为锐角,可得,可得故选C.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在中,角的对边分别为,若,则此三角形面积为__________.【答案】【解析】,故,故三角形面积故答案为14. 数列的首项,,则__________.【答案】-61【解析】由题数列的首项,,则当时。

精选2017-2018学年高二数学上学期期中试题(含解析)

精选2017-2018学年高二数学上学期期中试题(含解析)

2017-2018学年第一学期期中试卷高二数学第一卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卷相应位置上.........1. 已知直线的斜率为,则它的倾斜角为__________.【答案】【解析】斜率为,设倾斜角为,则,有.2. 已知圆的方程为,则它的圆心坐标为__________.【答案】【解析】,圆心坐标为.3. 若直线和平面平行,且直线,则两直线和的位置关系为__________.【答案】平行或异面【解析】若直线和平面平行,且直线,则两直线和的位置关系为平行或异面.4. 已知直线:和:垂直,则实数的值为_________.【答案】【解析】当时,,两条直线不垂直;当时,,两条直线垂直,则,.综上:.5. 已知直线和坐标轴交于、两点,为原点,则经过,,三点的圆的方程为_________.【答案】【解析】直线和坐标轴交于、两点,则,设圆的方程为:,则,解得,圆的方程为,即.6. 一个圆锥的侧面展开图是半径为,圆心角为的扇形,则这个圆锥的高为_________.【答案】【解析】由题得扇形得面积为:,根据题意圆锥的侧面展开图是半径为3即为圆锥的母线,由圆锥侧面积计算公式:所以圆锥的高为7. 已知,分别为直线和上的动点,则的最小值为_________.【答案】【解析】由于两条直线平行,所以两点的最小值为两条平行线间的距离.8. 已知,是空间两条不同的直线,,是两个不同的平面,下面说法正确的有_________.①若,,则;②若,,,则;③若,,,则;④若,,,则.【答案】①④【解析】①若,,符合面面垂直的判定定理,则真确;②若,,,则可能平行,也可能相交,故②不正确;③若,,,则可能平行,也可能异面;③不正确;④若,,,符合线面平行的性质定理,则.正确;填①④.9. 直线关于直线对称的直线方程为_________.【答案】【解析】由于点关于直线的对称点位,直线关于直线对称的直线方程为,即.10. 已知底面边长为,侧棱长为的正四棱柱,其各顶点均在同一个球面上,则该球的体积为_________.【答案】【解析】∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为,又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径,根据球的体积公式,得此球的体积为,故答案为.点睛:本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题;由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径,最后根据球的体积公式,可算出此球的体积.11. 若直线:和:将圆分成长度相同的四段弧,则_________.【答案】【解析】两条直线:和:平行,把直线方程化为一般式:和,圆的直径为,半径,直线被圆所截的弦所对的圆心角为直角,只需两条平行线间的距离为4,圆心到直线的距离为2,圆心到则的距离为,若,则,同样,则,则.12. 已知正三棱锥的体积为,高为,则它的侧面积为_________.【答案】【解析】设正三棱锥底面三角形的边长为,则,底面等边三角形的高为,底面中心到一边的距离为,侧面的斜高为,.13. 已知,,若圆()上恰有两点,,使得和的面积均为,则的范围是_________.【答案】【解析】,使得和的面积均为,只需到直线的距离为2,直线的方程为,圆心到直线的距离为1,当时,圆()上恰有一点到AB的距离为2,不合题意;若时,圆()上恰有三个点到AB的距离为2,不合题意;当时,圆()上恰有两个点到AB的距离为2,符合题意,则................14. 已知线段的长为2,动点满足(为常数,),且点始终不在以为圆心为半径的圆内,则的范围是_________.【答案】第二卷二、解答题:本大题共6小题,共90分.请在答题卷指定区域内作答,...........解答应写出文字说明、证明过程或演算步骤.15. 四棱锥中,,底面为直角梯形,,,,点为的中点.(1)求证:平面;(2)求证:.【答案】(1)见解析(2)见解析【解析】试题分析:证明线面可以利用线面平行的判定定理,借助证明平行四边形,寻求线线平行,进而证明线面平行;证明线线垂直,首先利用线面垂直的判定定理,借助题目所提供的线线垂直条件,证明一条直线与平面内两条相交直线垂直,达成线面垂直,根据线面垂直的定义,然后证明线线垂直.试题解析:证:(1)四边形为平行四边形(2)【点睛】证明线面平行有两种思路:第一寻求线线平行,利用线面平行的判定定理.第二寻求面面平行,本题借助平行四边形和三角形中位线定理可以得到线线平行,进而证明线面平行;证明线线垂直,首先利用线面垂直的判定定理,借助题目所提供的线线垂直条件,证明一条直线与平面内两条相交直线垂直,达成线面垂直,根据线面垂直的定义,然后证明线线垂直.16. 已知平行四边形的三个顶点的坐标为,,.(1)求平行四边形的顶点的坐标;(2)在中,求边上的高所在直线方程;(3)求四边形的面积.【答案】(1)(2)(3)20【解析】试题分析:首先根据平行四边形对边平行且相等,得出向量相等的条件,根据向量的坐标运算,得出向量相等的条件要求,求出点的坐标,求高线方程采用点斜式,利用垂直关系求斜率,球平行四边形的面积可利用两条平行线间的距离也可利用两点间的距离求边长,再根据余弦定理求角,再利用三角形面积公式求面积.试题解析:。

2017-2018学年高二上学期期中考试数学试卷

2017-2018学年高二上学期期中考试数学试卷

第I 卷
一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)下列说法正确的是()
(A )一个命题的逆命题为真,则它的否命题为假
(B )一个命题的逆命题为真,则它的逆否命题为真
(C )一个命题的否命题为真,则它的逆命题为真
(D )一个命题的否命题为真,则它的逆否命题为真
(2)如果命题“()p q ”是假命题,则正确的是()
(A ),p q 均为真命题(B ),p q 中至少有一个为真命题
(C ),p q 均为假命题(D ),p q 中至多有一个为真命题
(3)命题“p :x R ,使得2220x x ”的否定是()
(A )x R ,使得2220x x (B )x R ,使得2220
x x (C )x R ,使得2220x x (D )x R ,使得2220
x x (4)“数列{}n a (*N n )满足1n n a a q (其中q 为常数)”是“数列{}n a (*
N n )是等比数列”的()
(A )充分不必要条件(B )必要不充分条件
(C )充分必要条件(D )既不充分又不必要条件
(5)数列}{n a 中,11a ,22a ,且数列}11
{n
a 是等差数列,则3a 等于()
(A )31
(B )3(C )1
5(D )5
(6)已知数列9,,,121a a 是等差数列,数列9,,,,1321b b b 是等比数列,则2
12
a a
b 等于()
(A )107
(B )57
(C )103
(D )21。

2017-2018学年高二(上)期中数学试题及参考答案

2017-2018学年高二(上)期中数学试题及参考答案

2017-2018学年度 高二(上)期中考试数 学 试 题考试时间:100分钟 满分100分一、选择题(每题4分,共40分)1.有一个几何体的三视图如下图所示,这个几何体应是一个 ( )A.棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为 ( )A.B.C.D.3.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。

⑵两条直线没有公共点,则这两条直线平行。

⑶两条直线都和第三条直线垂直,则这两条直线平行。

⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。

其中正确的个数为 ( ) A .0 B .1 C .2 D .34.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对5.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的底面对角线的长分别是9和15,则这个棱柱的侧面积是 ( )A .130B .140C .150D .1606.用半径为R 的半圆卷成一个无底圆锥,则这个无底圆锥的体积为 ( )A3R B3R C3R D3R 7.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为 ( ) A .7 B.6 C.5 D.38.正四面体A —BCD 中E 、F 分别是棱BC 和AD 之中点,则EF 和AB 所成的角( )A .45︒B .60︒C .90︒D .30︒主视图 左视图 俯视图9.已知二面角α-AB -β的平面角为θ,α内一点C 到β的距离为3,到棱AB 的距离为4, 则tanθ等于 ( )A .34B .35CD10.直三棱柱111ABC A B C -中,各侧棱和底面的边长均为a ,点D 是1CC 上任意一点, 连接11,,,A B BD A D AD ,则三棱锥1A A BD -的体积为 ( )A .361a B .3123a C .363a D .3121a 二、填空题(每题4分,共20分)11.一个棱柱至少有 _____个面;面数最少的一个棱锥有 ________个顶点;顶点最少的一个棱台有 ________条侧棱。

