生理学——骨骼肌的收缩功能
生理学骨骼肌的收缩教学设计
《生理学基础》教案
(3)肌丝滑行过程
结构基础:肌节(相邻Z线之间的肌原纤维.串联成肌原纤维)
滑行过程:
①口2+与肌钙蛋白结合后发生变构
②原肌球蛋白位移,暴露横桥作用点
③横桥与细肌丝肌动蛋白结合,活激ATP酶,分解ATP
④横桥获得能量拉动细肌丝向M线方向滑行,肌节缩短
3.骨骼肌收缩形式与影响因素
⑴肌细胞收缩形式
搴长收缩等张收缩
等长收缩:长度不变,张力增加的收缩形式
意义:发展肌张力,克服重力等外力
等张收缩:张力不变,长度缩短的收缩形式
意义:可使机体做功或运动
单收缩复合收缩
单收缩:刺激一次,完成一次收缩与舒张
不完全强直收缩:连续刺激的频率增加到新刺激都落在前一次收缩的舒张期,引起每次舒张均不完全的收缩形
式,仅见于实验中
完全强直收缩:连续刺激的频率增加到新刺激都叠加前一次收缩的舒张期,引起持续收缩而不舒张的收缩形
式,在体骨骼肌收缩均为此类型
⑵影响因素
前负荷:肌肉收缩前承受的负荷,可改变肌肉初长度,进而影响肌肉收缩力
后负荷:肌肉收缩开始后承受的负荷,改变肌肉收缩形式与收缩速度
肌肉收缩能力:肌肉的功能状态与内在特性,与前后负荷无关
(-)单项选择题
跟 1 .兴奋-收缩藕联中起关键作用的离子是( )。
A. K+
B.Na+
C. Ca2+
D. Cl-
E. Na+和Cl-
教学反思。
生理学肌细胞收缩功能
乙酰胆碱的释放特征
当运动神经未梢处于安静状态时,只有 少数囊泡释放少量乙酰胆碱。
当运动神经未梢有动作电位传来时,大 量囊泡向突触前膜移动,并以胞吐方式 呈量子式释放。
据推测,一次动作电位的到达,可使约 250个囊泡释放,释放的乙酰胆碱分子可 达107。
乙酰胆碱酯酶
Acetylcholinesterase
横管—肌浆网的联系
横管由肌细 胞膜凹入形 成,它与肌 浆网相连。
肌浆网含有 高浓度的钙 离子。
肌浆网和 Ca2+ 释放
肌浆网末端膨大形成终池,内含高浓度 Ca2+,称为胞内钙库,安静时浓度比胞质 高数千倍之多。
在终池膜上有一种雷诺丁受体(RYR), 它 是一种钙离子释放通道, 它的激活可使 终池中的Ca2+释放入胞质内.
Skeletal muscle is made of individual muscle fibers.
肌纤维是由肌原纤维组成。
The muscle fibers are made of myofibrils.
肌原纤维由肌丝构成。
The fibrils are divided into individual filaments.
胆碱酯酶复活剂:有解磷定氯解磷定、双复磷 等,它们可夺取与胆碱酯酶结合的有机磷,恢 复胆碱酯酶分解乙酰胆碱的活力。
箭毒传说
美洲的古印第安人在遇到敌人入侵时,女人和儿童在 前方将箭毒木的汁液涂于箭头,供男人在战场上杀敌。 1859年土著民族在和英军交战时,这种毒箭的杀伤力 使英军惊慌万分。
传说西双版纳最早发现箭毒木汁液含有剧毒的是一位 傣族猎人。这位猎人被一只硕大的狗熊紧逼而被迫爬 上一棵大树,可狗熊仍不放过他,生死存亡的紧要关头, 猎人折断一根树枝刺向正往树上爬的狗熊,奇迹突然 发生了,狗熊立即落地而死。从那以后猎人就学会了 把箭毒木的汁液涂于箭头用于狩猎。
骨骼肌收缩舒张原理
骨骼肌收缩舒张原理
骨骼肌的收缩和舒张是基于肌肉纤维内部的运动蛋白和神经信号的相互作用而发生的生理过程。
这个过程通常被称为肌肉收缩-舒张机制,其基本原理包括:
1.神经冲动传导:当大脑或脊髓产生神经冲动时,通过神经元传递到神经肌接头,释放乙酰胆碱等神经递质。
这些神经递质刺激肌肉纤维膜上的受体,引发动作电位的产生。
2.横纹肌纤维收缩:动作电位沿着肌肉纤维的膜表面传播,进入肌肉纤维的深处。
在肌肉纤维内部,动作电位激活钙离子的释放,使得肌肉细胞内的钙离子浓度升高。
3.肌钙蛋白复合物解离:在钙离子浓度升高的情况下,肌肉纤维中的肌钙蛋白复合物解离,使得肌动蛋白上的活性位点暴露出来。
4.肌肉收缩:肌动蛋白的活性位点暴露后,肌球蛋白头部的活化能与肌动蛋白结合,形成肌动蛋白-肌球蛋白复合物。
接着,肌动蛋白上的肌小球蛋白头部释放ADP和Pi,导致肌小球蛋白头部发生构象变化,从而产生力学工作,使肌肉纤维产生收缩。
5.肌肉舒张:当神经冲动停止时,肌肉纤维内的钙离子被肌钙蛋白复合物重新吸收,肌动蛋白的活性位点被覆盖,肌动蛋白-肌球蛋白复合物解离,肌肉纤维恢复至松弛状态,完成舒张过程。
总的来说,骨骼肌的收缩和舒张是通过神经冲动引发肌肉纤维内部的化学反应和蛋白质结构的变化而实现的。
