高考文科数学练习题数列求和与综合应用

合集下载

专题04 数列求和及综合应用(原卷版)

专题04 数列求和及综合应用(原卷版)

专题04 数列求和及综合应用【要点提炼】1.常用公式:12+22+32+42+…+n 2=n (n +1)(2n +1)6.2.(1)数列通项a n 与前n 项和S n 的关系为a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).(2)应用a n 与S n 的关系式f (a n ,S n )=0时,应特别注意n =1时的情况,防止产生错误. 3.数列求和(1)分组转化法:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并. (2)错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.温馨提醒 裂项求和时,易把系数写成它的倒数或忘记系数导致错误. 4.数列与函数、不等式的交汇数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查不等关系或恒成立问题.考点一 数列求和及综合应用考向一 a n 与S n 的关系问题【典例1】 设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,b n =-1-log 2|a n |,数列{b n }的前n 项和为T n ,c n =b n +1T n T n +1. (1)求数列{a n }的通项公式;(2)求数列{c n }的前n 项和A n ,并求出A n 的最值.解 (1)因为a n =5S n +1,n ∈N *, 所以a n +1=5S n +1+1, 两式相减,得a n +1=-14a n ,又当n =1时,a 1=5a 1+1,知a 1=-14, 所以数列{a n }是公比、首项均为-14的等比数列. 所以数列{a n }的通项公式a n =⎝ ⎛⎭⎪⎫-14n.(2)由(1)知b n =-1-log 2|a n |=2n -1, 数列{b n }的前n 项和T n =n 2, c n =b n +1T n T n +1=2n +1n 2(n +1)2=1n 2-1(n +1)2, 所以A n =1-1(n +1)2.因此{A n }是单调递增数列,∴当n =1时,A n 有最小值A 1=1-14=34;A n 没有最大值.探究提高 1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.由S n 求a n 时,一定注意分n =1和n ≥2两种情况,最后验证两者是否能合为一个式子,若不能,则用分段形式来表示.【拓展练习1】 (2020·合肥检测)已知正项数列{a n }的前n 项和为S n ,满足a 2n =S n +S n -1(n ≥2),a 1=1. (1)求数列{a n }的通项公式;(2)设b n =(1-a n )2-a (1-a n ),若{b n }是递增数列,求实数a 的取值范围. 解 (1)a 2n =S n +S n -1(n ≥2), a 2n -1=S n -1+S n -2(n ≥3).相减可得a 2n -a 2n -1=a n +a n -1,∵a n >0,a n -1>0,∴a n -a n -1=1(n ≥3). 当n =2时,a 22=a 1+a 2+a 1,∴a 22=2+a 2,a 2>0,∴a 2=2. 因此n =2时,a n -a n -1=1成立. ∴数列{a n }是等差数列,公差为1. ∴a n =1+n -1=n .(2)b n =(1-a n )2-a (1-a n )=(n -1)2+a (n -1), ∵{b n }是递增数列,∴b n +1-b n =n 2+an -(n -1)2-a (n -1) =2n +a -1>0,即a >1-2n 恒成立,∴a >-1. ∴实数a 的取值范围是(-1,+∞). 考向二 数列求和 方法1 分组转化求和【典例2】 (2020·山东五地联考)已知等差数列{a n }的前n 项和为S n ,且满足关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 解 (1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3,得a 1=d ,又易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n .因为b n =a 2n +2a n -1,所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n ) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.探究提高 1.求解本题要过四关:(1)“转化”关,把不等式的解转化为方程根的问题;(2)“方程”关,利用方程思想求出基本量a 1及d ;(3)“分组求和”关,观察数列的通项公式,把数列分成几个可直接求和的数列;(4)“公式”关,会利用等差、等比数列的前n 项和公式求和.2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组.本题易忽视数列通项的下标如错得a 2n =n ,应注意“=”左右两边保持一致.【拓展练习2】 (2020·潍坊调研)设等差数列{a n }的前n 项和为S n ,且a 2=8,S 4=40.数列{b n }的前n 项和为T n ,且T n -2b n +3=0,n ∈N *. (1)求数列{a n },{b n }的通项公式;(2)设c n =⎩⎨⎧a n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前n 项和P n .解 (1)设等差数列{a n }的公差为d , 由题意,得⎩⎨⎧a 1+d =8,4a 1+6d =40,解得⎩⎨⎧a 1=4,d =4,所以a n =4n , 因为T n -2b n +3=0,所以当n =1时,b 1=3,当n ≥2时,T n -1-2b n -1+3=0, 两式相减,得b n =2b n -1(n ≥2),则数列{b n }为首项为3,公比为2的等比数列, 所以b n =3·2n -1.(2)c n =⎩⎨⎧4n ,n 为奇数,3·2n -1,n 为偶数,当n 为偶数时,P n =(a 1+a 3+…+a n -1)+(b 2+b 4+…+b n ) =(4+4n -4)·n 22+6(1-4n2)1-4=2n +1+n 2-2.当n 为奇数时,法一 n -1(n ≥3)为偶数,P n =P n -1+c n =2(n -1)+1+(n -1)2-2+4n =2n +n 2+2n -1,n =1时符合上式.法二 P n =(a 1+a 3+…+a n -2+a n )+(b 2+b 4+…+b n -1) =(4+4n )·n +122+6(1-4n -12)1-4=2n +n 2+2n -1.所以P n =⎩⎨⎧2n +1+n 2-2,n 为偶数,2n +n 2+2n -1,n 为奇数.方法2 裂项相消求和【典例3】 (2020·江南六校调研)设数列{a n }的前n 项和为S n ,已知S 1=2,a n +1=S n +2.(1)证明:{a n }为等比数列; (2)记b n =log 2a n ,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫λb n b n +1的前n 项和为T n ,若T n ≥10恒成立,求λ的取值范围.(1)证明 由已知,得a 1=S 1=2,a 2=S 1+2=4, 当n ≥2时,a n =S n -1+2,所以a n +1-a n =(S n +2)-(S n -1+2)=a n , 所以a n +1=2a n (n ≥2).又a 2=2a 1,所以a n +1a n=2(n ∈N *),所以{a n }是首项为2,公比为2的等比数列. (2)解 由(1)可得a n =2n ,所以b n =n . 则λb n b n +1=λn (n +1)=λ⎝ ⎛⎭⎪⎫1n -1n +1, T n =λ⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=λ⎝ ⎛⎭⎪⎫1-1n +1,因为T n ≥10,所以λn n +1≥10,从而λ≥10(n +1)n ,因为10(n +1)n =10⎝ ⎛⎭⎪⎫1+1n ≤20, 所以λ的取值范围为[20,+∞).探究提高 1.裂项相消求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.【拓展练习3】 设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和.解 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,① 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1,又n =1时,a 1=2适合上式,从而{a n }的通项公式为a n =22n -1.(2)记⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和为S n ,由(1)知a n 2n +1=2(2n -1)(2n +1)=12n -1-12n +1,则S n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1=2n2n +1.方法3 错位相减法求和【典例4】 (2020·济南统测)在①a 3=5,a 2+a 5=6b 2,②b 2=2,a 3+a 4=3b 3,③S 3=9,a 4+a 5=8b 2这三个条件中任选一个,补充至横线上,并解答问题. 已知等差数列{a n }的公差为d (d >1),前n 项和为S n ,等比数列{b n }的公比为q ,且a 1=b 1,d =q ,________. (1)求数列{a n },{b n }的通项公式; (2)记c n =a nb n,求数列{c n }的前n 项和T n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 选条件①.(1)∵a 3=5,a 2+a 5=6b 2,a 1=b 1,d =q ,d >1, ∴⎩⎨⎧a 1+2d =5,2a 1+5d =6a 1d ,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=256,d =512(舍去).∴⎩⎨⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n. 上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n. ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.选条件②.(1)∵b 2=2,a 3+a 4=3b 3,a 1=b 1,d =q ,d >1, ∴⎩⎨⎧a 1d =2,2a 1+5d =3a 1d 2,即⎩⎨⎧a 1d =2,2a 1+5d =6d , 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=-1,d =-2(舍去).∴⎩⎨⎧b 1=1,q =2. ∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n. 上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n . ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.选条件③.(1)∵S 3=9,a 4+a 5=8b 2,a 1=b 1,d =q ,d >1,∴⎩⎨⎧a 1+d =3,2a 1+7d =8a 1d ,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=218,d =38(舍去),∴⎩⎨⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n. 上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n . ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.探究提高 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.2.在写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确地写出“S n -qS n ”的表达式.【拓展练习4】 (2020·潍坊模拟)在①b 2n =2b n +1,②a 2=b 1+b 2,③b 1,b 2,b 4成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{a n }中,a 1=1,a n +1=3a n .公差不等于0的等差数列{b n }满足________,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和S n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 因为a 1=1,a n +1=3a n ,所以{a n }是以1为首项,3为公比的等比数列, 所以a n =3n -1.选①②时,设数列{b n }的公差为d 1. 因为a 2=3,所以b 1+b 2=3(ⅰ).因为b 2n =2b n +1,所以当n =1时,b 2=2b 1+1(ⅱ). 由(ⅰ)(ⅱ)解得b 1=23,b 2=73,所以d 1=53,所以b n =5n -33.所以b n a n=5n -33n .所以S n =b 1a 1+b 2a 2+…+b n a n =231+732+1233+…+5n -33n ,所以13S n =232+733+1234+…+5n -83n +5n -33n +1.上面两式相减,得23S n =23+5⎝ ⎛⎭⎪⎫132+133+…+13n -5n -33n +1 =23+56-152×3n +1-5n -33n +1=32-10n +92×3n +1.所以S n =94-10n +94×3n .选②③时,设数列{b n }的公差为d 2.因为a 2=3,所以b 1+b 2=3,即2b 1+d 2=3.因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 2)2=b 1(b 1+3d 2),化简得d 22=b 1d 2.因为d 2≠0,所以b 1=d 2,从而d 2=b 1=1,所以b n =n . 所以b n a n =n 3n -1.所以S n =b 1a 1+b 2a 2+…+b n a n =130+231+332+…+n3n -1,所以13S n =131+232+333+…+n -13n -1+n 3n .上面两式相减,得23S n =1+131+132+133+…+13n -1-n 3n=32⎝ ⎛⎭⎪⎫1-13n -n 3n =32-2n +32×3n . 所以S n =94-2n +34×3n -1.选①③时,设数列{b n }的公差为d 3.因为b 2n =2b n +1,所以b 2=2b 1+1,所以d 3=b 1+1.又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 3)2=b 1(b 1+3d 3),化简得d 23=b 1d 3.因为d 3≠0,所以b 1=d 3,无解,所以等差数列{b n }不存在.故不合题意.考向三 与数列相关的综合问题【典例5】 (2020·杭州滨江区调研)设f (x )=12x 2+2x ,f ′(x )是y =f (x )的导函数,若数列{a n }满足a n +1=f ′(a n ),且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)由f (x )=12x 2+2x ,得f ′(x )=x +2. ∵a n +1=f ′(a n ),且a 1=1. ∴a n +1=a n +2,则a n +1-a n =2,因此数列{a n }是公差为2,首项为1的等差数列. ∴a n =1+2(n -1)=2n -1.(2)数列{a n }的前n 项和S n =n (1+2n -1)2=n 2,等比数列{b n }中,设公比为q ,∵b 1=a 1=1,b 2=a 2=3, ∴q =3.∴b n =3n -1,∴数列{b n }的前n 项和T n =1-3n 1-3=3n -12.T n ≤S n 可化为3n -12≤n 2.又n ∈N *,∴n =1,或n =2.故适合条件T n ≤S n 的所有n 的值为1和2.探究提高 1.求解数列与函数交汇问题要注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别注意;(2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理.【拓展练习5】 已知数列{a n }与{b n }满足:a 1+a 2+a 3+…+a n =2b n (n ∈N *),若{a n }是各项为正数的等比数列,且a 1=2,b 3=b 2+4. (1)求数列{a n }与{b n }的通项公式; (2)若数列{c n }满足c n =a nb n b n +1(n ∈N *),T n 为数列{c n }的前n 项和,证明:T n <1. (1)解 由题意知,a 1+a 2+a 3+…+a n =2b n ,① 当n ≥2时,a 1+a 2+a 3+…+a n -1=2b n -1,② ①-②可得a n =2(b n -b n -1) ⇒a 3=2(b 3-b 2)=2×4=8,∵a 1=2,a n >0,设{a n }的公比为q , ∴a 1q 2=8⇒q =2,∴a n =2×2n -1=2n (n ∈N *). ∴2b n =21+22+23+ (2)=2(1-2n )1-2=2n +1-2,∴b n =2n -1(n ∈N *).(2)证明 由已知c n =a n b n ·b n +1=2n(2n -1)(2n +1-1)=12n -1-12n +1-1, ∴T n =c 1+c 2+…+c n=121-1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1,当n ∈N *时,2n +1>1,∴12n +1-1>0,∴1-12n +1-1<1,故T n <1.【专题拓展练习】一、单选题1.已知数列{}n a 满足()2*11n n n a a a n N+=-+∈,设12111n nS a a a =+++,且10910231a S a -=-,则数列{}n a 的首项1a 的值为( )A .23 B .1C .32D .22.已知在数列{}n a 中,14a =,26a =,且当2n ≥时,149n n a a +=-,若n T 为数列{}n b 的前n 项和,19(3)n n n n a b a a +-=⋅,则当175(3)()8n n a T λ+=-⋅-为整数时,n λ=( )A .6B .12C .20D .243.设n S 为数列{}n a 的前n 项和,*()(11),2n n n n S a n N -+=∈,则数列{}n S 的前7项和为( )A .1256-B .85256-C .11024-D .3411024-4.若()()*12coscos cos cos5555n n n S n ππππ-=++++∈N ,则1S 、2S、、2020S 中值为0的共有( ) A .202个B .404个C .606个D .808个5.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是( ) A .8B .9C .10D .116.已知数列{}n a 满足123232n n a a a na ++++=,设1(1)2nn n a b n -=+,n S 为数列{}n b 的前n 项和.若t n S <对任意n *∈N 恒成立,则实数t 的最小值为( ) A .1B .2C .32D .527.已知数列{}n a 的前n 项和为n S ,满足2n S an bn =+,(,a b 均为常数),且72a π=.设函数2()sin 22cos 2xf x x =+,记()n n y f a =,则数列{}n y 的前13项和为( ) A .132πB .7πC .7D .138.公元1202年列昂那多·斐波那契(意大利著名数学家)以兔子繁殖为例,引入“兔子数列”{}n a :1,1,2,3,5,8,13,21,34,55,……,即11a =,21a =,()*12,2n n n a a a n n --=+∈>N ,此数列在现代物理、化学等学科都有着十分广泛的应用。

