2016年江苏省南京市玄武区中考数学一模试卷及参考答案
初中数学 江苏省南京市玄武区中考模拟数学一模考试题考试卷及答案
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________一、xx题(每空xx 分,共xx分)试题1:计算(a2)3÷(a2)2的结果是A.a B.a2C.a3D.a4试题2:南京地铁3号线全长约40000米,将40000用科学记数法表示为A.0.4×105B.4×104C.4×105D.40×103试题3:数据1,1,4,3,3的中位数是A.4 B.3.5 C.3 D.2.5试题4:已知点A、B在一次函数y=kx+b(k、b为常数,且k≠0)的图象上,点A在第一象限,点B在第二象限,则下列判断一定正确的是A.k<0 B.k>0 C.b<0 D.b>0试题5:如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是A.∠1+∠5+∠4=180°B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠6=∠2试题6:如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(0,4)、(-3,0),点E、F分别为AB、BO的中点,分别连接AF、EO,交点为P,点P坐标为A.(-,)B.(-,2)C.(-1,)D.(-1,2)试题7:使有意义的x的取值范围是.试题8:若半径为1的⊙O1与半径为2的⊙O2外切,则O1O2=.试题9:把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=,k=▲.试题10:计算16.8×+7.6×的结果是.试题11:调查机构对某地区1000名20~30岁年龄段观众周五综艺节目的收视选择进行了调查,相关统计图如下,请根据图中信息,估计该地区20000名20~30岁年龄段观众选择观看《最强大脑》的人数约为人.试题12:根据如图所示的部分函数图象,可得不等式ax+b>mx+n的解集为▲.试题13:若一个圆锥的主视图是一个腰长为6cm,底边长为2cm的等腰三角形,则这个圆锥的侧面积为cm2.试题14:如图,边长为1的正方形ABCD的顶点A、B在一个半径为1的圆上,顶点C、D在该圆内.将正方形AB CD绕点A逆时针旋转,当点D第一次落在圆上时,点C运动的路线长为▲.试题15:某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图所示.这种工艺品的销售量为件(用含x的代数式表示).试题16:如图,将一条长为60cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1︰2︰3,则折痕对应的刻度有▲种可能.试题17:解不等式组试题18:先化简,再求值:其中x满足方程x2+4x-5=0.试题19:小红去买水果,5kg苹果和3kg香蕉应付52元,可她把两种水果的单价弄反了,以为要付44元.那么在单价没有弄反的情况下,购买6kg苹果和5kg香蕉应付多少元?请你运用方程的知识解决这个问题.试题20:(1)如图,将A、B、C三个字母随机填写在三个空格中(每空填一个字母),求从左往右字母顺序恰好是A、B、C的概率;(2)若在如图三个空格的右侧增加一个空格,将A、B、C、D四个字母任意填写其中(每空填一个字母),从左往右字母顺序恰好是A、B、C、D的概率为.试题21:如图,在□ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.试题22:如图,⊙O是△ABC的外接圆,AB=AC,P是⊙O上一点.(1)请你只用无刻度的直尺,分别画出图①和图②中∠P的平分线;(2)结合图②,说明你这样画的理由.试题23:图①为一种平板电脑保护套的支架效果图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架.平板电脑的下端N保持在保护套CB上.不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图②.其中AN表示平板电脑,M为AN上的定点,AN=CB=20cm,AM=8cm,MB=MN.我们把∠ANB叫做倾斜角.(1)当倾斜角为45°时,求CN的长;(2)按设计要求,倾斜角能小于30°吗?请说明理由.试题24:某市出租车按里程计费标准为:不超过3公里部分,计费11元,超过3公里部分,按每公里2.4元计费.现在在此基础上,如果车速不超过12公里/小时,那么再加收0.48元/分钟,这项费用叫做“双计费”.图中三段折线表示某时间段内,一辆出租车的计费总额y(元)与行驶时间x(分钟)的函数关系(出租车在每段上均匀速行驶).(1)写出AB段表示的实际意义;(2)求出线段BC所表示的y与x的函数关系式;(3)是否可以确定在CD段该辆出租车的计费过程中产生了“双计费”的费用?请说明你的理由.试题25:在一次聚餐中,小明发现用圆形铁盘加热食物时,铁盘边缘部分的食物先熟,中间部分的食物后熟,说明铁盘不同位置的温度有差异.针对这一现象,他收集了如下统计图表:表一正多边形铁盘温度方差表图一正多边形铁盘温度分布统计图(部分)正多边形边数边缘温度方差整体温度方差4 2.304.736 0.343.058 0.102.6010 0.052.5212 0.022.51无穷多:圆0.002.30(1)表一中,随着正多边形边数的增加,边缘温度方差如何变化?边缘温度最稳定的是哪一种形状的铁盘?(2)图一中,最有可能表示圆形铁盘温度分布的曲线序号是.(3)已知各正多边形(包含圆)的面积相等.图一中点A、B的数值对应曲线的端点,点O表示正多边形中心.观察图一,下列说法正确的有.(填写正确选项的序号)a.可以看出,曲线②表示的整体温度比曲线③表示的整体温度稳定.b.OA与OB长度不同,其意义是不同正多边形的顶点距各自中心的距离不同.c.曲线②表示的铁盘的边数比曲线①表示的铁盘的边数少.d.如果曲线①代表正四边形,且OA2︰OB2=3︰4,那么曲线②可以代表正六边形.试题26:在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.试题27:在平面直角坐标系中,O为坐标原点,一次函数y=ax+b的图象与二次函数y=ax2+bx的图象交于点A、B.其中a、b均为非零实数.(1)当a=b=1时,求AB的长;(2)当a>0时,请用含a、b的代数式表示△AOB的面积;(3)当点A的横坐标小于点B的横坐标时,过点B作x轴的垂线,垂足为B′.若二次函数y=ax2+bx的图象的顶点在反比例函数y=的图象上,请用含a的代数式表示△BB′A的面积.试题1答案:B试题2答案:B试题3答案:C试题4答案:D试题5答案:D试题6答案:C试题7答案:x≥-1;试题8答案:3试题9答案:3;6试题10答案:7试题11答案:6800试题12答案:x<4试题13答案:6π试题14答案:π试题15答案:(60+x )试题16答案:4试题17答案:解:解不等式①,得x<2.解不等式②,得x≥-1.所以,不等式组的解集是-1≤x<2.试题18答案:解:由x2+4x-5=0.解得x1=1,x2=-5.所以试题19答案:解:设苹果单价为x元/kg,香蕉单价为y元/千克.根据题意,得则 6x+5y=68(元).答:购买6kg苹果和5kg香蕉应付68元.试题20答案:(1)解:空格1 空格2 空格3A B CA C BB A CB C AC A BC B A如表格所示,一共有六种等可能的结果,其中从左往右字母顺序恰好是A、B、C(记为事件A)的结果有一种,所以P(A)=.(2).试题21答案:(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC,AB=CD.∵点E、F分别是AD、BC的中点,∴AE=AD,FC=BC.∴AE=CF.在△AEB与△CFD中∴△AEB≌△CFD.(2)解:∵四边形EBFD是菱形,∴BE=DE.∴∠EBD=∠EDB.∵AE=DE,∴BE=AE.∴∠A=∠ABE.∵∠EBD+∠EDB+∠A+∠ABE=180°,∴∠AB D=∠ABE+∠EBD=×180°=90°.试题22答案:解:(1)如图①,连接AP,即为所求角平分线;如图②,连接AO并延长,与⊙O交于点D,连接PD,即为所求角平分线.(2)∵AD是直径,∴=.又∵AB=AC,∴=.∴=,所以PD平分∠BPC.试题23答案:解:(1)当∠ANB=45°时,∵MB=MN,∴∠B=∠ANB=45°,∴∠NMB=180°-∠ANB-∠B=90°.在Rt△NMB中,sin∠B=,∴BN===12cm.∴CN=CB-BN=AN-BN=(20-12)cm.(2)当∠ANB=30°时,作ME⊥CB,垂足为E.∵MB=MN,∴∠B=∠ANB=30°在Rt△BEM中,cos∠B=,∴BE=MB cos∠B=(AN-AM) cos∠B=6cm.∵MB=MN,ME⊥CB,∴BN=2BE=12cm.∵CB=AN=20cm,且12>20,∴此时N不在CB边上,与题目条件不符.随着∠ANB度数的减小,BN长度在增加,∴倾斜角不可以小于30°.试题24答案:解:(1)出租车行驶了6分钟,不超过3公里,收费11元.(2)设当6≤x≤11时,y与x的函数关系式为y=kx+b.由图象,当x=6时,y=11,当x=11时,y=17.解得:∴y与x的函数关系式为:y=1.2x+3.8.(3)不能确定.①若产生了“双计费”,5分钟费用增加5×0.48=2.4(元),出租车在第11到16分钟以12公里/小时的速度,行驶了×5=1(千米),费用增加2.4元,车费总额增加4.8元,符合题意.②若没有产生“双计费”,出租车在第11到16分钟以24公里/小时的速度,5分钟行驶了2千米,费用增加2×2.4=4.8(元),符合题意.试题25答案:解:(1)边缘温度方差越来越小,边缘温度最稳定的是圆形铁盘.(2)序号是③;(3)b,d .试题26答案:解:(1)当点O在AC上时,OC为⊙O的半径,∵BC⊥OC,且点C在⊙O上,∴BC与⊙O相切.∵⊙O与AB边相切于点P,∴BC=BP.∴∠BCP=∠BPC=.∵∠ACP+∠BCP=90°,∴∠ACP=90°-∠BCP=90°-=∠B.即2∠ACP=∠B.(2)在△ABC中,∠ACB=90°,AB==10.如图,当点O在CB上时,OC为⊙O的半径,∵AC⊥OC,且点C在⊙O上,∴AC与⊙O相切.连接OP、AO.∵⊙O与AB边相切于点P,∴OP⊥AB.设OC=x,则OP=x,OB=BC-OC=6-x.∵AC=AP,∴PB=AB-AP=2.在△OPB中,∠OPB=90°,OP2+BP2=OB2,即x2+22=(6-x)2,解得x=.在△ACO中,∠ACO=90°,AC2+OC2=AO2,AO==.∵AC=AP,OC=OP,∴AO垂直平分CP.∴CP=2=.由题意可知,当点P与点A重合时,CP最长.综上,当点O在△ABC外时,<CP≤8.试题27答案:解:(1)当a=b=1时,一次函数为y=x+1,二次函数为y=x2+x.由x+1=x2+x,解得x1=1,x2=-1,可得 y1=2,y2=-0.∴点A,B的坐标为(1,2)或(-1,0).∴AB==2.(2)由ax+b=ax2+bx得ax2+(b-a)x-b=0,解得:x1=-,x2=1.不妨设A(-,0),B(1,a+b).当b>0时,S△AOB=×(a+b)=;当b=0时,△AOB不存在.当-a<b<0时,S△AOB=×(a+b)=-;当b=-a时,△AOB不存在.当b<-a时,S△AOB=×(-a-b)=;(3)y=ax2+bx=a2-,抛物线的顶点坐标为:.∵抛物线的顶点在双曲线y=上,∴-=,即-b3=-8a3.∴b=2a.∴A(-2,0),B(1,3a),∴AB′=3, BB′=.∴S△ABB′=AB′·BB′.当a>0时, S△ABB′=AB′·BB′=.当a<0时,S△ABB′=AB′·BB′=-.。
2016玄武区一模(数学)答案
7分
8分
OB OC 1 b 【乘】证明:∵AD∥BC,∴OA=OD,即a=OD.∴OD=ab. a 则 OD=b. 7 分 【开方】图③和图④中的 MN 均为 a+b.
4分
【除】如图②,OA=a,OC=b,点 B 在 OC 上,OB=1,BD∥AC,交 OA 于点 D.