高二年级第一学期期中考试数学(理)试题2017.10.31

高二年级第一学期期中考试数学(理)试题2017.10.31

试卷代码 高二理数12017—2018学年度第一学期期中考试高二数学(理)试题考试时间:120分钟 分值:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设x R ∈,则“21x -<”是“220x x +->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本,则从中抽取的男运动员的人数为( )A .8B .12C .16D .32 3.已知命题:p x A B ∈⋃,则p ⌝是( )A .x AB ∉⋂ B .x A ∉且x B ∉C .x A ∉或x B ∉D .x A B ∈⋂4.2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.根据以上统计图来判断以下说法错误的是( )A .2013年农民工人均月收入的增长率是10%B .2011年农民工人均月收入是2205元C .小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”D .2009年到2013年这五年中2013年农民工人均月收入最高5.已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程为ˆ 2.10.85y x =+,则m 的值为( )A .1B .0.85C .0.7D .0.56.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且ˆ 2.347 6.423yx =-; ②y 与x 负相关且ˆ 3.476 5.648yx =-+; ③y 与x 正相关且ˆ 5.4378.493yx =+; ④y 与x 正相关且ˆ 4.326 4.578yx =--. 其中一定不正确的结论的序号是( )A .①②B .②③C .③④D .①④7.某程序框图如图所示,该程序运行输出的k 值是( )A .4B .5C .6D .78. 关于右面两个程序框图,说法正确的是( )A .(1)和(2)都是顺序结构B .(1)和(2)都是条件分支结构C .(1)是当型循环结构,(2)是直到型循环结构D .(1)是直到型循环结构,(2)是当型循环结构9.方程221xy x y +=所表示的曲线( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y x =对称10.已知椭圆221102x y m m +=--长轴在x 轴上,若焦距为4,则m 等于( ) A .4 B .5 C .7 D .811.若椭圆13422=+y x 的弦被点(1,1)平分,则这条弦所在的直线方程是( ) A. 0734=-+y x B.0743=-+y x C. 0134=--y x D .0123=--y x12.在椭圆22221(0)x y a b a b+=>>中,F 1,F 2分别是其左右焦点,P 是椭圆上一点,若|PF 1|=2|PF 2|,则该椭圆离心率的取值范围是( )A .1(,1)3B .1[,1)3C .1(0,)3D .1(0,]3二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在答题纸相应的位置上。

吉林省长春市2017-2018学年高二(上)期中数学试卷(Word版 含答案解析)

吉林省长春市2017-2018学年高二(上)期中数学试卷(Word版 含答案解析)