2020届人教A版(文科数学)数列求和及综合应用单元测试

2020届人教A版(文科数学)数列求和及综合应用单元测试

(ⅱ)证明
= -2(n∈N*).
【命题意图】本题主要考查等差数列的通项公式,等比数列的通项公式及前 n 项和公式等基础知识.考查等差数列求和的基本方法和运算求解能力. 【解析】(I)设等比数列{an}的公比为 q.由 a1=1,a3=a2+2,可得 q2-q-2=0. 因为 q>0,可得 q=2,故 an=2n-1. 设 等 差 数 列 {bn} 的 公 差 为 d, 由 a4=b3+b5, 可 得 b1+3d=4. 由 a5=b4+2b6, 可 得 3b1+13d=16,从而 b1=1,d=1,故 bn=n. 所以数列{an}的通项公式为 an=2n-1,数列{bn}的通项公式为 bn=n.
1.已知等比数列{an}满足 a1= ,a3a5=4(a4-1),则 a2=( )
A.2
B.1
C.
D.
答案 C
解析∵a3a5=4(a4-1),∴ =4(a4-1),解得 a4=2.
又 a4=a1q3,且 a1= ,∴q=2.∴a2=a1q= . 2. 在 正 项 等 比 数 列 {an} 中 ,a2,a48 是 方 程 2x2-7x+6=0 的 两 个 根 , 则 a1·a2·a25·a48·a49 的值为( )
因为 q∈(1, ],则 1<qn-1≤qm≤2,从而 b1≤0,
b1>0,对 n=2,3,…,m+1 均成立. 因此,取 d=0 时,|an-bn|≤b1 对 n=2,3,…,m+1 均成立. 下面讨论数列 的最大值和数列 的最小值(n=2,3…,m+1).
①当 2≤n≤m 时, - =
=
,
当 1<q≤ 时,有 qn≤qm≤2,从而 n(q q-n n-1)-qn+2>0.

【金版学案】高考数学文科二轮复习习题:专题第二讲数列求和及综合应用含答案

【金版学案】高考数学文科二轮复习习题:专题第二讲数列求和及综合应用含答案

第二讲数列求和及综合应用高考数列一定有大题,按近几年高考特点,可估计2016年不会有大的变化,考查递推关系、数学归纳法的可能较大,但根据高考题命题原则,一般会有多种方法可以求解.因此,全面掌握数列求和相关的方法更容易让你走向成功.数列求和的基本方法1.公式法.(1)等差数列前n项和公式:S n=n(a1+a n)2=na1+n(n-1)d2W.(2)等比数列前n项和公式:S n =⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.2.转化法.有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比或常见的数列,即先分别求和,然后再合并.3.错位相减法.这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.4.倒序相加法.这是在推导等差数列前n 项和公式时所用的方法,也就是将一个数列倒过来排列(反序),把它与原数列相加,若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.5.裂项相消法.利用通项变形,将通项分裂成两项或几项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.数列的应用1.应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.2.数列应用题一般是等比、等差数列问题,其中,等比数列涉及的范围比较广,如经济上涉及利润、成本、效益的增减,解决此类题的关键是建立一个数列模型{a n },利用该数列的通项公式、递推公式或前n 项和公式求解.3.解应用问题的基本步骤.判断下面结论是否正确(请在括号中打“√”或“×”).(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.(√) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.(√) (3)求S n =a +2a 2+3a 3+……+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.(×)(4)数列⎩⎨⎧⎭⎬⎫12n +2n -1的前n 项和为n 2+12n .(×) (5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.(√) (6)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+……+sin 288°+sin 289°=44.5.(√)1.(2015·福建卷)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于(D )A.6B.7C.8D.9解析:不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0, ∴ a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴ ⎩⎪⎨⎪⎧ab =(-2)2,a -2=2b ,∴ ⎩⎪⎨⎪⎧a =4,b =1,∴ p =5,q =4,∴ p +q =9. 2.(2015·新课标Ⅱ卷)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=(A )A.5B.7C.9D.11解析:解法一∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,∴S5=5(a1+a5)2=5a3=5,故选A.解法二∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d=1,∴S5=5a1+5×42d=5(a1+2d)=5,故选A.3.在数列{a n}中,a n=n(n+1)2,则:(1)数列{a n}的前n项和S n=;(2)数列{S n}的前n项和T n=W.解析:(1)a n=n(n+1)2=n(n+1)[](n+2)-(n-1)6=16×[] n(n+1)(n+2)-(n-1)n(n+1)S n=16×[(1×2×3-0×1×2)+(2×3×4-1×2×3)+(3×4×5-2×3×4)+…+n×(n+1)×(n+2)-(n-1)×n×(n+1)]=n(n+1)(n+2)6.(2)S n=n(n+1)(n+2)6=n(n+1)(n+2)[(n+3)-(n-1)]24=124×[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]T n =124×[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n ×(n +1)×(n +2)×(n +3)-(n -1)×n ×(n+1)×(n +2)]=n (n +1)(n +2)(n +3)24. 答案:(1)n (n +1)(n +2)6 (2)n (n +1)(n +2)(n +3)244.(2015·江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{1a n }前10项的和为 W. 解析:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22. 又∵ a 1=1,∴ a n =n 2+n 2(n ≥2). ∵ 当n =1时也满足此式,∴ a n =n 2+n 2(n ∈N *). ∴ 1a n =2n 2+n =2(1n -1n +1). ∴ S 10=2(11-12+12-13+…+110-111) =2×(1-111)=2011. 答案:2011。

高三复习数学32_数列求和及数列的综合应用 (3)(有答案)

高三复习数学32_数列求和及数列的综合应用 (3)(有答案)

3.2 数列求和及数列的综合应用一、选择题。

1. 数列112,214,318,4116,…的前n项和为()A.1 2(n2+n+2)−12nB.12n(n+1)+1−12n−1C.1 2(n2−n+2)−12nD.12n(n+1)+2(1−12n)2. 若数列{a n}的通项公式是a n=(−1)n(3n−2),则a1+a2+⋯+a10=( )A.15B.12C.−12D.−153. 已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4. 设{a n}是公比q≠−1的等比数列,它的前n项和、前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是()A.X+Z=2YB.Y(Y−X)=Z(Z−X)C.Y2=XZD.Y(Y−X)=X(Z−X)5. 如果一个数列{a n}满足a n+a n+1=H(H为常数,n∈N∗),则称数列{a n}为等和数列,H为公和,S n是其前n项的和,已知等和数列{a n}中,a1=1,H=−3,则S2011等于()A.−3016B.−3015C.−3014D.−30136. 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110二、填空题。

等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则 ∑1S kn k=1=________.若a ,b 是函数f(x)=x 2−px +q(p >0, q >0)的两个不同的零点,且a ,b ,−2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于________.设S n 是数列{a n }的前n 项和,且a 1=−1,a n+1=S n S n+1,则S n =________. 三、解答题。

高考数学专题复习-6.4数列求和、数列的综合应用-高考真题练习(附答案)

高考数学专题复习-6.4数列求和、数列的综合应用-高考真题练习(附答案)

