二元一次方程组复习—经典题型分类汇总
二元一次方程应用题分类复习(整理)
- 1 -二元一次方程应用题分类复习日期: 2月 8日1、知道用方程组解决实际问题的一般步骤2、读懂并能找出实际问题中的各种形式表达的数量关系,列出方程组,得出问题的解答.列二元一次方程组解应用题(1)列二元一次方程组解应用题的一般步骤 ①设出题中的两个未知数; ②找出题中的两个等量关系;③根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组; ④解这个方程组,求出未知数的值;⑤检验所得结果的正确性及合理性并写出答案. (2)用方程解决实际问题的几个注意事项①先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再找出含有未知数的代数式,再找相等关系更为合理.②“文字”与“图表”转换:有的应用题,用文字语言表达较难,就可以用表格或图形来分析,这样既直观,也易理解题意.③所列方程两边的代数式的意义必须一致,单位要统一,数量关系一定要相等. ④要养成“验”的好习惯,即所求结果要使实际问题有意义. ⑤不要漏写“答”,“设”和“答”都不要丢掉单位名称. ⑥分析过程可以只写在草稿纸上,但一定要认真.⑦对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程,即未知数的个数应与方程组中方程的个数相等.例1:配套问题1. 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x 人生产螺栓,y人生产螺母,则每天可生产螺栓25x 个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套- 2 -成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a 件甲产品和b 件乙产品配成一套,那么甲产品数的b 倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a 件,乙产品b件,丙产品c 件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.跟踪练习1、木工厂有28个工人,每个工人一天加工桌子数与加工椅子数的比是9:20,现在如何安排劳动力,使生产的一张桌子与4只椅子配套?2、某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才能使螺栓和螺帽刚好配套?3、现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,用多少张铁皮做盒身,多少张铁皮做盒底可以使盒身与盒底正好配套? 例2、数字问题2.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:十位上的数个位上的数对应的两位数相等关系 原两位数xy10x +y10x+y=x +y+9- 3 -解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x 的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.跟踪练习1、一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.2、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数.某校环保小组成员收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460克,第二天收集1号电池2节,5号电池3节,总重量为240克,试问1号电池和5号电池每节分别重多少克?2、某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?- 4 -3、学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺张数,信封个数分别为多少个?4、为迎接2008年奥运会,•某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,•已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,•生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?1.在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B的距离为120千米,B到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.2.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得- 5 -()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.跟踪练习1、甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
二元一次方程组知识点整理、典型例题练习总结
⼆元⼀次⽅程组知识点整理、典型例题练习总结⼆元⼀次⽅程组(拓展与提优)1、⼆元⼀次⽅程:含有两个未知数( x 和 y ),并且含有未知数の项の次数都是 1,像这样の整式⽅程叫做⼆元⼀次⽅程,它の⼀般形式是 ax by c(a 0,b 0).例 1、若⽅程( 2m-6)x|n|-1+(n+2)ym2-8=1是关于x 、yの⼆元⼀次⽅程,求 m 、n の值.2、⼆元⼀次⽅程の解:⼀般地,能够使⼆元⼀次⽅程の左右两边相等の两个未知数の值,叫做⼆元⼀次⽅程の解.【⼆元⼀次⽅程有⽆数组解】3、⼆元⼀次⽅程组:含有两个未知数( x 和 y ),并且含有未知数の项の次数都是 1,将这样の两个或⼏个⼀次⽅程合起来组成の⽅程组叫做⼆元⼀次⽅程组 .4、⼆元⼀次⽅程组の解:⼆元⼀次⽅程组中の⼏个⽅程の公共解,叫做⼆元⼀次⽅程组の解 . 【⼆元⼀次⽅程组解x y 1 x y 1x y 1 x y 1の情况:①⽆解,例如: x y 6,2x 2y 6;②有且只有⼀组解,例如: 2x y 2 ;③有⽆数组解,例如: 2x 2y 2】例 2、已知2x +(m -1)y =2nx+ y =1の解,试求(m+n ) 2016の值例 3、⽅程 x 3y 10 在正整数范围内有哪⼏组解?5、⼆元⼀次⽅程组の解法:代⼊消元法和加减消元法。
例 4、将⽅程 10 2(3 y ) 3(2 x )变形,⽤含有 x の代数式表⽰ y .例 5、⽤适当の⽅法解⼆元⼀次⽅程组ax y 1例 6、若⽅程组有⽆数组解,则 a 、 b の值分别为()6x by 2B. a 2,b 1C.a=3,b=-2D. a 2 b, 2x2x 2是关于 x 、 y の⼆元⼀次⽅程组A. a=6,b=-1例 7、已知关于 x, y の⽅程组 3x 5y m 2の解满⾜ x y 10,求式⼦ m 2 2m 1の值. 2x 3y m6、三元⼀次⽅程组及其解法:⽅程组中⼀共含有三个未知数,含未知数の项の次数都是1,并且⽅程组中⼀共有两个或两个以上の⽅程,这样の⽅程组叫做三元⼀次⽅程组。
二元一次方程组题型归纳
二元一次方程组题型总结题型一:二元一次方程的概念及求解例1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.2.二元一次方程3x +2y =15的正整数解为_______________.3.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.4.2x -3y =4x -y =5的解为_______________.题型二:方程组有解的情况。
(方程组有唯一解、无解或无数解的情况)方程组⎩⎨⎧=+=+222111c y b x a c y b x a 满足 条件时,有唯一解;满足 条件时,有无数解;满足 条件时,无解。
例1.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m2二元一次方程组23x y mx ny -=⎧⎨+=-⎩ 有无数解,则m= ,n= 。
类型三:方程组的解与待定系数例1.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.2.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______. 3:若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为 。
4 若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a = ,b= 。
5.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为6.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是7:如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,下列各式中成立的是 ( )A 、a +4c =2B 、4a +c =2C 、a +4c +2=0D 、4a +c +2=0题型四:涉及三个未知数的方程,求出相关量。
二元一次方程组的12种应用题型归纳(可编辑修改word版)