2017-2018学年吉林省长春市高二(上)期中数学试卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆(x﹣2)2+(y+3)2=2的圆心和半径分别是()A.(﹣2,3),1 B.(2,﹣3),3 C.(﹣2,3),D.(2,﹣3),2.抛物线x2=y的准线方程是()A.4x+1=0 B.4y+1=0 C.2x+1=0 D.2y+1=03.圆(x﹣1)2+y2=4上的点可以表示为()A.(﹣1+cos θ,s in θ )B.(1+sin θ,cos θ )C.(﹣1+2cos θ,2sin θ )D.(1+2cos θ,2sin θ )4.已知曲线C的参数方程是(t为参数),点M(6,a)在曲线C上,则a的值为()A.9 B.6 C.﹣6 D.﹣95.椭圆x2+my2=1的焦点在x轴上,长轴长是短轴长的2倍,则m的值为()A.B.C.2 D.46.将双曲线(a>0,b>0)的右焦点、右顶点、虚轴的一个端点所组成的三角形叫做双曲线的“黄金三角形“,则双曲线C:x2﹣y2=4的“黄金三角形“的面积为()A.B.C.1 D.27.已知圆C1:(x﹣a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1恰有三条公切线,则ab的最大值为()A.B.C.D.8.已知一直线与椭圆4x2+9y2=36相交于A、B两点,弦AB的中点坐标为M(1,1),则直线AB方程为()A.4x+9y﹣13=0B.4x+9y+13=0 C.9x+4y﹣13=0 D.9x+4y+13=09.F1,F2分别为椭圆x2+2y2=1的左右焦点,点P在椭圆上,线段PF2与y轴的交点为M,且,则点M到坐标原点O的距离为()A.2 B.C.D.110.设双曲线的﹣个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.11.己知直线l1:4x﹣3y+6=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是()A.2 B.3 C.D.12.已知O为坐标原点,设F1,F2分别是双曲线x2﹣y2=1的左、右焦点,点P 为双曲线左支上任一点,自点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=()A.1 B.2 C.4 D.二、填空题:(本题共4小题,每小题5分,共20分)13.经过原点,圆心在x轴的负半轴上,半径等于2的圆的方程是.14.平面内有一长度为2的线段AB与一动点P,若满足|PA|+|PB|=8,则|PA|的取值范围为.15.已知抛物线y2=8x的准线过双曲线的左焦点,且被双曲线解得的线段长为6,则双曲线的渐近线方程为.16.已知抛物线C:y=ax2(a>0)的焦点到准线的距离为,且C上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,并且,那么m=.三、解答题:解答应写出文字说明、证明过程或演算步骤.(本题共6小题,其中17题10分,18-22题每小题10分,共70分)17.根据下列条件写出抛物线的标准方程:(1)焦点是F(3,0);(2)准线方程是.18.如图抛物线顶点在原点,圆(x﹣2)2+y2=4的圆心恰是抛物线的焦点.(1)求抛物线的方程;(2)一直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于A、B、C、D四点,求|AB|+|CD|的值.19.已知曲线方程为:x2+y2﹣2x﹣4y+m=0.(1)若此曲线是圆,求m的取值范围;(2)若(1)中的圆与直线x+2y﹣4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值.20.已知圆C的圆心在直线3x﹣y=0上且在第一象限,圆C与x轴相切,且被直线x﹣y=0截得的弦长为.(1)求圆C的方程;(2)若点P(x,y)是圆C上的点,满足恒成立,求m的取值范围.21.已知椭圆E:=1(a>b>0)的离心率为,它的一个焦点到短轴顶点的距离为2,动直线l:y=kx+m交椭圆E于A、B两点,设直线OA、OB的斜率都存在,且k OA•k OB=﹣.(1)求椭圆E的方程;(2)求证:2m2=4k2+3;(3)求|AB|的最大值.22.已知直线l:y=kx+1(k≠0)与椭圆3x2+y2=a相交于A、B两个不同的点,记l与y轴的交点为C.(Ⅰ)若k=1,且|AB|=,求实数a的值;(Ⅱ)若=2,求△AOB面积的最大值,及此时椭圆的方程.2017-2018学年吉林省长春市高二(上)期中数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆(x﹣2)2+(y+3)2=2的圆心和半径分别是()A.(﹣2,3),1 B.(2,﹣3),3 C.(﹣2,3),D.(2,﹣3),【考点】J1:圆的标准方程.【分析】根据圆的标准方程,即可写出圆心坐标和半径.【解答】解:∵圆的标准方程为(x﹣2)2+(y+3)2=2∴圆的圆心坐标和半径长分别是(2,﹣3),故选D.2.抛物线x2=y的准线方程是()A.4x+1=0 B.4y+1=0 C.2x+1=0 D.2y+1=0【考点】K8:抛物线的简单性质.【分析】先根据抛物线的标准方程得到焦点在y轴上以及2p=1,再直接代入即可求出其准线方程.【解答】解:因为抛物线的标准方程为:x2=y,焦点在y轴上;所以:2p=1,即p=,所以:=,∴准线方程y=﹣,即4y+1=0.故选:B3.圆(x﹣1)2+y2=4上的点可以表示为()A.(﹣1+cos θ,sin θ )B.(1+sin θ,cos θ )C.(﹣1+2cos θ,2sin θ )D.(1+2cos θ,2sin θ )【考点】J1:圆的标准方程.【分析】根据圆的参数方程进行判断.【解答】解:∵(x﹣1)2+y2=4,∴()2+()2=1,设,则x=1+2cosθ,y=2sinθ,故选D.4.已知曲线C的参数方程是(t为参数),点M(6,a)在曲线C上,则a的值为()A.9 B.6 C.﹣6 D.﹣9【考点】QH:参数方程化成普通方程.【分析】曲线C的参数方程消去参数t,得曲线C的方程为2x2﹣9y+9=0,再由点M(6,a)在曲线C上,能求出a的值.【解答】解:∵曲线C的参数方程是(t为参数),∴消去参数t,得曲线C的方程为2x2﹣9y+9=0,∵点M(6,a)在曲线C上,∴2×36﹣9a+9=0,解得a=9.故选:A.5.椭圆x2+my2=1的焦点在x轴上,长轴长是短轴长的2倍,则m的值为()A.B.C.2 D.4【考点】K4:椭圆的简单性质.【分析】椭圆x2+my2=1的焦点在x轴上,化为,可得a=1,b=.利用长轴长是短轴长的2倍,即可得出.【解答】解:椭圆x2+my2=1的焦点在x轴上,∴,∴a=1,b=.∵长轴长是短轴长的2倍,∴,解得m=4.故选:D.6.将双曲线(a>0,b>0)的右焦点、右顶点、虚轴的一个端点所组成的三角形叫做双曲线的“黄金三角形“,则双曲线C:x2﹣y2=4的“黄金三角形“的面积为()A.B.C.1 D.2【考点】KC:双曲线的简单性质.【分析】根据条件求出右焦点、右顶点、虚轴的一个端点的坐标,结合三角形的面积公式进行计算即可.【解答】解:根据题意,双曲线C:x2﹣y2=4的标准方程为:﹣=1,其中a==2,b==2,c==2,则该双曲线的右焦点、右顶点、虚轴的一个端点的坐标分别为(2,0)、(2,0)、(0,2),则双曲线C:x2﹣y2=4的“黄金三角形“的面积S=×(2﹣2)×2=2﹣2;故选:A.7.已知圆C1:(x﹣a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1恰有三条公切线,则ab的最大值为()A.B.C.D.【考点】J7:圆的切线方程.【分析】根据两圆外切得出(a+b)2=9,再利用基本不等式得出ab的最大值.【解答】解:圆C1的圆心为(a,﹣2),半径为2,圆C2的圆心为(﹣b,﹣2),半径为1,∵两圆有三条公切线,∴两圆外切,∴|a+b|=3,∴a2+b2=9﹣2ab≥2ab,∴ab≤,故选C.8.已知一直线与椭圆4x2+9y2=36相交于A、B两点,弦AB的中点坐标为M(1,1),则直线AB方程为()A.4x+9y﹣13=0B.4x+9y+13=0 C.9x+4y﹣13=0 D.9x+4y+13=0【考点】K4:椭圆的简单性质.【分析】根据题意设出直线方程代入椭圆方程,利用韦达定理及弦AB的中点坐标为M(1,1),求出斜率,即可求得直线AB的方程.【解答】解:根据题意,设直线方程AB为y=k(x﹣1)+1,设A、B的横坐标分别为x1、x2,且AB的中点坐标为M(1,1),则有(x1+x2)=1,即x1+x2=2,将直线AB的方程代入椭圆方程4x2+9y2=36中,整理得(9k2+4)x2+18k(1﹣k)x+9(1﹣k)2﹣36=0,有x1+x2=﹣,设则有﹣=2,解可得k=﹣,则直线AB方程为y=﹣(x﹣1)+1,变形可得4x+9y﹣13=0;故选:A.9.F1,F2分别为椭圆x2+2y2=1的左右焦点,点P在椭圆上,线段PF2与y轴的交点为M,且,则点M到坐标原点O的距离为()A.2 B.C.D.1【考点】K4:椭圆的简单性质.【分析】画出图形,利用椭圆的简单性质判断M的位置,求解即可.【解答】解:F1、F2分别是椭圆x2+2y2=1的左、右焦点,点P在椭圆上,线段PF2与y轴的交点为M,且,如图:x2+2y2=1,可得a=1,b=,c=,可知OM∥F1P,|F1P|==,则点M到坐标原点O的距离是:.故选:B.10.设双曲线的﹣个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.【考点】KC:双曲线的简单性质;I9:两条直线垂直的判定.【分析】先设出双曲线方程,则F,B的坐标可得,根据直线FB与渐近线y=垂直,得出其斜率的乘积为﹣1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.【解答】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy﹣bc=0与渐近线y=垂直,所以,即b2=ac所以c2﹣a2=ac,即e2﹣e﹣1=0,所以或(舍去)11.己知直线l1:4x﹣3y+6=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是()A.2 B.3 C.D.【考点】K8:抛物线的简单性质.【分析】由x=﹣1是抛物线y2=4x的准线,推导出点P到直线l1:4x﹣3y+6=0的距离和到直线l2:x=﹣1的距离之和的最小值.【解答】解:∵x=﹣1是抛物线y2=4x的准线,∴P到x=﹣1的距离等于PF,∵抛物线y2=4x的焦点F(1,0)∴过P作4x﹣3y+6=0垂线,和抛物线的交点就是P,∴点P到直线l1:4x﹣3y+6=0的距离和到直线l2:x=﹣1的距离之和的最小值就是F(1,0)到直线4x﹣3y+6=0距离,∴最小值==2.