6.4数列求和、数列的综合应用考点数列求和及数列的综合应用1.(2014课标Ⅱ文,5,5分)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =()A.n(n+1)B.n(n-1)C.or1)2D.ot1)2答案A ∵a 2,a 4,a 8成等比数列,∴42=a 2·a 8,即(a 1+3d)2=(a 1+d)(a 1+7d),将d=2代入上式,解得a 1=2,∴S n =2n+ot1)·22=n(n+1),故选A.2.(2012课标文,12,5分)数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为()A.3690B.3660C.1845D.1830答案D 当n=2k 时,a 2k+1+a 2k =4k-1,当n=2k-1时,a 2k -a 2k-1=4k-3,∴a 2k+1+a 2k-1=2,∴a 2k+1+a 2k+3=2,∴a 2k-1=a 2k+3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(2×60-1)=30×(3+119)2=30×61=1830.3.(2019浙江,10,4分)设a,b∈R,数列{a n }满足a 1=a,a n+1=2+b,n∈N *,则()A.当b=12时,a 10>10 B.当b=14时,a 10>10C.当b=-2时,a 10>10D.当b=-4时,a 10>10答案A 本题以已知递推关系式判断指定项范围为载体,考查学生挖掘事物本质以及推理运算能力;考查的核心素养为逻辑推理,数学运算;体现了函数与方程的思想,创新思维的应用.令a n+1=a n ,即2+b=a n ,即2-a n +b=0,若有解,则Δ=1-4b≥0,即b≤14,∴当b≤14时,a n *,即存在b≤14,且使数列{a n }为常数列,B 、C 、D 选项中,b≤14成立,故存在使a n*),排除B 、C 、D.对于A,∵b=12,∴a 2=12+12≥12,a 3=22+12≥+12=34,a4+12=1716,∴a5,a 6,…,a 10,=1=1+C 641×116+C 642+…=1+4+638+…>10.故a 10>10.4.(多选)(2020新高考Ⅰ,12,5分)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且P (X =i )=p i >0(i =1,2,…,n ),∑=ni 1p i =1,定义X 的信息熵H (X )=-∑=ni 1p i log 2p i .()A.若n =1,则H (X )=0B.若n =2,则H (X )随着p 1的增大而增大C.若p i =1(i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),则H (X )≤H (Y )答案AC 对于A ,若n =1,则p 1=1,∴H (X )=-1×log 21=0,A 正确.对于B ,若n =2,则p 1+p 2=1,∴H (X )=-∑=21i p i log 2p i =-(p 1log 2p 1+p 2log 2p 2),∵p 1+p 2=1,∴p 2=1-p 1,p 1∈(0,1),∴H (X )=-[p 1log 2p 1+(1-p 1)log 2(1-p 1)],令f (p 1)=-[p 1log 2p 1+(1-p 1)log 2(1-p 1)],∴f '(p 1)=-p 1·11·ln2+log 2p 1+(1-p 1)·−1(1−1)·ln2-log 2(1-p 1)=-[log 2p 1-log 2(1-p 1)]=log 21−11,令f '(p 1)>0,得0<p 1<12;令f '(p 1)<0,得12<p 1<1.∴y =f (p 1)在0,1上为减函数,∴H (X )随着p 1的增大先增大后减小,B 不正确.对于C ,由p i =1(i =1,2,…,n )可知,H (X )=-∑=ni 1pEog2B =−∑=ni 11log21=log 2n ,∴H (X )随着n 的增大而增大,C 正确对于D ,解法一(特例法):不妨设m =1,n =2,则H (X )=-∑=21i p i log 2p i =-(p 1log 2p 1+p 2log 2p 2),由于p 1+p 2=1,不妨设p 1=p2=12,则H (X )212+12log 22=1,H (Y )=-1×log 21=0,故H (X )>H (Y ),D 不正确.解法二:由P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),得P (Y =1)=p 1+p 2m ,P (Y =2)=p 2+p 2m -1,……,P (Y =m )=p m +p m +1,∴H (Y )=-∑=mj 1[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m -1)log 2(p 2+p 2m -1)+…+(p m +p m +1)log 2(p m +p m +1)],由n =2m ,得H (X )=-∑=mi 21p i log 2p i =-(p 1log 2p 1+p 2log 2p 2+…+p 2m log 2p 2m ),不妨设0<a <1,0<b <1,且0<a +b ≤1,则log 2a <log 2(a +b ),a log 2a <a log 2(a +b ),同理b log 2b <b log 2(a +b ),∴a log 2a +b log 2b <(a +b )log 2(a +b ),∴p 1log 2p 1+p 2m log 2p 2m <(p 1+p 2m )log 2(p 1+p 2m ),p 2log 2p 2+p 2m -1log 2p 2m -1<(p 2+p 2m -1)log 2(p 2+p 2m -1),……p m log 2p m +p m +1log 2p m +1<(p m +p m +1)log 2(p m +p m +1),∴∑=mi 21pEog2B <∑=mj 1(p j +p 2m +1-j )log 2(p j +p 2m +1-j ),∴H (X )>H (Y ),D 不正确.5.(2021新高考Ⅰ,16,5分)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm 的长方形纸,对折1次共可以得到10dm×12dm ,20dm×6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm×12dm ,10dm×6dm ,20dm×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为;如果对折n 次,那么∑=nk 1S k =dm 2.答案5;240×3解析解法一:列举法+归纳法.由上图可知,对折n 次后,共可以得到(n +1)种不同规格的图形,故对折4次可以得到5种不同规格的图形.归纳上述结论可知,对折n次后得到不同规格的图形的面积之和为120(+K1dm 2(n ∈N *),故S k =120(+dm 2(k ∈N *),记T n =∑=nk 1(k +1,∴T n =220+321+422+…+2K2+r12K1,①12B =221+322+423+…+2K1+r12,②①-②得,122+12+122+…+12K1−r1221−12r12=3−r32,∴T n =6-r32K1,∴∑=nk 1S =120×6=240×32.解法二:对折3次可以得到208dm×12dm ,204dm ×122dm ,202dm ×124dm ,20dm×128dm ,共四种不同规格的图形,对折4次可以得到2016dm×12dm ,208dm ×122dm ,204dm ×124dm ,202dm ×128dm ,20dm×1216dm ,共五种不同规格的图形,由此可以归纳出对折n 次可得到(n +1)种不同规格的图形,每种规格的图形的面积均为20×122dm 2,∴∑=nk 1S k =20×12×12×2+14×3+18×4+…+12×(n +1)dm 2,记T n =22+34+…+r12,则12B =24+38+…+r12r1,∴T n -12B =12B =1+18+…−r12r1=32−12−r12r1=32−r32r1,∴T n =3-r32,∴∑=nk 1S =240×32.6.(2018江苏,14,5分)已知集合A={x|x=2n-1,n∈N *},B={x|x=2n ,n∈N *}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为.答案27解析本题考查数列的插项问题.设A n =2n-1,B n =2n,n∈N *,当A k <B l <A k+1(k,l∈N *)时,2k-1<2l<2k+1,有k-12<2l-1<k+12,则k=2l-1,设T l =A 1+A 2+…+2t1+B 1+B 2+…+B l ,则共有k+l=2l-1+l 个数,即T l =2t1+l ,而A 1+A 2+…+2t1=2×1−1+2-12×2l-1=22l-2,B 1+B 2+…+B l =2(1−2)1−2=2l+1-2.则T l =22l-2+2l+1-2,则l,T l ,n,a n+1的对应关系为l T l n a n+112a n+1132336210456033079108494121720453182133396611503865780观察到l=5时,T l =S 21<12a 22,l=6,T l =S 38>12a 39,则n∈[22,38),n∈N *时,存在n,使S n ≥12a n+1,此时T 5=A 1+A 2+…+A 16+B 1+B 2+B 3+B 4+B 5,则当n∈[22,38),n∈N *时,S n =T 5+(t22+1)(22−5+t5)2=n 2-10n+87.a n+1=A n+1-5=A n-4,12a n+1=12[2(n-4)-1]=24n-108,S n -12a n+1=n 2-34n+195=(n-17)2-94,则n≥27时,S n -12a n+1>0,即n min =27.7.(2014安徽理,12,5分)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q=.答案1解析设{a n }的公差为d,则a 3+3=a 1+1+2d+2,a 5+5=a 1+1+4d+4,由题意可得(a 3+3)2=(a 1+1)(a 5+5).∴[(a 1+1)+2(d+1)]2=(a 1+1)[(a 1+1)+4(d+1)],∴(a 1+1)2+4(d+1)(a 1+1)+[2(d+1)]2=(a 1+1)2+4(a 1+1)(d+1),∴d=-1,∴a 3+3=a 1+1,∴公比q=3+31+1=1.8.(2020江苏,11,5分)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n+2n-1(n∈N *),则d+q 的值是.答案4解析设数列{a n }的首项为a 1,数列{b n }的首项为b 1,易知q≠1,则{a n +b n }的前n 项和S n =na 1+ot1)2d+1(1-)1−=2n 2+1n-11−q n +11−=n 2-n+2n -1,∴2=1,q=2,则d=2,q=2,∴d+q=4.9.(2020课标Ⅰ文,16,5分)数列{a n }满足a n+2+(-1)na n =3n-1,前16项和为540,则a 1=.答案7解析令n=2k(k∈N *),则有a 2k+2+a 2k =6k-1(k∈N *),∴a 2+a 4=5,a 6+a 8=17,a 10+a 12=29,a 14+a 16=41,∴前16项的所有偶数项和S 偶=5+17+29+41=92,∴前16项的所有奇数项和S 奇=540-92=448,令n=2k-1(k∈N *),则有a 2k+1-a 2k-1=6k-4(k∈N *).∴a 2k+1-a 1=(a 3-a 1)+(a 5-a 3)+(a 7-a 5)+…+(a 2k+1-a 2k-1)=2+8+14+…+6k-4=o2+6t4)2=k(3k-1)(k∈N *),∴a 2k+1=k(3k-1)+a 1(k∈N *),∴a 3=2+a 1,a 5=10+a 1,a 7=24+a 1,a 9=44+a 1,a 11=70+a 1,a 13=102+a 1,a 15=140+a 1,∴前16项的所有奇数项和S 奇=a 1+a 3+…+a 15=8a 1+2+10+24+44+70+102+140=8a 1+392=448.∴a 1=7.10.(2015江苏理,11,5分)设数列{a n }满足a 1=1,且a n+1-a n =n+1(n∈N *),10项的和为.答案2011解析由已知得,a 2-a 1=1+1,a 3-a 2=2+1,a 4-a 3=3+1,……,a n -a n-1=n-1+1(n≥2),则有a n -a 1=1+2+3+…+n-1+(n-1)(n≥2),因为a 1=1,所以a n =1+2+3+…+n(n≥2),即a n =2+n2(n≥2),又当n=1时,a 1=1也适合上式,故a n =2+n 2(n∈N *),所以1=22+n=2从而11+12+13+…+110=2×11=2011.11.(2020新高考Ⅰ,14,5分)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为答案3n 2-2n审题指导:数列{2n -1}表示首项为1,公差为2的等差数列,各项均为正奇数,而数列{3n -2}表示首项为1,公差为3的等差数列,数列的项为交替出现的正奇数与正偶数,它们的公共项为数列{3n -2}中的奇数项,所以{a n }是首项为1,公差为6的等差数列.解题思路:∵数列{2n -1}的项为1,3,5,7,9,11,13,…,数列{3n -2}的项为1,4,7,10,13,…,∴数列{a n}是首项为1,公差为6的等差数列,∴a n=1+(n-1)×6=6n-5,∴数列{a n}的前n项和S n=(1+6K5)×2=3n2-2n.12.(2022新高考Ⅰ,17,10分)记S n为数列{a n}的前n项和,已知a1=113的等差数列.(1)求{a n}的通项公式;(2)证明:11+12+…+1<2.解析(1)解法一:依题意得,S1=a1=1.∴=11+(n-1)×13=r23.∴3S n=(n+2)a n,则3S n+1=(n+1+2)a n+1=(n+3)a n+1,∴3S n+1-3S n=(n+3)a n+1-(n+2)a n,即3a n+1=(n+3)a n+1-(n+2)a n,∴na n+1=(n+2)a n,即r1=r2,由累乘法得r11=(r1)(r2)1×2,又a1=1,∴a n+1=(r1)(r2)2,∴a n=or1)2(n≥2),又a1=1满足上式,∴a n=or1)2(n∈N*).解法二:同解法一求得na n+1=(n+2)a n,∴r1r2,即r1(r1)(r2)=or1),or1)是常数列,首项为12,∴or1)=12,∴a n=or1)2.(2)证明:由(1)知1=2or1)2∴11+12+…+1=2++…+=21=2−2r1<2. 13.(2021新高考Ⅰ,17,10分)已知数列{a n}满足a1=1,a n+1=+1,为奇数,+2,为偶数.(1)记b n=a2n,写出b1,b2,并求数列{b n}的通项公式;(2)求{a n}的前20项和.解题指导:(1)由已知条件求出{a n}的递推式,从而得出{b n}的递推式,再由已知条件求出b1,从而求出数列{b n}的通项公式.(2)根据题目条件把{a n}的前20项分成两组,并用其中偶数项的和表示前20项的和,再用数列{b n}的前10项的和表示,根据等差数列前n项和公式求出结果.解析(1)由题意得a2n+1=a2n+2,a2n+2=a2n+1+1,所以a2n+2=a2n+3,即b n+1=b n+3,且b1=a2=a1+1=2,所以数列{b n}是以2为首项,3为公差的等差数列,所以b1=2,b2=5,b n=2+(n-1)×3=3n-1.(2)当n为奇数时,a n=a n+1-1.设数列{a n}的前n项和为S n,则S20=a1+a2+…+a20=(a1+a3+…+a19)+(a2+a4+…+a20)=[(a2-1)+(a4-1)+…+(a20-1)]+(a2+a4+…+a20)=2(a2+a4+…+a20)-10,由(1)可知a2+a4+…+a20=b1+b2+…+b10=10×2+10×92×3=155,故S20=2×155-10=300,即{a n}的前20项和为300.解题关键:一是对已知关系式进行转化,进而利用等差数列定义求得数列{b n}的通项公式;二是利用分组求和的方式对S20进行重组变形,结合a n与b n的关系求得结果.14.(2020课标Ⅲ理,17,12分)设数列{a n}满足a1=3,a n+1=3a n-4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.解析(1)a2=5,a3=7.猜想a n=2n+1.由已知可得a n+1-(2n+3)=3[a n-(2n+1)],a n-(2n+1)=3[a n-1-(2n-1)],……a2-5=3(a1-3).