40 (3)解: ×360°=60°.答: “12 小时后”这一项所在扇形的圆心角度数为 60°. 200+40 7分 21. (本题 7 分) 3 解: (1) 2 ;0.26; MH (2)在 Rt△MHO 中,sin∠MOH=MO, 3 3 即 MH=MO·sin∠MOH=1× 2 = 2 . 1 ∴OH= OM2-MN2=2. 设 PA⊥x 轴,垂足为 A, ∵∠NHO=∠PAO=90°, ∴NH∥PA, 1 2 NH OH NH ∴ PA =OA,即0.26=0.97, ∴NH≈0.134. ∴MN=MH-MN≈0.73. 7 分 22. (本题 8 分) c=3 a=1 (1)解:由题意得:9a+3b+c=6 ,解得:b=-2 4a-2b+c=11 c=3 ∴该函数的函数关系式为:y=x2-2x+3. 3 分 (2)证明:∵y=x2-2x+3=(x-1)2+2,
2016 玄武区一模(数学) 参考答案及评分标准
说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分 标准的精神给分. 一、选择题(本大题共 6 小题,每小题 2 分,共 12 分) 题号 答案 1 C 2 A 3 B 4 B 5 D 6 C
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分) 7. x≠1 12.5 17. (本题 12 分) (1) (本题 4 分) 解:3(x-1) =-x(x-1) 3(x-1)+x(x-1)=0 (x-1) (x+3)=0 x1=1,x2=-3. 4 分 (2) (本题 4 分) 2a-a+3 a+3 2a 1 2a 1 1 解: 2 - = - = = = . a -9 a-3 (a-3)(a+3) a-3 (a-3)(a+3) (a-3)(a+3) a-3 8分 3x+1≤7,① (3) (本题 4 分)2x-1 >x,② 3 解:解不等式①,得 x≤2, 解不等式②,得 x<-1, 3 8. 6 13.64 9. 1.2 14. 54° 10.-4 15. 6.8 11.4.1×107 16.7
2016年南京市中考数学试卷及答案
南京市2016年初中毕业生学业考试数学一.选择题.为了方便市民出行.提倡低碳交通,近几年南京市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达 辆.用科学计数法表示 是. ⨯ ⨯ ⨯ ⨯ .数轴上点 、 表示的数分别是 、 ,它们之间的距离可以表示为.- + - - |- + | |- - |.下列计算中,结果是6a的是. 23÷a aa a 122、下列长度的三条线段能组成钝角三角形的是. , , , , , , , , .己知正六边形的边长为 ,则它的内切圆的半径为.、若一组数据 的方差与另一组数据 的方差相等,则 的值为. 或 或二.填空题;若式子x+则 的取值范围是 分解因式的结果是比较大小:5- 522- 填“ ” 或“ ”号 方程132x x=-的解是 设12,x x 是方程的两个根,且12x x +-12x x =则12x x +=如图,扇形 的圆心角为 °, 是弧 上一点,则°如图,四边形 的对角线 、 相交于点 ,△ ≌△ ,下列结论① ⊥ ;② ;③△ ≌△ ;④ ,其中正确结论的序号是如图, 、 相交于点 , , , ∥ 是△ 的中位线,且 ,则 的长为如图,菱形 的面积为 ,正方形 的面积为 ,则菱形的边长为三 解答题解不等式组 并写出它的整数解计算某校九年级有 个班,共 名学生,他们参加了一次数学测试,学校统计了所有学生的乘积,得到下列统计图,( )求该校九年级学生本次数学测试成绩的平均数;( )下列关于本次数学测试说法正确的是( ).九年级学生成绩的众数与平均数相等.九年级学生成绩的中位数与平均数相等.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数随机抽取 名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数。
我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表用两种方法证明“三角形的外角和等于 °”。
年南京市玄武区中考数学一模试题(北师大版,含答案)-
—第二学期九年级数学测试卷(一)题 号 一二三四五六七八总分得 分 复核人一、选择题(每小题2分,共24分)1.3-的绝对值是------------------------------------------------------( )A . 3-B . 31-C . 3D . 31 2.比2-大1的数是-----------------------------------------------------( )A . 3B . 1-C . 3-D . 1 3.计算62x x ÷的结果是-------------------------------------------------( )A . 4xB . 8xC . 3xD . 12x4.年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球。
已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( ) A .3.84×410千米B . 3.84×610千米C . 3.84×510千米D .38.4×410千米5.4的平方根是--------------------------------------------------------( )A . 2B . 2-C . 2±D . 166. 若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有---------------------------------------------------( )(A )5桶 (B ) 6桶 (C )9桶 (D )12桶 7.二次函数1)3(22--=x y 的图象的顶点坐( )A .(3 ,1)B .(-3 ,1)C .(-3 ,-1)D .(3 ,-1)表1 表 2B'A CB A'第12题8.下图是四个边长相等的正方形,其中阴影部分面积较大的是--------------------------( )9.已知,在△ABC 中,3AC =,4BC =,5AB =,则A sin 的值为--------------------( ) A .45 B . 43 C . 35 D . 3410.如图,点A 、B 、C 在⊙O 上,AO ∥BC ,∠AOB =50°,则∠OAC 的度数是---( )A .15°B .25°C .30°D .40° 11.如图,双曲线xy 6-=的一个分支为--------------------------------------------------------( )A .①B .②C .③D .④第9题 第10题 第11题 12.如图,一块含有30°角的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到A 'B 'C '的位置.若BC 的长为15cm ,那么AC 边从开始到结束所扫过的图形的面积为--------------------( )A .300πcm 2B . 225πcm 2C .32D . 100πcm 2 二、填空题(每小题3分,共15分) 13.分解因式:=-39m m ____ ___.14.表1给出了直线1l 上部分点(x ,y )的坐标值,表1给出了直线2l 上部分点(x ,y )的坐标值,x2-0 2 4 y 3-1 1- 4-那么直线1l 和直线2l 交点横坐标为 .15.用配方法将函数1422--=x x y 化为k h x a y +-=2)(的形式 . 16.在比例尺为1∶40000的地图上,某经济开发区的面积为225cm , 那么,该经济开发区的实际面积为 2km .17.如图,用一块直径为2a 的圆桌布平铺在对角线为2a 的正方形桌面上, 若四周下垂的最大长度相等,则桌布下垂的最大长度x 为 . 三、(18-21小题每小题5分,22题6分,共21分) 18.23()224x x x x x x -÷-+- 19.解方程:21323--=+-x x x20.解不等式组253(2),1.23x x x x +≤+⎧⎪-⎨<⎪⎩,并写出不等式组的正整数解.x2- 0 24 y 5- 3- 1-121. 小丽在观察某建筑物AB .(1)请你根据小亮在阳光下的投影,画出建筑物AB 在阳光下的投影.(2)已知小丽的身高为m 65.1,在同一时刻测得小丽和建筑物AB 的投影长分别为m 2.1和8m ,求建筑物AB 的高.四、(每小题6分,共18分)22.有黑白两种小球各若干只,且同色小球的质量均相同,在如图所示的两次称量中,天平恰好平衡,若每只砝码的质量均为5克,则每只黑球和白球的质量各是多少克?AB 图723.甲、乙、丙三人今年参加中考,希望考上心目中理想的学校A或B,如果三人都能如愿以偿.(1)求甲、乙、丙三名学生被同一所学校录取的概率;(2)求甲、乙、丙三名学生中至少有一人在被A学校录取的概率.24.已知:如图,将平行四边形ABCD折叠,使对角顶点A、C重合,折痕为EF.⑴求证:△AOE≌△COF;⑵连接AF、CE,试判断四边形AFCE形状,并说明理由.北五、(25题6分,26题8分,共14分)25. 江中有一小岛C ,一条船由东向西沿直线航行,在A 处测得小岛C 在北偏东60°方向,船前进100米到达B 处,测得小岛C 在北偏东45°方向,若该岛周围120米的范围内有浅滩,如果该船继续前进,这是否有被浅滩阻碍的危险?(其中3≈1.73)26.我区中学为了解学生参加课外体育活动情况,采取抽样的方法,从球类、田径、棋类、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题: (1)在这次研究中,一共调查了多少名学生? (2)“其它”在扇形图中所占的圆心角是多少度? (3)补全频数分布折线图.(4)若该校有2000名学生,请你估算出该校参加“球类”运动的 学生人数。
2016南京玄武中考数学一模试题及答案
九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列运算正确的是A .a 3+a 3=a 6B .2(a +1)=2a +1C .(ab )2=a 2b 2D .a 6÷a 3=a 22.下列各数中,是无理数的是A .cos30°B .(-π)0C .-错误!D .错误! 3.计算2-1×8-错误!的结果是A .-21B .-1C .9D .114.体积为80的正方体的棱长在A .3到4之间B .4到5之间C .5到6之间D .6到7之间5.如图,将等边△ABC 的边AC 逐渐变成以B 为圆心、BA 为半径的错误!,长度不变,AB 、BC 的长度也不变,则∠ABC 的度数大小由60°变为 A .错误!°B .错误!°C .错误!°D .错误!°6.如图,正方形OABC 的边长为6,A ,C 分别位于x 轴、y 轴上,点P 在AB 上,CP 交OB 于点Q ,函数y =错误!的图象经过点Q ,若S △BPQ =错误!S △OQC ,则k 的值为 A .-12B .12C .16D .18(第6题)B AB CC(第5题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卡相应位置.....上) 7.使式子1+错误!有意义的x 的取值范围是 ▲ . 8.计算:错误!-错误!= ▲ .9.有一组数据:1,3,3,4,4,这组数据的方差为 ▲ . 10.设x 1,x 2是方程x 2+4x +3=0的两根,则x 1+x 2= ▲ .11.今年清明假期全国铁路发送旅客约41 000 000人次,将41 000 000用科学记数法表示为 ▲ . 12.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是 ▲ .13.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,OH =8,则菱形ABCD的周长等于 ▲ .14.如图,正五边形ABCDE 绕点A 顺时针旋转后得到正五边形AB ′C ′D ′E ′,旋转角为α(0°≤α≤90°),若DE ⊥B ′C ′,则∠α= ▲ °.15.如图,三个全等的小矩形沿“横-竖—横"排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 ▲ .16.若-2≤a <2,则满足a (a +b )=b (a +1)+a 的b 的整数值有 ▲ 个.(第15题)ABCDE B ′C ′D ′E ′(第14题)ABCDOH(第13题)(第12题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(12分)(1)解方程:3(x -1)=x (1-x );(2)化简:错误!-错误!;(3)解不等式组:错误!并将解集在数轴上表示.18.(7分)如图,□ABCD 的对角线AC 、BD 相交于点O ,AE =CF .(1)求证:△BOE ≌△DOF ;(2)若BD =EF ,连接DE 、BF ,判断四边形EBFD 的形状,并说明理由。
江苏省南京市联合体中考数学一模试卷(含解析)