二元一次方程组的 12 种应用题型归纳类型一:行程问题【例 1】甲、乙两人相距 36 千米,相向而行,如果甲比乙先走 2 小时,那么他们在乙出发2.5 小时后相遇;如果乙比甲先走 2 小时,那么他们在甲出发 3 小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为 x 千米/时,乙的速度为 y 千米/时。
(2.5 + 2)x + 2.5y = 36 3x + (3 + 2)y = 36 x = 6 y = 3.6答:甲的速度为 6 千米/时,乙的速度为 3.6 千米/时。
【例 2】两地相距 280 千米,一艘船在其间航行,顺流用 14 小时,逆流用 20 小时,求这艘船在静水中的速度和水流速度。
解:设这艘船在静水中的速度为 x 千米/时,水流速度为 y 千米/时。
14(x + y ) = 280 20(x ‒ y ) = 280 x = 17 y = 3答:这艘船在静水中的速度为 17 千米/时,水流速度为 3 千米/时。
类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作 6 周完成,需工钱 5.2 万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需 9 周完成,需工钱 4.8 万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
{解得{ {解得{{ y = { b = 解:设甲公司每周的工作效率为 x ,乙公司每周的工作效率为 y 。
x = 1 6x + 6y = 1 4x + 9y = 110 1 解得 151 1 ∴1÷10=10(周) 1÷15=15(周)∴甲公司单独完成这项工程需 10 周,乙公司单独完成这项工程需 15 周。
设甲公司每周的工钱为 a 万元,乙公司每周的工钱为 b 万元。
a = 3 6a + 6b = 5.2 4a + 9b = 4.8 5 4 解得 15此时 10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。
二元一次方程组【四大题型】—2024年中考数学高频考点精讲(全国通用)(解析版)
二元一次方程组【四大题型】一、解二元一次方程组【高频考点精讲】1.用“代入法”解二元一次方程组的一般步骤(1)从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来; (2)将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求出x (或y )的值;(4)将求得未知数的值代入变形后的关系式,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。
2.用“加减法”解二元一次方程组的一般步骤(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求得x (或y )的值;(4)将求得未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。
【热点题型精练】1.(2023•无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( ) A .{x =1y =2B .{x =2y =0C .{x =0.5y =3D .{x =−2y =4解:A 、把x =1,y =2代入方程,左边=2+2=右边,所以是方程的解; B 、把x =2,y =0代入方程,左边=右边=4,所以是方程的解; C 、把x =0.5,y =3代入方程,左边=4=右边,所以是方程的解; D 、把x =﹣2,y =4代入方程,左边=0≠右边,所以不是方程的解. 答案:D .2.(2023•南通)若实数x ,y ,m 满足x +y +m =6,3x ﹣y +m =4,则代数式﹣2xy +1的值可以是( ) A .3B .52C .2D .32解:由题意可得{x +y =6−m 3x −y =4−m,解得:{x =5−m 2y =7−m 2, 则﹣2xy +1=﹣2×5−m 2×7−m2+1=−(5−m)(7−m)2+1 =−m 2−12m+352+1=−(m 2−12m+36)−12+1=−(m−6)22+32≤32,∵3>52>2>32,∴A ,B ,C 不符合题意,D 符合题意, 答案:D .3.(2023•眉山)已知关于x ,y 的二元一次方程组{3x −y =4m +1x +y =2m −5的解满足x ﹣y =4,则m 的值为( )A .0B .1C .2D .3解:∵关于x 、y 的二元一次方程组为{3x −y =4m +1①x +y =2m −5②,①﹣②,得:2x ﹣2y =2m +6, ∴x ﹣y =m +3, ∵x ﹣y =4, ∴m +3=4, ∴m =1. 答案:B .4.(2022•株洲)对于二元一次方程组{y =x −1①x +2y =7②,将①式代入②式,消去y 可以得到( )A .x +2x ﹣1=7B .x +2x ﹣2=7C .x +x ﹣1=7D .x +2x +2=7解:{y =x −1①x +2y =7②,将①式代入②式,得x +2(x ﹣1)=7, ∴x +2x ﹣2=7, 答案:B .5.(2022•雅安)已知{x =1y =2是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 .解:把{x =1y =2代入ax +by =3得:a +2b =3,则原式=2(a +2b )﹣5=2×3﹣5=6﹣5=1. 答案:1.6.(2023•杭州二模)已知二元一次方程x +3y =14,请写出该方程的一组整数解 . 解:x +3y =14, x =14﹣3y , 当y =1时,x =11,则方程的一组整数解为{x =11y =1.答案:{x =11y =1(答案不唯一).7.(2023•苏州一模)若一个二元一次方程的一个解为{x =2y =−1,则这个方程可能是 .解:这个方程可能是:x +y =1,答案不唯一. 答案:x +y =1,答案不唯一. 8.(2023•连云港)解方程组{3x +y =8①2x −y =7②.解:{3x +y =8①2x −y =7②,①+②得:5x =15, 解得:x =3,将x =3代入①得:3×3+y =8, 解得:y =﹣1,故原方程组的解为:{x =3y =−1.二、由实际问题抽象出二元一次方程组【高频考点精讲】1.由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系;2.一般来说,有几个未知量就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相符。
绝对经典二元一次方程组知识点整理、典型例题练习总结
一、知识点总结1、二元一次方程:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程,它的一般形式是(0,0)ax by c a b +=≠≠.2、二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解. 【二元一次方程有无数组解】3、二元一次方程组:含有两个未知数(x 和y ),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组.4、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解.【二元一次方程组解的情况:①无解,例如:16x y x y +=⎧⎨+=⎩,1226x y x y +=⎧⎨+=⎩;②有且只有一组解,例如:122x y x y +=⎧⎨+=⎩;③有无数组解,例如:1222x y x y +=⎧⎨+=⎩】5、二元一次方程组的解法:代入消元法和加减消元法。
例:解方程组x+y=5①6x+13y=89②例:解方程组x+y=9①x-y=5②(一)加减-代入混合使用的方法.例1, 13x+14y=41 (1)14x+13y=40 (2)特点:两方程相加减,单个x 或单个y,这样就适用接下来的代入消元.(二)换元法例2, (x+5)+(y-4)=8(x+5)-(y-4)=4特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。
6、三元一次方程组及其解法:方程组中一共含有三个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。
解三元一次方程组的关键也是“消元”:三元→二元→一元 ⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x7、列二元一次方程组解应用题的一般步骤可概括为“审、设、找、列、解、答”六步: (1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,; (2)设:设未知数;(3)找:找出能够表示题意两个相等关系;并用字母表示其中的两个未知数 (4)列:根据这两个相等关系列出必需的代数式,从而列出方程组; (5)解:解这个方程组,求出两个未知数的值; (6)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.1、若方程213257m n x y --+=是关于x y 、的二元一次方程,求m 、n 的值.2、将方程102(3)3(2)y x --=-变形,用含有x 的代数式表示y .3、方程310x y +=在正整数范围内有哪几组解?4、若23x y =⎧⎨=⎩是方程组2315x m nx my -=⎧⎨-=-⎩的解,求m n 、的值.5、已知(1)(1)1n m m x n y ++-=是关于x y 、的二元一次方程,求m n 的值.6、已知关于,x y 的方程组35223x y m x y m+=+⎧⎨+=⎩的解满足10,x y +=-求式子221m m -+的值.7、解二元一次方程组.⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x8、在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a 看成了什么,乙把b 看成了什么?(2)求出原方程组的正确解.题型一、列二元一次方程组解决生产中的配套问题1、某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只,贤计划用132米这样布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套题型二、列二元一次方程组解决行程问题2、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇。