因为a1=3,所以a n=2n+1.(2)由(1)得2n a n=(2n+1)2n,所以S n=3×2+5×22+7×23+…+(2n+1)×2n.①从而2S n=3×22+5×23+7×24+…+(2n+1)×2n+1.②①-②得-S n =3×2+2×22+2×23+…+2×2n -(2n +1)×2n +1.所以S n =(2n -1)2n +1+2.方法总结数列求和的5种方法解决数列的求和问题,首先要得到数列的通项公式,有了通项公式,再根据其特点选择相应的求和方法.数列求和的方法有以下几类:(1)公式法:等差或等比数列的求和用公式法;(2)裂项相消法:形如a n =1orp ,可裂项为a n =13)错位相减法:形如c n =a n ·b n ,其中{a n }是等差数列,{b n }是等比数列;(4)分组求和法:形如c n =a n +b n ,其中{a n }是等差数列,{b n }是等比数列;(5)并项求和法.15.(2017课标Ⅲ文,17,12分)设数列{a n }满足a 1+3a 2+…+(2n-1)a n =2n.(1)求{a n }的通项公式;(2)n 项和.解析(1)因为a 1+3a 2+…+(2n-1)a n =2n,故当n≥2时,a 1+3a 2+…+(2n-3)a n-1=2(n-1).两式相减得(2n-1)a n =2.所以a n =22t1(n≥2).又由题设可得a 1=2,从而{a n }的通项公式为a n =22t1(n∈N *).(2)n 项和为S n .由(1)知2r1=2(2r1)(2t1)=12t1-12r1.则S n =11-13+13-15+…+12t1-12r1=22r1.思路分析(1)条件a 1+3a 2+…+(2n-1)a n =2n 的实质就是数列{(2n-1)a n }的前n 项和,故可利用a n 与S n 的关系求解.(2)利用(1)求得的{a n }的通项公式,然后用裂项相消法求和.易错警示(1)要注意n=1时,是否符合所求得的通项公式;(2)裂项相消后,注意留下了哪些项,避免遗漏.16.(2016课标Ⅱ文,17,12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解析(1)设数列{a n }的公差为d,由题意有2a 1+5d=4,a 1+5d=3.解得a 1=1,d=25.(3分)所以{a n }的通项公式为a n =2r35.(5分)(2)由(1)知,b n 分)当n=1,2,3时,1≤2r35<2,b n =1;当n=4,5时,2≤2r35<3,b n =2;当n=6,7,8时,3≤2r35<4,b n =3;当n=9,10时,4≤2r35<5,b n =4.(10分)所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.(12分)评析本题考查了等差数列,同时对考生的创新能力进行了考查,充分理解[x]的意义是解题的关键.17.(2016浙江文,17,15分)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n∈N *.(1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.解析(1)由题意得1+2=4,2=21+1,则1=1,2=3.又当n≥2时,由a n+1-a n =(2S n +1)-(2S n-1+1)=2a n ,得a n+1=3a n .所以,数列{a n }的通项公式为a n =3n-1,n∈N *.(2)设b n =|3n-1-n-2|,n∈N *,则b 1=2,b 2=1.当n≥3时,由于3n-1>n+2,故b n =3n-1-n-2,n≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.当n≥3时,T n =3+9(1−3t2)1−3-(r7)(t2)2=3-2-5n+112,所以T n =1,≥2,n ∈N *.易错警示(1)当n≥2时,得出a n+1=3a n ,要注意a 1与a 2是否满足此关系式.(2)在去掉绝对值时,要考虑n=1,2时的情形.在求和过程中,要注意项数,最后T n 要写成分段函数的形式.18.(2016北京文,15,13分)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解析(1)等比数列{b n }的公比q=32=93=3,(1分)所以b 1=2=1,b 4=b 3q=27.(3分)设等差数列{a n }的公差为d.因为a 1=b 1=1,a 14=b 4=27,所以1+13d=27,即d=2.(5分)所以a n =2n-1(n=1,2,3,…).(6分)(2)由(1)知,a n =2n-1,b n =3n-1.因此c n =a n +b n =2n-1+3n-1.(8分)从而数列{c n }的前n 项和S n =1+3+…+(2n-1)+1+3+…+3n-1=o1+2t1)2+1−31−3=n 2+3-12.(13分)规范解答要规范解答过程,分步书写,这样可按步得分.19.(2016山东,理18,文19,12分)已知数列{a n }的前n 项和S n =3n 2+8n,{b n }是等差数列,且a n =b n +b n+1.(1)求数列{b n }的通项公式;(2)令c n =(+1)r1(+2),求数列{c n }的前n 项和T n .解析(1)由题意知,当n≥2时,a n =S n -S n-1=6n+5.当n=1时,a 1=S 1=11,所以a n =6n+5.设数列{b n }的公差为d.由1=1+2,2=2+3,即11=21+d,17=21+3d,可解得b 1=4,d=3.所以b n =3n+1.(2)由(1)知c n =(6r6)r1(3r3)=3(n+1)·2n+1.又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n+1)×2n+1],2T n =3×[2×23+3×24+…+(n+1)×2n+2],两式作差,得-T n =3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=3×4+4(1−2)1−2-(n +1)×2r2=-3n·2n+2.所以T n =3n·2n+2.方法总结若某数列的通项是等差数列与等比数列的通项的积或商,则该数列的前n项和可以采用错位相减法求解,注意相减后的项数容易出错.评析本题主要考查了等差数列及前n项和,属中档题.20.(2016天津,18,13分)已知{an }是等比数列,前n项和为Sn(n∈N*),且11-12=23,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2a n和log2a n+1的等差中项,求数列{(-1)n2}的前2n项和.解析(1)设数列{a n}的公比为q.由已知,有11-11q=212,解得q=2,或q=-1.又由S6=a1·1−61−=63,知q≠-1,所以a1·1−261−2=63,得a1=1.所以a n=2n-1.(2)由题意,得bn=12(log2a n+log2a n+1)=12(log22n-1+log22n)=n-12,即{b n}是首项为12,公差为1的等差数列.设数列{(-1)n2}的前n项和为T n,则T2n=(-12+22)+(-32+42)+…+(-2t12+22)=b1+b2+b3+b4+…+b2n-1+b2n=2o1+2)2=2n2.评析本题主要考查等差数列、等比数列及其前n项和公式等基础知识,考查数列求和的基本方法和运算求解能力.21.(2015福建文,17,12分)等差数列{an }中,a2=4,a4+a7=15.(1)求数列{an}的通项公式;(2)设bn=2-2+n,求b1+b2+b3+…+b10的值.解析(1)设等差数列{a n}的公差为d.由已知得1+d=4,(1+3d)+(1+6d)=15,解得1=3,=1.所以a n=a1+(n-1)d=n+2.(2)由(1)可得bn=2n+n.所以b1+b2+b3+…+b10=(2+1)+(22+2)+(23+3)+…+(210+10)=(2+22+23+...+210)+(1+2+3+ (10)=2(1−210)1−2+(1+10)×102=(211-2)+55=211+53=2101.评析本小题主要考查等差数列、等比数列、数列求和等基础知识,考查运算求解能力.22.(2015课标Ⅰ理,17,12分)S n 为数列{a n }的前n 项和.已知a n >0,2+2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1r1,求数列{b n }的前n 项和.解析(1)由2+2a n =4S n +3,可知r12+2a n+1=4S n+1+3.可得r12-2+2(a n+1-a n )=4a n+1,即2(a n+1+a n )=r12-2=(a n+1+a n )(a n+1-a n ).由于a n >0,可得a n+1-a n =2.又12+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1.(6分)(2)由a n =2n+1可知b n =1r1=1(2r1)(2r3)=设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n++…+=3(2r3).(12分)23.(2015安徽文,18,12分)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =r1r1,求数列{b n }的前n 项和T n .解析(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得1=1,4=8或1=8,4=1(舍去).由a 4=a 1q 3得公比为q=2,故a n =a 1q n-1=2n-1.(2)S n =1(1-)1−=2n -1,又b n =r1=r1-r1=1-1,所以T n =b 1+b 2+…+b n =11-1r1=1-12r1-1.评析本题考查等比数列通项公式及等比数列性质,等比数列求和.24.(2015天津理,18,13分)已知数列{a n }满足a n+2=qa n (q 为实数,且q≠1),n∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 222t1,n∈N *,求数列{b n }的前n 项和.解析(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3,所以a 2(q-1)=a 3(q-1).又因为q≠1,故a 3=a 2=2,由a 3=a 1·q,得q=2.当n=2k-1(k∈N *)时,a n =a 2k-1=2k-1=2t12;当n=2k(k∈N *)时,a n =a 2k =2k=22.所以,{a n }的通项公式为a n =2t12,n 为奇数,22为偶数.(2)由(1)得b n =log 222t1=2t1.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n-1)×12t2+n×12t1,12S n =1×121+2×122+3×123+…+(n-1)×12t1+n×12,上述两式相减,得12S n =1+12+122+…+12t1-2=1−121−12-2=2-22-2,整理得,S n =4-r22t1.所以,数列{b n }的前n 项和为4-r22t1,n∈N *.评析本题主要考查等比数列及其前n 项和公式、等差中项等基础知识.考查数列求和的基本方法、分类讨论思想和运算求解能力.25.(2015山东文,19,12分)已知数列{a n }是首项为正数的等差数列,n 项和为2r1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2,求数列{b n }的前n 项和T n .解析(1)设数列{a n }的公差为d.令n=1,得112=13,所以a 1a 2=3.令n=2,得112+123=25,所以a 2a 3=15.解得a 1=1,d=2,所以a n =2n-1.(2)由(1)知b n =2n·22n-1=n·4n,所以T n =1·41+2·42+…+n·4n,所以4T n =1·42+2·43+…+n·4n+1,两式相减,得-3T n =41+42+ (4)-n·4n+1=4(1−4)1−4-n·4n+1=1−33×4n+1-43.所以T n =3t19×4n+1+49=4+(3t1)4r19.26.(2015浙江文,17,15分)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n∈N *),b 1+12b 2+13b 3+…+1b n =b n+1-1(n∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .解析(1)由a 1=2,a n+1=2a n ,得a n =2n(n∈N *).由题意知:当n=1时,b 1=b 2-1,故b 2=2.当n≥2时,1b n =b n+1-b n ,整理得r1r1=,所以b n =n(n∈N *).(2)由(1)知a n b n =n·2n,因此T n =2+2·22+3·23+…+n·2n,2T n =22+2·23+3·24+…+n·2n+1,所以T n -2T n =2+22+23+ (2)-n·2n+1.故T n =(n-1)2n+1+2(n∈N *).评析本题主要考查数列的通项公式,等差和等比数列等基础知识,同时考查数列求和等基本思想方法,以及推理论证能力.27.(2015湖北文,19,12分)设等差数列{a n }的公差为d,前n 项和为S n ,等比数列{b n }的公比为q.已知b 1=a 1,b 2=2,q=d,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =,求数列{c n }的前n 项和T n .解析(1)由题意有,101+45d =100,1d =2,即21+9d =20,1d =2,解得1=1,=2,或1=9,=29.故=2n-1,=2t1,或=1979),=.(2)由d>1,知a n =2n-1,b n =2n-1,故c n =2t12t1,于是T n =1+32+522+723+924+…+2t12t1,①12T n =12+322+523+724+925+…+2t12.②①-②可得12T n =2+12+122+…+12t2-2t12=3-2r32,故T n =6-2r32t1.28.(2014湖南文,16,12分)已知数列{a n }的前n 项和S n =2+n2,n∈N *.(1)求数列{a n }的通项公式;(2)设b n =2+(-1)na n ,求数列{b n }的前2n 项和.解析(1)当n=1时,a 1=S 1=1;当n≥2时,a n =S n -S n-1=2+n 2-(t1)2+(n-1)2=n.故数列{a n }的通项公式为a n =n.(3)由(1)知,b n =2n+(-1)nn,记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n).记A=21+22+ (22),B=-1+2-3+4-…+2n,则A=2(1−22)1−2=22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.故数列{b n }的前2n 项和T 2n =A+B=22n+1+n-2.评析本题考查数列的前n 项和与通项的关系,数列求和等知识,含有(-1)n的数列求和要注意运用分组求和的方法.29.(2014课标Ⅰ文,17,12分)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x+6=0的根.(1)求{a n }的通项公式;(2)n 项和.解析(1)方程x 2-5x+6=0的两根为2,3,由题意得a 2=2,a 4=3.设数列{a n }的公差为d,则a 4-a 2=2d,故d=12,从而a 1=32.所以{a n }的通项公式为a n =12n+1.(2)n 项和为S n ,由(1)知2=r22r1,则S n =322+423+…+r12+r22r1,12S n =323+424+…+r12r1+r22r2.两式相减得12S n =34+…-r22r2=34+-r22r2.所以S n =2-r42r1.评析本题考查等差数列及用错位相减法求数列的前n 项和,第(1)中由条件求首项、公差,进而求出结论是基本题型,第(2)问中,运算准确是关键.30.(2014安徽文,18,12分)数列{a n }满足a 1=1,na n+1=(n+1)a n +n(n+1),n∈N *.(1)证明:;(2)设b n =3n·,求数列{b n }的前n 项和S n .解析(1)证明:由已知可得r1r1=+1,即r1r1-=1.是以11=1为首项,1为公差的等差数列.(2)由(1)得=1+(n-1)·1=n,所以a n =n 2.从而b n =n·3n.S n =1·31+2·32+3·33+…+n·3n,①3S n =1·32+2·33+…+(n-1)·3n+n·3n+1.②①-②得-2S n =31+32+ (3)-n·3n+1=3·(1−3)1−3-n·3n+1=(1-2p ·3r1-32.