这一过程是高度有序和协调的,以确保肌肉的正常运动和功能。
1 / 1。
生理学 骨骼肌收缩功能护理课件
药物治疗与注意事项- 药物治疗
在医生的指导下,根据患者的具体情 况,选择适当的药物进行治疗,如抗 炎药、止痛药等。- 注意事项
04
CATALOGUE
骨骼肌收缩功能护理的实践应用
老年人的骨骼肌收缩功能护理
总结词
预防摔倒、增强平衡能力
详细描述
随着年龄的增长,老年人的骨骼肌收缩功能逐渐减弱,容 易导致摔倒和骨折。因此,对于老年人,应注重骨骼肌收 缩功能的护理,通过锻炼和康复训练来增强平衡能力和肌 肉力量,预防摔倒和骨折。
疼痛护理
疼痛评估
对患者的疼痛程度进行评估,了解疼痛的性质、部位和持续时间,以便制定合适 的护理计划。
疼痛缓解措施
采取适当的疼痛缓解措施,如冷敷、热敷、按摩、分散注意力等,以减轻患者的 疼痛感。- 药物治疗:在医生的建议下,根据患者的疼痛程度和性质,给予适当 的药物治疗,如非处方药或处方药。
康复训练
肌肉力量训练:针对骨骼肌收缩功能 障碍的患者,进行适当的肌肉力量训 练,以增强肌肉力量和耐力。- 关节 活动度训练:通过关节活动度训练, 改善关节僵硬和活动受限的情况,提 高关节的灵活性和稳定性。- 日常生 活能力训练:针对患者的日常生活需 求,进行相应的训练,如步行、上下 楼梯、捡拾物品等,以提高患者的自 理能力。
骨骼肌收缩的功能
维持姿势
骨骼肌收缩有助于维持 身体的姿势和平衡。
运动
骨骼肌收缩是实现肢体 运动的基础。
保护关节
通过骨骼肌的收缩,关 节得到保护,防止过度
活动和损伤。
维持体温
骨骼肌收缩产生热量, 有助于维持体温的稳定
。
02
CATALOGUE
骨骼肌收缩功能的护理原则
保持适当的运动
骨骼肌单收缩和复合收缩--生理学实验
骨骼肌单收缩和复合收缩--生理学实验骨骼肌纤维受运动神经纤维的控制,神经纤维受到刺激后,其兴奋延神经纤维以动作电位的形式传导到相应的肌纤维,触发肌纤维收缩。
若通过神经给予肌肉一次刺激,使肌肉产生一次收缩,称为单收缩。
如果肌肉受到连续的刺激,则其收缩可出现复合现象。
本实验用蟾蜍的坐骨神经-腓肠肌标本,使用机-电换能器,通过powerLab系统来获得肌肉的收缩曲线,分析单收缩和复合收缩产生的机制与特点。
实验动物:蟾蜍实验器材和药品:PowerLab8S主机,生物电放大器,铁架台,标本盒,任氏液。
蛙手术器械,实验步骤:1.标本制备:蟾蜍坐骨神经标本制备方法参见P18蟾蜍基本技术操作。
将标本浸在任氏液中约5分钟,待其兴奋性稳定后实验。
2.仪器装置及程序设置:⑴.连接仪器(图3-4)。
图3-4.骨骼肌单收缩和复合收缩的实验框图其中,S1和S2为刺激电极,与PowerLab的outputI相连。
⑵.参数设置:启动计算机,打开PowerLab主机电源,在桌面上单击Chart4forwindow图标,进入Chart应用程序窗口。
某选择采样速度为40K/,显示比例为500:1。
某在Channel1显示骨骼肌收缩曲线。
放大器参数设置参见P38放大器参数设置。
Range为200mV,LowPa为100Hz。
如果在BridgeAmplifier设置对话框左侧的信号显示窗口中看不到输入信号,可用鼠标左键单击右侧的zero按钮,系统自动调整输入信号的零位。
单击BridgeAmplifier设置对话框下方的unit按钮,进入UnitConverion(单位转换)对话框。
单位转换的方法参见P39信号幅度范围的设置和单位的转换。
某在Channel2显示刺激方波。
在刺激参数设置对话框下方的StimulatorMarker框中选取Channel2。
刺激设置方法参见P42刺激输出的设置。
设置完毕后,单击菜单栏的etup,选取StimulatorPanel(刺激面板),弹出StimulatorPanel,在实验中可以方便地由刺激面板来设置刺激频率、幅度和波宽等参数。
生理学——骨骼肌的收缩功能ppt课件
电刺激神经纤维达阈值 神经纤维兴奋,产生动作电位 动作电位以局部电流形式传到神经末梢 Ca²+进入轴突末梢 轴突末梢量子式释放递质ACh 递质经过接头间隙与终板膜上N2受体结合
兴奋 收缩 耦联
收缩 过程
终板膜对Na+(还有K+)通透性增高而产生终 板电位
ACh被胆碱酯酶破坏 邻近肌膜去极化达阈电位而产生肌膜动作电位 肌膜动作电位沿横管传到细胞内部 肌质网终末池释放Ca²+入肌浆 Ca²+与肌钙蛋白结合,暴露肌纤蛋白上与粗肌 丝结合的位点 粗、细肌丝间形成横桥连接,细肌丝沿粗肌丝 向M线滑行,使肌小节缩短
2、肌管系统 (sarcotubular system)