故选:A.12.已知O为坐标原点,设F1,F2分别是双曲线x2﹣y2=1的左、右焦点,点P 为双曲线左支上任一点,自点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=()A.1 B.2 C.4 D.【考点】KC:双曲线的简单性质.【分析】由题设条件推导出PQ=PF2,由双曲线性质推导出PF2﹣PQ=QF2=2a,由中位线定理推导出QF2=2a=2OH=2,由此求解OH.【解答】解:∵F1,F2是双曲线x2﹣y2=1的左右焦点,延长F1H交PF2于Q,∵PA是∠F1PF2的角平分线,∴PQ=PF1,∵P在双曲线上,∴PF2﹣PF1=2a,∴PF2﹣PQ=QF2=2a,∵O是F1F2中点,H是F1Q中点,∴OH是F2F1Q的中位线,∴QF2=2a=2OH,∴a=1,OH=1故选:A.二、填空题:(本题共4小题,每小题5分,共20分)13.经过原点,圆心在x轴的负半轴上,半径等于2的圆的方程是(x+2)2+y2=4.【考点】J2:圆的一般方程.【分析】根据题意,设圆的标准方程为(x﹣a)2+y2=4(a<0),将原点的坐标代入得到关于a的等式,解出a=﹣2,即可得出所求圆的方程.【解答】解:设圆的圆心为(a,0)(a<0),由圆的半径为2,可得圆的方程为(x﹣a)2+y2=4,又∵原点O(0,0)在圆上,∴(0﹣a)2+02=4,得a2=4,解得a=﹣2(舍正)由此可得圆的方程为(x+2)2+y2=4.故答案为:(x+2)2+y2=414.平面内有一长度为2的线段AB与一动点P,若满足|PA|+|PB|=8,则|PA|的取值范围为[3,5] .【考点】K4:椭圆的简单性质.【分析】根据题意有AB|=2且动点P满足|PA|+|PB|=8,利用椭圆的定义,可知动点P的轨迹是以A,B为左,右焦点,定长2a=8的椭圆,利用P为椭圆长轴端点时,|PA|分别取最大,最小值,即可求出|PA|的最大值和最小值.【解答】解:根据题意,|AB|=2且动点P满足|PA|+|PB|=8,则动点P的轨迹是以A,B为焦点,定长2a=8的椭圆∵2c=2,∴c=1,∴2a=8,∴a=4∵P为椭圆长轴端点时,|PA|分别取最大,最小值∴|PA|≥a﹣c=4﹣1=3,|PA|≤a+c=4+1=5∴|PA|的取值范围是:3≤|PA|≤5;故答案为:[3,5]15.已知抛物线y2=8x的准线过双曲线的左焦点,且被双曲线解得的线段长为6,则双曲线的渐近线方程为y=±x.【考点】K8:抛物线的简单性质.【分析】先求出双曲线的左焦点坐标,再利用抛物线y2=8x的准线被双曲线解得的线段长为6,可得=6,借助于c2=a2+b2,求出a,b,即可求出双曲线的渐近线方程.【解答】解:由抛物线y2=8x,可得=2,故其准线方程为x=﹣2,∵抛物线y2=8x的准线过双曲线的左焦点,∴c=2.∵抛物线y2=8x的准线被双曲线解得的线段长为6,∴=6,∵c2=a2+b2,∴a=1,b=,∴双曲线的渐近线方程为y=±x.故答案为:y=±x.16.已知抛物线C:y=ax2(a>0)的焦点到准线的距离为,且C上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,并且,那么m=.【考点】KH:直线与圆锥曲线的综合问题.【分析】先由抛物线的定义p的意义可求出a,根据C上的两点A(x1,y1),B (x2,y2)关于直线y=x+m对称可设出直线AB的方程,把直线AB的方程与抛物线的方程联立,根据根与系数的关系即可得出直线AB的方程,再根据线段AB 关于直线y=x+m对称性即可求出m的值.【解答】解:∵抛物线C:y=ax2(a>0)的焦点到准线的距离为,∴,解得a=2.∴抛物线C的方程为:y=2x2(a>0).∵抛物线C上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,∴可设直线AB的方程为y=﹣x+t.联立,消去y得2x2+x﹣t=0,∵直线AB与抛物线相较于不同两点,∴△=1+4t>0.据根与系数的关系得,,,由已知,∴t=1.于是直线AB的方程为y=﹣x+1,设线段AB的中点为M(x M,y M),则=,∴y M==.把M代入直线y=x+m得,解得m=.故答案为.三、解答题:解答应写出文字说明、证明过程或演算步骤.(本题共6小题,其中17题10分,18-22题每小题10分,共70分)17.根据下列条件写出抛物线的标准方程:(1)焦点是F(3,0);(2)准线方程是.【考点】K8:抛物线的简单性质.【分析】(1)根据题意,分析可得要求抛物线的焦点在x轴正半轴上,且=3,由抛物线标准方程的形式分析可得答案;(2)根据题意,分析可得要求抛物线的焦点在x轴正半轴上,且=,由抛物线标准方程的形式分析可得答案.【解答】解:(1)根据题意,抛物线的焦点是F(3,0);则抛物线的焦点在x轴正半轴上,且=3,设抛物线的方程为y2=2px则抛物线的方程为:y2=12x;(2)根据题意,抛物线的准线方程是,则抛物线的焦点在x轴正半轴上,且=,设抛物线的方程为y2=2px则抛物线的方程为:y2=x.18.如图抛物线顶点在原点,圆(x﹣2)2+y2=4的圆心恰是抛物线的焦点.(1)求抛物线的方程;(2)一直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于A、B、C、D四点,求|AB|+|CD|的值.【考点】KI:圆锥曲线的综合.【分析】(1)设抛物线方程为y2=2px(p>0),由已知得p=4.即可得抛物线的方程;(2)依题意直线AB的方程为y=2x﹣4,设A(x1,y1),D(x2,y2),则,得x2﹣6x+4=0,由抛物线的定义可得|AD|=x1+x2+p.可得|AB|+|CD|=|AD|﹣|CB|,计算即可得到所求和.【解答】解:(1)设抛物线方程为y2=2px(p>0),∵圆(x﹣2)2+y2=22的圆心恰是抛物线的焦点,∴=2即p=4.∴抛物线的方程为:y2=8x;(2)依题意直线AB的方程为y=2x﹣4,设A(x1,y1),D(x2,y2),则,得x2﹣6x+4=0,∴x1+x2=6,|AD|=x1+x2+p=6+4=10.则|AB|+|CD|=|AD|﹣|CB|=10﹣4=6.19.已知曲线方程为:x2+y2﹣2x﹣4y+m=0.(1)若此曲线是圆,求m的取值范围;(2)若(1)中的圆与直线x+2y﹣4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值.【考点】J9:直线与圆的位置关系.【分析】(1)首先利用圆的一般式与标准式的互化得出m的取值范围.(2)利用直线与圆的位置关系,进一步转化成一元二次方程,进一步根据根和系数的关系利用直线垂直的充要条件求出m的值.【解答】解:(1)曲线方程为:x2+y2﹣2x﹣4y+m=0.整理得:(x﹣1)2+(y﹣2)2=5﹣m,则5﹣m>0,解得:m<5.(2)直线x+2y﹣4=0与圆:x2+y2﹣2x﹣4y+m=0的交点为M(x1,y1)N(x2,y2).则:,整理得:5y2﹣16y+8+m=0,则:,,且OM⊥ON(O为坐标原点),则:x1x2+y1y2=0,x1=4﹣2y1,x2=4﹣2y2,则(4﹣2y1)(4﹣2y2)+y1y2=0.解得:m=,故m的值为.20.已知圆C的圆心在直线3x﹣y=0上且在第一象限,圆C与x轴相切,且被直线x﹣y=0截得的弦长为.(1)求圆C的方程;(2)若点P(x,y)是圆C上的点,满足恒成立,求m的取值范围.【考点】JE:直线和圆的方程的应用;J1:圆的标准方程.【分析】(1)根据圆心在3x﹣y=0上,设出圆心C坐标以及半径,利用点到直线的距离公式表示出圆心到x﹣y=0的距离d,由弦长与半径,利用垂径定理及勾股定理列出关于a的方程,求出方程的解得到a的值,确定出圆心与半径,写出圆C的方程即可.(2)由题知,m≥(x+y)max.利用圆的参数方程,结合辅助角公式化简,即可得出结论.【解答】解:(1)设圆心为(3t,t),t>0,半径为r=3t,则圆心到直线y=x的距离d==t,而()2=r2﹣d2,∴9t2﹣2t2=7,∴t=1,∴圆心在第一象限的圆是(x﹣3)2+(y﹣1)2=9;(2)由题知,m≥(x+y)max.设x=3+3cosθ,y=1+3sinθ,则x+y=(3+3cosθ)+(1+3sinθ)=6sin(θ+)+1+3∴sin(θ+)=1时,(x+y)max=7+3∴m≥7+3.21.已知椭圆E:=1(a>b>0)的离心率为,它的一个焦点到短轴顶点的距离为2,动直线l:y=kx+m交椭圆E于A、B两点,设直线OA、OB的斜率都存在,且k OA•k OB=﹣.(1)求椭圆E的方程;(2)求证:2m2=4k2+3;(3)求|AB|的最大值.【考点】KL:直线与椭圆的位置关系;K3:椭圆的标准方程.【分析】(1)由椭圆的离心率为,它的一个焦点到短轴顶点的距离为2,列出方程组,求出a=2,c=1,b=,由此能求出椭圆E的方程.(2)联立方程组,得(4k2+3)x2+8kmx+4m2﹣12=0,由此利用韦达定理、直线的斜率,结合已知条件能证明2m2=4k2+3.(3)由弦长公式和韦达定理,得|AB|=2•=,由此能求出当k=0时,|AB|取最大值2.【解答】解:(1)∵椭圆E:=1(a>b>0)的离心率为,它的一个焦点到短轴顶点的距离为2,∴,解得a=2,c=1,b=,∴椭圆E的方程为证明:(2)联立方程组,得(4k2+3)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,y1y2=(kx1+m)(kx2+m)=k2x1x2+mk(x1+x2)+m2=﹣+m2=,∵直线OA、OB的斜率都存在,且k OA•k OB=﹣,∴k OA•k OB=====﹣.∴2m2=4k2+3.解:(3)由(2)和弦长公式和韦达定理,得:|AB|=•=2•=,由判别式△=64k2m2﹣4(4k2+3)(4m2﹣12)>0,得k∈R,当k=0时,|AB|取最大值2.22.已知直线l:y=kx+1(k≠0)与椭圆3x2+y2=a相交于A、B两个不同的点,记l与y轴的交点为C.(Ⅰ)若k=1,且|AB|=,求实数a的值;(Ⅱ)若=2,求△AOB面积的最大值,及此时椭圆的方程.【考点】K4:椭圆的简单性质.【分析】(Ⅰ)若k=1,联立直线和椭圆方程,结合相交弦的弦长公式以及|AB|=,即可求实数a的值;(Ⅱ)根据=2关系,结合一元二次方程根与系数之间的关系,以及基本不等式进行求解即可.【解答】解:设A(x1,y1),B(x2,y2),(Ⅰ)由得4x2+2x+1﹣a=0,则x1+x2=,x1x2=,则|AB|==,解得a=2.(Ⅱ)由,得(3+k2)x2+2kx+1﹣a=0,则x1+x2=﹣,x1x2=,由=2得(﹣x1,1﹣y1)=2(x2,y2﹣1),解得x1=﹣2x2,代入上式得:x1+x2=﹣x2=﹣,则x2=,==,当且仅当k2=3时取等号,此时x2=,x1x2=﹣2x22=﹣2×,又x1x2==,则=﹣,解得a=5.所以,△AOB面积的最大值为,此时椭圆的方程为3x2+y2=5.。