所以S n =(2t1)·3r1+34.评析本题考查等差数列定义的应用,错位相减法求数列的前n项和,解题时利用题(1)提示对递推关系进行变形是关键.31.(2014山东文,19,12分)在等差数列{an }中,已知公差d=2,a2是a1与a4的等比中项.(1)求数列{an}的通项公式;(2)设bn=or1)2,记T n=-b1+b2-b3+b4-…+(-1)n b n,求T n.解析(1)由题意知(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+6),解得a1=2,所以数列{a n}的通项公式为a n=2n.(2)由题意知bn=or1)2=n(n+1).所以T n=-1×2+2×3-3×4+…+(-1)n n×(n+1).因为b n+1-b n=2(n+1),所以当n为偶数时,T n =(-b1+b2)+(-b3+b4)+…+(-bn-1+bn)=4+8+12+ (2)=2(4+2n)2=or2)2,当n为奇数时,T n =Tn-1+(-bn)=(t1)(r1)2-n(n+1)=-(r1)22.所以T n为奇数,为偶数.评析本题考查等比数列和等差数列的综合应用、等差数列的通项公式及数列的求和,分类讨论思想和逻辑推理能力.32.(2013课标Ⅰ文,17,12分)已知等差数列{an }的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)n 项和.解析(1)设{a n }的公差为d,则S n =na 1+ot1)2d.由已知可得31+3d =0,51+10d =−5.解得a 1=1,d=-1.故{a n }的通项公式为a n =2-n.(2)由(1)知1=1(3-2p(1-2p =n 项和为121-1-11+11-13+…+12t3-12t1=1−2.评析本题考查等差数列的通项公式及前n 项和公式,考查了裂项求和的方法,考查了运算求解能力与方程思想.33.(2011课标理,17,12分)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,32=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,n 项和.解析(1)设数列{a n }的公比为q.由32=9a 2a 6得32=942,所以q 2=19.由条件可知q>0,故q=13.由2a 1+3a 2=1得2a 1+3a 1q=1,所以a 1=13.故数列{a n }的通项公式为a n =13.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n)=-or1)2.故1=-2or1)=-211+12+…+1=-2123=-2r1.n 项和为-2r1.评析本题主要考查等比数列的通项公式以及裂项求和的基本方法,属容易题.34.(2020课标Ⅲ文,17,12分)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8.(1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m+1=S m+3,求m.解析(1)设{a n }的公比为q,则a n =a 1q n-1.由已知得1+1q =4,12-1=8.解得a 1=1,q=3.所以{a n }的通项公式为a n =3n-1.(2)由(1)知log 3a n =n-1.故S n =ot1)2.由S m +S m+1=S m+3得m(m-1)+(m+1)m=(m+3)(m+2),即m 2-5m-6=0.解得m=-1(舍去)或m=6.35.(2020浙江,20,15分)已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n+1-a n ,c n+1=r2c n ,n∈N *.(1)若{b n }为等比数列,公比q>0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式;(2)若{b n }为等差数列,公差d>0,证明:c 1+c 2+c 3+…+c n <1+1,n∈N *.解析本题主要考查等差数列、等比数列等基础知识,同时考查数学运算和逻辑推理等素养.(1)由b 1+b 2=6b 3得1+q=6q 2,解得q=12.由c n+1=4c n 得c n =4n-1.由a n+1-a n =4n-1得a n =a 1+1+4+…+4n-2=4t1+23.(2)证明:由c n+1=c n 得c n =121=所以c 1+c 2+c 3+…+c n 由b 1=1,d>0得b n+1>0,因此c 1+c 2+c 3+…+c n <1+1,n∈N *.36.(2020江苏,20,16分)已知数列{a n }(n∈N *)的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n,均有r11-1=λr11成立,则称此数列为“λ~k”数列.(1)若等差数列{a n }是“λ~1”数列,求λ的值;(2)若数列{a n }是数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ~3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由.解析本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)因为等差数列{a n }是“λ~1”数列,则S n+1-S n =λa n+1,即a n+1=λa n+1,也即(λ-1)a n+1=0,此式对一切正整数n 均成立.若λ≠1,则a n+1=0恒成立,故a 3-a 2=0,而a 2-a 1=-1,这与{a n }是等差数列矛盾.所以λ=1.(此时,任意首项为1的等差数列都是“1~1”数列)(2)因为数列{a n }(n∈N *)是3数列,所以r1-=即r1-=因为a n >0,所以S n+1>S n >0,n ,则b n 即(b n -1)2=13(2-1)(b n >1).解得b n =2,也即r1=4,所以数列{S n }是公比为4的等比数列.因为S 1=a 1=1,所以S n =4n-1.则a n =1(=1),3×4t2(n ≥2).(3)设各项非负的数列{a n }(n∈N *)为“λ~3”数列,则r113-13=λr113,即3r1-3=λ3r1-.因为a n ≥0,而a 1=1,所以S n+1≥S n >0,n ,则c n -1=λ33-1(c n ≥1),即(c n -1)3=λ3(3-1)(c n ≥1).(*)①若λ≤0或λ=1,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)②若λ>1,则(*)化为(c n -1)2+3+23-1+1=0,因为c n ≥1,所以2+3+23-1c n+1>0,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)③若0<λ<1,则2+3+23-1c n+1=0的两根分别在(0,1)与(1,+∞)内,则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t).所以S n+1=S n 或S n+1=t 3S n .由于数列{S n }从任何一项求其后一项均有两种不同结果,所以这样的数列{S n }有无数多个,则对应的{a n }有无数多个.综上所述,能存在三个各项非负的数列{a n }为“λ~3”数列,λ的取值范围是0<λ<1.37.(2019课标Ⅱ文,18,12分)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16.(1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.解析本题主要考查等比数列的概念及运算、等差数列的求和;考查学生的运算求解能力;体现了数学运算的核心素养.(1)设{a n }的公比为q,由题设得2q 2=4q+16,即q 2-2q-8=0.解得q=-2(舍去)或q=4.因此{a n }的通项公式为a n =2×4n-1=22n-1.(2)由(1)得b n =(2n-1)log 22=2n-1,因此数列{b n }的前n 项和为1+3+…+2n-1=n 2.38.(2019天津文,18,13分)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =1,为奇数,2为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n∈N *).解析本小题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力,体现了数学运算素养.满分13分.(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.依题意,得3=3+2s 32=15+4d,解得=3,=3,故a n =3+3(n-1)=3n,b n =3×3n-1=3n.所以,{a n }的通项公式为a n =3n,{b n }的通项公式为b n =3n.(2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n-1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n )=×3+ot1)2×6+(6×31+12×32+18×33+…+6n×3n )=3n 2+6(1×31+2×32+…+n×3n).记T n =1×31+2×32+…+n×3n,①则3T n =1×32+2×33+…+n×3n+1,②②-①得,2T n =-3-32-33-…-3n +n×3n+1=-3(1−3)1−3+n×3n+1=(2t1)3r1+32.所以,a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2t1)3r1+32=(2t1)3r2+62+92(n∈N *).思路分析(1)利用等差、等比数列的通项公式求出公差d,公比q 即可.(2)利用{c n }的通项公式,进行分组求和,在计算差比数列时采用错位相减法求和.解题关键根据n 的奇偶性得数列{c n }的通项公式,从而选择合适的求和方法是求解的关键.39.(2019江苏,20,16分)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{an }(n∈N*)满足:a2a4=a5,a3-4a2+4a1=0,求证:数列{an}为“M-数列”;(2)已知数列{bn }(n∈N*)满足:b1=1,1=2-2r1,其中S n为数列{b n}的前n项和.①求数列{bn}的通项公式;②设m为正整数,若存在“M-数列”{cn }(n∈N*),对任意正整数k,当k≤m时,都有ck≤bk≤ck+1成立,求m的最大值.解析本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.(1)设等比数列{an }的公比为q,所以a1≠0,q≠0.由24=5,3-42+41=0,得124=14,12-41q+41=0,解得1=1,=2.因此数列{a n}为“M-数列”.(2)①因为1=2-2r1,所以b n≠0.由b1=1,S1=b1,得11=21-22,则b2=2.由1=2-2r1,得S n=r12(r1-),当n≥2时,由b n=S n-S n-1,得b n=r12(r1-)-t12(-t1),整理得b n+1+b n-1=2b n.所以数列{b n}是首项和公差均为1的等差数列.因此,数列{b n}的通项公式为b n=n(n∈N*).②由①知,bk=k,k∈N*.因为数列{c n}为“M-数列”,设公比为q,所以c1=1,q>0.因为c k≤b k≤c k+1,所以q k-1≤k≤q k,其中k=1,2,3,…,m.当k=1时,有q≥1;当k=2,3,…,m时,有ln≤lnq≤ln t1.设f(x)=ln(x>1),则f'(x)=1−ln2.令f'(x)=0,得x=e.列表如下:x(1,e)e(e,+∞) f'(x)+0-f(x)↗极大值↘因为ln22=ln86<ln96=ln33,所以f(k)max =f(3)=ln33.取q=33,当k=1,2,3,4,5时,ln≤lnq,即k≤q k ,经检验知q k-1≤k 也成立.因此所求m 的最大值不小于5.若m≥6,分别取k=3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.40.(2018北京文,15,13分)设{a n }是等差数列,且a 1=ln2,a 2+a 3=5ln2.(1)求{a n }的通项公式;(2)求e 1+e 2+…+e .解析(1)设{a n }的公差为d.因为a 2+a 3=5ln2,所以2a 1+3d=5ln2.又a 1=ln2,所以d=ln2.所以a n =a 1+(n-1)d=nln2.(2)因为e 1=e ln2=2,e e t1=e -t1=e ln2=2,所以{e }是首项为2,公比为2的等比数列.所以e 1+e 2+…+e =2×1−21−2=2(2n-1).41.(2018江苏,20,16分)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n -b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m∈N *,q∈(1,2],证明:存在d∈R,使得|a n -b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m,q 表示).解析本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)由条件知a n =(n-1)d,b n =2n-1.因为|a n -b n |≤b 1对n=1,2,3,4均成立,即|(n-1)d-2n-1|≤1对n=1,2,3,4均成立.即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得73≤d≤52.因此,d (2)由条件知:a n =b 1+(n-1)d,b n =b 1q n-1.若存在d∈R,使得|a n -b n |≤b 1(n=2,3,…,m+1)均成立,即|b 1+(n-1)d-b 1q n-1|≤b 1(n=2,3,…,m+1).即当n=2,3,…,m+1时,d 满足t1-2t1b 1≤d≤t1t1b 1.因为q∈(1,2],所以1<q n-1≤q m≤2,从而t1-2t1b 1≤0,t1t1b 1>0,对n=2,3,…,m+1均成立.因此,取d=0时,|a n -b n |≤b 1对n=2,3,…,m+1均成立.(n=2,3,…,m+1).①当2≤n≤m 时,-2-t1-2t1=B --n t1+2ot1)=o -t1)-+2ot1),当1<q≤21时,有q n≤q m≤2,从而n(q n-q n-1)-q n+2>0.因此,当2≤n≤m+1时,,的最大值为-2.②设f(x)=2x(1-x),当x>0时,f'(x)=(ln2-1-xln2)2x<0.所以f(x)单调递减,从而f(x)<f(0)=1.当2≤n≤m 时,t1t1=ot1)≤因此,当2≤n≤m+1时,,的最小值为.因此,d 疑难突破本题是数列的综合题,考查等差数列、等比数列的概念和相关性质,第(1)问主要考查绝对值不等式.第(2)问要求d 的范围,使得|a n -b n |≤b 1对n=2,3,…,m+1都成立,首先把d 分离出来,变成t1-2t1b 1≤d≤t1t1b 1,难点在于讨论t1-2t1b 1的最大值和t1t1b 1的最小值.可以通过作差讨论其单调性,要作商讨论单调性,∵t1t1=ot1)=q 1当2≤n≤m 时,1<q n ≤2,∴q 1−可以构造函数f(x)=2x (1-x),通过讨论f(x)在(0,+∞)上的单调性去证明得到数列,解出最小值.两个数列,一个作差得到单调性,一个作商得到单调性,都是根据数列本身结构而得,方法自然合理,最后构造函数判断1的大小是难点,平时多积累,多思考,也是可以得到的.42.(2017课标Ⅱ文,17,12分)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.解析本题考查了等差、等比数列.设{a n }的公差为d,{b n }的公比为q,则a n =-1+(n-1)d,b n =q n-1.由a 2+b 2=2得d+q=3.①(1)由a 3+b 3=5得2d+q 2=6.②联立①和②解得=3,=0(舍去),或=1,=2.因此{b n }的通项公式为b n =2n-1.(2)由b 1=1,T 3=21得q 2+q-20=0.解得q=-5或q=4.当q=-5时,由①得d=8,则S 3=21.当q=4时,由①得d=-1,则S 3=-6.43.(2017课标Ⅰ文,17,12分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列.解析本题考查等差、等比数列.(1)设{a n }的公比为q,由题设可得1(1+q)=2,1(1+q +2)=-6.解得q=-2,a 1=-2.。