江苏省南京市联合体2016年中考数学一模试卷一、选择题:本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在答题卡上1.2的算术平方根是()A.4 B.±4 C.D.2.计算(﹣ab2)3的结果是()A.a3b5B.﹣a3b5C.﹣a3b6D.a3b63.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形4.已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限 B.第二、三象限 C.第二、四象限 D.第三、四象限5.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组6.已知A(x1,y1)是一次函数y=﹣x+b+1图象上一点,若x1<0,y1<0,则b的取值范围是()A.b<0 B.b>0 C.b>﹣1 D.b<﹣1二、填空题:本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上7.﹣3的相反数是;﹣3的倒数是.8.计算﹣的结果是.9.在函数中,自变量x的取值范围是.10.2016年春节放假期间,夫子庙游客总数达到1800000人,将1800000用科学记数法表示为.11.某公司全体员工年薪的具体情况如表:则该公司全体员工年薪制的中位数比众数多万元.12.已知关于x的方程x2﹣3x+1=0的两个根为x1、x2,则x1+x2﹣x1x2= .13.如图,在△ABC中,DE∥BC,AB=2BD,则= .14.如图,在⊙O的内接五边形ABCDE中,∠B+∠E=222°,则∠CAD= °.15.如图,在△ABC中,∠C=90°,BC=3,AC=4,BD平分∠ABC交AC于点D,则点D到AB 的距离为.16.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为.三、解答题:本大题共11小题,共计88分17.(6分)解不等式组,并把解集在数轴上表示出来.18.(6分)化简:÷.19.(8分)写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两条边相等,那么两条边所对的角也相等(简称:“等边对等角”.)已知:.求证:.证明:20.(8分)小明和小红、小兵玩捉迷藏游戏,小红、小兵可以在A、B、C三个地点中任意一处藏身,小明去寻找他们.(1)求小明在B处找到小红的概率;(2)求小明在同一地点找到小红和小兵的概率.21.(8分)某校课外活动小组采用简单随机抽样的方法,对本校九年级学生的睡眠时间(单位:h)进行了调查,并将所得数据整理后绘制出频数分布直方图的一部分(如图).设图中从左至右前5个小组的频率分别是0.04,0.08,0.24,0.28,0.24,第2小组的频数为4.如图,在四边形ABCD中,AD=CD=8,AB=CB=6,点E、F、G、H分别是DA、AB、BC、CD的中点.(1)求证:四边形EFGH是矩形;(2)若DA⊥AB,求四边形EFGH的面积.23.(9分)甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.24.(8分)一艘船在小岛A的南偏西37°方向的B处,AB=20海里,船自西向东航行1.5小时后到达C处,测得小岛A在点C的北偏西50°方向,求该船航行的速度(精确到0.1海里/小时?)(参考数据:sin37°=cos53°≈0.60,sin53°=cos37°≈0.80,tan37°≈0.75,tan53°≈1.33,tan40°≈0.84,tan50°≈1.19)25.(9分)已知二次函数y=﹣x2+mx+n.(1)若该二次函数的图象与x轴只有一个交点,请用含m的代数式表示n;(2)若该二次函数的图象与x轴交于A、B两点,其中点A的坐标为(﹣1,0),AB=4,请求出该二次函数的表达式及顶点坐标.26.(9分)如图①,C地位于A,B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为m/min,乙的速度为m/min;(2)在图②中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为m.27.(9分)已知⊙O的半径为5,且点O在直线l上,小明用一个三角板学具(∠ABC=90°,AB=BC=8)做数学实验:(1)如图①,若A、B两点在⊙O上滑动,直线BC分别与⊙O、l相交于点D、E.①求BD的长;②当OE=6时,求BE的长;(2)如图②,当点B在直线l上,点A在⊙O上,BC与⊙O相切于点P时,则切线长PB= .2016年江苏省南京市联合体中考数学一模试卷参考答案与试题解析一、选择题:本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在答题卡上1.2的算术平方根是()A.4 B.±4 C.D.【考点】算术平方根.【分析】直接根据算术平方根的定义求解.【解答】解:2的算术平方根为.故选C.【点评】本题考查了算术平方根:若一个正数的平方等于a,那么这个数叫a的算术平方根,记作(a≥0).2.计算(﹣ab2)3的结果是()A.a3b5B.﹣a3b5C.﹣a3b6D.a3b6【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则求出答案.【解答】解:(﹣ab2)3=﹣a3b6.故选:C.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限 B.第二、三象限 C.第二、四象限 D.第三、四象限【考点】反比例函数的性质.【分析】设反比例函数解析式为y=(k≠0),由反比例函数图象上点的坐标特征可得出k=a2,分情况讨论即可得出结论.【解答】解:设反比例函数解析式为y=(k≠0),∵点P(a,a)在反比例函数图象上,∴k=a2.当a≠0时,k=a2>0,反比例函数图象在第一、三象限;当a=0时,点P为原点,不可能在反比例函数图象上,故无此种情况.故选A.【点评】本题考查了反比例函数图象上点的坐标特征以及反比例函数的性质,解题的关键是用a的值表示k的值.本题属于基础题,难度不大,解决该题型题目时,由点在函数图象上得出反比例函数系数k的取值范围是关键.5.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组AB=DE,∠B=∠E,∠C=∠F,满足AAS,能证明△ABC≌△DEF.第②组AB=DE,∠B=∠E,BC=EF满足SAS,能证明△ABC≌△DEF.第③组∠B=∠E,BC=EF,∠C=∠F满足ASA,能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.已知A(x1,y1)是一次函数y=﹣x+b+1图象上一点,若x1<0,y1<0,则b的取值范围是()A.b<0 B.b>0 C.b>﹣1 D.b<﹣1【考点】一次函数图象上点的坐标特征;一次函数的性质.【分析】先根据题意判断出函数图象经过的象限,进而可得出结论.【解答】解:∵一次函数y=﹣x+b+1中,k=﹣1<0,∴函数图象经过二、四象限.∵x1<0,y1<0,∴函数图象经过第三象限,∴b+1<0,即b<﹣1.故选D.【点评】本题考查的是一次函数图象上点的坐标特征,熟知一次函数的图象与系数的关系是解答此题的关键.二、填空题:本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上7.﹣3的相反数是 3 ;﹣3的倒数是﹣.【考点】倒数;相反数.【分析】根据倒数以及相反数的定义即可求解.【解答】解:﹣3的相反数是3;﹣3的倒数是﹣.故答案是:3,﹣.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.8.计算﹣的结果是.【考点】二次根式的加减法.【分析】先把各二次根式化为最简二次根式,再合并同类项即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.9.在函数中,自变量x的取值范围是x≠1 .【考点】函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,就可以求解.【解答】解:根据题意得:1﹣x≠0,解得x≠1.故答案为:x≠1.【点评】本题考查的知识点为:分式有意义,分母不为0;10.2016年春节放假期间,夫子庙游客总数达到1800000人,将1800000用科学记数法表示为 1.8×106.【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:将1800000用科学记数法表示为 1.8×106,故答案为:1.8×106.【点评】本题考查了科学记数法,科学记数法的表示方法:a×10n,确定n的值是解题关键,n是整数数位减1.11.某公司全体员工年薪的具体情况如表:则该公司全体员工年薪制的中位数比众数多0.5 万元.【考点】众数;中位数.【分析】先根据中位数和众数的定义分别求出该公司全体员工年薪制的中位数与众数,再相减即可.【解答】解:一共有25个数据,将这组数据从小到大的顺序排列后,处于中间位置的那个数是4万元,那么由中位数的定义可知,这组数据的中位数是4万元;众数是一组数据中出现次数最多的数,在这一组数据中3.5万元是出现次数最多的,故众数是3.5万元;所以中位数比众数多4﹣3.5=0.5万元.故答案为0.5.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.12.已知关于x的方程x2﹣3x+1=0的两个根为x1、x2,则x1+x2﹣x1x2= 2 .【考点】根与系数的关系.【分析】根据根与系数的关系可得出“x1+x2=﹣=3,x1•x2==1”,将其代入x1+x2﹣x1x2中即可得出结论.【解答】解:∵关于x的方程x2﹣3x+1=0的两个根为x1、x2,∴x1+x2=﹣=3,x1•x2==1,∴x1+x2﹣x1x2=3﹣1=2.故答案为:2.【点评】本题考查了根与系数的关系,解题的关键是找出“x1+x2=3,x1•x2=1”.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.13.如图,在△ABC中,DE∥BC,AB=2BD,则= .【考点】相似三角形的判定与性质.【分析】由条件可以求出AD:AB=2;3,再由条件可以得出△ADE∽△ABC,最后由相似三角形的性质就可以得出结论.【解答】解:∵AB=2BD,AD+BD=AB,∴AD+AB=AB,∴AD=AB,∵在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=()2=,故答案为:.【点评】本题主要考查了相似三角形的性质,熟练掌握相似三角形面积的比等于相似三角形面积的平方是解题的关键.14.如图,在⊙O的内接五边形ABCDE中,∠B+∠E=222°,则∠CAD= 42 °.【考点】圆周角定理.【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,进而求出∠CED的度数,再根据同弧所对的圆周角相等可得∠CED=∠CAD即可.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠B+∠AED=222°,∴∠CED=42°,∴∠CAD=∠CED=42°,故答案为:42.【点评】本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.15.如图,在△ABC中,∠C=90°,BC=3,AC=4,BD平分∠ABC交AC于点D,则点D到AB的距离为.【考点】角平分线的性质.【分析】根据勾股定理求出AB的长,根据角平分线的性质得到DE=DC,根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=3,AC=4,∴AB==5,作DE⊥AB于E,∵BD平分∠ABC交AC于点D,∠C=90°,DE⊥AB,∴DE=DC,△ABC的面积=△ABD的面积+△DBC的面积,即×AC×BC=×AB×DE+×BC×CD,解得,DE=,故答案为:.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为32 .【考点】抛物线与x轴的交点.【分析】将x轴下方的阴影部分沿对称轴分成两部分补到x轴上方,即可将不规则图形转换为规则的长方形,则可求出.【解答】解:∵抛物线y=﹣x2﹣2x+3与x轴交于点A、B,∴当y=0时,则﹣x2﹣2x+3=0,解得x=﹣3或x=1,则A,B的坐标分别为(﹣3,0),(1,0),AB的长度为4,从C1,C3两个部分顶点分别向下作垂线交x轴于E、F两点.根据中心对称的性质,x轴下方部分可以沿对称轴平均分成两部分补到C1与C2.如图所示,阴影部分转化为矩形.根据对称性,可得BE=CF=4÷2=2,则EF=8利用配方法可得y=﹣x2﹣2x+3=﹣(x+1)2+4则顶点坐标为(﹣1,4),即阴影部分的高为4,S阴=8×4=32.【点评】本题考查了中心对称的性质、配方法求抛物线的顶点坐标及求抛物线与x轴交点坐标,解题关键是将不规则图形通过对称转换为规则图形,求阴影面积经常要使用转化的数学思想.三、解答题:本大题共11小题,共计88分17.解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】对不等式2﹣x>0,移项得x<2,对不等式两边乘以6,然后再移项、合并同类项解出不等式的解,再根据不等式组解集的口诀:大小小大中间找,来求出不等式组的解.【解答】解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.不等式组的解集在数轴上表示如下:【点评】主要考查了一元一次不等式组解集的求法,利用不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解),来求解.18.化简:÷.【考点】分式的混合运算.【分析】利用分式的混合运算顺序求解即可.【解答】解:÷=×,=•×,=﹣.【点评】本题主要考查了分式的混合运算,解题的关键是通分及约分.19.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两条边相等,那么两条边所对的角也相等(简称:“等边对等角”.)已知:在△ABC中,AB=AC .求证:∠B=∠C .证明:【考点】等腰三角形的性质.【分析】根据图示,分析原命题,找出其条件与结论,然后根据AB=AC,结合全等三角形的性质,从而得出结论.【解答】解:已知:在△ABC中,AB=AC,求证:∠B=∠C,证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,∵∴Rt△ABD≌Rt△ACD(HL),∴∠B=∠C.