横管系统(transverse tubule)
{ 纵管系统(longitudinal tubule) 肌质网 (sarcoplasmic reticulum)
三联管结构:由每一横管与来自两侧的纵管的 终末池组成的结构。其作用是把横管传来的电 信号与终末池Ca2+释放两个过程联系起来。完 成横管向肌浆网的信息传递。
舒张 过程
没有动作电位传来时 Ca²+被泵回肌质网
Ca²+脱离肌钙蛋白
粗、细肌丝间的相互作用停止, 细肌丝弹性回位
二、骨骼肌收缩的外部表现和力学分析 (一)骨骼肌的收缩形式
1、等长收缩(isometric contraction) 等张收缩( isotonic contraction)
2、单收缩和复合收缩
终板电位引 发动作电位
电压依从性 Na+通道开放
阈电位
Na+
3、神经-肌肉接头兴奋传递的特征
(1)单向性传递 (2)1对1传递 (3)兴奋传递有一定的时间延搁。 (4)易受药物和其他环境因素的影响
生理学——骨骼肌的收缩功能
生理学——骨骼肌的收缩功能骨骼肌是人体内最常见的肌肉组织,也是最重要的肌肉组织之一、它不仅具有支撑和保护的功能,还能通过收缩产生力量并推动我们的骨骼运动。
骨骼肌的收缩是通过肌肉纤维的收缩来完成的,以下将详细介绍肌肉收缩的过程以及与之相关的生理学知识。
肌肉收缩的过程可以分为四个主要步骤:兴奋-收缩-释放-恢复。
首先,神经冲动通过神经末梢传递给肌肉纤维,这个传递的过程称为兴奋。
神经冲动到达肌肉纤维后,会引发细胞内的一系列电生理反应,最终导致细胞内的钙离子释放。
当钙离子释放到肌肉纤维的细胞质中时,它们会与肌球蛋白结合在一起,这个过程被称为肌球蛋白和钙离子的结合。
肌球蛋白位于肌肉纤维中,并由两个部分组成:肌球蛋白I和肌球蛋白T。
钙离子结合到肌球蛋白I 上,使其发生构象改变,从而将粘着蛋白暴露出来。
接下来的步骤是收缩,也就是肌肉纤维产生力量并缩短。
肌球蛋白的构象改变会引起肌球蛋白和肌动蛋白之间的相互作用。
肌动蛋白是另一种蛋白质,负责肌肉纤维的收缩。
当肌动蛋白和肌球蛋白相互作用时,肌动蛋白会拉动肌球蛋白,使肌肉纤维缩短。
这个过程不断地发生,直到肌肉纤维达到最大的收缩程度。
完成收缩后,肌肉纤维需要重新松弛。
这个过程被称为释放。
释放过程中,钙离子被重新吸收到肌肉纤维内的储钙体中。
这让肌球蛋白恢复到初始状态,使肌动蛋白和肌球蛋白之间的相互作用断开。
最后一个步骤是恢复,也就是肌肉纤维回到初始状态。
在恢复过程中,肌球蛋白和肌动蛋白之间的相互作用断开,肌动蛋白返回到肌球蛋白表面以等待下一次收缩。
肌肉纤维的收缩过程是一个高度协调的过程。
它是由神经系统通过神经冲动控制的,神经冲动通过神经末梢到达肌肉纤维后,会引发一系列电生理反应,最终导致肌肉纤维的收缩。
这种神经冲动的传递是由神经递质介导的,其中最重要的神经递质是乙酰胆碱。
乙酰胆碱通过神经递质的释放使得肌肉纤维收缩。
肌肉收缩的力量大小与肌肉纤维的数量和激活程度有关。
每个肌肉纤维都是由许多肌原纤维组成的,每个肌原纤维内有成千上万个肌纤维。
骨骼肌收缩与兴奋收缩原理
骨骼肌收缩与兴奋收缩原理
骨骼肌收缩是由于神经冲动引起的。
当神经冲动到达骨骼肌时,它会引发一系列事件,最终导致肌肉收缩。
这个过程可以分为四个阶段:兴奋、收缩、松弛和恢复。
在兴奋阶段,神经冲动在神经元间传递,并跨越神经肌结合部(称为神经肌突触)。
在神经肌突触的末梢,神经冲动释放了一种叫做乙酰胆碱的神经递质。
乙酰胆碱结合到肌肉细胞上的乙酰胆碱受体上,导致肌肉细胞内钙离子浓度增加。
在收缩阶段,钙离子结合到肌肉细胞内的肌钙蛋白上,刺激肌纤维内的肌头蛋白。
肌头蛋白与肌动蛋白相互作用,使肌动蛋白上的阻滞物移动,暴露出肌动蛋白上的结合位点。
这使肌头蛋白结合到肌动蛋白上,产生肌肉收缩。
在松弛阶段,神经冲动停止传递,乙酰胆碱被降解并清除。
肌肉细胞内的钙离子被转运回储存器中。
这使肌动蛋白上的阻滞物再次隐藏结合位点,肌头蛋白和肌动蛋白分离,肌肉松弛。
在恢复阶段,肌肉细胞重新储存钙离子,并准备好再次收缩一次。
总的来说,骨骼肌收缩是一个复杂的过程,包括神经冲动的传播、乙酰胆碱的释放、钙离子浓度的调节以及肌头蛋白和肌动蛋白之间的相互作用。
这个过程使得我们能够进行运动和产生力量。
《骨骼肌收缩及舒张》课件
神经调节
骨骼肌的舒张过程受到神经系统的调 节,神经冲动通过神经-肌肉接头传递 到肌肉纤维,引起肌肉纤维的舒张。
骨骼肌的舒张过程需要消耗能量,主 要是通过肌肉中的ATP进行供能。
04
CHAPTER
骨骼肌收缩与舒张的影响因 素
神经调节
神经冲动的传递