2017-2018学年高二上学期期中数学试卷 Word版含解析

2017-2018学年高二上学期期中数学试卷 Word版含解析

2017-2018学年高二上学期期中数学试卷一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.103.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=04.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=16.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.2017-2018学年高二上学期期中数学试卷参考答案与试题解析一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α考点:空间中直线与平面之间的位置关系.专题:阅读型.分析:根据空间中直线与平面的位置关系可得答案.解答:解:根据空间中直线与平面的位置关系可得:b可能与平面α相交,也可能b与平面相交α,故选D.点评:解决此类问题的关键是熟练掌握空间中点、直线以及平面之间的位置关系.2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.10考点:斜率的计算公式.专题:计算题.分析:因为过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,所以,两直线的斜率相等.解答:解:∵直线2x+y﹣1=0的斜率等于﹣2,∴过点A(﹣2, m)和B(m,4)的直线的斜率K也是﹣2,∴=﹣2,解得,故选 B.点评:本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.3.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=0考点:圆的切线方程.专题:直线与圆.分析:首先讨论斜率不存在的情况,直线方程为x=﹣1满足条件.当斜率存在时,设直线方程为:y﹣5=k (x+1).利用圆心到直线的距离等于半径解得k的值,从而确定圆的切线方程.解答:解:①斜率不存在时,过点M(﹣1,5)的直线方程为x=﹣1.此时,圆心(1,2)到直线x=﹣1的距离d=2=r.∴x=﹣1是圆的切线方程.②斜率存在时,设直线斜率为k,则直线方程为:y﹣5=k(x+1).即kx﹣y+k+5=0.∵直线与圆相切,∴圆心到直线的距离.解得,.∴直线方程为5x+12y﹣55=0.∴过点M(﹣1,5)且与圆相切的直线方程为x=﹣1或5x+12y﹣55=0.故选:C.点评:本题考查直线与圆相切的性质,点到直线的距离公式等知识的运用.做题时容易忽略斜率不存在的情况.属于中档题.4.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用线面平行和线面垂直的性质和判定定理对四个选项逐一解答.A选项用垂直于同一条直线的两个平面平行判断即可;B选项用两个平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;C选项用线面垂直的性质定理判断即可;D选项由线面平行的性质定理判断即可.解答:解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.点评:本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=1考点:轨迹方程.专题:直线与圆.分析:设圆上任意一点为(x1,y1),中点为(x,y),则,由此能够轨迹方程.解答:解:设圆上任意一点为(x1,y1),中点为(x,y),则代入x2+y2=4得(2x﹣4)2+(2y+2)2=4,化简得(x﹣2)2+(y+1)2=1.故选A.点评:本题考查点的轨迹方程,解题时要仔细审题,注意公式的灵活运用.6.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π考点:旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:使△ABC绕直线BC旋转一周,则所形成的几何体是一个底面半径为4,高为3的一个圆锥,代入圆锥体积公式,可得答案.解答:解:将△ABC绕直线BC旋转一周,得到一个底面半径为4,高为3的一个圆锥,故所形成的几何体的体积V=×π×42×3=16π,故选:D点评:本题考查的知识点是旋转体,其中分析出旋转得到的几何体形状及底面半径,高等几何量是解答的关键.7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.考点:由三视图求面积、体积.专题:计算题.分析:利用三视图的数据,直接求解三棱柱的表面积.解答:解:因为正三棱柱的三视图,其中正(主)视图是边长为2的正方形,棱柱的侧棱长为2,底面三角形的边长为2,所以表面积为:2×+2×3×2=12+2.故选C.点评:本题考查几何体的三视图的应用,几何体的表面积的求法,考查计算能力.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1考点:抛物线的应用.专题:函数的性质及应用.分析:本题可以设出点C的坐标(a,a2),求出C到直线AB的距离,得出三角形面积表达式,进而得到关于参数a的方程,转化为求解方程根的个数(不必解出这个跟),从而得到点C的个数.解答:解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d=,有三角形ABC的面积为2可得:=|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故应选:A点评:本题考查了截距式直线方程,点到直线的距离公式,三角形的面积的求法,就参数的值或范围,考查了数形结合的思想二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为x2+(y﹣1)2=1.考点:圆的标准方程.专题:直线与圆.分析:利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.解答:解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.点评:本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为11cm.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:利用面积之比是相似比的平方,求出截取棱锥的高,然后求出截面与底面的距离.解答:解:设截取棱锥的高为:h,则,∴h=5,所以截面与底面的距离:16﹣5=11cm故答案为:11cm点评:本题是基础题,考查面积之比是选上比的平方,考查计算能力,空间想象能力.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为12π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.解答:解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球O的表面积为4π×3=12π.故答案为:12π.点评:本题考查球的表面积的求法,考查空间想象能力、计算能力.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.考点:平面与平面垂直的性质.专题:计算题;空间位置关系与距离.分析:由题意,两个矩形的对角线长分别为5,=2,利用余弦函数,即可求出cosα:cosβ.解答:解:由题意,两个矩形的对角线长分别为5,=2,∴cosα==,cosβ=,∴cosα:cosβ=,故答案为:.点评:本题考查平面与平面垂直的性质,考查学生的计算能力,比较基础.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=±.考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.解答:解:圆心C(2,2),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d==,解得a=±,故答案为:±.点评:本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.考点:圆的标准方程;直线与圆的位置关系.专题:计算题;直线与圆.分析:(I)设圆E的方程为x2+y2+Dx+Ey+F=0,将A、B、C的坐标代入,建立关于D、E、F的方程组,解之即可得到△ABC的外接圆E的方程;(II)化圆E为标准方程,得圆心为E(1,2),半径r=1.设直线l方程为y=kx,由点到直线的距离公式和垂径定理建立关于k的方程,解之得到k=1或7,由此即可得到直线l的方程.解答:解:(I)设圆E的方程为x2+y2+Dx+Ey+F=0∵A(2,2)、B(1,3)、C(1,1)都在圆E上∴,解之得因此,圆E的方程为x2+y2﹣2x﹣4y+4=0;(II)将圆E化成标准方程,可得(x﹣1)2+(y﹣2)2=1∴圆心为E(1,2),半径r=1设直线l方程为y=kx,则圆心E到直线l的距离为d=∵直线l与圆E相交所得弦的长为,∴由垂径定理,得d2+()2=r2=1可得d2=,即=,解之得k=1或7∴直线l的方程是y=x或y=7x.点评:本题给出三角形ABC三个顶点,求它的外接圆E的方程,并求截圆所得弦长为的直线方程.着重考查了直线的方程、圆的方程和直线与圆的位置关系等知识,属于中档题.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.考点:直线与平面垂直的性质;直线与平面平行的判定.专题:计算题;证明题;空间位置关系与距离.分析:(I)根据三角形中位线定理,证出DE∥BC,再由线面平行判定定理即可证出DE∥面PBC;(II)连结PD,由等腰三角形“三线合一”,证出PD⊥AB,结合DE⊥AB证出AB⊥平面PDE,由此可得AB ⊥PE;(III)由面面垂直性质定理,证出PD⊥平面ABC,得PD是三棱锥P﹣BEC的高.结合题中数据算出PD=且S△BEC=,利用锥体体积公式求出三棱锥P﹣BEC的体积,即得三棱锥B﹣PEC的体积.解答:解:(I)∵△ABC中,D、E分别为AB、AC中点,∴DE∥BC∵DE⊄面PBC且BC⊂面PBC,∴DE∥面PBC;(II)连结PD∵PA=PB,D为AB中点,∴PD⊥AB∵DE∥BC,BC⊥AB,∴DE⊥AB,又∵PD、DE是平面PDE内的相交直线,∴AB⊥平面PDE∵PE⊂平面PDE,∴AB⊥PE;(III)∵PD⊥AB,平面PAB⊥平面ABC,平面PAB∩平面ABC=AB∴PD⊥平面ABC,可得PD是三棱锥P﹣BEC的高又∵PD=,S△BEC=S△ABC=∴三棱锥B﹣PEC的体积V=V P﹣BEC=S△BEC×PD=点评:本题在三棱锥中求证线面平行、线线垂直,并求锥体的体积.