二元一次方程组应用题12种常考题型大全
二元一次方程组应用题12种常考题型大全列二元一次方程组解应用题的一般步骤1.审题:找出题目中的数量关系;找出题目中的等量关系;2.设未知数:设两个关键未知量为未知数,可直接设元,也可间接设元;3.根据题目中的等量关系列方程组;4.解方程组;5.检验作答.要点诠释(1)解实际应用问题必须写“答”,而且在写答案前要据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.类型一:列二元一次方程组解决——行程问题(1) 追及问题:速度差×追及时间=路程差(2)相遇问题: 速度和×相遇时间=路程和(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速.注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行逆水航行问题类似.例1 甲乙两地相距km 60,一辆汽车好一辆摩托车同由两地相向而行,1小时20分钟相遇,相遇后,摩托车继续前进,汽车在相遇处停留1小时后调转车头原速返回,半小时后汽车追上了摩托车,求汽车和摩托车的速度各是多少?【解答】解:设汽车的速度是x 千米每小时,摩托车速度y 千米每小时, 由题意得:⎪⎪⎩⎪⎪⎨⎧==+y x y x 232160)(34 解得:⎪⎪⎩⎪⎪⎨⎧==4454135y x 答:汽车的速度是4135千米/时,摩托车速度445千米/时.【变式1】甲、乙两人从相距30千米的两地相向而行.如甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【解答】解:设甲的速度是x 千米/时,乙速度是y 千米/时,由题意得:⎩⎨⎧=++=++30)23(3305.2)25.2(y x y x 解得:⎩⎨⎧==35y x 答:甲的速度是5千米/每小时,乙的速度是3千米/每小时.【变式2】甲、乙两地相距360千米,一轮船往返于甲、乙两地间,顺流用18小时,逆流用24小时,求轮船在静水中的速度和水流速度.【解答】解:设轮船在静水中的速度为x 千米/小时,水流速度为y 千米/小时,由题意得:⎩⎨⎧=-=+360)(24360)(18y x y x 解得⎩⎨⎧==5.25.17y x 答:船在静水中的速度为17.5千米/小时,水流速度为2.5千米/小时.类型二:列二元一次方程组解决——工程问题工程问题:工作效率×工作时间=工作量.例2 一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元,问:(1)甲、乙两组单独工作一天,商店各应付多少元?(2)单独请哪组,商店所付费用较少?(3)装修完后,商店每天可赢利200元,你认为如何安排施工有利于商店经营?说说你的理由.【解答】解:(1)设甲组单独工作一天商店应付x 元,乙组单独工作一天商店应付y 元.由题意可得:⎩⎨⎧=+=+34801263520)(8y x y x 解得:⎩⎨⎧==140300y x 答:甲组单独工作一天商店应付300元,乙组单独工作一天商店应付140元.(2)设工作总量为单位1,甲组工作效率为a ,乙组工作效率为b .由题意可得:⎩⎨⎧=+=+11261)(8b a b a解得:⎪⎪⎩⎪⎪⎨⎧==241121b a ∴甲组单独完成装修需121211= (天), 乙组单独完成装修需 242411=(天), ∴单独请甲组需付360012300=⨯(元),单独请乙组需付336024140=⨯(元),33603600> , ∴单独请乙组费用较少;(3)由题意,得①甲组单独做12天完成,商店需付款3600元;乙组单独做24天完成,商店需付款3360元;但甲组比乙组早12天完工,商店12天的利润为240012200=⨯元,即开支为120024003600=-元3360<元,故选择甲组单独做比选择乙组单独做划算.②甲、乙合作8天可完成,需付费用3520元,此时工期比甲单独做少4天,商店开业4天的利润为8002004=⨯元,开支为27208003520=-元3600<元;则甲、乙合作比甲单独做12天合算.综上所述,甲、乙合作这一方案最优.【变式】某家庭新购住房需要装修,如果甲、乙两个装饰公司合做,12天可以完成,需付装修费1.04万元;如甲公司先做9天,剩下的由乙公司来做,还需16天完成,共需付装修费1.06万元.若只选一个装饰公司来完成装修任务,应选择哪个装饰公司?试说明理由.【解答】解:设工作总量为单位1,甲公司的工作效率为x ,乙公司工作效率为y .由题意得:⎩⎨⎧=+=+11691)(12y x y x 解得:⎪⎪⎩⎪⎪⎨⎧==281211y x ∴甲组单独完成装修需212111= (天), 乙组单独完成装修需282811= (天),设甲公司单独完成装修工程需装修费a 万元,乙公司单独完成装修工程需装修费b 万元, 由题意得:⎪⎪⎩⎪⎪⎨⎧=⨯+⨯=+06.1281621904.1)2821(12b a b a 解得:⎩⎨⎧==12.198.0b a 甲公司完成装修工程需21天,装修费0.98万元;乙公司完成装修工程需28天,装修费1.12万元. 答:从节约时间、节省开支的角度考虑,应选择甲公司来完成此项装修任务.类型三:列二元一次方程组解决——商品销售利润问题(1)利润=售价-成本(进价) (2)%100⨯-=进价进价售价利润率 (3)利润=成本(进价)×利润率(4)标价=成本(进价)×(1+利润率)(5)实际售价=标价×打折率注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.(例如八折就是按标价的十分之八即五分之四或者百分之八十) 例3 有甲、乙两种商品,甲商品的利润率为5%,乙商品的利润率为4%,共获利46元.价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共获利44元,则两种商品的进价分别是多少?【解答】解:设甲商品的进价为x 元,乙商品的进价为y 元.根据题意可得:⎩⎨⎧=+=+44%5%446%4%5y x y x 解得:⎩⎨⎧==400600y x 答:甲商品的进价为600元,乙商品的进价为400元,【变式1】李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【解答】解:设甲、乙两种蔬菜各种植了x 、y 亩.由题意得:⎩⎨⎧=+=+180001500200010y x y x 解得:⎩⎨⎧==46y x 答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩.【变式2】某商场用36万元购进A ,B 两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件) 1200 1000售价(元/件) 1380 1200求该商场购进A ,B 两种商品各多少件.【解答】解:设购进A 种商品x 件,B 种商品y 件.由题意得:⎩⎨⎧=-+-=+60000)10001200()12001380(36000010001200y x y x 化简得⎩⎨⎧=+=+3000109180056y x y x 解得⎩⎨⎧==120200y x 答:该商场购进A ,B 两种商品分别为200件和120件.类型四:列二元一次方程组解决——银行储蓄问题基本概念①本金:顾客存入银行的钱叫做本金. ②利息:银行付给顾客的酬金叫做利息.③本息和:本金与利息的和叫做本息和.④期数:存入银行的时间叫做期数.⑤利率:每个期数内的利息与本金的比叫做利率.⑥利息税:利息的税款叫做利息税.基本关系式①期数利率本金利息⨯⨯=②期数)利率(本金期数利率本金本金利息本金本息和⨯+⨯=⨯⨯+=+=1 ③利息税率期数利率本金利息税率利息利息税⨯⨯⨯=⨯=④利息税率)(利息税后利息-⨯=1⑤12⨯=月利率年利率⑥月利率=年利率121⨯ 注意:免税利息=利息例4 小明以两种方式储蓄了压岁钱2000元.其中一种是年利润率为%25.2的教育储蓄,另一种是年利润率为%25.2的一年定期存款,一年后共得利息44.4375元,求这两种储蓄各存了多少钱?(定期存款税率为%5)【解答】解:设一年定期存款为x 元,教育储蓄为y 元.由题意可得:⎩⎨⎧=+⨯-=+4375.44%25.2%5%25.2%25.22000y x x y x 解得:⎩⎨⎧==1500500y x 答:一年定期存款为500元,教育储蓄为1500元.【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,可得利息54.9元,已知两种储蓄的年利润的和为%24.3,问这两种储蓄的年利润各是多少?【解答】解:设2000元的年利率为x ,则1000元的年利率为y .