【点评】本题主要考查了全等三角形的判定与性质,正确得出Rt△ABD≌Rt△ACD是解题关键.20.小明和小红、小兵玩捉迷藏游戏,小红、小兵可以在A、B、C三个地点中任意一处藏身,小明去寻找他们.(1)求小明在B处找到小红的概率;(2)求小明在同一地点找到小红和小兵的概率.【考点】列表法与树状图法.【分析】(1)由题意可知有三处可以藏身,所以小明在B处找到小红的概率为其中的三分之一;(2)根据题意画树状图,然后根据树状图求得所有等可能的结果与小明在同一地点找到小红和小兵的情况,然后根据概率公式求解即可.【解答】解:(1)∵小红、小兵可以在A、B、C三个地点中任意一处藏身,∴小明在B处找到小红的概率=;(2)画树形图得:由树形图可知小明在同一地点找到小红和小兵的概率==.【点评】此题考查了树状图法与列表法求概率.树状图法与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.21.某校课外活动小组采用简单随机抽样的方法,对本校九年级学生的睡眠时间(单位:h)进行了调查,并将所得数据整理后绘制出频数分布直方图的一部分(如图).设图中从左至右前5个小组的频率分别是0.04,0.08,0.24,0.28,0.24,第2小组的频数为4.(2016•南京校级一模)如图,在四边形ABCD中,AD=CD=8,AB=CB=6,点E、F、G、H分别是DA、AB、BC、CD的中点.(1)求证:四边形EFGH是矩形;(2)若DA⊥AB,求四边形EFGH的面积.【考点】中点四边形;矩形的判定.【分析】(1)连接AC、BD,交于点O,运用三角形中位线定理可证到四边形EFGH是平行四边形,要证四边形EFGH是矩形,只需证EF⊥FG,由于EF∥BD,FG∥AC,只需证DB⊥AC,只需运用线段垂直平分线性质定理的逆定理就可解决问题;(2)要求矩形EFGH的面积,只需求出EF、FG的值,只需求出BD、AC,运用勾股定理就可求出BD,运用面积法就可求出AO,从而求出AC,问题得以解决.【解答】解:(1)连接AC、BD,交于点O,如图.∵点E、F、G、H分别是DA、AB、BC、CD的中点,∴EF∥BD∥GH,EH∥AC∥FG,EF=GH=BD,EH=FG=AC,∴四边形EFGH是矩形.∵AD=CD,AB=CB,∴点D、B都在线段AC的垂直平分线上,∴DB垂直平分AC,∴DB⊥AC,OA=OC.∵EF∥DB,∴EF⊥AC.∵FG∥AC,∴EF⊥FG,∴▱EFGH是矩形;(2)∵DA⊥AB,AD=8,AB=6,∴DB=10.∴EF=BD=5.∵S△BAD=AB•AD=BD•AO,∴AO===,∴OC=,AC=,∴FG=AC=,∴S矩形EFGH=FG•EF=×5=24.【点评】本题主要考查了三角形中位线定理、矩形的判定与性质、线段垂直平分线性质定理的逆定理、勾股定理等知识,运用线段垂直平分线性质定理的逆定理证到DB垂直平分AC是解决第(1)小题的关键.23.甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.【考点】分式方程的应用.【分析】首先提出问题,例如,求甲、乙两公司的人数分别是多少?则本题的等量关系是:乙公司的人均捐款﹣甲公司的人均捐款=40,根据这个等量关系可得出方程求解.【解答】问题:求甲、乙两公司的人数分别是多少?解:设乙公司人数为x,则甲公司的人数为(1+20%)x,根据题意得:﹣=40解得:x=250经检验x=250是原方程的根,故(1+20%)×250=300(人),答:甲公司为300人,乙公司250人.【点评】本题考查了分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.一艘船在小岛A的南偏西37°方向的B处,AB=20海里,船自西向东航行1.5小时后到达C处,测得小岛A在点C的北偏西50°方向,求该船航行的速度(精确到0.1海里/小时?)(参考数据:sin37°=cos53°≈0.60,sin53°=cos37°≈0.80,tan37°≈0.75,tan53°≈1.33,tan40°≈0.84,tan50°≈1.19)【考点】解直角三角形的应用-方向角问题.【分析】根据题意,可以得到∠ABD和∠ACD的度数,由于AB=20,从而可以求得BD、AD、CD的长,从而可以求得该船航行的速度.【解答】解:作AD⊥BC于点D,如右图所示,由已知可得,∠ADB=90°,∠ABD=90°﹣37°=53°,AB=20,∴BD=AB•cos53°=20×0.6=12,AD=AB•sin53°=20×0.8=16,又∵∠ADC=90°,∠ACD=90°﹣50°=40°,AD=16,∴CD=≈19.05∴该船航行的速度是:(12+19.05)÷1.5=20.7海里/小时,即该船航行的速度是20.7海里/小时.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数解答问题.25.已知二次函数y=﹣x2+mx+n.(1)若该二次函数的图象与x轴只有一个交点,请用含m的代数式表示n;(2)若该二次函数的图象与x轴交于A、B两点,其中点A的坐标为(﹣1,0),AB=4,请求出该二次函数的表达式及顶点坐标.【考点】抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式.【分析】(1)由二次函数的图象与x轴只有一个交点,所以△=0,由此即可解决问题.(2)求出点B坐标有两种情形,分别利用方程组解决问题即可.【解答】解:(1)∵二次函数的图象与x轴只有一个交点,∴△=m2+4n=0,∴n=﹣m2.(2)∵A(﹣1,0),AB=4,∴B(3,0)或(﹣5,0).将A(﹣1,0),B(3,0)代入y=﹣x2+mx+n得,解得,∴二次函数为y=﹣x2+2x+3,顶点为(1,4),将A(﹣1,0),B(﹣5,0)代入y=﹣x2+mx+n得,解得,∴二次函数为y=﹣x2﹣6x﹣5,顶点为(﹣3,4).【点评】本题考查二次函数与x轴交点问题、待定系数法确定函数解析式等知识,解题的关键是熟练掌握二次函数的有关性质,学会分类讨论的思想,不能漏解,属于中考常考题型.26.如图①,C地位于A,B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为80 m/min,乙的速度为200 m/min;(2)在图②中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为960 m.【考点】一次函数的应用.【分析】(1)根据函数图象中点(30,2400),利用“速度=路程÷时间”可算出甲的速度,再根据甲乙速度间的关系可得出乙的速度;(2)根据乙的速度,以及A、C两地及B、C两地间的距离,利用“时间=路程÷速度”可找出函数图象经过点(0,0)、(3,600)、(6,0)、(18,2400),按照顺序连接两点即可得出结论;(3)设甲乙两人相遇的时间为xmin,结合(2)y2与x的函数图象可知,乙相当于比甲晚出发6分钟,依照“路程=速度×时间”可列出关于x的一元一次方程,解方程即可得出结论;(4)结合函数图象可知:最值只有可能出现在两种情况下,乙刚到A地时或乙到B地时,分别求出两种情形下两人间的距离,再作比较即可得出结论.【解答】解:(1)甲的速度为:2400÷30=80(m/min);乙的速度为:80×2.5=200(m/min).故答案为:80;200.(2)600÷200=3(min),600×2÷200=6(min).2400÷200+6=18(min).∴y2与x的函数图象过点(0,0)、(3,600)、(6,0)、(18,2400).画出图形如图所示.(3)设甲乙两人相遇的时间为xmin,依题意得:80x=200(x﹣6),解得:x=10.答:甲乙两人相遇的时间为10min.(4)∵乙的速度>甲的速度,∴当x=3时,乙达到A地,此时甲乙两人间距可能最远,3×(80+200)=840(m);当x=18时,甲乙两人间距为:2400﹣80×18=960(m).∵960>840,∴甲乙两人相距的最远距离为960m.故答案为:960.【点评】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系直接计算;(2)找出拐点坐标;(3)依照数量关系列出关于x的方程;(4)找出极值,再比较极值的大小,确定最值.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.27.已知⊙O的半径为5,且点O在直线l上,小明用一个三角板学具(∠ABC=90°,AB=BC=8)做数学实验:(1)如图①,若A、B两点在⊙O上滑动,直线BC分别与⊙O、l相交于点D、E.①求BD的长;②当OE=6时,求BE的长;(2)如图②,当点B在直线l上,点A在⊙O上,BC与⊙O相切于点P时,则切线长PB= 4 .【考点】切线的性质.【分析】(1)①连接AD,根据90°圆周角所对的弦是直角可知AD是圆O的直径,在△ABD中,依据勾股定理可求得BD的长;②连接OD,过点O作OF⊥BD,垂足为F.由垂径定理可求得FD、BF的长,然后在△FOE中,依据勾股定理可求得EF的长,从而可求得BE的长.(2)如图②中,连接PO,并延长交⊙O于点Q,连接AQ,AP,利用△PAQ∽△ABP,得=,求出PA2=80,在RT△PAB中利用勾股定理求出PB即可.【解答】解:(1)①如图1所示:连接AD.∵∠ABD=90°,∴AD是圆O的直径.∴AD=10.在Rt△ABD中,BD==6.②如图1所示:过点O作OF⊥BD,垂足为F.∵OF⊥BD,BD=6,∴BF=FD=3.在Rt△ODF中,OF==4.在Rt△OFE中,EF==2.∴BE=FB+EF=3+2.(2)如图②中,连接PO,并延长交⊙O于点Q,连接AQ,AP,∵BC是⊙O的切线,PQ是直径∴∠CPO=∠CBA=∠PAQ=90°,∴PQ∥AB,∴∠PAB=∠APQ,∵∠PAQ=∠PBA=90°,∴△PAQ∽△ABP,∴=,∴PA2=80,在RT△PAB中,PB===4.故答案为4.【点评】本题主要考查的是垂径定理、圆周角定理、勾股定理的应用,掌握此类问题的辅助线的作法是解题的关键,学会利用相似三角形的性质解决问题,属于中考常考题型.。
江苏省南京市玄武区中考一模数学考试卷(解析版)(初三)中考模拟.doc
江苏省南京市玄武区中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx 题评卷人得分(每空xx 分,共xx分)【题文】计算1-(-2)2÷4的结果为()A. 2B.C. 0D.【答案】C【解析】1-(-2)2÷4=1-4÷4=1-1=0故选C.【题文】南京规划地铁6号线由栖霞山站开往南京南站,全长32100米,这个数据用科学计数法表示为()A. 321×102B. 32.1×103C. 3.21×104D. 3.21×105【答案】C【解析】32100=3.21×104故选C.【题文】一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定【答案】A【解析】试题分析:对于一元二次方程a+bx+c=0而言,当△=0时,方程有两个相等的实数根;当△0时,方程有两个不相等的实数根;当△0时,方程没有实数根.本题△=9-4×2×1=10,则方程有两个不相等的实数根.考点:一元二次方程根的判别式.【题文】下列运算结果正确的是()A. a2+a3=a5B. a2·a3=a6C. a3÷a2=aD. (a2)3=a5【答案】C【解析】A. a2+a3,不是同类项,不能合并,故本选项错误;B. ,故本选项错误;C. a3÷a2=a,正确;D. 依据幂的乘方运算法则可以得出,故本选项错误;故选C.【题文】如图,将矩形ABCD绕点A逆时针旋转90°至矩形AEFG,点D的旋转路径为,若AB=1,BC =2,则阴影部分的面积为()A. B. C. D.【答案】A【解析】由旋转得:AG=AD,AE=AB, ∠AEF=∠B,∵四边形ABCD是矩形,∴AD=BC=2∠B=90°,∴∠AEF=90°∴AH=AG=2∴AH=2AE∴∠AHE=30°,EH=,∵四边形AEFG是矩形,∴EF∥AG,∴∠GAH=∠AHE=30°∴故选A点睛;不规则图形面积的求法一般用割补法或转化法来求,这道题就是把阴影部分分成一个扇形和一个规则三角形,利用相应的面积公式即可求解.【题文】如图,将正六边形ABCDEF放入平面直角坐标系后,若点A、B、E的坐标分别为(a,b)、(3,1)、(-a,b),则点D的坐标为()A. (1,3)B. (3,-1)C. (-1,-3)D. (-3,1)【答案】D【解析】∵A(a,b),E(-a,b),∴A,E关于y轴对称∵六边形ABCDEF是正六边形,∴y轴过C,F∴B,D关于y轴对称∵B(3,1)∴D(-3,1)故选D.点睛:解决点的坐标问题关键在于利用数形结合思想,认真观察题中的条件确定坐标轴的位置.【题文】分解因式2x2+4x+2=__________.【答案】2(x+1)2。
江苏省南京市玄武区中考一模数学试题含答案