神经冲动通过神经纤维的传导和肌肉的接点传递给肌肉,引发肌 肉的收缩和舒张。
骨骼肌的收缩是由神经系统的刺激引起的,通过肌肉中的运动神经元释放乙酰胆碱 来激活肌肉纤维。
肌肉纤维中的肌细胞膜产生动作电位,引起粗细两种肌丝的相对滑动,从而导致肌 肉收缩。
肌肉收缩可以通过不同的方式进行调节,包括神经调节、体液调节和自身调节。
02
CHAPTER
骨骼肌的收缩
骨骼肌的收缩形式
01
02
响肌肉的收缩和舒张。
内分泌系统的反馈调节
03
内分泌系统通过反馈调节机制,根据身体的需要和生理状态,
调节肌肉的收缩和舒张。
其他因素
01
02
03
机械刺激的影响
肌肉受到机械刺激时,会 产生收缩反应。
温度的影响
肌肉收缩和舒张的速度和 强度会受到温度的影响。
个体差异的影响
不同个体之间,骨骼肌的 收缩和舒张特性存在差异 。
《骨骼肌收缩及舒张》ppt课 件
目录
CONTENTS
• 骨骼肌概述 • 骨骼肌的收缩 • 骨骼肌的舒张 • 骨骼肌收缩与舒张的影响因素 • 骨骼肌收缩与舒张的应用
01
CHAPTER
骨骼肌概述
骨骼肌的生理结构
01
骨骼肌是人体最大的肌肉群,主 要分布在四肢和躯干,由许多纤 维束组成,每个纤维束由许多肌 纤维组成。
生理学课件之骨骼肌收缩功能
纵管系统
终末池
(L管,肌质网)
肌质网膜上有ryanodine受体
(钙释放)和钙泵(钙回收)
三联管
三、骨骼肌的收缩和舒张机制
滑行理论 (sliding theory): 肌肉收缩时,在肌细胞内并无肌丝或它们所 含的分子结构的缩短,而只是在每一个肌小 节内发生了细肌丝向粗肌丝的滑行。
L型钙通道
Ca2+
横管
1、横管膜上有堵塞肌浆网Ca2+通道的 蛋白,可解除堵塞。
2、通过细胞外Ca2+内流使Ca2+通道开放 (心肌细胞)。
五、骨骼肌收缩的表现及影响因素
(一)骨骼肌收缩的表现
① 等长收缩(isometric contraction)的定义和实例 张力增加,长度不变 克服阻力
② 等张收缩(isotonic contraction)的定义和实例
总张力: 具有不同前负荷 的条件下收缩时 的张力曲线。曲 线的每一点代表 被动张力和收缩 时新产生的张力 之和。
被动张力:肌肉安静 时具有的 弹性。
1
2
肌肉初长(后负荷不变,为无穷大)
2. 后负荷(afterload):
是在肌肉开始收缩时才能遇到的负荷或阻力,它不 增加肌肉的初长度,但能阻碍收缩时肌肉的缩短。
终板膜去极化→终板电位(endplate potential),大小与ACh释放 量成正比(个别囊泡自发释放在 终板膜上引起的微小电变化,称 微终板电位)
通道开放,Na+、K+及 少量Ca2+可通过
Na+内流为主,兼有K+外流
骨骼肌神经-肌接头兴奋传递的特点
① 化学性传递(chemical transmission) ② 单向传播(one-way conduction) ③ 时间延搁(temporal delay) ④ 终板电位属于局部电位 ⑤ 传递效应为1 : 1
细胞的基本功能—肌细胞的收缩功能(人体解剖生理学)
2.结构基础: 肌管系统 :
横管 (T管) 纵管 (肌质网)
纵行肌质网 LSR 连接肌质网 JSR 终池
三联管:骨骼肌的T管与其两侧的 终池
(耦联的关键结构)
三、具体过程
1.肌膜上AP沿肌膜和T管 传向肌细胞深处;
2.三联管结构处的信息传 递;
轻负荷:横桥摆动及其与肌动蛋白解离速度快(缩短 速度快);处于张力状态的横桥数目少(收缩张力小)
重负荷:横桥摆动速度慢,横桥周期延长(缩短速度慢); 较多横桥处于张力状态(收缩张力增加)
(三)肌肉的收缩能力
1.定义:是指与负荷无关,但可影响肌肉收缩效能的肌肉的 内在特性和功能状态。
2.影响因素: (1)兴奋-收缩耦联过程,特别是[Ca2+]; (2)肌肉蛋白质或横桥功能特性的改变,
Ca2+ 接头间隙
AP
Ca2+通道
突触小体
Na+
AP Na+
ACh
N2型Ach受体阳
AP
离子通道
Na+
三、传递的特点
(一)单向传递
(二)时间延搁
实质:电-化学-电的过程
(三)易受内环境影响
一、骨骼肌细胞的收缩
AP在运动神经纤维上的传导 N-M接头处兴奋的传递 AP在骨骼肌cell上的传导(局部电流) 骨骼肌的兴奋-收缩耦联 骨骼肌的肌丝滑行收缩
特别是ATP酶活性; (3)神经、体液、药物及病理因素。
兴奋收缩耦联过程 蛋白质或横桥功能特性
缺氧 酸中毒 能源缺乏
降低收缩效果
Ca2+ 咖啡因 肾上腺素
提高收缩效果
一、神经-肌接头的结构 接头前膜 接头间隙 接头后膜
骨骼肌的收缩形式及其生理学特点