由题意得:⎩⎨⎧=+=+9.5410002000%24.3y x y x 解得:⎩⎨⎧==%99.0%25.2y x 故这2000元的年利率为%25.2,1000元的利率为:%99.0.答:这两种储蓄的年利润各是%25.2、%99.0.【变式2】小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存2000元钱,一种是年利率为%25.2的教育储蓄,另一种年利率为%25.2的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额%20⨯,教育储蓄没有利息所得税,列二元一次方程组解决)【解答】解:设教育储蓄存款x 元,另一种存款y 元,由题意得:⎩⎨⎧=⨯-+++=+7.2042%20%25.2%)25.21(%)25.21(2000y y x y x 解得:⎩⎨⎧==5001500y x 答:教育储蓄存款1500元,另一种存款500元.类型五:列二元一次方程组解决——生产中的配套问题解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例.例5 红星服装厂要生产一批某种型号的学生服装,已知3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?【解答】解:设用x 米布料生产上衣,y 米布料生产裤子才能配套.由题意得:⎩⎨⎧==+y x y x 32600 解得:⎩⎨⎧==240360y x 则用360米生产上衣,240米生产裤子才能配套,共能生产240套.【变式1】用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?【解答】解:设用x 张铁皮制作盒身,用y 张铁皮制作盒底,可以正好制成配套罐头盒.由题意得:⎩⎨⎧=⨯=+y x y x 42152108 解得:⎩⎨⎧==4563y x 答:用63张铁皮制作盒身,用45张铁皮制作盒底,可以正好制成配套罐头盒.【变式2】某车间有660名工人,生产某种由一个螺栓两个螺母构成的配套产品,每人每天平均生产螺栓14个或螺母20个,应安排多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?【解答】解:设安排x 人生产螺栓,y 人生产螺母,由题意得:⎩⎨⎧=⨯=+y x y x 20214660 解得:⎩⎨⎧==385275y x答:安排275人生产螺栓,385人生产螺母.【变式3】一张方桌由1个桌面、4条桌腿组成,如1立方米木料可以做桌面50个,或做桌腿300条,现有10立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿恰好配成方桌?若每个方桌能售80元,这批方桌能卖多少钱?【解答】解:设用3m x 木料制作桌面,用y 立方米木料制作桌腿恰好配套.由题意得:⎩⎨⎧=⨯=+y x y x 30050410 解得:⎩⎨⎧==46y x 共有:300650=⨯个方桌,卖:2400030080=⨯元.答:用36m 木料制作桌面,4立方米木料制作桌腿恰好配成方桌,若每个方桌能售80 元,这批方桌能卖24000元钱.类型六:列二元一次方程组解决——增长率问题解这类问题的基本等量关系式是:增长后的量增长率)(原量=+⨯1;减少后的量减少率)(原量=-⨯1.例6 某工厂去年的利润(总产值﹣总支出)为200万元,今年总产值比去年增加了%20,总支出比去年减少了%10,今年的利润为780万元,问去年的总产值、总支出各是多少万元?【解答】解:设去年总产值为x 万元,总支出为y 万元.由题意得:⎩⎨⎧=--+=-780%)101(%)201(200y x y x 解得:⎩⎨⎧==18002000y x 答:去年的总产值、总支出各是2000万元、1800万元.【变式1】某城市现有人口42万人.计划一年后城镇人口增加%8.0,农村人中增加%1.1,这样全市人口得增加%1,求这个城市现有城镇人口和农村人口分别是多少人?【解答】解:设现有城镇人口x 万人,农村人口y 万人.由题意得:⎩⎨⎧⨯=•+•=+%142%1.1%8.042y x y x 整理得⎩⎨⎧=+=+②420118①42y x y x ②﹣①×8,得843=y ,即28=y ,代入①,得14=x .故这个方程的解为:⎩⎨⎧==2814y x 答:这个城市的现有城镇人口和农村人口分别是14万人和28万人.类型七:列二元一次方程组解决——和差倍分问题解这类问题的基本等量关系是:多余量较少量较大量+=,倍量倍数总量⨯=.例7 “爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周内赶制出这批帐篷.为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周内,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶?【解答】解:设原计划“爱心”帐篷厂生产帐篷x 千顶,“温暖”帐篷厂生产帐篷y 千顶.由题意得:⎩⎨⎧=+=+145.16.19y x y x ∴解得:⎩⎨⎧==45y x 856.16.1=⨯=x (千顶),645.15.1=⨯=y (千顶), 答:“爱心”帐篷厂生产帐篷8千顶,“温暖”帐篷厂生产帐篷6千顶.【变式1】 (2011年北京门头沟区中考一模试题) “地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分—21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.【解答】解:设中国内地去年有x 个城市参加了此项活动,今年有y 个城市参加了此项活动.由题意得:⎩⎨⎧-==+133119x y y x 解得:⎩⎨⎧==8633y x 答:去年有33个城市参加了此项活动,今年有86个城市参加了此项活动.【变式2】 阳春三月,街柳垂杨,一群学生组织去踏青,其中男生戴蓝色太阳帽,女生戴红色太阳帽.如每位男生看到蓝色与红色的太阳帽一样多;而每位女生看到蓝色的太阳帽比红色的多1倍.你知道男生与女生各有多少人吗?【解答】解:(1)设男生有x 人,女生有y 人.由题意得:⎩⎨⎧-==-)1(21y x y x 解得:⎩⎨⎧==34y x 答:男生有4人,女生有3人.类型八:列二元一次方程组解决——数字问题解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示.如当n 为整数时,奇数可表示为12+n (或12-n ),偶数可表示为n 2等,有关两位数的基本等量关系式为:个位数字十位数字两位数+⨯=10例8 如果两个两位数的差是10,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,若这两个四位数的和是5050,求这两个两位数.【解答】解:设较大的两位数为x ,较小的两位数为y .由题意得:⎩⎨⎧=+++=-5050)100()100(10x y y x y x 解得:⎩⎨⎧==2030y x 答:这个两位数分别是30和20.【变式1】有一个两位数,除以它的各位数字之和,商为7,余数是6,如果把十位数字与个位数字对调,所得到的新数除以其各位数字之和,商为3,余数是5,求这个两位数.【解答】解:设这个两位数的十位数字为x ,个位上的数字为y .由题意得:⎩⎨⎧++=+++=+5)(3106)(610y x y x y x y x 解得:⎩⎨⎧==38y x 所以这个两位数为83.答:这个两位数为83.【变式2】一个两位数,十位上的数字与个位上的数字之和是11,如果把十位上的数字与个位上的数字对调,得到的新数比原来大63,求这个两位数.【解答】解:设十位上的数字是x ,个位上的数字是y .由题意得:⎩⎨⎧=++=++111063)10(y x x y y x解得:⎩⎨⎧==92y x ∴这个两位数为299210=+⨯答:这个两位数是29.类型九:列二元一次方程组解决——浓度问题浓度问题:溶液质量×浓度=溶质质量.例9 现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg ,问甲、乙两种酒精溶液应各取多少?【解答】解:设甲种酒精溶液取x 克,乙种酒精溶液取y 克. 由题意得:⎪⎩⎪⎨⎧=++=+2:3)51107(:)54103(50y x y x y x 解得:⎩⎨⎧==3020y x 答:甲种酒精溶液取20克,乙种酒精溶液取30克.【变式1】把质量分数分别为%90和%60的甲、乙两种酒精溶液配制成质量分数为%75的消毒酒精溶液g 500,求从甲、乙两种酒精中各取多少克.【解答】解:设甲、乙两种酒精各取x 克,y 克,由题意得:⎩⎨⎧⨯=+=+%75500%60%90500y x y x 解得:⎩⎨⎧==250250y x 答:甲、乙两种酒精各取g 250.【变式2】一种35%的新农药,如稀释到1.75%时,治虫最有效.用多少千克浓度为35%的农药加水多少千克,才能配成1.75%的农药800千克?【解答】解:设用x 千克浓度为35%的农药,加y 千克水.由题意得:⎩⎨⎧⨯==+%75.1800%35800x y x 解得:⎩⎨⎧==76040y x 答:用40千克浓度为35%的农药加水760千克,才能配成1.75%的农药800千克.类型十:列二元一次方程组解决——几何问题几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式例10 如图,8块相同的小长方形地砖拼成一个大长方形,每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)【解答】解:设每块小长方形地砖的长为cm x ,宽为cm y .