着重考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.考点:直线与平面平行的判定;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离.分析:(Ⅰ)先根据线面垂直的性质证明出BB1⊥A1C1.进而根据菱形的性质证明出A1C1⊥B1D1.最后根据线面垂直的判定定理证明出A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.先证明OC1∥AE和OC1=AE,推断出AOC1E为平行四边形,进而推断AO∥C1E,最后利用线面平行的判定定理证明出AO∥平面BC1D.(Ⅲ)先由E为BD中点,推断出BD⊥C1E,进而根据C1D=C1B,推断出ME⊥BD,进而根据OM⊥BD,推断出BD∥B1D1.直角三角形OC1E中利用射影定理求得OM.解答:解:(Ⅰ)依题意,因为四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,所以BB1⊥底面A1B1C1D1.又A1C1⊂底面A1B1C1D1,所以BB1⊥A1C1.因为A1B1C1D1为菱形,所以A1C1⊥B1D1.而BB1∩B1D1=B1,所以A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.依题意,AA1∥CC1,且AA1=CC1,AA1⊥AC,所以A1ACC1为矩形.所以OC1∥AE.又,,A1C1=AC,所以OC1=AE,所以AOC1E为平行四边形,则AO∥C1E.又AO⊄平面BC1D,C1E⊂平面BC1D,所以AO∥平面BC1D.(Ⅲ)在△BC1D内,满足OM⊥B1D1的点M的轨迹是线段C1E,包括端点.分析如下:连接OE,则BD⊥OE.由于BD∥B1D1,故欲使OM⊥B1D1,只需OM⊥BD,从而需ME⊥BD.又在△BC1D中,C1D=C1B,又E为BD中点,所以BD⊥C1E.故M点一定在线段C1E上.当OM⊥C1E时,OM取最小值.在直角三角形OC1E中,OE=1,,,所以.点评:本题主要考查了线面平行和线面垂直的判定定理的应用.考查了学生基础知识的综合运用.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是1.考点:二项式系数的性质.专题:计算题;二项式定理.分析:在展开式的通项公式,令x的指数为3,利用(ax+1)5的展开式中x3的系数是10,即可实数a的值.解答:解:(ax+1)5的展开式的通项公式为T r+1=,则∵(ax+1)5的展开式中x3的系数是10,∴=10,∴a=1.故答案为:1.点评:二项展开式的通项公式解决二项展开式的特定项问题的重要方法.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为4.考点:棱锥的结构特征.专题:空间位置关系与距离.分析:根据侧面展开图求解得出,再利用直角三角形求解.解答:解:∵正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,∴侧面展开为下图连接AA得:RT△中,长度为4,∴△AEF的周长的最小值为4,故答案为:4,点评:本题考查了空间几何体中的最小距离问题,属于中档题.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是(0,].考点:棱锥的结构特征.专题:空间位置关系与距离.分析:运用图形得||=||,再根据向量求解.解答:解:0为BD中点,∵AB=BC=CD=DA=BD=1,∴|OA|=|OB|=,||=||==,θ∈(0°,180°]∴AC的取值范围是(0,]故答案为:(0,]点评:本题考查了向量的运用求解距离,属于中档题.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].考点:直线与圆的位置关系.专题:直线与圆.分析:根据直线和圆的位置关系,利用数形结合即可得到结论.解答:解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是5.考点:点到直线的距离公式.专题:直线与圆.分析:先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5点评:本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.考点:直线与平面垂直的判定.专题:空间位置关系与距离.分析:(I)由线面垂直得A1A⊥AB,再由AB⊥AC,能证明AB⊥面A1CC1.(II)由AB∥DE,在△ABC中,E是棱BC的中点,推导出D是线段AC的中点.(III)由已知条件推导出A1C⊥AC1,AB⊥A1C,从而得到A1C⊥面ABC1,由此能证明EF⊥AC1.解答:(I)证明:∵AA1⊥底面ABC,∴A1A⊥AB,(2分)∵AB⊥AC,A1A∩AC=A,∴AB⊥面A1CC1.(4分)(II)解:∵面DEF∥面ABC1,面ABC∩面DEF=DE,面ABC∩面ABC1=AB,∴AB∥DE,(7分)∵在△ABC中,E是棱BC的中点,∴D是线段AC的中点.(8分)(III)证明:∵三棱柱ABC﹣A1B1C1中,A1A=AC,∴侧面A1ACC1是菱形,∴A1C⊥AC1,(9分)由(Ⅰ)得AB⊥A1C,∵AB∩AC1=A,∴A1C⊥面ABC1,(11分)∴A1C⊥BC1.(12分)又∵E,F分别为棱BC,CC1的中点,∴EF∥BC1,(13分)∴EF⊥AC1.(14分)点评:本题考查直线与平面垂直的证明,考查点的位置的确定,考查异面直线垂直的证明,解题时要认真审题,注意空间思维能力的培养.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.考点:直线与圆的位置关系.专题:综合题.分析:(Ⅰ)分两种情况:当直线l的斜率存在时,设出直线l的斜率为k,由P的坐标和设出的k写出直线l的方程,利用点到直线的距离公式表示出P到直线l的距离d,让d等于1列出关于k的方程,求出方程的解即可得到k的值,利用求出的k和P写出直线l的方程即可;当直线l的斜率不存在时,得到在线l的方程,经过验证符合题意;(Ⅱ)由利用两点间的距离公式求出圆心C到P的距离,再根据弦长|MN|的一半及半径,利用勾股定理求出弦心距d,发现|CP|与d相等,所以得到P为MN的中点,所以以MN为直径的圆的圆心坐标即为P的坐标,半径为|MN|的一半,根据圆心和半径写出圆的方程即可;(Ⅲ)把已知直线的方程代入到圆的方程中消去y得到关于x的一元二次方程,因为直线与圆有两个交点,所以得到△>0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围,利用反证法证明:假设符合条件的a存在,由直线l2垂直平分弦AB得到圆心必在直线l2上,根据P与C的坐标即可求出l2的斜率,然后根据两直线垂直时斜率的乘积为﹣1,即可求出直线ax﹣y+1=0的斜率,进而求出a的值,经过判断求出a的值不在求出的范围中,所以假设错误,故这样的a不存在.解答:解:(Ⅰ)设直线l的斜率为k(k存在)则方程为y﹣0=k(x﹣2).又圆C的圆心为(3,﹣2),半径r=3,由,解得.所以直线方程为,即3x+4y﹣6=0;当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件;(Ⅱ)由于,而弦心距,所以d=,所以P为MN的中点,所以所求圆的圆心坐标为(2,0),半径为|MN|=2,故以MN为直径的圆Q的方程为(x﹣2)2+y2=4;(Ⅲ)把直线ax﹣y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a﹣1)x+9=0.由于直线ax﹣y+1=0交圆C于A,B两点,故△=36(a﹣1)2﹣36(a2+1)>0,即﹣2a>0,解得a<0.则实数a的取值范围是(﹣∞,0).设符合条件的实数a存在,由于l2垂直平分弦AB,故圆心C(3,﹣2)必在l2上.所以l2的斜率k PC=﹣2,而,所以.由于,故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.点评:此题考查学生掌握直线与圆的位置关系,灵活运用点到直线的距离公式及两点间的距离公式化简求值,考查了分类讨论的数学思想,以及会利用反证法进行证明,是一道综合题.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(Ⅰ)由圆的方程找出圆心坐标,设出圆心关于直线l的对称点的坐标,由直线l的斜率,根据两直线垂直时斜率的乘积为﹣1求出直线C1C2的斜率,由圆心及对称点的坐标表示出斜率,等于求出的斜率列出一个关系式,然后利用中点坐标公式,求出两圆心的中点坐标,代入直线l的方程,得到另一个关系式,两关系式联立即可用m表示出a与b,把表示出的a与b代入圆C2的方程即可;(Ⅱ)由表示出的a与b消去m,得到a与b的关系式,进而得到圆C2的圆心在定直线上;分公切线的斜率不存在和存在两种情况考虑,当公切线斜率不存在时,容易得到公切线方程为x=0;当公切线斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,根据点到直线的距离公式表示出圆心(a,b)到直线y=kx+b的距离d,当d等于圆的半径2|m|,化简后根据多项式为0时各项的系数为0,即可求出k与b的值,从而确定出C2所表示的一系列圆的公切线方程,这样得到所有C2所表示的一系列圆的公切线方程.解答:解:(Ⅰ)∵圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,∴圆心为(2,3m),设它关于直线l:y=x+m﹣1的对称点为(a,b),则,解得a=2m+1,b=m+1,∴圆C2的圆心为(2m+1,m+1),∴圆C2的方程为:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2,∴C1关于l对称的圆C2的方程:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2.(Ⅱ)根据(Ⅰ)得圆C2的圆心为(2m+1,m+1),令,消去m得x﹣2y+1=0,它表示一条直线,故C2的圆心在一条定直线上,①当公切线的斜率不存在时,易求公切线的方程为x=0;②当公切线的斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,∴=2|m|,即:(1﹣4k)m2+2(2k﹣1)(k+b﹣1)m+(k+b﹣1)2=0∵直线y=kx+b与圆系中的所有圆都相切,所以上述方程对所有的m值都成立,∴所以有:,解得,∴C2所表示的一系列圆的公切线方程为:y=,∴故所求圆的公切线为x=0或y=.点评:此题考查了直线与圆的位置关系,以及关于点与直线对称的圆的方程.此题的综合性比较强,要求学生审清题意,综合运用方程与函数的关系,掌握直线与圆相切时圆心到直线的距离等于半径,在作(Ⅱ)时先用消去参数的方法求定直线的方程,然后采用分类讨论的数学思想分别求出C2所表示的一系列圆的公切线方程.。