1.函数图象的两条相邻对称轴间的距离为A. B. C. D.2.下列函数中,在其定义域内既是奇函数又是减函数的是A. B. C. D.3.若向量满足,且,则向量的夹角为A.30°B.45° C.60° D.90°4.已知函数,则,,的大小关系为A.B.C. D.5.某空间几何体三视图如右图所示,则该几何体的表面积为_____,体积为_____________.6.设、是不同的直线,、、是不同的平面,有以下四个命题:①若则②若,,则③若,则④若,则其中所有真命题的序号是_____7.设不等式组表示的平面区域为D,若直线上存在区域D上的点,则的取值范围是_____.8.已知不等式组所表示的平面区域为,则的面积是_____;设点,当最小时,点坐标为_____.9.设等比数列的公比为,前项和为.则“ ”是“ ”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件10.设函数在区间上有两个零点,则的取值范围是()A.B.C.D.11.已知椭圆的离心率为.⊙过椭圆的一个顶点和一个焦点,圆心在此椭圆上,则满足条件的点的个数是()A.B.C.D.12.如果直线总不经过点,其中,那么的取值范围是_____.13.如图所示,正方体的棱长为1, E、F 分别是棱、的中点,过直线E、F的平面分别与棱、交于M、N,设BM= x,,给出以下四个命题:①平面MENF 平面;②四边形MENF周长,是单调函数;③四边形MENF面积,是单调函数;④四棱锥的体积为常函数;以上命题中正确命题的个数()A.1 B.2 C.3 D.414.直线与抛物线相切于点 . 若的横坐标为整数,那么的最小值为15.已知数列的前项和若是中的最大值,则实数的取值范围是_____.解答题部分:1. 已知函数(I)求的最小正周期和值域;(II)在中,角所对的边分别是,若且,试判断的形状.2.如图,在直角坐标系中,点是单位圆上的动点,过点作轴的垂线与射线交于点,与轴交于点.记,且.(Ⅰ)若,求;(Ⅱ)求面积的最大值.3. 已知函数 ,且﹙Ⅰ﹚求的值.(Ⅱ)求函数在区间上的最大和最小值.4. 已知数列的通项公式为,其前项和为 .(I) 若,求的值;(Ⅱ) 若且,求的取值范围.5.数列的各项都是正数,前项和为 ,且对任意,都有 .(Ⅰ)求的值;(Ⅱ)求证:;(Ⅲ)求数列的通项公式.6. 已知正三角形与平行四边形所在的平面互相垂直.又,且,点分别为的中点.求证:7. 如图,四棱锥中,⊥底面,⊥.底面为梯形,, . ,点在棱上,且.(Ⅰ)求证:平面⊥平面;(Ⅱ)求证:∥平面8. 设、是函数的两个极值点.(I)若,求函数的解析式;(Ⅱ)若,求的最大值.9. 已知函数 .(Ⅰ)若,求函数的极值;(Ⅱ)求函数的单调区间.10. 已知椭圆:的左、右焦点分别为,,且经过点,又是椭圆上的两点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线过,且,求 .11. 已知椭圆的离心率为,短轴长为.(Ⅰ)求椭圆的方程;(Ⅱ)已知点,过原点的直线与椭圆交于两点,直线交椭圆于点,求△面积的最大值.2013年最后阶段高三数学复习参考资料文科2013年5月题号 1 2 3 4 5答案 B C C A ,题号 6 7 8 9 10答案①③C C题号 11 12 13 14 15答案 CB 1解答题部分:1. 解:﹙Ⅰ﹚所以﹙Ⅱ﹚由,有,所以因为,所以 ,即 .由余弦定理及,所以 .所以所以 .所以为等边三角形.2. 解:依题意,所以.因为,且,所以.所以.(Ⅱ)由三角函数定义,得,从而所以因为,所以当时,等号成立,所以面积的最大值为 .3.解:(I)(Ⅱ)因为设因为所以所以有由二次函数的性质知道,的对称轴为所以当,即,时,函数取得最小值当,即,时,函数取得最大小值4.解:(I)因为所以所以是公差为的等差数列,又,所以,解得,所以(Ⅱ)因为且所以,得到5.证明:(I)在已知式中,当时,因为,所以 ,所以,解得(Ⅱ) 当时,①②当时,①②①-②得,因为所以,即因为适合上式所以 (n∈N+)(Ⅲ)由(I)知③当时,④③-④得-因为 ,所以所以数列是等差数列,首项为1,公差为1,可得6. 证明:因为在正三角形中,为中点,所以又平面平面,且平面平面,所以平面,所以在中,所以可以得到,所以,即,又所以平面,所以7.证明:(Ⅰ)因为⊥底面ABCD,所以.又,,所以⊥平面.又平面,所以平面⊥平面.(Ⅱ)因为⊥底面,所以又,且所以平面,所以.在梯形中,由,得,所以.又,故为等腰直角三角形.所以.连接,交于点,则在中,,所以又平面,平面,所以∥平面.8.解(I)因为,所以依题意有,所以 .解得,所以 . .(Ⅱ)因为 ,依题意,是方程的两个根,且,所以 .所以,所以 .因为,所以 .设,则 .由得,由得 .即函数在区间上是增函数,在区间上是减函数,所以当时,有极大值为96,所以在上的最大值是96,所以的最大值为 .9. 解:(Ⅰ)因为,所以, .令,即 .因为函数的定义域为,所以 .因为当时,;当时,,所以函数在时取得极小值6.(Ⅱ)由题意可得 .由于函数的定义域为,所以当时,令,解得或;令,解得;当时,令,解得;令,解得;当时,令,解得或;令,解得;当时, .所以当时,函数的单调递增区间是,,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,,单调递减区间是;当时,函数的单调递增区间是10. 解:(Ⅰ)因为点在椭圆:上,所以 .所以 .所以椭圆的方程为 .(Ⅱ)因为 .设,得, .因为直线过,且,所以 .所以 .所以所以 .所以 .所以 .所以 .11. 解:(Ⅰ)椭圆的方程为.(Ⅱ)设直线的方程为,代入椭圆方程得,由,得,所以,.因为是的中点,所以.由,设,则,当且仅当时等号成立,此时△面积取最大值,最大值为.。
【精品】2016年江苏省南京市玄武区九年级上学期期中数学试卷带解析答案
2015-2016学年江苏省南京市玄武区九年级(上)期中数学试卷一、选择题(共6小题,每小题2分,满分12分)1.(2分)用配方法解一元二次方程x2﹣6x+4=0,下列变形正确的是()A.(x﹣3)2=13 B.(x﹣3)2=5 C.(x﹣6)2=13 D.(x﹣6)2=52.(2分)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数3.(2分)一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是()A.4 B.﹣4 C.1 D.﹣14.(2分)一个圆心角为36°,半径为20的扇形的面积为()A.40πB.20πC.4πD.2π5.(2分)在图①、图②中的两个等圆中,各有两条长分别为10和6的弦,两图阴影面积S的大小关系为()A.S①>S②B.S①<S②C.S①=S②D.无法确定6.(2分)如图,AB为⊙O的直径,作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在下半圆上移动时,(不与点A、B重合),下列关于点P描述正确的是()A.到CD的距离保持不变B.到D点距离保持不变C.等分D.位置不变二、填空题(共10小题,每小题2分,满分20分)7.(2分)已知⊙O的半径为2,OP=1,则点P与⊙O的位置关系是:点P在⊙O.8.(2分)方程x2=﹣x的解是.9.(2分)某同学6次引体向上的测试成绩(单位:个)分别为:11、14、15、12、11、14,这组数据的中位数是.10.(2分)若关于x的方程x2+2x+k=0的一个根是1,则方程的另一个根是.11.(2分)一个圆锥的母线长为13,底面圆的半径为5,则此圆锥的侧面积是.12.(2分)如图,AP为⊙O的切线,P为切点,OA交⊙O于点B.若∠A=40°,则∠ABP=°.13.(2分)如图所示圆中,AB为直径,弦CD⊥AB,垂足为H.若HB=2,HD=4,则AH=.14.(2分)如图,EB,EC是⊙O的两条切线,与⊙O相切于B,C两点,点A,D在圆上.若∠E=46°,∠DCF=32°,则∠A的度数是°.15.(2分)某校篮球队9名主力队员中有4人调到省队学习训练,学校又从其它省市重新物色了4名球员加入主力队伍,新老队员的身体素质和技战术水平的综合能力得分如表所示:球队调整后与调整前相比,综合能力得分的方差(填“变小”、“不变”或“变大”).16.(2分)如图,圆心O恰好为正六边形ABCDEF的中心,已知AB=2,⊙O 的半径为1,现将⊙O在正六边形内部沿某一方向平移,当它与正六边形ABCDEF 的某条边相切时停止平移,设此时平移的距离为d,则d的取值范围是.三、解答题(共11小题,满分88分)17.(8分)解下列方程:(1)(x+1)2﹣9=0(2)2x2﹣5x+3=0.18.(6分)房产统计数据显示2012年某小区市场均价为15000元/m2,到2014年市场均价变为18150元/m2.若每年均价变动的增长率相同,求该小区这两年房价的年平均增长率.19.(6分)如图,四边形ABCD是平行四边形,∠C=45°,以AB为直径的⊙O经过点D,求证:CD是⊙O的切线.20.(8分)某校组织初三学生电脑技能竞赛,每班选派相同人数去参加竞赛,竞赛成绩分A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.将初三(1)班和(2)班的成绩整理并绘制成统计图如下.(1)此次竞赛中(2)班成绩在C级以上(包括C级)的人数为;(2)请你将表格补充完整:(3)试运用所学的统计知识,从两个不同角度评价初三(1)班和初三(2)班的成绩.21.(8分)如图,所给两圆的圆心分别为O1,O2,半径都为3,根据要求完成作图(保留作图痕迹,不写作法).(1)在图①中,仅用无刻度直尺作出圆上的两点A,B,使得=3π;(2)在图②中,仅用圆规作出圆上的两点A,B,使得=2π22.(8分)如图,在Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点D、E、F,(1)求证:四边形OECF是正方形;(2)若AF=10,BE=3,求⊙O的面积.23.(8分)我们知道,求圆环的面积可以转化为求大圆与小圆面积的差.(1)如图①,直线l与小圆相切于点P,与大圆相交于点A,B.①求证:AP=BP;②若AB=10,求圆环的面积;(2)如图②,直线l与大圆、小圆分别交于点A,B,C,D,若AB=10,AC=2,则圆环的面积为.24.(8分)已知,在Rt△ABC中,∠ACB=90°,CD是AB上的中线,⊙O经过A,C,D三点,BC的延长线交⊙O于点E.(1)请利用直尺和圆规将图补充完整;(要求:标明字母,保留作图痕迹,不写作法)(2)连结AE,求证:AE=BE.25.(8分)已知m、n、p分别是Rt△ABC的三边长,且m≤n<p.(1)求证:关于x的一元二次方程mx2+px+n=0必有实数根;(2)若x=﹣1是一元二次方程mx2+px+n=0的一个根,且Rt△ABC的周长为2+2,求Rt△ABC的面积.26.(10分)某装备企业采用订单式生产销售某种产品,保证其销售量与产量相等,图中的线段AB,线段CD分别表示该产品每万台生产成本y1(单位:万元)、销售价y2(单位:万元)与产量x(单位:台)之间的函数关系,考虑企业的经济效益,当此种产品市场预定生产为75万台时,将停止订单生产销售,求当该产品产量为多少万台时,可实现2000万元利润?27.(10分)我们已经研究了“圆周角”,并且知道圆周角的角度等于它所对弧的度数的一半,如图1,∠A=.现将研究对象“顶点在圆上的角”改为“顶点在圆外的角”.定义:顶点在圆外,并且两边都和圆有公共点的角叫做圆外角,例如:图2,∠P为圆外角.(1)如果以圆外角的两边与圆的公共点的个数作为分类标准,参照图2,请画出其它类型圆外角的示意图(要求:(请按需要选择下面的备用图,每一种类型画出一个示意图,标示相应字母,与图2同类型的不用再画)(2)如果圆外角所夹的两条弧的度数分别为α、β(α>β),例如,图2中,圆外角∠P所夹的弧的度数为α,的度数为β,试结合你所画的图形探究∠P 与α、β之间的数量关系,将发现的结论直接写在对应图形下方的横线上.(3)如图2,点P在⊙O外,PC边与⊙O相交于B,C两点,PA与⊙O相切于点A,所夹的弧,的度数分别为α、β(α>β),求证:∠P=.(4)如图3,AB为半圆直径,P为AB延长线上一个动点,过P作⊙O的切线,设切点为C,连接AC,作∠APC平分线交AC于D,猜想∠CDP的度数是否随点P在AB延长线上的位置的变化而变化?并对猜想加以证明.2015-2016学年江苏省南京市玄武区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2分)用配方法解一元二次方程x2﹣6x+4=0,下列变形正确的是()A.(x﹣3)2=13 B.(x﹣3)2=5 C.(x﹣6)2=13 D.(x﹣6)2=5【解答】解:由原方程,得x2﹣6x=﹣4,配方,得x2﹣6x+9=5,即(x﹣3)2=5.故选:B.2.(2分)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数【解答】解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数.故选:D.3.(2分)一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是()A.4 B.﹣4 C.1 D.﹣1【解答】解:∵一元二次方程x2﹣4x+1=0的两根是x1,x2,∴x1•x2=1,故选:C.4.(2分)一个圆心角为36°,半径为20的扇形的面积为()A.40πB.20πC.4πD.2π【解答】解:由题意得,n=36°,r=20,故S===40π.扇形故选:A.5.(2分)在图①、图②中的两个等圆中,各有两条长分别为10和6的弦,两图阴影面积S的大小关系为()A.S①>S②B.S①<S②C.S①=S②D.无法确定【解答】解:∵图①、图②中的两个等圆中,各有两条长分别为10和6的弦,∴两条长分别为10和6的弦对应所对的圆心角相等,半径相等,∴对应的扇形面积相等,两条半径和弦构成的三角形面积相等,则对应空白弓形的面积相等,∴两图阴影面积S相等.故选:C.6.(2分)如图,AB为⊙O的直径,作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在下半圆上移动时,(不与点A、B重合),下列关于点P描述正确的是()A.到CD的距离保持不变B.到D点距离保持不变C.等分D.位置不变【解答】解:不发生变化.连接OP,∵OP=OC,∴∠P=∠OCP,∵∠OCP=∠DCP,∴∠P=∠DCP,∴CD∥OP,∵CD⊥AB,∴OP⊥AB,∴=,∴点P为的中点不变.故选:D.二、填空题(共10小题,每小题2分,满分20分)7.(2分)已知⊙O的半径为2,OP=1,则点P与⊙O的位置关系是:点P在⊙O内.【解答】解:由题意,得d=1,r=2.d<r,点P在⊙O内,故答案为:内.8.(2分)方程x2=﹣x的解是0或﹣1.【解答】解:原方程变形为:x2+x=0x(x+1)=0x=0或x=﹣1.9.(2分)某同学6次引体向上的测试成绩(单位:个)分别为:11、14、15、12、11、14,这组数据的中位数是13.【解答】解:这组数据按照从小到大的顺序排列为:11、11、12、14、14、15,则中位数为:=13.故答案为:13.10.(2分)若关于x的方程x2+2x+k=0的一个根是1,则方程的另一个根是﹣3.【解答】解:设方程另一个根为t,根据题意得1+t=﹣2,解得t=﹣3,所以方程另一个根为﹣3.