由题意得:⎩⎨⎧=+=403y x y x 解得:⎩⎨⎧==1030y x 答:长是cm 30,宽是cm 10.【变式1】用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?【解答】解:设矩形的长为x ,宽为y .由题意得:⎩⎨⎧=++=-48)(233y x y x 解得:⎩⎨⎧==915y x 则可得矩形的面积为:2135915cm =⨯;正方形的面积为:21441212cm =⨯;则正方形的面积比矩形面积大9平方厘米.答:正方形的面积比矩形面积大9平方厘米.【变式2】一块矩形草坪的周长是170米,它的长比宽的2倍多10米,求矩形草坪长和宽分别为多少米?【解答】解:设矩形草坪长和宽分别为x 米和y 米.由题意得:⎩⎨⎧+==+10217022y x y x 解得:⎩⎨⎧==2560y x 答:矩形草坪长和宽分别为60米和25米.类型十一:列二元一次方程组解决——年龄问题解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的.例11 8年前父亲的年龄是儿子年龄的4倍,从现在起8年后父亲的年龄成为儿子年龄的2倍,求父亲和儿子现在的年龄.【解答】解:设父亲现在年龄为x 岁,儿子现在的年龄为y 岁,由题意得:⎩⎨⎧+=+-=-)8(28)8(48y x y x 解得:⎩⎨⎧==1640y x 答:父亲现在年龄为40岁,儿子现在的年龄为16岁.【变式1】今年,小李的年龄是他爷爷的51.小李发现,12年后,他的年龄变成爷爷的31.求今年小李和爷爷的年龄.【解答】解:设今年小李的年龄为x 岁,则今年他爷爷的年龄是y 岁. 由题意得:⎪⎪⎩⎪⎪⎨⎧+=⨯+=1231)12(51x y x y解得:⎩⎨⎧==6012y x 答:今年小李的年龄为12岁,爷爷的年龄为60岁.类型十二:列二元一次方程组解决——优化方案问题在解决问题时,常常需合理安排.需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案.注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案.例12 我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨.该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多的对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接出售. 方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成.你认为选择哪种方案获利最多?为什么?【解答】解:选择第三种方案获利最多.方案一:因为每天粗加工16吨,140吨可以在15天内加工完.总利润63000014045001=⨯=W (元)(2分)方案二:因为每天精加工6吨,15天可以加工90吨,其余50吨直接销售.总利润7250001000507500902=⨯+⨯=W (元)(4分)方案三:设15天内精加工蔬菜x 吨,粗加工蔬菜y 吨. 由题意得:⎪⎩⎪⎨⎧=+=+15166140y x y x 解得:⎩⎨⎧==8060y x 总利润8100004500807500603=⨯+⨯=W (元)(7分)综合以上三种方案的利润情况,知321W W W <<,所以第三种方案获利最多.举一反三【变式1】某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.【解答】解:(1)设购进甲种x 台,则乙种y 台.由题意得:⎩⎨⎧=+=+900002100150050y x y x 解得:⎩⎨⎧==2525y x 故购进甲种25台,乙种25台.(2)设购进乙种a 台,丙种b 台.由题意得:⎩⎨⎧=+=+900002500210050b a b a 解得:⎩⎨⎧-==5.375.87b a 5.37-=b (不合题意,舍去此方案)(3)设购进甲种m 台,丙种n 台.由题意得:⎩⎨⎧=+=+900002500150050n m n m 解得:⎩⎨⎧==1535n m 故购进甲种35台,丙种15台.则有两种方案成立:①甲、乙两种型号的电视机各购25台.②甲种型号的电视机购35台,丙种型号的电视机购15台;方案①获利为:87502002515025=⨯+⨯(元)方案②获利为:90002501515035=⨯+⨯(元)所以为使销售时获利最多,应选择第②种进货方案.【变式2】某旅游商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件.求A 、B 两种纪念品的进价分别为多少?【解答】解:设A 种纪念品的进价是x 元,B 种纪念品的进价是y 元.由题意得:⎩⎨⎧=+=+38061038087y x y x解得:⎩⎨⎧==3020y x答:A 种纪念品的进价为20元,B 种纪念品的进价为30元.。
专题01 二元一次方程组(五大题型)(题型专练)(解析版)
专题01 二元一次方程组(五大题型)【题型1 二元一次方程的概念】【题型2 根据二元一次方程的定义求参数】【题型3 二元一次方程的解】【题型4 解二元一次方程】【题型5 二元一次方程组的概念】【题型1 二元一次方程的概念】1.(2023春•浦北县月考)下列选项中,是二元一次方程的是( )A.y=x B.x+y2=2C.x﹣y D.x+y=z 【答案】A【解答】解:A.y=x是二元一次方程,故此选项符合题意;B.x+y2=2是二元二次方程,故此选项不合题意;C.x﹣y不是等式,不是方程,故此选项不合题意;D.x+y=z是三元二次方程,故此选项不合题意.故选:A.2.(2023春•松北区期末)下列方程中,属于二元一次方程的是( )A.3x2+y=8B.x﹣1=﹣4C.x+y﹣2=0D.x﹣y﹣z=10【答案】C【解答】解:A.方程3x2+y=8的最高次数是2,选项A不符合题意;B.方程x﹣1=﹣4是一元一次方程,选项B不符合题意;C.方程x+y﹣2=0是二元一次方程,选项C符合题意;D.方程x﹣y﹣z=10是三元一次方程,选项D不符合题意.故选:C.3.(2023春•任丘市期末)在下列方程中,是二元一次方程的为( )A.2x﹣6=y B.y﹣1=5C.yz=8D.【答案】A【解答】解:A.该方程是二元一次方程,故符合题意;B.该方程是一元一次方程,故不符合题意;C.该方程符合二元二次方程的定义,故不符合题意;D.该方程不是整式方程,故不符合题意.故选:A.4.(2023春•连山区月考)下列方程中,二元一次方程的个数为( )①xy=1;②2x=3y;③;④x2+y=3;⑤.A.1个B.2个C.3个D.4个【答案】B【解答】解:∵2x=3y,是二元一次方程;xy=1,,x2+y=3不是二元一次方程,∴所有方程中,只有方程①和方程⑤共2个二元一次方程,故选:B.【题型3 二元一次方程的解】11.(2023春•云阳县期末)下列哪对x ,y 的值是二元一次方程x +2y =6的解( )A .B .C .D .【答案】C【解答】解:A .当x =﹣2,y =﹣2,得x +2y =﹣6,那么x =﹣2,y =﹣2不是x +2y =6的解,故A 不符合题意.B .当x =0,y =2,得x +2y =4,那么x =0,y =2不是x +2y =6的解,故B 不符合题意.C .当x =2,y =2,得x +2y =2+4=6,那么x =2,y =2是x +2y =6的解,故C 符合题意.D .当x =3,y =1,得x +2y =3+2=5,那么x =3,y =1不是x +2y =6的解,故D 不符合题意.故选:C .12.(2023春•丹徒区期末)是下面哪个二元一次方程的解( )A .y =﹣x +2B .x ﹣2y =1C .x =y ﹣2D .2x ﹣3y =1【答案】D【解答】解:把x =5代入A ,得y =﹣5+2=﹣3,所以不是二元一次方程A 的解;把x =5代入B ,得y =(5﹣1)÷2=2,所以不是二元一次方程B 的解;把x =5代入C ,得y =5+2=7,所以不是二元一次方程C 的解;把x =5代入D ,得y =(10﹣1)÷3=3,所以是二元一次方程D 的解.故选:D .13.已知21x y =ìí=î是二元一次方程3kx y -=的一个解,那么k 的值是( )A .1k =B .2k =C .1k =-D .2k =-【答案】B【分析】本题主要考查二元一次方程的解,熟练掌握二元一次方程的解的定义是解题的关键.【详解】解:把21x y =ìí=î代入二元一次方程3kx y -=得:213k -=,解得:2k =;故选:B .14.下列四组数值是二元一次方程26x y -=的解的是( )A .26x y =ìí=îB .42x y =ìí=îC .24x y =ìí=-îD .23x y =ìí=î【答案】B【分析】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.将各项中x与y的值代入方程检验即可.【详解】解:A、把26xy=ìí=î代入方程得:左边462=-=-,右边6=,左边¹右边,不符合题意;B、把42xy=ìí=î代入方程得:左边826=-=,右边6=,左边=右边,符合题意;C、把24xy=ìí=-î代入方程得:左边448=+=,右边6=,左边¹右边,不符合题意;D、把23xy=ìí=î代入方程得:左边431=-=,右边6=,左边¹右边,不符合题意;故选:B.15.(2023•西山区校级开学)二元一次方程2x+y=8的正整数解有( )A.1组B.2组C.3组D.4组【答案】C【解答】解:由2x+y=8得:y=8﹣2x,当x=1时,y=6;当x=2时,y=4;当x=3时,y=2;∴二元一次方程2x+y=8的正整数解有3组,故选:C.16.