山东省宁阳县2017-2018学年高二数学上学期期中试题

山东省宁阳县2017-2018学年高二数学上学期期中试题

2017-2018学年高二上学期期中考试数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 4 页。

考试结束后,将答题卡交回。

注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚。

3. 请按照题号顺序在各题目的答题区域内做答,超出答题区域书写的答案无效;在草稿纸,试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷一、选择题:本题共12小题,每小题 5分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知α为钝角,sin α=tan()4απ+= ( )A .3B .13 C .3- D . 13- 2.圆(x -1)2+y 2=4上的点可以表示为A .(-1+cos θ,sin θ )B .(1+sin θ,cos θ )C .(-1+2cos θ,2sin θ )D .(1+2cos θ,2sin θ ) 3.直线22-=x y 被圆25)2()2(22=-+-y x 所截得的弦长为( ) A .6 B .8 C .10 D .124. 下列函数中,既是奇函数又是增函数的是( )A. 3y x = B. 1y x =C. 3log y x =D. 1()2xy = 5.一海伦从A 处出发,以每小时40海里的速度沿南偏东40的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海伦在A 处观察灯塔,其方向是南偏东70,在B 处观察灯塔,其方向是北偏东65,那么,B C 两点间的距离是( )A .B . C. D . 6.ABC ∆中,角C B A ,,所对的边分别为c b a ,,,S 表示三角形的面积,若C c B b A a sin sin sin =+,且)(41222b c a S -+=,则对ABC ∆的形状的精确描述是( )A .直角三角形B .等腰三角形C .等腰或直角三角形D .等腰直角三角形 7.等差数列}{n a 中,n S 为前项n 和,已知20162016=S ,且2000162016162016=-S S ,则1a 等于( )A .2017-B .2016-C .2015-D .2014- 8. 在ABC ∆中,角A,B,C 的对边分别为a,b,c ,满足下列条件的有两个的是A .1,30a b A === B .2,45b c B ===C .1,2,3a b c ===D .3,2,60a b A ===9.设函数()x f 的定义域为D ,若函数()x f 满足条件:存在[]D b a ⊆,,使()x f 在[]b a , 上的值域是⎥⎦⎤⎢⎣⎡2,2b a 则称()x f 为“倍缩函数”,若函数()()t x f x +=2log 2为“倍缩函数”,则t 的范围是 ( )A .⎪⎭⎫ ⎝⎛410, B .()10,C .⎪⎭⎫ ⎝⎛+∞,41 10.从双曲线()222210,0x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则MO MT -与b a -的大小关系为 ( ) A .MO MT b a ->- B .MO MT b a -=- C .MO MT b a -<- D .不确定11.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(b -c )(sin B +sin C )=(a -3c )sin A ,则角B 的大小为( )A .120°B .60°C .45°D .30°12.已知函数21(0)()(1)1(0)x x f x f x x ⎧-≤=⎨-+>⎩,把函数g(x)=f(x)-x 的零点按从小到大的顺序排成一个数列,则该数列的通项公式是( ) A.(1)2n n n a -=B.1n a n =-C. (1)n a n n =-D.22nn a =- 第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共5小题,每小题5分,共25分.把答案填在题中横线上).13. 若实数,x y 满足约束条件0,40,5,x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,若yx 的最小值为 .14.已知等差数列{}n a 的前n 项和为n S ,若32014O B aO A a O C =+,且,,A B C 三点共线(O为该直线外一点),则2016S = .15. 已知抛物线y 2=8x 的准线过双曲线12222=-by a x )0,0(>>b a 的左焦点,且被双曲线截得的线段长为6,则双曲线的渐近线方程为 ______ .16.方程022=++bx ax 的一个根在区间)1,0(上,另一根在区间)2,1(上,则b a -2的取值范围是 .17.在数列{}n a 中,11=a ,1)1(1--+=n nn a a )2(≥n ,则=5a ; 三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 18.(本小题满分10分)如图, 已知四边形ABCD 和BCEG 均为直角梯形,AD ∥BC 、CE ∥BG ,且2BCD BCE π∠=∠=,平面ABCD ⊥平面BCEG ,BC =CD =CE =2AD =2BG =2.(Ⅰ)求证:AG ∥平面BDE ; (Ⅱ)求几何体EG-ABCD 的体积.19. (本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且三角形的面积为1cos 2S bc A =. (1)求角A 的大小;(2)若8c =,点D 在AC 边上,且2CD =,1cos 3ADB ∠=-,求a 的值20.(本小题满分12分)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (Ⅰ)求{a n }的通项公式;(Ⅱ)设等比数列{b n }满足b 4=a 3,b 5=a 7,问:b 7与数列{a n }的第几项相等?∴当21.(本小题满分12分)已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,*n ∈N )(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设14(1)2(n an n n b λλ-=+-⋅为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有n n b b >+1成立.22. (本小题满分12分)设等比数列}{n a 的前项n 和n S ,812=a ,且321,,161S S S +成等差数列,数列}{n b 满足n b n 2=. (1)求数列}{n a 的通项公式;(2)设n n n b a c =,若对任意+∈N n ,不等式122121-+≥+++n n S c c c λ 恒成立,求λ的取值范围.23.(本小题满分12分)已知二次函数c x ax x f ++=2)(2的对称轴为1=x ,)0(1)(>+=x xx x g . (1)求函数)(x g 的最小值及取得最小值时x 的值;(2)试确定c 的取值范围,使0)()(=-x f x g 至少有一个实根;(3)若c x x f x F ++-=4)()(,存在实数t ,对任意],1[m x ∈,使x t x F 3)(≤+恒成立,求实数m 的取值范围.山东省宁阳第四中学2017-2018学年高二上学期期中考试数学试卷参考答案参考答案:1——10 DDCAA DDAAB 11—12 DB13. -1/5 14. 1008 15、x y 3±= 16.),5(+∞ 17. 32 三、解答题:18、证明:(1)在平面BCDG 中,过G 作GN ⊥CE 交BE 于M , 连 DM ,则由已知知;MG =MN ,MN ∥BC ∥DA ,且12MN AD BC ==∴MG ∥AD ,MG =AD , 故四边形ADMG 为平行四边形,∴AG ∥DM ……4分∵DM ⊆平面BDE ,AG ⊄平面BDE , ∴AG ∥平面BDE ………………5分 (Ⅱ)1133EG ABCDD BCEG G ABDBCEG ABD V V V S DC S BG ---∆=+=⋅+⋅ 1211172212132323+=⨯⨯⨯+⨯⨯⨯⨯=………………10分 19.解:(1)在ABC ∆中,1sin 2S bc A =,1cos 2S bc A =, ∴11sin cos 22bc A bc A =………………………………………………………2分 ∴tan 1A =,∵0A π<<,∴4A π=. …………………………4分(2)在ABD ∆中,∵1cos 3ADB ∠=-,∴sin ADB ∠= …………5分∴由正弦定理得8sin 6sin 3AB A BD ADB ∠===∠,…………………………8分 ∴在BDC ∆中,由余弦定理得2222cos 32BC BD CD BD CD BDC =+-⋅⋅∠=, ……………11分∴a =…………………………………………………………………12分 20. (本小题满分12分)解:(Ⅰ)设等差数列{a n }的公差为d .因为a 4-a 3=2,所以d =2.又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4.所以a n =4+2(n -1)=2n +2(n ∈N *). ………………………6分 (Ⅱ)设等比数列{b n }的公比为q .因为b 4=a 3=8,b 5=a 7=16,所以q =2,b 1=1. …………………8分 所以b 7=1×62=64. …………………10分 由64=2n +2得n =31,所以b 7与数列{a n }的第31项相等. ………………………12分 21.解:(Ⅰ).由已知,()()111n n n n S S S S +----=(2n ≥,*n ∈N ), ……2分 ∴数列{}n a 是以12a =为首项,公差为1的等差数列.∴1n a n =+ ………4分(Ⅱ).∵1n a n =+,∴114(1)2n n n n b λ-+=+-⋅,要使n n b b >+1恒成立,∴()()112114412120n n n n n n n n b b λλ-++++-=-+-⋅--⋅>恒成立,∴()11343120n n n λ-+⋅-⋅->恒成立,∴()1112n n λ---<恒成立.………6分(ⅰ)当n 为奇数时,即12n λ-<恒成立,当且仅当1n =时,12n -有最小值为1,∴1λ< ……………8分(ⅱ)当n 为偶数时,即12n λ->-恒成立,当且仅当2n =时,12n --有最大值2-, ∴2λ>- 即21λ-<<,又λ为非零整数,则1λ=-.…………10分 综上所述,存在1λ=-,使得对任意*n ∈N ,都有1n n b b +>.…12分 22.解:(1)设数列}{n a 的公比为q , ∵321,,161S S S +成等差数列,∴3121612S S S ++=,∴16132+=a a , ∵812=a ,∴1613=a ,∴2123==a a q , ∴1222)21()21(81+--=⋅==n n n n qa a . (2)设数列}{n c 的前项n 和为n T ,则n n c c c c T ++++= 321,又nn n n n nn b a c 2)21(21=⋅==+, ∴n n nT 223222132++++= ,1432223222121+++++=n n nT , 两式相减得11113222122112211)211(2122121212121+++++-=--=---=-++++=n n n n n n n n n n n n T , ∴nn n T 222+-=, 又)211(21211)211(41n n n S -=--=, ∴对任意+∈N n ,不等式122121-+≥+++n n S c c c λ 恒成立等价于1221-+≥n n S T λ恒成立,即121121222--+≥+-n n n λ恒成立,即λ21212≥+-n n 恒成立,令n n n f 21)(+=,022122)()1(11<-=+-+=-+++n n n nn n n f n f ,∴)(n f 关于n 单调递减,∴λ21222≥-,∴2≤λ,∴λ的取值范围为]2,(-∞.23.解:(1)∵0>x ,∴01>x, ∴21≥+x x ,当且仅当xx 1=,即1=x 时“=”成立,即2)(min =x g ,此时1=x .(2))(x f 的对称轴为1=x ,∴1-=a ,∴c x x x f ++-=2)(2,0)()(=-x f x g 至少有一个实根,∴)()(x f x g =至少有一个实根, 即)(x g 与)(x f 的图象在)0(∞+,上至少有一个交点, c x x f ++--=1)1()(2,∴c x f +=1)(max ,2)(min =x g ,∴21≥+c ,∴1≥c ,∴c 的取值范围为)[1∞+,. (3)x x c x c x x x F 242)(22+=++--=,∴)(2)()(2t x t x t x F +++=+, 由已知存在实数t ,对任意],1[m x ∈,使x t x t x 3)(2)(2≤+++恒成立. ∴02)12(22≤++-+t t x t x .令t t x t x x h 2)12()(22++-+=,∴⎩⎨⎧≤≤0)(0)1(m h h ,即⎪⎩⎪⎨⎧≤-+++≤+0)22(04222m m t m t t t , 转化为存在]0,4[-∈t ,使0)22(22≤-+++m m t m t 成立.令m m t m t t G -+++=22)22()(,∴)(t G 的对称轴为)1(+-=m t ,∵1>m ,∴2)1(-<+-m .①当2)1(4-<+-<-m ,即31<<m 时,13)1)(22()1()1()(22min --=-+--++--=--=m m m m m m m G t G ,∴⎩⎨⎧≤--<<01331m m ,∴31<<m .②当4)1(-≤+-m ,即3≥m 时,898816)4()(22min +-=-+--=-=m m m m m G t G ,∴⎩⎨⎧≤+-≥08932m m m ,∴⎩⎨⎧≤≤≥813m m ,∴83≤≤m .综上,实数m 的取值范围为]8,1(.百度文库是百度发布的供网友在线分享文档的平台。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴AE⊥平面CDEF………………………………6分
又∵ 平面CDEF,∴ ………………………………7分
(2)∵四边形ABCD是平行四边形∴AB//CD
又∵AB 平面CDEF,CD 平面CDEF,∴AB//平面CDEF…………………10分
又∵AB 平面ABFE,平面ABFE∩平面CDEF=EF,∴AB//EF…………………12分
(2)解:连接 ,交 于 ,连接 ,
则 平面 , 平面PCA∩平面 ,
,………………12分
.………………14分
18.解:(1)若此方程表示圆,由 得 ,
………………………2分
解得 ,即 时,此方程表示圆.………………………4分
(2)点 到直线 的距离为 …………7分
则圆 半径为 ∴ ………………10分
,求点 的纵坐标的范围.
高二数学期中试卷参考答案
2017.11
1. 2.平行或异面 3. 4. 5. 6.④
7. 8. 9. 10. 11.①④
12.4 13. 14.
15.解:(1)∵直线 与直线 垂直
∴设直线 的方程为 ………………………………2分
∵直线 过点