骨骼肌的收缩形式及其生理学特点骨骼肌是人体中最常见的肌肉类型,也是最容易受到人们关注的一种肌肉。
它负责人体的运动功能,包括行走、跑步、举重等各种肌肉活动。
骨骼肌的收缩形式及其生理学特点主要包括等长收缩和等张收缩两种形式。
等长收缩是指骨骼肌在负荷下保持长度不变的收缩形式。
在等长收缩过程中,肌肉的张力增加,但长度保持不变。
这种收缩形式主要发生在肌肉对抗的情况下,例如举重过程中的肱二头肌和肱三头肌的对抗。
等长收缩的特点是收缩时肌肉产生的力量大,但速度较慢,耗能较多。
同时,等长收缩还可以控制肌肉的长度,使其能够保持适当的张力,以维持身体的姿势稳定。
等张收缩是指骨骼肌在负荷下发生长度缩短的收缩形式。
在等张收缩过程中,肌肉的长度缩短,但张力保持不变。
这种收缩形式主要发生在肌肉单独作用的情况下,例如屈膝肌在无重力负荷下的收缩。
等张收缩的特点是收缩时肌肉产生的力量较小,但速度较快,耗能相对较少。
同时,等张收缩还可以改变肌肉的长度,实现人体的各种动作,如走路、跑步等。
骨骼肌的生理学特点主要表现在以下几个方面:1. 可塑性:骨骼肌具有较高的可塑性,即能够通过训练和适应来改变自身的形态和功能。
长期的锻炼可以增加肌肉的力量和耐力,并促进肌肉的生长和发育。
2. 快速收缩与慢速收缩:骨骼肌可以通过调节肌纤维的类型来实现快速收缩和慢速收缩。
快速收缩的肌纤维主要富含易燃的肌纤维,能够迅速产生力量,适用于短时间、高强度的运动。
慢速收缩的肌纤维主要富含耐力型肌纤维,能够持续产生力量,适用于长时间、低强度的运动。
3. 肌肉纤维的分布:骨骼肌中的肌纤维分为红色肌纤维和白色肌纤维。
红色肌纤维富含线粒体和血管,能够进行氧化代谢,适用于长时间的耐力运动。
白色肌纤维缺乏线粒体和血管,主要进行无氧代谢,适用于短时间的高强度运动。
4. 肌肉疲劳:骨骼肌在长时间、高强度的运动后容易出现疲劳。
肌肉疲劳主要是由于肌纤维内乳酸积累、能量耗尽和神经传递障碍等因素导致的。
骨骼肌的收缩形式及其生理学特点
骨骼肌的收缩形式及其生理学特点骨骼肌是人体内最常见的肌肉类型,它们连接到骨骼上,通过收缩产生力量和运动。
骨骼肌的收缩形式分为等长收缩和等张收缩,每种收缩形式都具有其独特的生理学特点。
等长收缩是指骨骼肌在收缩时保持长度不变。
在等长收缩状态下,肌肉产生的力量可以克服外部阻力,但没有实际的运动。
这种收缩形式常见于保持姿势的肌肉,如站立时维持身体的平衡。
等长收缩时,肌肉中的肌纤维被激活,肌头和肌尾之间的距离缩短,但整体长度保持不变。
这种收缩形式可以保持肌肉的张力,使人体能够保持姿势和姿态。
等张收缩是指骨骼肌在收缩时缩短长度。
这种收缩形式常见于肌肉产生实际运动的情况下,如抬举重物或进行运动。
在等张收缩时,肌纤维中的肌头和肌尾之间的距离缩短,导致肌肉整体缩短。
这种收缩形式产生的力量可以推动骨骼和产生运动。
等张收缩是通过肌肉中的肌纤维收缩产生的,这些肌纤维由肌原纤维组成,每个肌原纤维又由肌原节构成。
当肌原节受到刺激时,肌原纤维收缩,导致肌纤维收缩,最终引起整个肌肉的收缩。
骨骼肌的收缩是由神经系统的控制和调节的。
当神经系统向肌肉发送信号时,神经末梢释放神经递质,刺激肌原节产生动作电位。
动作电位传播到肌原纤维上,触发肌原纤维中的肌球蛋白和肌凝蛋白之间的相互作用,导致肌纤维收缩。
这种神经-肌肉传递过程被称为神经肌肉连接。
骨骼肌的收缩具有一些重要的生理学特点。
首先,骨骼肌的收缩是快速的。
当神经系统向肌肉发送信号时,肌肉可以迅速响应并产生力量。
这使得骨骼肌非常适合进行迅速而精确的运动,如打击和奔跑。
其次,骨骼肌的收缩是有力的。
骨骼肌可以产生强大的力量,使人体能够进行各种日常活动和运动。
这种力量的产生是通过肌纤维中肌球蛋白和肌凝蛋白之间的相互作用来实现的。
最后,骨骼肌的收缩是疲劳的。
当骨骼肌长时间进行重复收缩时,肌肉会逐渐疲劳并失去力量。
这是因为肌纤维中的能量供应和废物清除速度无法满足高强度持续运动的需求。
总的来说,骨骼肌的收缩形式包括等长收缩和等张收缩,每种收缩形式都具有其独特的生理学特点。
08下-24骨骼肌的收缩功能
Ca2+ Ca2+
MS
TM T I C AT
MS
I C TM T AT
安静状态
胞浆[Ca2+]
原肌凝蛋白
肌钙蛋白复合物
肌凝蛋白与粗肌丝
肌钙蛋白 肌动蛋白 原肌凝蛋白
(二)骨骼肌的兴奋-收缩耦联
Excitation-contraction coupling
概念:将电兴奋和肌丝滑行 联系起来的过程。
㈣ 影响神经-肌肉接头的兴奋 传递的因素
1. ACh释放↓:肉毒杆菌毒素
2.