(2023春•霸州市期末)已知关于x,y的二元一次方程●x﹣2y=4中x的系数让墨迹盖住了,但是知道它一组解是,那么●的值是( )A.2B.1C.﹣3D.﹣2【答案】C【解答】解:设•=a,由题意得:﹣2a﹣2=4,解得:a=﹣3,【题型4 解二元一次方程】19.(2023春•怀安县期末)已知二元一次方程3x﹣y=6,用x表示y的式子为( )A.y=3x+6B.y=﹣3x﹣6C.y=3x﹣6D.y=﹣3x+6【解答】解:移项,得﹣y=6﹣3x,系数化1,得y=3x﹣6.故选:C.20.(2023春•天津期末)把二元一次方程2x﹣3y=4写成用含y的式子表示x的形式,正确的是( )A.B.C.D.【答案】A【解答】解:2x﹣3y=4,2x=4+3y,x=,故选:A.21.(2023春•浠水县校级期末)把方程3x+y﹣1=0改写成用含x的式子表示y的形式,正确的是( )A.x=B.x=C.y=3x﹣1D.y=1﹣3x【答案】D【解答】解:3x+y﹣1=0,y=1﹣3x.故选:D.22.(2023春•梁园区期末)把方程2x+y=3改写成用含x的代数式表示y的形式为( )A.y=2x+3B.y=2x﹣3C.y=﹣2x+3D.y=﹣2x﹣3【答案】C【解答】解:方程2x+y=3,解得:y=﹣2x+3.故选:C.23.(2022秋•朝阳区校级期末)已知方程2x+y=6,用含x的代数式表示y,则y= 6﹣2x .【答案】6﹣2x.【解答】解:2x+y=6,移项,得y=6﹣2x.故答案为:6﹣2x.∴二元一次方程24x y +=的正整数解为21x y =ìí=î,故答案为:21x y =ìí=î.【题型5 二元一次方程组的概念】26.(2023春•攸县期中)下列方程组是二元一次方程组的是( )A .B .C .D .【答案】C【解答】解:A 、有3个未知数,不是二元一次方程组,故A 不符合题意;B 、有2个未知数,但是最高次数是2,不是二元一次方程组,故B 不符合题意;C 、有两个未知数,方程的次数是1次,所以是二元一次方程组,故C 符合题意;D 、有两个未知数,第二个方程不是整式方程,不是二元一次方程组,故D 不符合题意.故选:C .27.(2023春•威海期末)下列方程组中,是二元一次方程组的是( )A .B .C .D .【答案】C【解答】解:A .第一个方程是二次方程,不是二元一次方程组,故本选项不符合题意;B .含有三个未知数,不是二元一次方程组,故本选项不符合题意;C .是二元一次方程组,故本选项符合题意;D .第二个方程是分式方程,不是二元一次方程组,故本选项不符合题意;故选:C .28.(2023春•东兰县期末)下列方程组中,是二元一次方程组的是( )。
完整版)二元一次方程组常考题型分类总结(超全面)
完整版)二元一次方程组常考题型分类总结(超全面)二元一次方程组常见题型二元一次方程组是初中数学中的重要内容,常见的题型包括分配调运问题、行程问题、百分数问题、分配问题、浓度分配问题和金融分配问题等。
其中,分配调运问题是指在不同的地方分配人员或物品,需要根据条件求出各个地方的人数或物品数量。
例如,某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,需要求出到两个工厂的人数各是多少。
行程问题是指两个人或物体在不同的路程上移动,需要根据条件求出它们的速度或路程。
例如,甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
需要求出甲、乙的平均速度各是多少。
百分数问题是指在数量变化中涉及到百分数的计算,需要根据条件求出各个数量的值。
例如,某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,需要求出这个市现在的城镇人口与农村人口。
分配问题是指在已知总量和每份数量的情况下,需要求出总量或份数。
例如,某幼儿园分萍果,若每人3个,则剩2个;若每人4个,则有一个少1个,需要求出幼儿园有几个小朋友。
浓度分配问题是指在不同浓度的物质中混合,需要根据条件求出各个物质的数量或浓度。
例如,要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少。
金融分配问题是指在不同价格的商品中混合,需要根据条件求出各个商品的数量或价格。
例如,需要用多少每千克售4.2元的糖果才能与每千克售3.4元的糖果混合成每千克售3.6元的杂拌糖200千克。
几何分配问题)用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x厘米,宽是y厘米。
可以列出以下两个方程:1、8x = 482、4y = 48解方程得到x = 6,y = 12,因此每块小长方形的长是6厘米,宽是12厘米。
完整版二元一次方程组常考题型分类总结超全面
二元一次方程组常见题型判断是不是二元一次方程1、下列方程中,不是二元一就方程的是()A、2x-v=3B、3a-2=4bC、空=巧D、2b=3a1 HZ2•若方程用X- 2y= 3x + 4是二元一次方程,则w满足B- }ft ^—2用一个未知数表示另一个未知数1.方= S中.用含龙代数式克示y・正科的杲(2.____________________________________________________ 已知方程3.Y+5>-3^0,用含上的代数式表的式子是_________________--F = i3、由3 2",可以得到用乂表示y的式子是(一个多项式是二元一次方程求未知数1.如果纣-Ji=o是二元一次方程,则()A.???=l.^=2 C.m = -1.?7=2 D.瞰=3.斤=4J-J J- J-2.若存2 +卸=7是二元一次方程,则mn= ___________________写出与已知一个方程的解相同的方程f x=4Is方程3x + 4j^ = 16与卜面哪个方程所组成的方程组的解是“=1 (B、3x —5v = 7D、2(x-v)=3y2.已知关于i V的方程组『3,"与方程组7加5 =讪解相同,求必的ax-by =1值.fx=2fOT—3 y=l 3.已知是方程组的解,则—b的值星4sf2x+3y+i=Q在二元一次方程组(6X +®・+3=0中,当加= 时,这个方程组有无数个解同类项1、已知与是同类项,则详n=一个方程组中有三个未知数,已知其中两数的关系j4x+3r=7K 若方程组Gx 亠(Ql )y=3的解X 和y 的值相等,则k=(2•关于7的方程组二的解中,"。
,则k 的值为4x + 3y = 14、若方程组 W (a-l )y=3的解才与丁相等,则日的值等于(r2x= 3- r55、已知f 满足方程组,则X 和F 之间满足的关系式为写出满足方程的解1.二元一次方程2x+y-3的非负整数解为请写岀一组小y 的值,使它满足方程X + 2V-6。
完整版)二元一次方程组题型总结
完整版)二元一次方程组题型总结二元一次方程组题型总结类型一:二元一次方程的概念及求解例(1)已知(a-2)x-by=5是关于x、y的二元一次方程,则a=2,b=-1.2)二元一次方程3x+2y=15的正整数解为(3,3)。
类型二:二元一次方程组的求解例(3)若|2a+3b-7|与(2a+5b-1)互为相反数,则a=1,b=2.4)2x-3y=4,x-y=5的解为(-1,-6)。
类型三:已知方程组的解,而求待定系数。
例(5)已知3mx-2y=1,4x+ny+7=2,x=-2,y=1是方程组的解,则m-n的值为-1.6)若满足方程组kx+(2k-1)y=6的x、y的值相等,则k=2.练:若方程组2x-y=3,2kx+(k+1)y=10的解互为相反数,则k的值为-3/2.类型四:涉及三个未知数的方程,求出相关量。
例(7)已知abc/123=4/12,且a+b-c=1,则a=4,b=8,c=1.8)解方程组x+3y=2,3y+z=4,z+3x=6,得x=2,y=0,z=-2.练:若2a+5b+4c=10,3a+b-7c=-2,则a+b-c=0.由方程组x-2y+3z=2,2x-3y+4z=3可得,x∶y∶z是1∶2∶1.类型五:列方程组求待定字母系数是常用的解题方法。
例(9)若x=1,y=-2,y=-3都是关于x、y的方程|a|x+by=6的解,则a+b的值为-2.10)关于x,y的二元一次方程ax+b=y的两个解是(2,-1)和(1,1),则这个二元一次方程是y=-x+3.练:如果方程组x=-1y=2ax+by=zbx-cy=1中的{x,y}是解,下列哪个式子成立?A。
a+4c=2B。
4a+c=2C。
a+4c+2=0D。
4a+c+2=0解析:由{x=-1,y=2}可知,代入方程组中得a+2b=zb-2c=1又因为{x,y}是解,所以代入方程组中得a+2b=0b-2c=0解得a=4c,代入选项可知只有选项C成立。
二元一次方程计算题经典题型
二元一次方程计算题经典题型二元一次方程是初中阶段数学学习中的一个重要内容,掌握二元一次方程的解题方法有助于培养学生的逻辑思维能力和解决问题的能力。
下面将通过几个经典题型来介绍二元一次方程的计算方法。
题型一:解二元一次方程组给定方程组:$$ \\begin{cases} 2x + y = 5 \\\\ x - 3y = -7 \\end{cases} $$求方程组的解。
解析:首先我们可以通过消元法或代入法解方程组。
通过消元法将第二个方程乘以2,得到2x−6y=−14,然后将第一个方程与这个方程相加消去x项,得到−5y=−9,解得$y = \\frac{9}{5}$,将y的值代入第一个方程,可以得到x的值为1。
因此,方程组的解为x=1,$y=\\frac{9}{5}$。
题型二:应用题某商店销售苹果和橙子,已知苹果每斤售价为3元,橙子每斤售价为2元,现共售出50斤,收入为130元。