2024届高考数学专项练习压轴题型09 数列通项、求和及综合灵活运用(解析版)

2024届高考数学专项练习压轴题型09 数列通项、求和及综合灵活运用(解析版)

压轴题型09 数列通项、求和及综合灵活运用命题预测数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显(特别是与函数、导数的结合问题),浙江卷小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等偏难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.数列与数学归纳法的结合问题,也应适度关注.高频考法(1)数列通项、求和问题(2)数列性质的综合问题(3)实际应用中的数列问题(4)以数列为载体的情境题(5)数列放缩01 数列通项、求和问题1、遇到下列递推关系式,我们通过构造新数列,将它们转化为熟悉的等差数列、等比数列,从而求解该数列的通项公式:(1)形如1n n a pa q +=+(1p ≠,0q ≠),可变形为111n n qq a p a p p +⎛⎫+=+ ⎪−−⎝⎭,则1nq a p ⎧⎫+⎨⎬−⎩⎭是以11qa p +−为首项,以p 为公比的等比数列,由此可以求出n a ; (2)形如11n n n a pa q ++=+(1p ≠,0q ≠),此类问题可两边同时除以1n q +,得111n nn na a p q q q ++=⋅+,设2024届高考数学专项练习n n na b q =,从而变成1n b +=1n p b q +,从而将问题转化为第(1)个问题; (3)形如11n n n n qa pa a a ++−=,可以考虑两边同时除以1n n a a +,转化为11n n q p a a +−=的形式,设1n nb a =,则有11n n qb pb +−=,从而将问题转化为第(1)个问题.2、公式法是数列求和的最基本的方法,也是数列求和的基础.其他一些数列的求和可以转化为等差或等比数列的求和.利用等比数列求和公式,当公比是用字母表示时,应对其是否为1进行讨论.3、用裂项相消法求和时,要对通项进行变换,如:()11n k n kn n k=+−++,1111()n n k k n n k ⎛⎫=− ⎪++⎝⎭,裂项后产生可以连续相互抵消的项.抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,但是前后所剩项数一定相同.常见的裂项公式: (1)111(1)1n n n n =−++; (2)1111(21)(21)22121n n n n ⎛⎫=− ⎪−+−+⎝⎭;(3)1111(2)22n n n n ⎛⎫=− ⎪++⎝⎭;(4)1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=−⎢⎥+++++⎣⎦; (5)(1)(2)(1)(1)(1)3n n n n n n n n ++−−++=.4、用错位相减法求和时的注意点:(1)要善于通过通项公式特征识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS −”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.5、分组转化法求和的常见类型:(1)若n n n a b c =±,且{}n b ,{}n c 为等差或等比数列,可采用分组求和法求{}n a 的前n 项和; (2)通项公式为,,n n n b n a c n ⎧=⎨⎩奇数偶数,其中数列{}n b ,{}n c 是等比数列或等差数列,可采用分组求和法求和;(3)要善于识别一些变形和推广的分组求和问题. 【典例1-1】(2024·河北沧州·一模)在数列{}n a 中,已知321212222nn a a a a n −++++=. (1)求数列{}n a 的通项公式;(2)在数列{}n a 中的1a 和2a 之间插入1个数11x ,使1112,,a x a 成等差数列;在2a 和3a 之间插入2个数2122,x x ,使221223,,,a x x a 成等差数列;…;在n a 和1n a +之间插入n 个数12,,,n n nn x x x ,使121,,,,,n n n nn n a x x x a +成等差数列,这样可以得到新数列{}1112212233132334:,,,,,,,,,,,n n b a x a x x a x x x a a ,设数列{}n b 的前n 项和为n S ,求55S (用数字作答).【解析】(1)当1n =时,12a =; 当2n ≥时,3312211121222222222n n n n n n a a a a a a a a a −−−−⎛⎫⎛⎫=++++−++++⎪ ⎪⎝⎭⎝⎭()2212n n =−−=, 所以122nn a −=⇒2n n a =,2n ≥. 当1n =时,上式亦成立, 所以:2n n a =. (2)由()123155n n ⎡⎤+++++−=⎣⎦⇒10n =.所以新数列{}n b 前55项中包含数列{}n a 的前10项,还包含,11x ,21x ,22x ,31x ,32x ,,98x ,99x .且12112a a x +=,()23212222a a x x ++=,()3431323332a a x x x +++=, ()91091929992a a x x x ++++=.所以()()()239101255121029222a a a a a a S a a a +++=+++++++123910357191122a a a a a ++++=+.设123935719T a a a a =++++1239325272192=⨯+⨯+⨯++⨯则234102325272192T =⨯+⨯+⨯++⨯,所以()1239102322222192T T T −=−=⨯+⨯+++−⨯101722=−⨯−.故:101722T =⨯+.所以1010955172211228211433722S ⨯+=+⨯=⨯+=.【典例1-2】(2024·高三·河南濮阳·开学考试)已知等比数列{}n a 的首项为2,公比q 为整数,且1243424a a a a ++=.(1)求{}n a 的通项公式;(2)设数列21n n n a ⎧⎫⋅的前n 项和为nS ,比较nS 与4的大小关系,并说明理由.【解析】(1)由已知可得12n n a q −=⨯,因为1243424a a a a ++=,所以324222242q q q ⨯+⨯+⨯=⨯,即324240q q q −++=,则()()22220q q q −−−=,解得2q或13所以2q,()1*222n n n a n −=⋅=∈N .(2)由(121212nnn n n a n =⋅⋅1122222n n n nn n n n −−=−=⋅⋅ 令12n n nb −=,设{}n b 前n 项和为n C ,则01211232222n n nC −=++++, 所以123112322222n n n C =++++,两式相减得1211111122222nn n n C −=++++−1122212212n n n n n −+=−=−−, 所以42442n nnC +=−<, 令12n n x n −=⋅0n x >, 设{}n x 前n 项和为n T ,则0n T >, 所以4n n n S C T =−<.【变式1-1】(2024·四川泸州·三模)已知n S 是数列{}n a 的前n 项和,11a =,()12n n na n S +=+,则n a = . 【答案】()212n n −+⋅【解析】当2n ≥时,()()111n n n a n S −−=+,即12n n n S a n +=+,111n n n S a n −−=+, 则11121n n n n n n n S S a a a n n −+−−=−=++,即()1221n n n a a n ++=+,则有()121nn n a a n −+=,1221n n a n a n −−=−,,21232a a ⨯=, 则()212112112n n n n n n a a a a a n a a a −−−−=⨯⨯⨯⨯=+⋅,当1n =时,11a =,符合上式,故()212n n a n −=+⋅.故答案为:()212n n −+⋅.【变式1-2】(2024·青海西宁·二模)已知各项都是正数的等比数列{}n a 的前3项和为21,且312a =,数列{}n b 中,131,0b b ==,若{}n n a b +是等差数列,则12345b b b b b ++++= .【答案】33−【解析】设数列{}n a 的公比为(0)q q >,则333221a a a q q ++=,即21112121qq ⎛⎫++= ⎪⎝⎭, 化简得23440q q −−=,解得2q(负值舍去),所以331312232n n n n a a q −−−=⋅=⨯=⨯.于是111333,4,12a a b a b =+=+=, 所以等差数列{}n n a b +的公差为()()3311431a b a b +−+=−,所以()14414,4432n n n n n a b n n b n a n −+=+−==−=−⨯,所以()()23412345412345312222b b b b b ++++=⨯++++−⨯++++()56032133=−⨯−=−.故答案为:33−02 数列性质的综合问题1、在等差数列{}n a 中,若2m n s t k +=+=(m ,n ,s ,t ,k *∈N ),则2m n s t k a a a a a +=+=. 在等比数列{}n a 中,若2m n s t k +=+=(m ,n ,s ,t ,k *∈N ),则2m n s t k a a a a a ==.2、前n 项和与积的性质(1)设等差数列{}n a 的公差为d ,前n 项和为n S . ①n S ,2n n S S −,32n n S S −,…也成等差数列,公差为2n d . ②n S n ⎧⎫⎨⎬⎩⎭也是等差数列,且122n S d d n a n ⎛⎫=+− ⎪⎝⎭,公差为2d .③若项数为偶数2k ,则 S S kd −=奇偶,1k kS a S a +=偶奇. 若项数为奇数21k +,则1 k S S a +−=奇偶,1S k S k+=奇偶. (2)设等比数列{}n a 的公比为q ,前n 项和为.n S①当1q ≠−时,n S ,2n n S S −,32n n S S −,…也成等比数列,公比为.n q ②相邻n 项积n T ,2n n T T ,32n nT T ,…也成等比数列,公比为()nn q 2n q =. ③若项数为偶数2k ,则()21 11k a q S S q−−=+奇偶,1S S q=奇偶;项数为奇数时,没有较好性质. 3、衍生数列(1)设数列{}n a 和{}n b 均是等差数列,且等差数列{}n a 的公差为d ,λ,μ为常数. ①{}n a 的等距子数列{}2,,,m m k m k a a a ++()*,k m ∈N 也是等差数列,公差为kd .②数列{}n a λμ+,{}n n a b λμ±也是等差数列,而{}n a λ是等比数列.(2)设数列{}n a 和{}n b 均是等比数列,且等比数列{}n a 的公比为q ,λ为常数. ①{}n a 的等距子数列{}2,,,m m k m k a a a ++也是等比数列,公比为k q .②数列{}(0)n a λλ≠,(0)n a λλ⎧⎫≠⎨⎬⎩⎭,{}n a ,{}n n a b ,n n a b ⎧⎫⎨⎬⎩⎭,{}mn a 也是等比数列,而{}log a n a ()010n a a a >≠>,,是等差数列.【典例2-1】(2024·山西晋城·二模)已知等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则21a 的取值范围是( )A .67,78⎛⎫ ⎪⎝⎭B .613,715⎛⎫⎪⎝⎭C .67,,78⎛⎫⎛⎫−∞+∞ ⎪ ⎪⎝⎭⎝⎭D .613,,715⎛⎫⎛⎫−∞+∞ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】由题意可得:()158168915080S a S a a =>⎧⎨=+<⎩,即88900a a a >⎧⎨+<⎩,可知90a <,设等差数列{}n a 的公差为d ,则980d a a =−<, 可得等差数列{}n a 为递减数列,则10a >,由88900a a a >⎧⎨+<⎩可得11702150a d a d +>⎧⎨+<⎩,则112715d a −<<−,所以211116131,715a a d d a a a +⎛⎫==+∈ ⎪⎝⎭. 故选:B.【典例2-2】(2024·北京顺义·二模)设1a ,2a ,3a ,…,7a 是1,2,3,…,7的一个排列.且满足122367a a a a a a −≥−≥≥−,则122367a a a a a a −+−++−的最大值是( )A .23B .21C .20D .18【答案】B【解析】122367a a a a a a −+−++−即为相邻两项之差的绝对值之和,则在数轴上重复的路径越多越好,又122367a a a a a a −≥−≥≥−,比如1726354→→→→→→,其对应的一个排列为1,7,2,63,5,4,则122367a a a a a a −+−++−的最大值是6+5+4+3+2+1=21故选:B【变式2-1】(2024·浙江宁波·二模)已知数列{}n a 满足2n a n n λ=−,对任意{}1,2,3n ∈都有1n n a a +>,且对任意{}7,N n n n n ∈≥∈都有1n n a a +<,则实数λ的取值范围是( )A .11,148⎡⎤⎢⎥⎣⎦B .11,147⎛⎫ ⎪⎝⎭C .11,157⎛⎫ ⎪⎝⎭D .11,158⎛⎤ ⎥⎝⎦【答案】C【解析】因为对任意{}1,2,3n ∈都有1n n a a +>, 所以数列{}n a 在[]1,3上是递减数列, 因为对任意{}7,N n n n n ∈≥∈都有1n n a a +<, 所以数列{}n a 在[)7,+∞上是递增数列,所以0172211522λλλ⎧⎪>⎪⎪>⎨⎪⎪<⎪⎩,解得11157λ<<, 所以实数λ的取值范围是11,157⎛⎫⎪⎝⎭.故选:C.【变式2-2】(多选题)(2024·浙江绍兴·二模)已知等比数列{}n a 的公比为q ,前n 项和为n S ,前n 项积为n T ,且*n ∀∈N ,101na q q<−,则( ) A .数列{}n a 是递增数列B .数列{}n a 是递减数列C .若数列{}n S 是递增数列,则1q >D .若数列{}n T 是递增数列,则1q >【答案】ACD【解析】由题意可知()()()()111211111,1n n n n n n n a q S T a a q a q a qq−−−===−,且*n ∀∈N ,101na q q<−, 故有101a q <−且0q >(否则若0q <,则11na q q −的符号会正负交替,这与*n ∀∈N ,101n a q q<−,矛盾), 也就是有101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩,无论如何,数列{}n a 是递增数列,故A 正确,B 错误;对于C ,若数列{}n S 是递增数列,即110n n n S S a ++−=>,由以上分析可知只能101a q >⎧⎨>⎩,故C 正确;对于D ,若数列{}n T 是递增数列,显然不可能是1001a q <⎧⎨<<⎩,(否则()121n n n n T a q −=的符号会正负交替,这与数列{}n T 是递增数列,矛盾),从而只能是101a q >⎧⎨>⎩,且这时有111n n n T a T ++=>,故D 正确. 故选:ACD.03 实际应用中的数列问题(1)数列实际应用中的常见模型①等差模型:如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差; ②等比模型:如果后一个量与前一个量的比是一个固定的数,则该模型是等比模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑是第n 项n a 与第1n +项1n a +的递推关系还是前n 项和n S 与前1n +项和1n S +之间的递推关系.在实际问题中建立数列模型时,一般有两种途径:一是从特例入手,归纳猜想,再推广到一般结论;二是从一般入手,找到递推关系,再进行求解.一般地,涉及递增率或递减率要用等比数列,涉及依次增加或减少要用等差数列,有的问题需通过转化得到等差或等比数列,在解决问题时要往这些方面联系.(2)解决数列实际应用题的3个关键点 ①根据题意,正确确定数列模型; ②利用数列知识准确求解模型;③问题作答,不要忽视问题的实际意义.