3. 4. 5.
ACh释放↑:黑寡妇蜘蛛毒素
ACh释放↑: Ca2+ 后膜受体阻断剂(美洲箭毒、α-银环蛇毒与ACh竞争受体, 肌松剂。 ) Ach清除速度↓:有机磷农药中毒时→胆碱酯酶ChE活性↓→ ACh清除↓→ ACh作用时间↑。
* 肌动蛋白(actin)
组成细肌丝主杆
细 肌 丝
与横挢结合,激活其ATP酶
* 原肌球蛋白(tropomysin)
阻止肌动蛋白与横挢结合
* 肌钙蛋白(tropoin)
TnT:与原肌球蛋白结合
TnI: 肌动蛋白结合
TnC:与Ca2+结合
细肌丝
原肌凝蛋白 肌钙蛋白 肌动蛋白
粗肌丝
肌凝蛋白
细肌丝:
由肌纤蛋白、原肌凝蛋白、肌钙蛋白质组成
神经-肌接头处的超微结构示意图
神经-肌接头兴奋的传递 p249
N
M 接 头 的 结 构
Ion-channel linked receptors in neurotransmission
神经肌肉接点由Ach门控通道开放而出现终板电位时,可使肌细胞膜中的电位 门Na+通道和K+通道相继激活,出现动作电位;引起肌质网 Ca2+通道打开, Ca2+进入细胞质,引发肌肉收缩。
神经调控骨骼肌收缩力量的生理机制
文章标题:神经调控骨骼肌收缩力量的生理机制在生物学和生理学领域,神经调控骨骼肌收缩力量是一个备受关注的主题。
骨骼肌是人体最主要的肌肉组织,其收缩力量受神经系统的调控。
本文将深入探讨神经调控骨骼肌收缩力量的生理机制,并从简到繁地分析这一复杂的过程。
1. 骨骼肌的基本结构和功能骨骼肌是由肌纤维组成的肌肉组织,其主要功能是产生肌肉收缩力量。
肌纤维中含有肌动蛋白和肌原纤维,通过交替收缩和舒张来完成肌肉运动。
这一基本结构为神经系统调控肌肉活动提供了物理基础。
2. 神经系统对骨骼肌活动的调控神经系统通过神经元向骨骼肌传递电信号,从而控制肌肉收缩。
在肌肉收缩过程中,神经元释放神经递质,与肌细胞膜上的受体结合,引发肌肉细胞内钙离子的释放和运动蛋白活化,最终导致肌肉收缩力量的产生。
3. 神经调控骨骼肌收缩力量的生物化学机制神经调控骨骼肌收缩力量的生物化学机制涉及多种信号通路和分子调控。
在神经元与肌肉细胞之间的突触传递过程中,钙离子扮演着关键的角色。
神经元释放神经递质后,钙离子进入肌肉细胞,引发肌肉蛋白的构象变化,最终导致肌肉收缩力量的产生。
4. 神经调控骨骼肌收缩力量的生理学调节除了神经传导外,许多生理学因素也会对骨骼肌收缩力量进行调节。
运动频率、运动类型、营养状况、药物等都会影响神经调控骨骼肌收缩力量的生理过程。
这些调节机制丰富了我们对肌肉活动的理解,也为疾病诊断和治疗提供了新思路。
5. 对神经调控骨骼肌收缩力量的个人理解在我看来,神经调控骨骼肌收缩力量是一个极其精密和复杂的生理过程。
它不仅涉及骨骼肌和神经系统的协调配合,还涉及生物化学、生理学和其他多方面的知识。
深入理解这一生理机制,不仅可以帮助我们更好地锻炼身体,还可以为医学和运动科学的发展提供重要参考。
总结回顾神经调控骨骼肌收缩力量的生理机制是一个需要从多个角度全面理解的主题。
从肌肉基本结构到神经元的信号传导,再到生物化学调节和生理学调控,每一步都是我们认识这一复杂过程的重要组成部分。
运动生理学
加。提示:活动之前热身。 4 肌肉的生理特性:兴奋性和收缩性
1 兴奋性与兴奋 兴奋:通常认为是细胞对刺激的反应过程,而现代生理学中,兴奋是动
作电位产生过程或动作电位的同义语。 5 静息电位:细胞处于安静状态时,细胞膜内外所存在的电位差称为静息电位。 通常是膜内为负、膜外为正。
地址:二餐东门北10米后勤制衣部内
二餐打印社
• 2 对抗肌收缩方法 • ① 通过交互抑制,对抗肌收缩使得主动肌放松 14 本体感受器 概念:肌梭和腱器官是存在于骨骼肌内的感受器,称为本体感受器。 肌梭:存在于骨骼肌内的感受器,外层为一结缔组织囊,囊内所含的肌纤维称为 梭内肌纤维,囊外的一般肌纤维称为梭外肌纤维。 肌梭神经纤维支配: 传入神经是Ⅰa 类、 Ⅱ类传入神经纤维,主要是Ⅰa 类传入神经纤维起作用。 Ⅰ a 类、 Ⅱ类传入神经纤维都终止于脊髓前角的α- 运动神经元。 传出神经是α- 运动神经元,支配梭外肌纤维; γ- 运动神经元,支配梭内肌 纤维。 肌梭的作用:感受肌肉长度的变化。肌肉受到外力 牵拉 梭内肌被拉长 Ⅰa 类传入神经纤维兴奋 神经冲动上传至脊髓 α- 运动神经元兴奋 牵 张反射反应。 γ- 运动神经元的作用是保持肌梭的敏感性。 肌梭与腱器官的作用区别 1 肌梭是长度感受器,其传入冲动对同一肌肉的α- 运动神经元起兴奋作用。 腱器官是张力感受器,其传入冲动对同一肌肉的α- 运动神经元起抑制作用。 2 肌肉受牵拉时,肌梭首先兴奋而引起受牵拉肌肉收缩。若牵拉力量进一步加大, 则可兴奋腱器官抑制牵张反射,避免肌肉被过度牵拉受损 15 快反应激素:肾上腺素和去甲肾上腺素 • 16 快反应激素的作用 • 保持机体运动期间血糖稳定 • - 动用肌糖原 • - 增加肝糖原动用 • - 增加脂肪酸动用 • - 干扰葡萄糖吸收 • 急性运动期间肾上腺素和去甲肾上腺素升高,经过运动训练后浓度下降。 17 慢反应激素:皮质醇 • 作用 • - 刺激脂肪分解,动用脂肪酸 • - 增加肝脏糖异生 • - 减少葡萄糖被细胞利用 • 运动效应 • - 低强度运动皮质醇浓度增加 • - 大强度运动皮质醇浓度增加(大于 60%最大摄氧量) 慢反应激素:生长激素 • 作用:支持皮质醇的作用 • - 刺激脂肪分解,动用脂肪酸 • - 增加肝脏糖异生 • - 减少葡萄糖被细胞利用 • 运动效应 • - 血浆生长激素随运动强度增加而增加