设苹果销售量为x斤,橙子销售量为y斤,则可以建立如下方程组:$$ \\begin{cases} 3x + 2y = 130 \\\\ x + y = 50 \\end{cases} $$求苹果和橙子的销售量各是多少?解析:同样可以通过消元法或代入法来解决此题。
通过消元法将第二个方程改写为y=50−x,代入第一个方程中得到3x+2(50−x)=130,解得x=20,再将x的值代入y=50−x,可以得到y=30。
因此,苹果的销售量为20斤,橙子的销售量为30斤。
题型三:图形解题已知二元一次方程x+y+1=0,表示一条直线AB,A(1,−2)和B(−1,0)是直线上的两点,求这条直线的方程。
解析:首先通过已知两个点的坐标可以确定直线的斜率。
直线的斜率k可以表示为$\\frac{y_2 - y_1}{x_2 - x_1}$,代入A(1,−2)和B(−1,0)的坐标得到$k =\\frac{0 - (-2)}{(-1) - 1} = 1$。
二元一次方程组题型归纳
二元一次方程组题型归纳二元一次方程组,是中学数学课程中的重要组成部分,也是最基础的知识之一,必须掌握四则运算,能够解决二元一次方程组,这是一项必备的基本能力。
因此,归纳二元一次方程组的题型、解题技巧,对于学生在学习、考试中解决类似题型具有十分重要的意义。
二元一次方程组题型可以归纳为以下几类:一、解一元二次方程组解一元二次方程组时,一般可以先求出其解的表达式,然后做图解法求出解的值。
解方程组时,要注意四种情况:1、可解;2、无确定解;3、重根;4、无实根。
二、把不等式转化为相等式当解决一元二次不等式时,要先转换为一元二次相等式,再求解,出现的结果分为三种:1、无解;2、有解;3、无限解。
三、解一元一次方程组解一元一次方程组时,可以用变量只出现一次的方法来求解,或用消元法,以及用矩阵求解。
四、解析方程组解析方程组的方法有两种:1、用代数的方法求出结论;2、用几何的方法求出结论,即先画出方程组的几何图形,再用相应的理论分析方程组的结果。
五、解不定方程组解不定方程组的方法是在赋值原理的基础上,把不定方程组转换为定方程组,然后再求解。
并列方程组并列方程组是一类特殊的方程组,它由两个或以上的方程组组成,要求求出满足所有方程组的共同解。
实际上,二元一次方程组的解题方法并不难,但是在实际解题中,学生往往面临着各种各样的问题,可能因为没有把握解题方法,也可能因为不能够及时解决问题,而无法正确解出题目。
为了解决这一问题,我们可以采用以下技巧:一、抓住关键,熟悉二元一次方程组的性质在解决二元一次方程组题型时,首先要抓住方程组的关键点,了解方程组的解的性质,如正负性、无穷多个解情况等,才能正确的解决题目。
二、动手试题训练只有通过大量的实际试题训练,才能真正掌握解决二元一次方程组的方法。
实践中可以根据不同情况分析,并用已熟悉的方法解决问题,有效提高解题能力。
三、结合几何图形求解结合几何图形,也可以更快准确地求解方程组的解的性质,或者把不等式转化为相等式。
二元一次方程组的12种应用题型归纳
二元一次方程组的12种应用题型归纳类型一:行程问题【例1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为x 千米/时,乙的速度为y 千米/时。
{(2.5+2)x +2.5y =363x +(3+2)y =36解得{x =6y =3.6 答:甲的速度为6千米/时,乙的速度为3.6千米/时。
【例2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求这艘船在静水中的速度和水流速度。
解:设这艘船在静水中的速度为x 千米/时,水流速度为y 千米/时。
{14(x +y)=28020(x −y)=280解得{x =17y =3 答:这艘船在静水中的速度为17千米/时,水流速度为3千米/时。
类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲公司每周的工作效率为x ,乙公司每周的工作效率为y 。
{6x +6y =14x +9y =1 解得{x =110y =115 ∴1÷110=10(周) 1÷115=15(周)∴甲公司单独完成这项工程需10周,乙公司单独完成这项工程需15周。
设甲公司每周的工钱为a 万元,乙公司每周的工钱为b 万元。
{6a +6b =5.24a +9b =4.8 解得{a =35b =415此时10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。
类型三:商品销售利润问题【例1】李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年种植甲、乙蔬菜各多少亩?解:设李大叔去年种植甲蔬菜x 亩,乙蔬菜y 亩。
经典二元一次方程组知识点整理、典型例题练习总结
经典二元一次方程组知识点整理、典型例题练习总结一、知识点总结1、二元一次方程:含有两个未知数(x和y),并且含有未知数的项的次数都是,像这样的整式方程叫做二元一次方程,它的一般形式是、2、二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解、【二元一次方程有无数组解】3、二元一次方程组:含有两个未知数(x和y),并且含有未知数的项的次数都是,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组、4、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解、【二元一次方程组解的情况:①无解,例如:,;②有且只有一组解,例如:;③有无数组解,例如:】5、二元一次方程组的解法:代入消元法和加减消元法。
6、三元一次方程组及其解法:方程组中一共含有三个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。
解三元一次方程组的关键也是“消元”:三元→二元→一元7、列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,;(2)设:找出能够表示题意两个相等关系;并用字母表示其中的两个未知数(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案、二、典型例题分析例1、若方程是关于的二元一次方程,求、的值、例2、将方程变形,用含有的代数式表示、例3、方程在正整数范围内有哪几组解?例4、若是方程组的解,求的值、例5、已知是关于的二元一次方程,求的值、例6、二元一次方程组的解x,y的值相等,求k、例7:(1)用代入消元法解方程组:(2)、用加减法解二元一次方程组:(3)、解复杂的二元一次方程组、(提高题)例8、若关于X,y的二元一次方程组x+y=5k,x-y=9k的解也是二元一次方程2x+3y=6的解,求k的值。
二元一次方程组题型总结.doc
二元一次方程组题型总结二元一次方程组二元一次方程组题题型总结型总结类型一:二元一次方程的概念及求解类型一:二元一次方程的概念及求解例(1).已知(a-2)x-by|a|-1=5是关于x、y的二元一次方程,则a=______,b=_____.(2).二元一次方程3x+2y =15的正整数解为_______________.类型二:二元一次方程组的求解类型二:二元一次方程组的求解例(3).若|2a+3b-7|与(2a+5b-1)2互为相反数,则a=______,b=______.(4).2x -3y=4x-y=5的解为_______________.类型三:已知方程组的解,而求待定系数。
类型三:已知方程组的解,而求待定系数。
例(5).已知-是方程组的解,则m2-n2的值为_________.(6).若满足方程组的x、y的值相等,则k=_______.练习:若方程组的解互为相反数,则k的值为。
若方程组xyx与有相同的解,则a=,b=。
类型四:涉及三个未知数的方程,求出相关量。
设“比例系数”是解有关数量类型四:涉及三个未知数的方程,求出相关量。
设“比例系数”是解有关数量比的问题的常用方法.比的问题的常用方法.例(7).已知2a=3b=4c,且a+b-c=121,则a =_______,b=_______,c=_______.(8).解方程组,得x=______,y=______,z=______.练习:若2a+5b+4c=0,3a+b-7c=0,则a+b-c=。
由方程组期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?(23).汽车从A地开往B地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B地.求AB两地的距离及原计划行驶的时间.二元一次方程组解法练习题二元一次方程组解法练习题一.解答题(共一.解答题(共16小小题)题)1.解下列方程组(1)(2)(3))(6441125为已知数(4)(5)(6).(7)(8)(9)(10).求适合的x,y的值.3.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?选用1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10)2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a 看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.马。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 二元一次方程组【知识点一:二元一次方程的定义】定义:方程有两个未知数 ,并且未知数的次数都是1,像这样的方程 ,我们把它叫做二元一次方程。