故答案为:﹣3.11.(2分)一个圆锥的母线长为13,底面圆的半径为5,则此圆锥的侧面积是65π.【解答】解:此圆锥的侧面积=×13×2π×5=65π.故答案为65π.12.(2分)如图,AP为⊙O的切线,P为切点,OA交⊙O于点B.若∠A=40°,则∠ABP=115°.【解答】解:连结OP,如图,∵AP为⊙O的切线,∴OP⊥AP,∴∠OPA=90°,∴∠O=90°﹣∠A=90°﹣40°=50°,∵OB=OP,∴∠OBP=∠OPB,∴∠OBP=(180°﹣∠O)=×(180°﹣50°)=65°,∴∠ABP=180°﹣∠OBP=180°﹣65°=115°.故答案为115.13.(2分)如图所示圆中,AB为直径,弦CD⊥AB,垂足为H.若HB=2,HD=4,则AH=8.【解答】解:取AB的中点O,连接OD,设OD=r,则OH=r﹣2,在Rt△ODH中,∵OH2+DH2=OD2,即(r﹣2)2+42=r2,解得r=5,∴AH=AB﹣BH=10﹣2=8.故答案为:8.14.(2分)如图,EB,EC是⊙O的两条切线,与⊙O相切于B,C两点,点A,D在圆上.若∠E=46°,∠DCF=32°,则∠A的度数是99°.【解答】解:∵EB ,EC 是⊙O 的两条切线, ∴EB=EC , ∴∠ECB=∠EBC ,∴∠ECB=(180°﹣∠E )=×(180°﹣46°)=67°, ∴∠BCD=180°﹣∠ECB ﹣∠DCF=180°﹣67°﹣32°=81°, ∵四边形ABCD 为⊙O 的内接四边形, ∴∠A +∠BCD=180°, ∴∠A=180°﹣81°=99°. 故答案为99.15.(2分)某校篮球队9名主力队员中有4人调到省队学习训练,学校又从其它省市重新物色了4名球员加入主力队伍,新老队员的身体素质和技战术水平的综合能力得分如表所示:球队调整后与调整前相比,综合能力得分的方差 变小 (填“变小”、“不变”或“变大”).【解答】解:原来球队的平均数=(72×2+77×2+78+80+86×2+92)=80, 现在球队的平均数=(72×2+77×2+78+93+84×2+83)=80,则原来球队的方差S 2=([2×(72﹣80)2+2×(77﹣80)2+(78﹣80)2+(80﹣80)2+2×(86﹣80)2+(92﹣80)2]=40,现在球队的方差S2=([2×(72﹣80)2+2×(77﹣80)2+(78﹣80)2+(93﹣80)2+2×(84﹣80)2+(83﹣80)2]=40.所以球队调整后与调整前相比,综合能力得分的方差变小.故答案为:变小.16.(2分)如图,圆心O恰好为正六边形ABCDEF的中心,已知AB=2,⊙O 的半径为1,现将⊙O在正六边形内部沿某一方向平移,当它与正六边形ABCDEF 的某条边相切时停止平移,设此时平移的距离为d,则d的取值范围是2≤d≤.【解答】解:连接OB、OE,如图所示:根据题意得:OB=OE=AB=2,当圆O运动到圆P处时,运动距离最短,由正六边形的性质得:PO=OM﹣PM=OB•sin60°﹣1=3﹣1=2,;当圆O运动到与DE、EF相切时,运动距离最长,由正六边形的性质得:OQ=OE﹣QE=2﹣=2﹣=;∴2≤d≤.故答案为:2≤d≤.三、解答题(共11小题,满分88分)17.(8分)解下列方程:(1)(x+1)2﹣9=0(2)2x2﹣5x+3=0.【解答】解:(1)移项得,(x+1)2=9,开方得,x+1=±3,解得x1=2,x2=﹣4.(2)由原方程,得(2x﹣3)(x﹣1)=0,所以2x﹣3=0,或x﹣1=0,解得x1=,x2=1.18.(6分)房产统计数据显示2012年某小区市场均价为15000元/m2,到2014年市场均价变为18150元/m2.若每年均价变动的增长率相同,求该小区这两年房价的年平均增长率.【解答】解:设这两年房价的年平均增长率为x、依题意得:15000(1+x)2=18150(1+x)2=1.211+x=±1.1x1=0.1,x2=﹣2.1(舍去)答:这两年房价的年平均增长率10%.19.(6分)如图,四边形ABCD是平行四边形,∠C=45°,以AB为直径的⊙O经过点D,求证:CD是⊙O的切线.【解答】证明:连结OD,如图,∵四边形ABCD是平行四边形,∴∠A=∠C=45°,AB∥CD,∵OA=OD,∴∠ODA=∠A=45°,∴∠AOD=90°,∴OD⊥AB,∵CD∥AB,∴OD⊥CD,∴CD是⊙O的切线.20.(8分)某校组织初三学生电脑技能竞赛,每班选派相同人数去参加竞赛,竞赛成绩分A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.将初三(1)班和(2)班的成绩整理并绘制成统计图如下.(1)此次竞赛中(2)班成绩在C级以上(包括C级)的人数为17;(2)请你将表格补充完整:(3)试运用所学的统计知识,从两个不同角度评价初三(1)班和初三(2)班的成绩.【解答】解:(1)此次竞赛二班成绩在C级以上(包括C级)的人数=(5+9+2+4)×(35%+5%+45%)=17(人);(2)1班平均分:(5×100+9×90+2×80+4×70)÷20=87.5,2班A等级人数:20×45%=9(人),B等级人数:20×5%=1(人),C等级人数:20×35%=7(人),D等级人数:20×15%=3(人),把数据从大到小排列位置处于中间的是90分和80分,故中位数是:(90+80)÷2=85,(3)①从平均数的角度看两班成绩(2)班好一点;从中位数的角度看一班比二班的成绩好,所以一班成绩好.21.(8分)如图,所给两圆的圆心分别为O1,O2,半径都为3,根据要求完成作图(保留作图痕迹,不写作法).(1)在图①中,仅用无刻度直尺作出圆上的两点A,B,使得=3π;(2)在图②中,仅用圆规作出圆上的两点A,B,使得=2π【解答】解:(1)如图①,为所作;(2)如图②,为所作;22.(8分)如图,在Rt△ABC中,∠C=90°,⊙O是△ABC的内切圆,切点D、E、F,(1)求证:四边形OECF是正方形;(2)若AF=10,BE=3,求⊙O的面积.【解答】解:(1)∵点E、F是圆的切点,∴OE⊥BC,OF⊥AC.∴∠OFC=∠OEC=∠C=90°.∴四边形OECF是矩形.∵OE=OF,∴四边形OECF是正方形.(2)∵⊙O是△ABC的内切圆,∴AF=AD,BE=DB.∴AB=AD+BD=10+3=13.设圆O的半径为r,则AC=10+r,BC=3+r.在Rt△ABC中,由勾股定理得;AC2+BC2=AB2,即(10+r)2+(r+3)2=132.解得:r=2或r=﹣15(舍去).∴⊙O的面积=4π.23.(8分)我们知道,求圆环的面积可以转化为求大圆与小圆面积的差.(1)如图①,直线l与小圆相切于点P,与大圆相交于点A,B.①求证:AP=BP;②若AB=10,求圆环的面积;(2)如图②,直线l与大圆、小圆分别交于点A,B,C,D,若AB=10,AC=2,则圆环的面积为16π.【解答】(1)①证明:连结OP,如图①,∵直线l与小圆相切于点P,∴OP⊥AB,∴AP=BP;②解:连结OA,如图①,AP=BP=AB=5,在Rt△OPA中,OA2﹣OP2=AP2=25,∴圆环的面积=S大圆﹣S小圆=π•OA2﹣π•OP2=π(OA2﹣OP2)=25π;(2)解:作OE⊥CD于E,如图②,∵AB=10,AC=2,∴AE=AB=5,∴CE=AE﹣AC=5﹣2=3,∵OA2=OE2+AE2,OC2=OE2+CE2,∴圆环的面积=S大圆﹣S小圆=π•OA2﹣π•OC2=π(AE2﹣CE2)=(25﹣9)π=16π.故答案为16π.24.(8分)已知,在Rt△ABC中,∠ACB=90°,CD是AB上的中线,⊙O经过A,C,D三点,BC的延长线交⊙O于点E.(1)请利用直尺和圆规将图补充完整;(要求:标明字母,保留作图痕迹,不写作法)(2)连结AE,求证:AE=BE.【解答】(1)解:如图,⊙O为所作;(2)证明:连结ED,如图,∵∠ACE=90°,∴AE为直径,∴∠ADE=90°,∴ED⊥AB,∵CD是斜边AB上的中线,∴AD=BD,即DE垂直平分AB,∴AE=BE.25.(8分)已知m、n、p分别是Rt△ABC的三边长,且m≤n<p.(1)求证:关于x的一元二次方程mx2+px+n=0必有实数根;(2)若x=﹣1是一元二次方程mx2+px+n=0的一个根,且Rt△ABC的周长为2+2,求Rt△ABC的面积.【解答】(1)证明:∵m、n、p分别是Rt△ABC的三边长,且m≤n<p,∴p2=m2+n2,∴b2﹣4ac=2p2﹣4mn=2(m2+n2)﹣4mn=2(m﹣n)2≥0,∴关于x的一元二次方程mx2+px+n=0必有实数根;(2)解:∵x=﹣1是一元二次方程mx2+px+n=0的一个根,∴m﹣p+n=0①,∵Rt△ABC的周长为2+2,∴m+n+p=2+2②,由①、②得:m+n=2,p=2,∴(m+n)2=8,∴m2+2mn+n2=8,又∵m2+n2=p2=4,∴2mn=4,∴mn=1,∴Rt△ABC的面积是1.26.(10分)某装备企业采用订单式生产销售某种产品,保证其销售量与产量相等,图中的线段AB,线段CD分别表示该产品每万台生产成本y1(单位:万元)、销售价y2(单位:万元)与产量x(单位:台)之间的函数关系,考虑企业的经济效益,当此种产品市场预定生产为75万台时,将停止订单生产销售,求当该产品产量为多少万台时,可实现2000万元利润?【解答】解:设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(75,45),∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤75);设线段CD所表示y2与x之间的函数关系式为y=k2x+b2,∵y=k2x+b2的图象过点(0,120)与(75,75),∴这个一次函数的表达式为;y=﹣0.6x +120(0≤x ≤75); 设该产品产量x 万台时,可实现2000万元利润,由题意得 x (﹣0.6x +120)﹣x (﹣0.2x +60)=2000 解得:x 1=50,x 2=100(不合题意,舍去),答:当该产品产量为50万台时,可实现2000万元利润.27.(10分)我们已经研究了“圆周角”,并且知道圆周角的角度等于它所对弧的度数的一半,如图1,∠A=.现将研究对象“顶点在圆上的角”改为“顶点在圆外的角”.定义:顶点在圆外,并且两边都和圆有公共点的角叫做圆外角,例如:图2,∠P 为圆外角.(1)如果以圆外角的两边与圆的公共点的个数作为分类标准,参照图2,请画出其它类型圆外角的示意图(要求:(请按需要选择下面的备用图,每一种类型画出一个示意图,标示相应字母,与图2同类型的不用再画)(2)如果圆外角所夹的两条弧的度数分别为α、β(α>β),例如,图2中,圆外角∠P所夹的弧的度数为α,的度数为β,试结合你所画的图形探究∠P与α、β之间的数量关系,将发现的结论直接写在对应图形下方的横线上. (3)如图2,点P 在⊙O 外,PC 边与⊙O 相交于B ,C 两点,PA 与⊙O 相切于点A ,所夹的弧,的度数分别为α、β(α>β),求证:∠P=.(4)如图3,AB 为半圆直径,P 为AB 延长线上一个动点,过P 作⊙O 的切线,设切点为C,连接AC,作∠APC平分线交AC于D,猜想∠CDP的度数是否随点P在AB延长线上的位置的变化而变化?并对猜想加以证明.【解答】解:(1)如图1,∠P=,,如图2,∠P=,,如图3,∠P=,(2)故答案为:,,;(3)证明:连接OB、OA、OC、AB,如图4,∵PA切⊙O于A,∴∠CAD=∠ABC=∠AOC=的度数=,∵∠ACP=∠AOB=的度数=,∴∠P=∠CAD﹣∠ACP=,故答案为:;(4)∠CDP的度数不随点P在AB延长线上的位置的变化而变化,如图5,证明:由(3)可知:∠APC=的度数﹣的度数,∵PD平分∠APC,∴∠APD=∠APC=的度数﹣的度数,∵∠CAP=的度数,∴∠CDP=∠CAP+∠APD=的度数﹣的度数+的度数=的度数+的度数,即不论P点如何运动,∠CDP的度数总等于的度数+的度数,所以∠CDP的度数不随点P在AB延长线上的位置的变化而变化.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2016年江苏省南京市联合体中考一模数学试卷含答案
(1)该课外活动小组抽取的样本容量是多少?请补全图中的频数分布直方图. (2)样本中,睡眠时间在哪个范围内的人数最多?这个范围的人数是多少? (3)设该校有九年级学生 900 名,若合理的睡眠时间范围为 7≤h<9,你对该校九年级学生的睡眠时间做 怎样的分析、推断?
22. (8 分) 如图,在四边形 ABCD 中,AD=CD=8,AB=CB=6,点 E、F、G、H 分别是 DA、AB、BC、CD 的中点. (1)求证:四边形 EFGH 是矩形; D (2)若 DA⊥AB,求四边形 EFGH 的面积..
1 3
21.解: (1)样本容量为 4÷ 0.08=50;„„„„„„„„„„„„„„„„„„„„„„„„„„1 分 第 6 小组频数为 50×(1-0.04-0.08-0.24-0.28-0.24)=6,补全图形 „„„„„„3 分
(2)睡眠时间在 6-7 小时内的人数最多;„„„„„„„„„„„„„„„„„„„„„4 分 这个范围的人数为 50×0.28=14 人; „„„„„„„„„„„„„„„„„„„„„5 分 (3)因为在 7≤h<9 范围内数据的频率为 0.24+0.12=0.36,„„„„„„„„„„„„„6 分 所以推断近 2 的学生睡眠不足. „„„„„„„„„„„„„„„„„„„„„„„8 分 3
(1)甲的速度为
m/min,乙的速度为
m/ min;
(2)在图②中画出 y2 与 x 的函数图像; (3)求甲乙两人相遇的时间; (4)在上述过程中,甲乙两人相距的最远距离为 m.
27.(9 分) 已知⊙O 的半径为 5,且点 O 在直线 l 上,小明用一个三角板学具(∠ABC=90° ,AB=BC=8)做数 学实验: (1)如图①,若 A、B 两点在⊙O 上滑动,直线 BC 分别与⊙O、l 相交于点 D、E. ①求 BD 的长; ②当 OE=6 时,求 BE 的长. (2)如图②,当点 B 在直线 l 上,点 A 在⊙O 上,BC 与⊙O 相切于点 P 时,则切线长 PB= ▲ .