--《生理学》细胞的基本功能——4肌细胞的收缩
肌丝滑行理论
Resting length
明带
暗带
三联管结构(triad):兴奋-收缩藕联的结构基础 。
二、骨骼肌收缩的分子机制
Relaxed state
Initiation of contration
肌凝蛋白 肌动蛋白
收缩蛋白
肌球蛋白 肌钙蛋白
调节蛋白
(一)肌丝滑行过程
肌浆中Ca2+浓度↑→Ca2+与肌钙蛋白结合→肌钙蛋白构 型变化→原肌凝蛋白构型变化→肌纤蛋白上活性位点暴露→ 横桥与肌纤蛋白结合→横桥ATP酶激活→分解ATP放出能量 →横桥头部摆动并拖动细肌丝→肌丝滑行(肌肉收缩)。
following motor neuron synaptic activity.
Excitation/contraction coupling
1.兴奋通过横管系统传导到肌细胞内部三联体结构处。
2.三联体结构处的信息传递:横管膜上的动作电位产生 的 电 流 或 诱 发 细 胞 膜 产 生 的 IP3 ( 三 磷 酸 肌 醇 ) , 均 可 导 致 Ca2+通道开放,Ca2+顺浓度梯度从肌质网内流入胞浆,触发肌 丝滑行。
3.肌浆网对Ca2+的贮存、释放和再聚集:肌浆网膜上的 钙泵把肌浆中的Ca2+主动转运到肌浆网内(肌浆Ca2+浓度较低 而肌浆网内Ca2+浓度较高)。
Excitation/contraction coupling
生理学 骨骼肌细胞的收缩功能护理课件
骨骼肌细胞的代谢功能主要涉及 糖酵解和有氧氧化,为肌肉收缩
提供能量。
骨骼肌细胞与其他肌肉组织的比较
骨骼肌细胞是随意肌,可以通 过意识控制其收缩和舒张。
心肌和平滑肌分别控制心脏和 内脏器官的运动,其收缩功能 不受意识的控制。
骨骼肌细胞具有较高的代谢活 性,能够快速地进行能量转换 和物质交换。
02
平衡与协调训练
通过平衡板、瑜伽球等工具进行平衡 与协调训练,提高肌肉的控制能力和 稳定性。
06
案例分析:某运动员 骨骼肌细胞损伤与康 复
案例介绍:某运动员的骨骼肌细胞损伤情况
损伤原因
高强度训练、肌肉拉伤、撞击等。
症状表现
肌肉疼痛、肿胀、活动受限等。
诊断结果
通过医学影像和实验室检查,确认骨骼肌细胞损 伤。
骨骼肌细胞的收缩机 制
骨骼肌细胞的兴奋-收缩耦联
骨骼肌细胞的兴奋-收缩耦联是指肌 肉兴奋与收缩之间的联系过程,包括 电兴奋通过横管系统传导到肌质网并 对之产生刺激,引发肌肉的收缩。
这一过程涉及多个分子和离子通道的 参与,如钙离子、肌质网、横管等, 它们协同作用,确保肌肉收缩的准确 性和有效性。
骨骼肌细胞的收缩蛋白
生理学骨骼肌细胞的收缩功 能护理课件
目录
• 骨骼肌细胞的基本结构与功能 • 骨骼肌细胞的收缩机制 • 影响骨骼肌细胞收缩功能的因素 • 骨骼肌细胞损伤与修复 • 骨骼肌细胞收缩功能的护理与康复 • 案例分析:某运动员骨骼肌细胞损伤与康
复
01
骨骼肌细胞的基本结 构与功能
骨骼肌细胞的形态与结构
骨骼肌细胞呈长圆柱形,具有明暗相间的横纹,是人体内最主要的肌肉细胞类型之 一。
存在肌肉感觉障碍。
骨骼肌细胞收缩功能的护理措施
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sarcolemma
Muscle fiber Capillary
Synaptic cleft
Mitochondrion Postsynaptic membrane
Myofibrils
LOGO
时间管理之“四象限法则”
2、LOG神O 经肌肉接头的时兴间奋管传理递之过“程四象限法则”
运动神经兴奋
AP传到神经末梢
轴突膜上Ca2+ 通道开放
Ca2+进入接头 前膜
使囊泡移向接 头前膜,并与 之融合
200~300个囊 泡释放约107 个ACh
ACh与终板膜上 终板膜对Na+、
N2受体结合引起 K+等通透性增 Na+内流
N2型ACh受体阳 大
离子通道开放
终板电位
电压依从性 Na+通道开放
AP
胆碱酯酶 水解ACh
LOGO
指把肌细胞膜的以电变化为特征的兴奋过 程和以肌丝滑行为基础的收缩过程联系起来 的中介过程。Ca2+是耦联因子。
The process by which depolarization of the muscle fiber initiates contraction. The action potential is transmitted to all the fibrils in the muscle fiber via the T system. It triggers the release of calcium ions from the terminal cisterns. The Ca2+ initiates contraction.