把这两个二元一次方程合在一起,就组成了一个二元一次方程组 。
例1 下列方程组中,不是二元一次方程组的是( )。
A 、 B 、 C 、 D 、【巩固练习】1、 已知下列方程组:(1)32x y y =⎧⎨=-⎩,(2)324x y y z +=⎧⎨-=⎩,(3)1310x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,(4)30x y x y +=⎧⎨-=⎩,其中属于二元一次方程组的个数为( )A .1 B. 2 C . 3 D . 4 2、 若753313=+--m n m y x 是关于x 、y 二元一次方程,则m =_________,n =_________。
3、 若方程2132 5 7m n x y --+=是二元一次方程.求m 、n 的值【知识点二:二元一次方程组的解定义】对于二元一次方程组这里x=5与y=2既满足方程①也满足方程②,也就是说x 5=与y 2=是二元一次方程组的解,并记作52x y =⎧⎨=⎩一般地,使二元一次方程组中两个方程左右两边的值都相等的两个未知数的值叫做二元一次方程组的解。
例3、方程组⎩⎨⎧=+=-422y x y x 的解是( )① ②7317x y x y +=⎧⎨+=⎩① ②7317x y x y +=⎧⎨+=⎩A .⎩⎨⎧==21y xB .⎩⎨⎧==13y xC .⎩⎨⎧-==2y xD .⎩⎨⎧==02y x【巩固练习】1、 当1-=m x ,1+=m y 满足方程032=-+-m y x ,则=m _________.2、 下面几个数组中,哪个是方程7x+2y=19的一个解( )。
A 、 31x y =⎧⎨=-⎩ B 、 31x y =⎧⎨=⎩ C 、 31x y =-⎧⎨=⎩ D 、 31x y =-⎧⎨=-⎩3、 下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x-=⎧⎪⎨+=⎪⎩ C . 20135x z x y +=⎧⎪⎨-=⎪⎩ D .5723z x y =⎧⎪⎨+=⎪⎩【综合练习题】 一、选择题:4、 下列方程组中,是二元一次方程组的是( )A .228423119 (237)54624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 5、 若2x 23y 20++=-(),则的值是( )A .-1B .-2C .-3D .32二、填空题6、 若3m 3n 1x2y 5=---是二元一次方程,则m =_____,n =______.7、 已知2,3x y =-⎧⎨=⎩是方程x ky 1=-的解,那么k =_______.8、 已知2x 12y 10++=-(),且2x ky 4=-,则k =_____.9、 写一个以57x y =⎧⎨=⎩为解的一个二元一次方程是_________.三、解答题10、 方程组2528x y x y +=⎧⎨-=⎩的解是否满足2x y 8=-?11、 满足2x y 8=-的一对x ,y 的值是否是方程组2528x y x y +=⎧⎨-=⎩的解?第二讲 二元一次方程组的解法方法一:代入消元法【典型例题】例1: 用代入消元法解方程组27838100x y x y -=⎧⎨--=⎩我们通过代入消去一个未知数,将方程组转化为一个一元一次方程来解,这种解法叫做代入消元法。
用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来. (2)把(1)中所得的方程代入另一个方程,消去一个未知数. (3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.【巩固练习】1、 方程x 4y 15-+=-用含y 的代数式表示,x 是( )A .x 4y 15-=-B .x 154y =-+C .x 4y 15=+D .x 4y 15=-+ 2、 把方程7x 2y 15-=写成用含x 的代数式表示y 的形式,得( )A .x=215152715157 (7)722x x yx x B x C y D y ----===3、 用代入法解方程组252138x y x y +=-⎧⎨+=⎩较为简便的方法是( )A .先把①变形B .先把②变形C .可先把①变形,也可先把②变形D .把①、②同时变形 4、 将y 2x 4=--代入3x y 5-=可得( )A .3x 2x 45-+=B .3x 2x 45++=C .3x 2x 45+-=D .3x 2x 45--= 5、 判断正误:(1)方程3x 2y 22+=变形得y 13x =- ( ) (2)方程x 3y -=12x -写成含y 的代数式表示x 的形式是x 3y =+12x- ( )6、 把下列方程写成用含x 的代数式表示y 的形式:①3x 5y 21+= ②2x 3y 11-=-;③4x 3y x y 1+=-+ ④2x y 3x y 1+=--()()7、 用代入消元法解下列方程组 (1)⎩⎨⎧+=-+=-)5(3)1(55)1(3x y y x(2)382101187x y x y +=⎧⎨-=⎩【综合训练】 8、 已知1331024x ax y y x by =--=⎧⎧⎨⎨=+=⎩⎩是方程组的解,求a 、b 的值.9、 已知方程组43,322,x y x y +=⎧⎨+=⎩则x y -的值是( )A . 1B . -1C . 0D . 210、 已知31x y =⎧⎨=⎩和211x y =-⎧⎨=⎩都满足ax by 7+=,则a = ,b =11、 已知二元一次方程组941175y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩的解为x a y b ==,,则a b -=( ) A .1 B .11 C .13 D .16方法二:加减消元法我们知道,对于方程组:20240x y x y +=⎧⎨+=⎩分析:这个方程组的两个方程中,y 的系数有什么关系?•利用这种关系你能发现新的消元方法吗? 解:②-①得,()()2x y x y 4022+-+=- 即x 18=, 把x 18=代入①得y 4=。
所以 4y ⎧⎨=⎩x=18 定义:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加减,就能消去这个未知数,得到一个一元一次方程这种方法叫做加减消元法 ,简称加减法。
例1、方程组231534m n m n +=⎧⎨+=⎩中,n 的系数的特点是 ,所以我们只要将两式 ,•就可以消去未知数,化成一个一元一次方程,达到消元的目的.例2、用加减法解341236x y x y +=⎧⎨-=⎩时,将方程①两边乘以 ,•把方程②两边乘以 ,可以比较简便地消去未知数 .【方法掌握要诀】用加减法解二元一次方程组时,两个方程中同一个未知数的系数必须相同或互为相反数,•即它们的绝对值相等.当未知数的系数的符号相同时,用两式相减;当未知数的系数的符号相反时,用两式相加。
①方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,就用适当的整数乘方程两边,使一个未知数的系数互为相反数或相等;•②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程;④将求出的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,从而得到方程组的解.【巩固练习】1、 用加减法解方程组326231x y x y +=⎧⎨+=⎩时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是( )966961896186412(1)(2)(3)(4)462462462693x y x y x y x y x y x y x y x y +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨+=-=+=+=⎩⎩⎩⎩A .(1)(2)B .(2)(3)C .(3)(4)D .(4)(1) 2、 对于方程组2353433x y x y -=⎧⎨+=⎩而言,你能设法让两个方程中x 的系数相等吗?你的方法是 ;若让两个方程中y 的系数互为相反数,你的方法是 . 3、 用加减消元法解方程组23537x y x y -=⎧⎨=+⎩正确的方法是( )A .2x 5+=①②得B .3x 12+=①②得C .3x 75++=①②得D .x 3y 7x 2-=-=-先将②变为③,再①③得4、 在方程组341236x y x y +=⎧⎨-=⎩中,若要消x 项,则①式乘以 得③;•②式可乘以 得④;然后再③④两式 即可.5、 方程组356234x y x y -=⎧⎨-=⎩,②×3-①×2得( )A .3y 2-=B .4y 10+=C .y 0=D .7y 8=-6、 方程组1325y x x y +=⎧⎨+=⎩的解是( )A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===-⎩⎩⎩⎩7、用加减法解下列方程组:(1)383799215(2)(3) 274753410 x y m n x yx y m n x y+=+=+=⎧⎧⎧⎨⎨⎨-=-=+=⎩⎩⎩8、用合适的方法解下列方程组:(1)4022356515(2)(3) 322242133 y x x y x yx y x y x y=-+=+=⎧⎧⎧⎨⎨⎨+=-=-=-⎩⎩⎩【提高练习】9、已知方程组22331x y kx y k+=⎧⎨+=-⎩的解x和y的和等于6,k=_______.10、已知232x y ax y a+=⎧⎨-=⎩,求xy的值.11、如果二元一次方程组1532234ax by xax by y-==⎧⎧⎨⎨+==⎩⎩的解是,则a b-=。