【典例3-1】(2024·北京房山·一模)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有一个人走378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第三天走的路程为( ) A .12里 B .24里 C .48里 D .96里【答案】C【解析】由题意可得,此人6天中每天走的路程是公比为12的等比数列, 设这个数列为{}n a ,前n 项和为n S ,则16611163237813212a S a ⎛⎫− ⎪⎝⎭===−,解得1192a =, 所以321192482a =⨯=, 即该人第三天走的路程为48里. 故选:C.【典例3-2】(2024·北京海淀·一模)某生物兴趣小组在显微镜下拍摄到一种黏菌的繁殖轨迹,如图1.通过观察发现,该黏菌繁殖符合如下规律:①黏菌沿直线繁殖一段距离后,就会以该直线为对称轴分叉(分叉的角度约为60︒),再沿直线繁殖,…;②每次分叉后沿直线繁殖的距离约为前一段沿直线繁殖的距离的一半.于是,该组同学将整个繁殖过程抽象为如图2所示的一个数学模型:黏菌从圆形培养皿的中心O 开始,沿直线繁殖到11A ,然后分叉向21A 与22A 方向继续繁殖,其中21112260A A A ∠=︒,且1121A A 与1122A A 关于11OA 所在直线对称,112111221112A A A A OA ==….若114cm OA =,为保证黏菌在繁殖过程中不会碰到培养皿壁,则培养皿的半径r (*N r ∈,单位:cm )至少为( )A .6B .7C .8D .9【答案】C【解析】由题意可知,114cm OA =,只要计算出黏菌沿直线一直繁殖下去,在11OA 方向上的距离的范围,即可确定培养皿的半径的范围,依题意可知黏菌的繁殖规律,由此可得每次繁殖在11OA 方向上前进的距离依次为:3131134,2,248,则31353842155724+++=>+=, 黏菌无限繁殖下去,每次繁殖在11OA 方向上前进的距离和即为两个无穷等比递缩数列的和, 即1311432164316841+28114228231144++⎛⎫⎛⎫+++⨯+++≈+⨯=<= ⎪⎪⎝⎭⎝⎭−−, 综合可得培养皿的半径r (*N r ∈,单位:cm )至少为8cm , 故选:C【变式3-1】(2024·四川·模拟预测)分形几何学是美籍法国数学家伯努瓦-曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立为解决传统科学领域的众多难题提供了全新的思路.下图展示了如何按照图①的分形规律生长成一个图②的树形图,则在图②中第2023行的黑心圈的个数是( )A .2022312−B .2023332−C .202231−D .202333−【答案】A【解析】设题图②中第n 行白心圈的个数为n a ,黑心圈的个数为n b ,依题意可得1113,2,2n n n n n n n n n a b a a b b b a −+++==+=+,且有111,0a b ==,故有()11113,,n n n n n n n n a b a b a b a b ++++⎧+=+⎨−=−⎩,所以{}n n a b +是以111a b 为首项,3为公比的等比数列,{}n n a b −为常数数列,且111a b −=,所以{}n n a b −是以111a b −=为首项,1为公比的等比数列,故13,1,n n n n n a b a b −⎧+=⎨−=⎩故1131,231,2n n n na b −−⎧+=⎪⎪⎨−⎪=⎪⎩所以20222023312b −=. 故选:A.【变式3-2】(2024·江西九江·二模)第14届国际数学教育大会(ICME -International Congreas of Mathematics Education )在我国上海华东师范大学举行.如图是本次大会的会标,会标中“ICME -14”的下方展示的是八卦中的四卦——3、7、4、4,这是中国古代八进制计数符号,换算成现代十进制是3210387848482020⨯+⨯+⨯+⨯=,正是会议计划召开的年份,那么八进制107777⋅⋅⋅个换算成十进制数,则换算后这个数的末位数字是( )A .1B .3C .5D .7【答案】B【解析】由进位制的换算方法可知,八进制107777⋅⋅⋅个换算成十进制得:1098110187878787878118−⨯+⨯+⋅⋅⋅+⨯+⨯=⨯=−−,()101001019919101010101010811021C 10C 102C 102C 21−=−−=+⨯+⋅⋅⋅+⨯+−因为01019919101010C 10C 102C 102+⨯+⋅⋅⋅+⨯是10的倍数,所以,换算后这个数的末位数字即为101010C 21−的末尾数字,由101010C 211023−=可得,末尾数字为3.故选:B04 以数列为载体的情境题解决数列与数学文化相交汇问题的关键【典例4-1】(2024·上海黄浦·二模)设数列{}n a 的前n 项和为n S ,若对任意的*N n ∈,n S 都是数列{}n a 中的项,则称数列{}n a 为“T 数列”.对于命题:①存在“T 数列”{}n a ,使得数列{}n S 为公比不为1的等比数列;②对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①是真命题,②是假命题D .①是假命题,②是真命题【答案】A【解析】对于命题①,对于数列{}n a ,令21,12,2n n n a n −=⎧=⎨≥⎩,则11,12,2n n n S n −=⎧=⎨≥⎩,数列{}n S 为公比不为1的等比数列, 当1n =时,11S =是数列{}n a 中的项,当2n ≥时,12n n S −=是数列{}n a 中的项,所以对任意的*N n ∈,n S 都是数列{}n a 中的项, 故命题①正确;对于命题②,等差数列{}n a ,令1a d =−,则()()112n a a n d n d =+−=−, 则()()()123222n n n d n d n a a n n S d ⎡⎤−+−+−⎣⎦===, 因为21n −≥−且2Z n −∈, ()2313912228n n n −⎛⎫=−−≥− ⎪⎝⎭,且()3N*,Z 2n n n −∈∈, 所以对任意的*N n ∈,n S 都是数列{}n a 中的项,所以对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”, 故命题②正确; 故选:A.【典例4-2】(2024·广东梅州·二模)已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n M ,即{}12max ,,,n n M a a a =⋅⋅⋅;前n 项的最小值记为n m ,即{}12min ,,,n n m a a a =⋅⋅⋅,令n n n p M m =−(1,2,3,n =⋅⋅⋅),并将数列{}n p 称为{}n a 的“生成数列”. (1)若3n n a =,求其生成数列{}n p 的前n 项和; (2)设数列{}n p 的“生成数列”为{}n q ,求证:n n p q =;(3)若{}n p 是等差数列,证明:存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +,⋅⋅⋅是等差数列.【解析】(1)因为3nn a =关于n 单调递增,所以{}12max ,,,3nn n n M a a a a =⋅⋅⋅==,{}121min ,,,3n n m a a a a =⋅⋅⋅==,于是33nn n n p M m =−=−,{}n p 的前n 项和()()()()()1231333333333313132n n nn P n n −=−+−++−=−=−−−.(2)由题意可知1n n M M +≥,1n n m m +≤, 所以11n n n n M m M m ++−≥−,因此1n n p p +≥,即{}n p 是单调递增数列,且1110p M m ==-, 由“生成数列”的定义可得n n q p =.(3)若{}n p 是等差数列,证明:存在正整数0n ,当0n n ≥时,12n n n a a a ++⋯,,,是等差数列. 当{}n p 是一个常数列,则其公差d 必等于0,10n p p ==, 则n n M m =,因此{}n a 是常数列,也即为等差数列;当{}n p 是一个非常数的等差数列,则其公差d 必大于0,1n n p p +>, 所以要么11n n n M a M ++>=,要么11n n n m a m ++=<,又因为{}n a 是由正整数组成的数列,所以{}n a 不可能一直递减, 记2min ,{}n n a a a a =,,,,则当0n n >时,有n n M m =, 于是当0n n >时,0n n n n n p M m a a =−=−, 故当0n n >时,0n n n a p a =+,…,因此存在正整数0n ,当0n n ≥时,12n n n a a a ++,,,…是等差数列. 综上,命题得证.【变式4-1】(2024·全国·模拟预测)“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.下图是由“杨辉三角”拓展而成的三角形数阵,记n a 为由图中虚线上的数1,3,6,10,…依次构成的数列的第n 项,则1220111a a a ++⋅⋅⋅+的值为 .【答案】4021【解析】设第n 个数为n a ,则11a =,212a a −=,323a a −=,434a a −=,…,1n n a a n −−=, 叠加可得()11232n n n a n +=+++⋅⋅⋅+=, ∴122011122212232021a a a ++⋅⋅⋅+=++⋅⋅⋅+⨯⨯⨯ 111114021223202121⎛⎫=⨯−+−+⋅⋅⋅+−= ⎪⎝⎭.故答案为:4021. 【变式4-2】(2024·内蒙古呼伦贝尔·一模)南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差相等.对这类高阶等差数列的研究·杨辉之后一般被称为“垛积术”.现有高阶等差数列前几项分别为1,4,8,14,23,36,54,则该数列的第21项为 . (注:()()22221211236n n n n +++++⋅⋅⋅+=)【答案】1391【解析】设题设高阶等差数列为{}n a ,令1n n n b a a +=−,设数列{}n b 的前n 项和为n B ,则数列{}n b 的前几项分别为3,4,6,9,13,18,1111n n n B a a a ++=−=−,令1+=−n n n c b b ,设数列{}n c 的前n 项和为n C ,则数列{}n c 的前几项分别为1,2,3,4,5,1113n n n C b b b ++=−=−,易得2,2n n n n c n C +==,所以21332n n n n b C ++=+=+,故()21133222n n n n b n −=+=−+,则()()()()()1211111632626n n n n n n n n n B n n ⎡⎤++++−=−+=+⎢⎥⎣⎦, 所以11n n a B +=+,所以211391a =.故答案为:139105 数列放缩在证明不等式时,有时把不等式的一边适当放大或缩小,利用不等式的传递性来证明,我们称这种方法为放缩法.放缩时常采用的方法有:舍去一些正项或负项、在和或积中放大或缩小某些项、扩大(或缩小)分式的分子(或分母).放缩法证不等式的理论依据是:,A B B C A C >>⇒>;,A B B C A C <<⇒<.放缩法是一种重要的证题技巧,要想用好它,必须有目标,目标可从要证的结论中去查找.【典例5-1】(2024·天津滨海新·二模)已知数列{}n a 满足112,1,2n n n n a t qa n a −−=⎧⎪=⎨+≥⎪⎩,其中220,0,0,N q t q t n ≥≥+≠∈.(1)若0qt =,求数列{}n a 的前n 项的和; (2)若0=t ,2q且数列{}n d 满足:11n nn n n a a d a a =++−,证明:121ni i d n =<+∑. (3)当12q =,1t =时,令)22,2n n b n n a =≥∈−N ,判断对任意2n ≥,N n ∈,n b 是否为正整数,请说明理由.【解析】(1)因为0qt =,220q t +≠,所以当0q =时,0t ≠,2n ≥时,1n n t a a −=,即n 为奇数时,2n a =;n 为偶数时,2n ta =. 记数列{}n a 的前n 项的和为n S ,当n 为偶数时,222n n t S ⎛⎫=+ ⎪⎝⎭,当n 为奇数时,112221224n n n t tn tS S n −−−⎛⎫=+=++=++ ⎪⎝⎭, 综上2,2221,214n n t n k S tn t n n k ⎧⎛⎫+= ⎪⎪⎪⎝⎭=⎨−⎪++=+⎪⎩,其中N k ∈.当0=t 时,0q ≠,2n ≥时,1n n a qa −=,此时{}n a 是等比数列, 当1q =时,2n S n =;当1q ≠时,()211nn q S q−=−,故()2,121,11nn n q S q q q=⎧⎪=−⎨≠⎪−⎩. (2)由(1)知,0=t ,2q时,2n n a =,22112121n n n n n n n n n a a d a a =+=++−+−1122121n n =+−−+,112211111112212121212121nin n i dn =⎛⎫⎛⎫⎛⎫=+−+−++− ⎪ ⎪ ⎪−+−+−+⎝⎭⎝⎭⎝⎭∑ 1212121n n n ≤+−<++(3)对任意2n ≥,N n ∈,n b 是正整数.理由如下: 当12q =,1t =时,21111322a a a =+=,此时24b =; 2321117212a a a =+=,此时324b =;由202n n b a =>−,平方可得2242n n a b =+,212142n n a b ++=+, 又222121111124n n n n n a a a a a +⎛⎫=+=++ ⎪⎝⎭,所以22221414221442n n n n b b b b +⎛⎫+=+++ ⎪+⎝⎭, 整理可得()222142n n n b b b +=+,当3n ≥时,()2221142n n n b b b −−=+,所以()()222222111424242n n n n n n b b b b b b +−−⎡⎤=+=++⎣⎦ ()()22242211141241n n n n n b b b b b −−−=++=+,所以()21121n n n b b b +−=+,由23N,N b b ∈∈,所以4N b ∈,以此类推,可知对任意2n ≥,N n ∈,n b 是正整数.【典例5-2】(2024·全国·模拟预测)已知数列{}n a 的各项均为正数,11a =,221n n n a a a ++≥.(1)若23a =,证明:13n n a −≥;(2)若10512a =,证明:当4a 取得最大值时,121112na a a +++<. 【解析】(1)由题意知,211n n n n a a a a +++≥,设1n n na q a +=,12n q q q ∴≤≤≤,23a =,11a =,13q ∴=,当2n ≥时,113211121111213n n nn n n a a a a a a q q q a q a a a −−−−=⋅⋅=⋅⋅≥⋅=.当1n =时,11a =满足13n n a −≥,综上,13n n a −≥.(2)()31011291231512a a q q q q q q a =⋅⋅=≥⋅⋅⋅,1238q q q ∴⋅⋅≤,4a ∴的最大值为8,当且仅当123456789q q q q q q q q q ⋅⋅=⋅⋅=⋅⋅时取等号.而12n q q q ≤≤≤,1292q q q ∴====,而10n ≥时,192n n q q q −≥≥≥=,1112n n n a a q −−≥∴⋅=,2112111111111121()()2121222212nn n n a a a −⎛⎫⋅− ⎪⎛⎫⎝⎭∴+++≤++++==−< ⎪⎝⎭−. 【变式5-1】(2024·浙江杭州·二模)已知等差数列{}n a 的前n 项和为n S ,且()*4224,21n n S S a a n ==+∈N .(1)求数列{}n a 的通项公式;(2)数列{}n b 满足13b =,令21n n n n a b a b ++⋅=⋅,求证:192nk k b =<∑. 【解析】(1)设等差数列{}n a 的首项为1a ,公差为d .由4224,21n nS S a a ==+,得()()11114684212211a d a da n d a n d +=+⎧⎨+−=+−+⎩, 解得:1a 1,d2,所以()()12121n a n n n *=+−=−∈N .