2017-04-19玄武一模数学试卷 +答案纯净可打印
2016-2017学年度第二学期九年级测试卷(一)一、选择题(本大题共6小题,每小题2分,共12分)1.计算 2124 的结果为( ) A.2B.54C.0D.342.南京规划地铁6号线由栖霞山站开往南京南站,全长32100米,这个数据用科学记数法表示为( )A.232110B.332.110C.43.2110D.53.2110 3.一元二次方程22310x x 的根的情况是( ) A.有两个相等的实数跟 B.有两个不相等的实数跟 C.没有实数根 D.无法确定 4.下列运算结果正确的是( ) A.235+a a aB.236a a aC.32a a aD. 325a a5.如图,将矩形ABCD 绕点A 逆时针旋转90 至矩形AEFG ,点D 的旋转路径为 DG,若1AB ,2BC ,则阴影部分的面积为( )A.32B.12C.2D.+13(第5题) (第6题)6.如图,将正六边形ABCDEF 放入平面直角坐标系后,若点A B E 、、的坐标分别为,a b 、 3,1、 ,a b ,则点D 的坐标为() A. 1,3B. 3,1C. 1,3D. 3,1EB二.填空题(本大题共10小题,每小题2分,共20分) 7.分解因式2242x x ______________________8.满足不等式组 21218x x的整数解为_______________________9.已知一组数据2,6,5,2,4,则这组数据的中位数是_______________________ 10._______________________11.若关于x 的方程250x mx 有一个根为1,则该方程的另一个根为_______________________12.如图,ABC △是O 的内接三角形,AD 是O 直径,若50ABC ,则CAD _______________________13.如图,在ABCD □中,E 、F 分别是AD 、CD 的中点,EF 与BD 交于点M ,若DEM △的面积为1,则ABCD □的面积为_______________________(第12题)(第13题)14.如图, ,A a b 、 1,4B 1a 是反比例函数 0ky x x图像上两点,过A 、B 分别作x 轴、y 轴的垂线,垂足分别为C 、D 、E 、F ,AE 、BD 交于点G ,则四边形ACDG的面积随着a 的增大而_______________________(填“减小”、“不变”、或“增大”)(第14题)(第16题)15.二次函数 20y a x b c a 的图像经过点 1,1和 3,3,则b 的取值范围是_______________________16如图,在ABC △中,90C ,1AC BC ,P 为ABC △内一个动点,PAB PBC ,则CP 的最小值为_______________________A三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17. (10分)(1)解方程组23,21;x y x y(2)解方程 1213x x .18.(6分)计算11.11x x x19.(7分)一个不透明的袋子中,装有2个红球,1个白球,1个黄球,这些球除颜色外都相同,求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是红球; (2)搅匀后从中任意摸出2个球,2个都是红球.20.(8分)某公司在某市五个区投放共享单车供市民使用,投放量的分布及投放后的使用情况统计如下.(第20题)(1)该公司在全市一共投放了_________万辆共享单车;(2)在扇形统计图中,B 区所对应扇形的圆心角为_________ ;(3)该公司在全市投放的共享单车的使用量占投放量的85%,请计算C 区共享单车的使用量并补全条形统计图.ED CA各区共享单车投放量分布条形统计图各区共享单车投放量分布扇形统计图21.(8分)如图,在ABCD中,点E 、F 、G 、H 分别在边AB 、BC 、CD 、DA 上,AE CG ,AH CF ,且EG 平分HEF .(1) 求证:AEH CGF △≌△; (2) 求证:四边形EFGH 是菱形22. (7分)用两种方法证明“直角三角形斜边上的中线等于斜边的一半”. 已知:如图,在Rt ABC △中,90ACB ,CD 是斜边AB 上的中线. 求证:12CD AB请把证法1补充完整,并用不同的方法完成证法2.(第21题)BBCEB ,12CE AB上的中线,即点D 是斜边AB23.(9分)同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度 cm y 与燃烧时间 min x 的关系如图所示.(1)求乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式;(2)求点P 的坐标,并说明其实际意义;(3)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.(第23题)24.(8分)定义:在ABC △中,30C ,我们把A 的对边与C 的对边的比叫做A的临弦,记作thi A ,即thi =A BCA=C AB 的对边的对边.请解答下列问题: 已知:在ABC △中,30C . (1)若45A ,求thi A 的值; (2)若thi A ,则=A ;(3)若A 是锐角,探究thi A 与sin A 的数量关系. 25.(8分)A 厂一月份产值为16万元,因管理不善,二、三月份产值的月平均下降率为 01x x .B 厂一月份产值为12万元,二月份产值下降率为x ,经过技术革新,三月份产值增长,增长率为2x ,三月份A 、B 两厂产值分别为A y 、B y (单位:万元). (1)分别写出A y 、B y 与x 的函数表达式; (2)当A B y y 时,求x 的值;(3)当x 为何值时,三月份A 、B 两厂产值的差距最大?最大值是多少万元?(min )26. (8分)如图,在Rt ABC △中,90A ,点D 、E 分别在AC 、BC 上,且CD BC AC CE ,以E 为圆心,DE 长为半径做圆,E 经过点B ,与AB 、BC 分别交于点F 、G .(1) 求证:AC 是圆E 的切线; (2) 若4AF ,5CG , ①求圆E 的半径;②若Rt ABC 的内切圆圆心为I ,则IE 的长为_______27. (9分)在ABC △中,D 为BC 边上一点.(1)如图①,在Rt ABC △中,90C ,将ABC △沿着AD 折叠,点C 落在AB 边上,请用直尺和圆规作出点D (不写作法,保留作图痕迹);(2)如图②,将ABC △沿着过点D 的直线折叠,点C 落在AB 边上的E 处。
江苏省南京市近年年中考数学一模试卷(含解析)(2021年整理)
江苏省南京市2016年中考数学一模试卷(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省南京市2016年中考数学一模试卷(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省南京市2016年中考数学一模试卷(含解析)的全部内容。
2016年江苏省南京市钟英中学中考数学一模试卷一、选择题(本大题共有6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在第Ⅱ卷相应位置上)1.下列根式中与是同类二次根式的是( )A.B.C.D.2.下列图形中,既是中心对称图形又是轴对称图形的是()A. B.C.D.3.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或204.我们常用“y随x的增大而增大(或减小)”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A经过路灯C的正下方沿直线走到点B,他与路灯C的距离y随他与点A 之间的距离x的变化而变化.下列函数中y与x之间的变化关系,最有可能与上述情境类似的是()A.y=x B.y=x+3 C.y=D.y=(x﹣3)2+35.如图,∠ACB=60○,半径为1的⊙O切BC于点C,若将⊙O在直线CB上沿某一方向滚动,当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.B.C.π 或D.或6.平面直角坐标系中,O是坐标原点,点A(1,1)、点B(2,﹣5),P是y轴上一动点,当△PAB 的周长最小时,求∠APO的正切值()A.2 B.0.5 C.﹣5 D.5二、填空题(本大题共有10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在第Ⅱ卷相应位置上)7.使根式有意义的x的取值范围是.8.若﹣2a m b4与5a2b n+7是同类项,则m n= .9.已知扇形的圆心角为120°,半径为6cm,则该扇形的弧长为 cm (结果保留π).10.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为.11.已知Rt△ABC,∠C=90°,AB=13,AC=12,以AC所在直线为轴,将此三角形旋转1周,所得圆锥的侧面积是.12.如图,四边形ABCD内接于⊙O,AB=AD,∠C=110°,点E在上,则∠E= °.13.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.其中正确的有.(填序号)14.若直线y=m﹣1(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是.15.如图,在四边形ABCD中,∠ACB=∠ABC=30°,∠ADC=60°,AD=5,CD=3,则BD的长为.16.如图,AB是半圆O的直径,点C是的中点,点D是的中点,连接AC、BD交于点E,则= .三、解答题(本大题共88分.请在指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:.18.解方程:x2﹣4x﹣4=0.(用配方法解答)19.先化简再求值:,其中x是不等式组的一个整数解.20.居民区内的“广场舞”引起媒体关注,小明想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供信息回答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人..21.如图是两个全等的含30°角的直角三角形.(1)将其相等边拼在一起,组成一个没有重叠部分的平面图形,请你画出所有不同的拼接平面图形的示意图;(2)若将(1)中平面图形分别印制在质地、形状、大小完全相同的卡片上,洗匀后从中随机抽取一张,求抽取的卡片上平面图形为轴对称图形的概率.22.如图,正方形ABCD中,点E在对角线AC上,连接EB、ED.(1)求证:△BCE≌△DCE;(2)延长BE交AD于点F,若∠DEB=140°,求∠AFE的度数.23.如图,“和谐号"高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA=75厘米.展开小桌板使桌面保持水平,此时CB⊥AO,∠AOB=∠ACB=37°,且支架长OB与桌面宽BC的长度之和等于OA的长度.求小桌板桌面的宽度BC.(参考数据sin37°≈0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年江苏省南京市玄武区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列运算正确的是()A.a3+a3=a6 B.2(a+1)=2a+1 C.(ab)2=a2b2D.a6÷a3=a22.(2分)下列各数中,是无理数的是()A.cos30°B.(﹣π)0 C.﹣ D.3.(2分)计算2﹣1×8﹣|﹣5|的结果是()A.﹣21 B.﹣1 C.9 D.114.(2分)体积为80的正方体的棱长在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间5.(2分)如图,将等边△ABC的边AC逐渐变成以B为圆心、BA为半径的,长度不变,AB、BC的长度也不变,则∠ABC的度数大小由60°变为()A.()°B.()°C.()°D.()°6.(2分)如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ =S△OQC,则k的值为()A.﹣12 B.12 C.16 D.18二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)使式子1+有意义的x的取值范围是.8.(2分)计算:﹣=.9.(2分)有一组数据:1,3,3,4,4,这组数据的方差为.10.(2分)设x1,x2是方程x2+4x+3=0的两根,则x1+x2=.11.(2分)今年清明假期全国铁路发送旅客约41000000人次,将41000000用科学记数法表示为.12.(2分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是.13.(2分)如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,OH=8,则菱形ABCD的周长等于.14.(2分)如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),若DE⊥B′C′,则∠α=°.15.(2分)如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于.16.(2分)若﹣2≤a<2,则满足a(a+b)=b(a+1)+a的b的整数值有个.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(12分)(1)解方程:3(x﹣1)=x(1﹣x);(2)化简:﹣;(3)解不等式组:,并将解集在数轴上表示.18.(7分)如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.19.(7分)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.20.(7分)元宵节那天,李老师给他的微信好友群发了一个小调查:“元宵节,你选择吃大汤圆,还是小元宵呢?”12小时内好友回复的相关数据如图:(1)回复时间为5小时~12小时的人数为;(2)既选择大汤圆,又选择小元宵的人数为;(3)12小时后,又有40个好友回复了,如果重新制作“好友回复时间扇形统计图”,加入“12小时后”这一项,求该项所在扇形的圆心角度数.21.(7分)如图,点P、M、Q在半径为1的⊙O上,根据已学知识和图中数据(0.97、0.26为近似数),解答下列问题:(1)sin60°=;cos75°=;(2)若MH⊥x轴,垂足为H,MH交OP于点N,求MN的长.(结果精确到0.01,参考数据:≈1.414,≈1.732)22.(8分)二次函数y=ax2+bx+c的图象经过点(0,3),(3,6),(﹣2,11).(1)求该二次函数的关系式;(2)证明:无论x取何值,函数值y总不等于1;(3)如何平移该函数图象使得函数值y能等于1?23.(7分)如图,已知△ABC,△DCE是两个全等的等腰三角形,底边BC、CE 在同一直线上,且AB=,BC=1,BD与AC交于点P.(1)求证:△BED∽△DEC;(2)求△DPC的周长.24.(8分)如图,AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得∠DAC=∠AED.(1)求证:AC是⊙O的切线;(2)若点E是的中点,AE与BC交于点F,①求证:CA=CF;②当BD=5,CD=4时,DF=.25.