∴直线 的方程为 ………………………………7分
9.已知三条直线 和 中任意两条都不平行,且不能构
成三角形,则实数 的值为▲.
10.过点 的直线l与圆 交于A,B两点,当 最小时,直线 的
方程为▲.
11.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,
能得出AB∥平面MNP的图形的序号是▲.
12.在平面直角坐标系 中,过点 的直线与圆 相切于点 ,与圆
(2)若圆 上恰有三个点到直线 的距离为 ,求实数 的值;
(3)若从点 射出的光线,经 轴于点 处反射后与圆相切,求圆的方程.
19.(本小题满分16分)
已知圆 与曲线 有三个不同的
交点.
(1)求圆 的方程;
(2)已知点 是 轴上的动点, , 分别切圆 于 , 两点.
①若 ,求 及直线 的方程;
②求证:直线 恒过定点.
两圆方程相减得 ,
即 ,………………………13分
所以过定点 .………………………16分
20.解:(1)圆

圆 的方程为 …………………4分
(2)设 ,则
则 ,Mபைடு நூலகம்
则 ,N
圆 的方程为 …………………6分
化简的 …………………8分
令 ,得
又点 在圆 内
所以当点P变化时,以MN为直径的圆 经过圆 内一定点 ……………10分
2017-2018学年第一学期高二数学期中试卷
2017.11
一、填空题:本大题共14小题 ,每小题5分,共计70分.请把答案直接填写在答题卡相应位置上.
1.直线 的倾斜角是▲.
2.在空间,没有公共点的两条直线的位置关系为▲.
3.已知圆锥的母线长为2,高为 ,则该圆锥的侧面积是▲.
4.两平行直线 与 之间的距离是▲.
17.(本小题满分14分)
如图,四棱锥P−ABCD中,底面ABCD为菱形,∠DAB=60°,平面PCD⊥底面ABCD,E是AB的中点,G为PA上的一点.
(1)求证:平面GDE⊥平面PCD;
(2)若PC∥平面DGE,求 的值.
18.(本小题满分16分)
已知关于 的方程 表示圆 .
(1)求实数 的取值范围;
5.圆 与圆 的公共弦所在的直线方程为▲.
6.设 为互不重合的平面, 是互不重合的直线,给出下列四个命题:



④若 ;
其中正确命题的序号为▲.
7.若无论 取何值,直线 始终平分半径为2的圆
,则圆 的标准方程为▲.
8.如右图所示,在正方体ABCD-A1B1C1D1中,M,N分别是棱AA1
和AB上的点,若∠B1MN是直角,则∠C1MN等于▲.
(3)设 ,作 于 ,设 ,
由于 , ,…………………12分
由题得 ,
,即 , ,
点 的纵坐标的范围为 …………………16分
所以圆的方程为 .………………………4分
(2)①设直线 , 交于点 ,则 ,
又 ,所以 ,
而 ,所以 ,………………………7分
设 ,而点 ,由 , ,
则 或 ,
从而直线 的方程为:
或 .………………………10分
②证明:设点 ,由几何性质可以知道, , 在以 为直径的圆上,
此圆的方程为 , 为两圆的公共弦,
又∵EF 平面ABCD,AB 平面ABCD,∴EF//平面ABCD.…………………14分
17.(1)证明:菱形 中,∠DAB=60°
∴△ADB是正三角形,又E是AB的中点∴DE⊥AB
∵AB∥DC ,…………………2分
平面 底面 ,平面PCD∩底面 ,
, 平面 ,………………6分
又 ,
平面 平面 ;………………8分
20.(本小题满分16分)
已知圆 , ,若直线 被圆 截得
的弦长为 .
(1)求圆 的方程;
(2)设圆 和 轴相交于 、 两点,点 为圆 上不同于 、 的任意一点,直
线 、 交 轴于 、 点.当点 变化时,以 为直径的圆 是否经过圆 内一定点?请证明你的结论;
(3)若 的顶点 在直线 上, 、 在圆 上,且直线 过圆心 ,
(2)∵直线 与直线 平行
∴设直线 的方程为 ………………………………9分
令 ,则
令 ,则 ………………………………11分


∴直线 的方程为 ………………………………14分
16.证明:(1)∵四边形ABCD是平行四边形∴AB//CD,又∵AB⊥AE,
∴AE⊥CD………………………………4分
又∵AE⊥CF,CD∩CF=C,CD、CF 平面CDEF,
(3) 关于x轴的对称点为 ,
由对称知直线 与圆相切.
由 与 得直线 的方程为 …………………12分
圆心 到直线 距离为 …………………14分
直线 与圆相切, ,即 ,解得
所以圆的方程为 …………………16分
19.解:(1)因为直线 与圆 相切,………………………1分
故圆心 到直线的距离为 ,即: , .
相交于点 ,且 ,则正数 的值为▲.
13.设集合 ,若对任意 都有
,则实数 的取值范围是▲.
14.在平面直角坐标xoy中,设圆M的半径为1,圆心在直线2x−y−4=0上,若圆M上存在
点N,使NO= NA,其中O(0,0)、A(0,3),则圆心M的横坐标a的取值范围为▲.
二、解答题:本大题共6小题,共计90分.请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
15.(本小题满分14分)
在平面直角坐标系 中,已知点 ,直线 .
(1)若直线 过点 ,且与直线 垂直,求直线 的方程;
(2)若直线 与直线 平行,且在 轴、 轴上的截距之和为3,求直线 的方程.
16.(本小题满分14分)
如图,在五面体 中,四边形 是平行四边形.
(1)若 ,求证: ;
(2)求证: 平面 .
相关文档
最新文档