囊泡内含乙酰 胆碱(ACh)
量子释放:ACh 以囊泡为单位成 批向间隙释放
接头间隙 终板膜
运动神经 囊泡 接头前膜 肌纤维
LOGO
时间管理之“四象限法则”
Axon of motor nerve
Neuromuscular junction
Presynaptic terminal
Synaptic
vesicles
时间管理之“四象限法则”
LOGO
时间管理之“四象限法则”
LOGO
时间管理之“四象限法则”
3、神经-肌肉接头兴奋传递的特征
(1)单向性传递 (2)1对1传递
(3)兴奋传递有一定的时间延搁。 (4)易受药物和其他环境因素的影响
(4LO)GO 易受药物和其他时间环管境理因之素“的四影象响限法则”
美洲箭毒和-银环蛇毒 可与ACh竞争受体,有 肌松剂的作用。
(一)神经-肌肉接头处的兴奋传递 The excitable transmission of neuromuscular junction
LOGO
时间管理之“四象限法则”
LOGO
时间管理之“四象限法则”
结绨组织
神经-肌肉接点 肌纤维
运动神经
肌原纤维 细胞核
1L、OGO神经-肌肉接头时的间结管构理之“四象限法则”
有机磷农药和新斯的明 选择性抑制胆碱酯酶, 引起种种中毒症状。
(二L)OGO 骨骼肌细胞的微时细间结管理构之“四象限法则” The microstructure of skeletal muscle cell
1、肌原纤维和和肌小节
结绨组织 神经-肌肉接点
肌原纤维 细胞核
肌纤维 运动神经
LOGO
时间管理之“四象限法则”
滑行学说(sliding theory)
1、LO肌GO 丝的分子结构和时滑间管行理的之动“因四象限法则”
杆状部(呈束状排列,朝向
{ 粗肌丝 肌球蛋白 M线,形成粗肌丝的主干) 横桥
LOGO
横桥的作用:
时间管理之“四象限法则”
1、可与肌纤蛋白可逆结合。通过横桥连续的向 M线方向扭动,牵拉细肌丝向暗带中央滑行。
LOGO
时间管理之“四象限法则”
第四节 骨骼肌的收缩功能
The contraction function of skeletal muscle
LOGO
时间管理之“四象限法则”
一、骨骼肌细胞收缩活动的引起和收缩机制
The initiation of skeletal muscle cell contraction and contraction mechanism
前移 接触 融合
破裂
时间管理之“四象限法则”
LOGO
时间管理之“四象限法则”
阈电位
终板电位(endplate potential)
微终板电位
(miniature endplate potential)
LOGO
终板电位引 发动作电位
电压依从性 Na+通道开放
时间管理之“四象限法则” 阈电位
Na+
LOGO
2、具有ATP酶的作用。
LOGO
时间管理之“四象限法则”
肌纤蛋白 单体呈球形,聚合成双螺旋
{ 结构,是细肌丝的主干,横桥结合位点
时间管理之“四象限法则”
LOGO
时间管理之“四象限法则”
LOGOBiblioteka 时间管理之“四象限法则”Ca2+
LOGO
Ca2+的作用: 1.降低轴浆粘度 2.消除接头前膜
内的负电位
时间管理之“四象限法则”
LOGO
前移 接触
时间管理之“四象限法则”
LOGO
前移 接触 融合
破裂
时间管理之“四象限法则”
LOGO
兴LOGO奋-收缩耦联的三时间个管基理本之步“骤四:象限法则”
1、肌细胞膜的电兴奋通过横管系统 传向肌细胞深部。
2、三联管处的信息传递。 3、肌浆网(纵管系统)对Ca2+的储存、 释放和再聚积。
LOGO
时间管理之“四象限法则”
LOGO
时间管理之“四象限法则”
LOGO
时间管理之“四象限法则”
(四)骨骼肌收缩的分子机制
三联管结构:由每一横管与来自两侧的纵管的 终末池组成的结构。其作用是把横管传来的电 信号与终末池Ca2+释放两个过程联系起来。完 成横管向肌浆网的信息传递。
LOGO
时间管理之“四象限法则”
三联管结构
(三LO)GO骨骼肌细胞的兴时奋间-管收理缩之耦“联四象限法则”
兴奋-收缩耦联(excitation-contraction coupling)
LOGO
时间管理之“四象限法则”
暗带长度固定(1.6m)
明带H带长度可变
LOGO
时间管理之“四象限法则”
2、L肌OGO 管系统
时间管理之“四象限法则”
(sarcotubular system)
{ 横管系统(transverse tubule) 纵管系统(longitudinal tubule) 肌质网 (sarcoplasmic reticulum)