(7分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎.该打车方式的计价规则如图①所示,若车辆以平均速度vkm/h行驶了skm,则打车费用为(ps+60q•)元(不足9元按9元计价).小明某天用该打车方式出行,按上述计价规则,其打车费用y(元)与行驶里程x(km)的函数关系也可由如图②表示.(1)当x≥6时,求y与x的函数关系式.(2)若p=1,q=0.5,求该车行驶的平均速度.26.(8分)某日王老师佩戴运动手环进行快走锻炼,两次锻炼后数据如表.与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍.设王老师第二次锻炼时平均步长减少的百分率为x(0<x<0.5).项目第一次锻炼第二次锻炼步数(步)10000①平均步长(米/步)0.6②距离(米)60007020注:步数×平均步长=距离.(1)根据题意完成表格填空;(2)求x;(3)王老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求王老师这500米的平均步长.27.(10分)如图①,现有长度分别为a、b、1的三条线段.【加、减】图②所示为长为a+b的线段,请用尺规作出长为a﹣b的线段.【乘】在图③中,OA=a,OC=b,点B在OA上,OB=1,AD∥BC,交射线OC于点D.求证:线段OD的长为ab.【除】请用尺规作出长度为的线段.【开方】任意两个有理数的和、差、积、商(除数不为0)仍然是有理数,而开方运算则打开了通向无理数的一扇门.请用两种不同的方法,画出长度为的线段.注:本题作(画)图不写作(画)法,需标明相应线段长度.2016年江苏省南京市玄武区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列运算正确的是()A.a3+a3=a6 B.2(a+1)=2a+1 C.(ab)2=a2b2D.a6÷a3=a2【解答】解:A、a3+a3=2a3,故A选项错误;B、2(a+1)=2a+2≠2a+1,故B选项错误;C、(ab)2=a2b2,故C选项正确;D、a6÷a3=a3≠a2,故D选项错误.故选:C.2.(2分)下列各数中,是无理数的是()A.cos30°B.(﹣π)0 C.﹣ D.【解答】解:A、cos30=是无理数,B、(﹣π)0=1是有理数,C、﹣是有理数,故C错误;D、=8是有理数,故D错误;故选:A.3.(2分)计算2﹣1×8﹣|﹣5|的结果是()A.﹣21 B.﹣1 C.9 D.11【解答】解:原式=×8﹣5=4﹣5=﹣1.故选:B.4.(2分)体积为80的正方体的棱长在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间【解答】解:∵,∴4<<5,故选:B.5.(2分)如图,将等边△ABC的边AC逐渐变成以B为圆心、BA为半径的,长度不变,AB、BC的长度也不变,则∠ABC的度数大小由60°变为()A.()°B.()°C.()°D.()°【解答】设∠ABC的度数大小由60变为n,则AC=,由AC=AB,解得n=,故选D.6.(2分)如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ =S△OQC,则k的值为()A.﹣12 B.12 C.16 D.18【解答】解:∵PB∥OC(四边形OABC为正方形),∴△PBQ∽△COQ,∴==,∴PB=PA=OC=3.∵正方形OABC的边长为6,∴点C(0,6),点P(6,3),直线OB的解析式为y=x①,∴设直线CP的解析式为y=ax+6,∵点P(6,3)在直线CP上,∴3=6a+6,解得:a=﹣,故直线CP的解析式为y=﹣x+6②.联立①②得:,解得:,∴点Q的坐标为(4,4).将点Q(4,4)代入y=中,得:4=,解得:k=16.故选C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)使式子1+有意义的x的取值范围是x≠1.【解答】解:由题意知,分母x﹣1≠0,即x≠1时,式子1+有意义.故答案为:x≠1.8.(2分)计算:﹣=.【解答】解:原式=﹣=.故答案为:.9.(2分)有一组数据:1,3,3,4,4,这组数据的方差为 1.2.【解答】解:这组数据的平均数是:(1+3+3+4+4)÷5=3,则这组数据的方差为:[(1﹣3)2+(3﹣3)2+(3﹣3)2+2(4﹣3)2]=1.2.故答案为:1.2.10.(2分)设x1,x2是方程x2+4x+3=0的两根,则x1+x2=﹣4.【解答】解:根据题意得x1+x2=﹣4.故答案为﹣4.11.(2分)今年清明假期全国铁路发送旅客约41000000人次,将41000000用科学记数法表示为 4.1×107.【解答】解:41 000 000=4.1×107,故答案为:4.1×107.12.(2分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是5.【解答】解:过O作OC⊥AB于C,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5,故答案为:5.13.(2分)如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,OH=8,则菱形ABCD的周长等于64.【解答】解:∵四边形ABCD是菱形,对角线AC、BD相交于点O,∴AC⊥BD,AB=AD=CD=BC.∵H为AD边中点,OH=8,∴AD=16,∴菱形ABCD的周长=4AD=64.故答案为:64.14.(2分)如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),若DE⊥B′C′,则∠α=54°.【解答】解:DE与B′C′相交于O点,如图,∵五边形ABCDE为正五边形,∴∠B=∠BAE=∠E==108°,∵正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α(0°≤α≤90°),∴∠BAB′=α,∠B′=∠B=108°,∵DE⊥B′C′,∴∠B′OE=90°,∴∠B′AE=360°﹣∠B′﹣∠E﹣∠B′OE=360°﹣108°﹣108°﹣90°=54°,∴∠BAB′=∠BAE﹣∠B′AE=108°﹣54°=54°,即∠α=54°.故答案为54.15.(2分)如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 6.8.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:x+y=3.4.一个小矩形的周长为:3.4×2=6.8,故答案为:6.8.16.(2分)若﹣2≤a<2,则满足a(a+b)=b(a+1)+a的b的整数值有7个.【解答】解:由a(a+b)=b(a+1)+a可得b=a2﹣a=(a﹣)2﹣,∵﹣2≤a<2,∴﹣≤b≤6,则满足条件的b的整数值有0、1、2、3、4、5、6这7个,故答案为:7.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(12分)(1)解方程:3(x﹣1)=x(1﹣x);(2)化简:﹣;(3)解不等式组:,并将解集在数轴上表示.【解答】解:(1)3(x﹣1)=﹣x(x﹣1)3(x﹣1)+x(x﹣1)=0(x﹣1)(x+3)=0x1=1,x2=﹣3.(2)﹣=﹣===.(3)解不等式3x+1≤2,得x≤解不等式,得x<﹣1,将解集表示在数轴上如下:故不等式组的解集为x<﹣1.18.(7分)如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(SAS);(2)解:四边形EBFD是矩形;理由如下:∵OB=OD,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.19.(7分)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.【解答】解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.20.(7分)元宵节那天,李老师给他的微信好友群发了一个小调查:“元宵节,你选择吃大汤圆,还是小元宵呢?”12小时内好友回复的相关数据如图:(1)回复时间为5小时~12小时的人数为10;(2)既选择大汤圆,又选择小元宵的人数为30;(3)12小时后,又有40个好友回复了,如果重新制作“好友回复时间扇形统计图”,加入“12小时后”这一项,求该项所在扇形的圆心角度数.【解答】解:(1)回复时间为5小时~12小时的人数为:200×(1﹣50%﹣30%﹣15%)=10(人);故答案为:10;(2)既选择大汤圆,又选择小元宵的人数为:(150+80)﹣200=30(人)故答案为:30;(3)根据题意得:×360°=60°.答:“12小时后”这一项所在扇形的圆心角度数为60°.21.(7分)如图,点P、M、Q在半径为1的⊙O上,根据已学知识和图中数据(0.97、0.26为近似数),解答下列问题:(1)sin60°=;cos75°=0.26;(2)若MH⊥x轴,垂足为H,MH交OP于点N,求MN的长.(结果精确到0.01,参考数据:≈1.414,≈1.732)【解答】解:(1)由图可知,sin60°=,cos75°==0.26,故答案为:;0.26;(2)在Rt△MHO中,sin∠MOH=,即MH=MO•sin∠MOH=1×=.∴OH=,设PA⊥x轴,垂足为A,如右图所示,∵∠NHO=∠PAO=90°,∴NH∥PA,∴△ONH∽△OPA,∴=,即=,∴NH≈0.134.∴MN=MH﹣MN=≈0.73.22.(8分)二次函数y=ax2+bx+c的图象经过点(0,3),(3,6),(﹣2,11).(1)求该二次函数的关系式;(2)证明:无论x取何值,函数值y总不等于1;(3)如何平移该函数图象使得函数值y能等于1?【解答】(1)解:由题意得:,解得:,∴该函数的函数关系式为:y=x2﹣2x+3.(2)证明:∵y=x2﹣2x+3=(x﹣1)2+2,∴当x=1时,y取最小值2,∴无论x取何值,函数值y总不等于1.(3)将该函数图象向下平移的距离大于等于1个单位长度.23.(7分)如图,已知△ABC,△DCE是两个全等的等腰三角形,底边BC、CE 在同一直线上,且AB=,BC=1,BD与AC交于点P.(1)求证:△BED∽△DEC;(2)求△DPC的周长.【解答】(1)证明:∵△ABC,△DCE是两个全等的等腰三角形,且底边BC、CE 在同一直线上,∴AB=AC=DC=DE=,BC=CE=1,∴BE=2BC=2,∵=,=,∴=.又∵∠BED=∠DEC,∴△BED∽△DEC;(2)解:∵△ABC,△DCE是两个全等的等腰三角形,且底边BC、CE在同一直线上,∴∠ACB=∠DEC,∴AC∥DE.∴==,∴PC=,PD=BD,过D作DM⊥CE于M,∵DC=DE,∴CM=ME=,在Rt△DMC中,由勾股定理得:DM==,在Rt△DMB中,由勾股定理得:BD==2,∴PD=BD=1,∴△DPC的周长=PC+PD+DC=+1+=+1.24.(8分)如图,AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得∠DAC=∠AED.(1)求证:AC是⊙O的切线;(2)若点E是的中点,AE与BC交于点F,①求证:CA=CF;②当BD=5,CD=4时,DF=2.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°.∴∠ABC+∠DAB=90°.∵∠DAC=∠AED,∠AED=∠ABC,∴∠DAC+∠DAB=90°,∴AC是⊙O的切线.(3分)(2)①证明:∵点E是的中点,∴=,∴∠BAE=∠DAE.∵∠DAC+∠DAB=90°,∠ABC+∠DAB=90°,∴∠DAC=∠ABC.∵∠CFA=∠ABC+∠BAE,∠CAF=∠DAC+∠DAE,∴∠CFA=∠CAF.∴CA=CF.②解:∵∠BAC=∠ADB=90°,∴∠ACD=∠BCA,∴△ADC∽△BAC.∴=.即AC2=BC×CD=(5+4)×4=36.解得AC=6.∴CA=CF=6,∴DF=CA﹣CD=2.故答案为2.25.(7分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎.该打车方式的计价规则如图①所示,若车辆以平均速度vkm/h行驶了skm,则打车费用为(ps+60q•)元(不足9元按9元计价).小明某天用该打车方式出行,按上述计价规则,其打车费用y(元)与行驶里程x(km)的函数关系也可由如图②表示.(1)当x≥6时,求y与x的函数关系式.(2)若p=1,q=0.5,求该车行驶的平均速度.【解答】解:(1)当x≥6时,设y与x之间的函数关系式为y=kx+b.根据题意,当x=6时,y=9;当x=8时,y=12.所以,解得,所以,y与x之间的函数关系式为y=1.5x.(2)根据图象可得,当x=8时,y=12,又因为p=1,q=0.5,可得12=1×8+60×0.5×,解得:v=60.经检验,v=60是原方程的根.所以该车行驶的平均速度为60km/h.26.(8分)某日王老师佩戴运动手环进行快走锻炼,两次锻炼后数据如表.与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍.设王老师第二次锻炼时平均步长减少的百分率为x(0<x<0.5).项目第一次锻炼第二次锻炼步数(步)10000①10000(1+3x)平均步长(米/步)0.6②0.6(1﹣x)距离(米)60007020注:步数×平均步长=距离.(1)根据题意完成表格填空;(2)求x;(3)王老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求王老师这500米的平均步长.【解答】解:(1)①根据题意可得:10000(1+3x);②第二次锻炼的平均步长(米/步)为:0.6(1﹣x);故答案为:10000(1+3x);0.6(1﹣x);(2)由题意:10000(1+3x)×0.6(1﹣x)=7020解得:x1=>0.5(舍去),x2=0.1.则x=0.1,答:x的值为0.1;(3)根据题意可得:10000+10000(1+0.1×3)=23000,500÷(24000﹣23000)=0.5(m).答:王老师这500米的平均步幅为0.5米.27.(10分)如图①,现有长度分别为a、b、1的三条线段.【加、减】图②所示为长为a+b的线段,请用尺规作出长为a﹣b的线段.【乘】在图③中,OA=a,OC=b,点B在OA上,OB=1,AD∥BC,交射线OC于点D.求证:线段OD的长为ab.【除】请用尺规作出长度为的线段.【开方】任意两个有理数的和、差、积、商(除数不为0)仍然是有理数,而开方运算则打开了通向无理数的一扇门.请用两种不同的方法,画出长度为的线段.注:本题作(画)图不写作(画)法,需标明相应线段长度.【解答】解:【加、减】如图①,线段AB长为a﹣b.【乘】证明:∵AD∥BC,∴=,即=.∴OD=ab.【除】如图②,OA=a,OC=b,点B在OC上,OB=1,BD∥AC,交OA于点D.则OD=.证明:∵BD∥AC,∴=,∴=,∴OD=.【开方】图③和图④中的MN均为.理由:如图3中,BM是直径,BM=a+b,AM=1,AN⊥BM,∵∠M=∠M,∠MAN=∠MNB=90°,∴△MAN∽△MNB,∴=,∴MN2=a+b,∴MN=.如图4中,AB是直径,AB=a+b+1,BM=1,MN⊥AB,由△AMN∽△NMB,∴=,∴MN2=a+b,∴MN=.析,能在头脑里形成生动而清晰的物理情景,找到解决问题的简捷办法,才能顺利地、准确地完成解题的全过程。