(2)由(1)知,()()12123n n n b n b +−=+, 即12123n n b n b n +−=+,12321n n b n b n −−=+,122521n n b n b n −−−=−,……,322151,75b b b b ==, 利用累乘法可得:1211212325313212175n n n n n b b b n n b b b b b n n −−−−−=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅+− ()()()99112212122121n n n n n ⎛⎫==−≥ ⎪−+−+⎝⎭,13b =也符合上式,12311nkn n k bb b b b b −==+++++∑9111111112335572121n n ⎡⎤⎛⎫=−+−+−++− ⎪⎢⎥−+⎝⎭⎣⎦911221n ⎛⎫=−⎪+⎝⎭所以191912212nk k b n =⎛⎫=−< ⎪+⎝⎭∑.【变式5-2】(2024·广西·二模)在等差数列{}n a 中,26a =,且等差数列{}1n n a a ++的公差为4. (1)求10a ; (2)若2111n n n n b a a a −+=+,数列{}n b 的前n 项和为n S ,证明:21228n S n n <++. 【解析】(1)设{}n a 的公差为d ,则1212()()24n n n n n n a a a a a a d +++++−+=−==,2d =, 又26a =,所以1624a =−=, 所以42(1)22n a n n =+−=+,1022a =. (2)由(1)得11114()44(1)(2)412n b n n n n n n =+=−+++++,所以2212111(1)111()42222422284(2)8n n n n S b b b n n n n n n +=+++=−+⨯=++−<++++.1.在公差不为0的等差数列{}n a 中,3a ,7a ,m a 是公比为2的等比数列,则m =( ) A .11 B .13C .15D .17【答案】C【解析】设等差数列的公差为d ,则0d ≠, 因为3a ,7a ,m a 是公比为2的等比数列,所以()1111162,226a m d a d a d a d +−+==++,由前者得到12a d =,代入后者可得128m +=, 故15m =, 故选:C.2.记数列{}n a 的前n 项积为n T ,设甲:{}n a 为等比数列,乙:2n n T ⎧⎫⎨⎬⎩⎭为等比数列,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件 【答案】D【解析】若{}n a 为等比数列,设其公比为q ,则11n n a a q −=,(1)12(1)211n n n n n n T a q a q−+++−==,于是(1)12()22n n n n n T a q −=,(1)111211(1)12()222()22n n n n n n n n n n nT a qa q T a q ++++−==⋅,当1q ≠时,12n a q ⋅不是常数, 此时数列2n n T ⎧⎫⎨⎬⎩⎭不是等比数列,则甲不是乙的充分条件;若2n nT ⎧⎫⎨⎬⎩⎭为等比数列,令首项为1b ,公比为p ,则112n n n T b p −=,112(2)n n T b p −=⋅, 于是当2n ≥时,112112(2)22(2)n n n n n T b p a p T b p −−−⋅===⋅,而1112a T b ==, 当1b p ≠时,{}n a 不是等比数列,即甲不是乙的必要条件, 所以甲是乙的既不充分也不必要条件. 故选:D3.已知数列{}n a 为等比数列,且11a =,916a =,设等差数列{}n b 的前n 项和为n S ,若55b a =,则9S =( ) A .-36或36 B .-36C .36D .18【答案】C【解析】数列{}n a 为等比数列,设公比为q ,且11a =,916a =, 则89116a q a ==,则44q =, 则45514b a a q ===,则()199599362b b S b+⨯===,故选:C.4.已知等差数列{}n a 的前n 项和为n S ,36S =,()*3164,n S n n −=≥∈N ,20n S =,则n 的值为( )A .16B .12C .10D .8【答案】B【解析】由36S =,得1236a a a ++=①,因为()*3164,n S n n −=≥∈N ,20n S =,所以34n n S S −−=,即124n n n a a a −−++=②,①②两式相加,得1213210n n n a a a a a a −−+++++=,即()1310n a a +=, 所以1103n a a +=,所以()152023n n n a a n S +===,解得12n =. 故选:B.5.在等比数列{}n a 中,00n a >.则“001n n a a +>”是“0013n n a a ++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】设等比数列{}n a 的公比为0q ≠,当001n n a a +>时,即有00n n a q a >⋅,又00n a >,故1q <且0q ≠,当1q <−时,有0002311n n n a q a a +++=>,故不能得到0013n n a a ++>,即“001n n a a +>”不是“0013n n a a ++>”的充分条件;当0013n n a a ++>时,即有0002311n n n a q a a +++=<,即21q <且0q ≠,则001n n a q a +=⋅,当()1,0q ∈−时,由00n a >,故010n a +<,故001n n a a +>, 当()0,1q ∈时,0001n n n a q a a +=⋅<,亦可得001n n a a +>, 故“001n n a a +>”是“0013n n a a ++>”的必要条件;综上所述,“001n n a a +>”是“0013n n a a ++>”的必要不充分条件. 故选:B.6.已知正项数列{}n a 的前n 项和为n S ,且22n n nS a a =+,数列{}n b 的前n 项积为n T 且2n n T S =,下列说法错误的是( )A .2n S nB .{}n b 为递减数列C .202420242023b = D .2(1)n a n n =−【答案】B【解析】当1n =时,11122a a a =+,解得12a = 当2n ≥时,1122n n n n n S S S S S −−=−−+,即2212n n S S −−=,且212S =,所以数列}{2n S 是首项为2,公差为2的等差数列,所以()22212n S n n =+⋅−=,又0n a >,所以2n S n =,故A 正确; 当2n ≥时,有()22121n a n n n n =−=−,取1n =时,121112a =−=1a ,故数列}{n a 的通项公式为21n a n n =−,故D 正确;因为数列{}n b 的前n 项积为n T 且2n n T S =,所以21232n n n T b b b b S n =⋅⋅==,当1n =时,12b =, 当2n ≥时,()12111121111n n n T n n n b T n n n n −−+=====+−−−−, 显然1n =不适用,故数列{}n b 的通项公式为2,111,21n n b n n =⎧⎪=⎨+≥⎪−⎩, 显然122b b ==,所以数列{}n b 不是递减数列,故B 错误, 由当2n ≥时,1n n b n =−,得202420242024202412023b ==−,故C 正确,故选:B.7.(多选题)数列{}n a 满足:()111,32n n a S a n −==≥,则下列结论中正确的是( )A .213a =B .{}n a 是等比数列C .14,23n n a a n +=≥D .114,23n n S n −−⎛⎫=≥ ⎪⎝⎭【答案】AC【解析】由13(2)n n S a n −=≥, 当1122,31n S a a ====,解得213a =,故A 正确;当1n ≥,可得13n n S a +=,所以1133(2)n n n n S S a a n −+−=−≥,所以133(2)n n n a a a n +=−≥, 即14(2)3n n a a n +=≥,而2113=a a ,故C 正确,B 不正确; 因22112311413341,24313n n n n Sa a a a n −−−−⎡⎤⎛⎫−⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=++++=+=> ⎪⎝⎭−,故D 错误. 故选:AC.8.(多选题)设{}n a 是等差数列,n S 是其前n 项的和.且56S S <,678S S S =>,则下面结论正确的是( )A .0d ≤B .70a =C .6S 与7S 均为n S 的最大值D .满足0n S <的n 的最小值为14【答案】BCD【解析】A :因为678S S S =>,所以7678780,0S S a S S a −==−=<, 所以870d a a =−<,故A 错误; B :由A 的解析可得B 正确;C :因为56S S <,678S S S =>,所以6S 与7S 均为n S 的最大值,故C 正确;D :因为71132a a a =+,由()113131302a a S +==,()()114147814702a a S a a +==+<,故D 正确; 故选:BCD.9.(多选题)已知数列{}n a 满足:212n n n a a a λ+=++*()N n ∈,其中R λ∈,下列说法正确的有( )A .当152,4a λ==时,1n a n ≥+ B .当1,4λ∞⎡⎫∈+⎪⎢⎣⎭时,数列{}n a 是递增数列C .当2λ=−时,若数列{}n a 是递增数列,则()()1,31,a ∞∞∈−−⋃+D .当13,0a λ==时,1211112223n a a a +++<+++【答案】ACD【解析】对于A ,当54λ=时,2215111042n n n n n a a a a a +⎛⎫−=++=++≥> ⎪⎝⎭,又12a =,故11n n a a +>+,所以1211211n n n a a a a n n −−>+>+>>+−+=,故A 项正确.对于B ,因为22111()24n n n n n a a a a a λλ+−=++=++−且1,4λ∞⎡⎫∈+⎪⎢⎣⎭,所以10n n a a +−≥, 当14λ=,112a =-时,22211111,,()2220n n n n n a a a a a a a ++⇒⇒−=+==-==-,此时数列{}n a 是常数列,故B 项错误;对于C, 由于数列{}n a 是递增数列, 当2n ≥时,故10n n a a −−>,2211111(22)(22)()(2)0n n n n n n n n n n a a a a a a a a a a +−−−−−=+−−+−=−++>,故120n n a a −++>, 所以2121020a a a a −>⎧⎨++>⎩,即()()211121112202220a a a a a a ⎧+−−>⎪⎨+−++>⎪⎩,解得11a >或13a <−,故C 项正确;对于D,当0λ=时,2212(1)1n nn n a a a a +=+=+−,结合13a =,可知2214111a a =−=>, 232133a a =−>,⋯,结合111()(2)n n n n n n a a a a a a +−−−=−++,可知{}n a 是递增数列,13n a a ≥=,则12(2)3(2)n n n n a a a a ++=+≥+, 即1232n n a a ++≥+,所以1121212223(2)222n nn n n a a a n a a a −−−−+++⨯⨯⨯≥≥+++, 即11523(2)3(2)3n nn a a n −+≥+=⨯≥,所以131(2)253n n n a ≤⨯≥+,当1n =时,1111312553a =≤⨯+,所以*131(N )253n n n a ≤⨯∈+, 可得2111(1)1311133133()125333510313nn n i i a =−≤+++=⨯<<+−∑,故D 项正确; 故选:ACD .10.(多选题)已知数列{}n a 满足2122n n n a a a +=−+,则下列说法正确的是( )A .当112a =时,()5124n a n <≤≥ B .若数列{}n a 为常数列,则2n a = C .若数列{}n a 为递增数列,则12a > D .当13a =时,1221n n a −=+【答案】AD【解析】对于A ,当112a =时,254a =,令1n nb a =−,则21n n b b +=,214b =,故()1024n b n <≤≥,即()5124n a n <≤≥,A 正确;对于B ,若数列{}n a 为常数列,令n a t =,则222t t t =−+,解得1t =或2,1n t a =∴=或2n a =,B 不正确;对于C ,令1n n b a =−,则21n n b b +=,若数列{}n a 为递增数列,则数列{}n b 为递增数列,则210n n n n b b b b +−=−>,解得0n b <或1n b >.当11b <−时,2211b b =>,且21n n b b +=,2312,n b b b b b ∴<<⋅⋅⋅<<⋅⋅⋅<,此时数列{}n b 为递增数列,即数列{}n a 为递增数列;当110b −≤<时,201b <≤,且21n n b b +=,2312,n b b b b b ∴≥≥⋅⋅⋅≥≥⋅⋅⋅<,此时数列{}n b 不为递增数列,即数列{}n a 不为递增数列;当11b >时,21n n b b +=,123n b b b b ∴<<<⋅⋅⋅<<⋅⋅⋅,此时数列{}n b 为递增数列,即数列{}n a 为递增数列.综上,当11b <−或11b >,即10a <或12a >时,数列{}n a 为递增数列,C 不正确;对于D ,令1n n b a =−,则21n n b b +=,12b =,两边同时取以2为底的对数,得212log 2log n n b b +=,21log 1b =,∴数列{}2log n b 是首项为1,公比为2的等比数列, 12log 2n n b −∴=,即11222,21n n n n b a −−=∴=+,D 正确.故选:AD.11.洛卡斯是十九世纪法国数学家,他以研究斐波那契数列而著名.洛卡斯数列就是以他的名字命名,洛卡斯数列{}n L 为:1,3,4,7,11,18,29,47,76,,即1213L L ==,,且()21n n n L L L n *++=+∈N .设数列{}n L 各项依次除以4所得余数形成的数列为{}n a ,则2024a = . 【答案】3【解析】{}n L 的各项除以4的余数分别为1,3,0,3,3,2,1,3,0,,故可得{}n a 的周期为6,且前6项分别为1,3,0,3,3,2, 所以20246337223a a a ⨯+===. 故答案为:3.12.某钢材公司积压了部分圆钢,经清理知共有2024根,每根圆钢的直径为10厘米.现将它们堆放在一起.若堆成纵断面为等腰梯形(如图每一层的根数比上一层根数多1根),且为考虑安全隐患,堆放高度不得高于32米,若堆放占用场地面积最小,则最下层圆钢根数为 .【答案】134【解析】设第一层有m 根,共有n 层,则(1)20242n n n S nm −=+=, 4(21)404821123n m n +−==⨯⨯,显然n 和21m n +−中一个奇数一个偶数,则1121368n m n =⎧⎨+−=⎩或1621253n m n =⎧⎨+−=⎩或23176n m =⎧⎨=⎩,即11179n m =⎧⎨=⎩或16119n m =⎧⎨=⎩或2377n m =⎧⎨=⎩,显然每增加一层高度增加53当11179n m =⎧⎨=⎩时,10531096.6h =⨯≈厘米150<厘米,此时最下层有189根; 当16119n m =⎧⎨=⎩时,155310139.9h =⨯≈厘米150<厘米,此时最下层有134根;当2377n m =⎧⎨=⎩时,22310200.52150h =⨯≈>厘米,超过32米,所以堆放占用场地面积最小时,最下层圆钢根数为134根. 故答案为:13413.已知数列{}n a 是给定的等差数列,其前n 项和为n S ,若9100a a <,且当0m m =与0n n =时,m nS S −{}()*,|30,m n x x x ∈≤∈N 取得最大值,则00mn −的值为 .【答案】21【解析】不妨设数列{}n a 的公差大于零, 由于9100a a <,得9100,0a a <>, 且9n ≤时,0n a <,10n ≥时,0n a >, 不妨取m n >,则1mm n ii n S S a=+−=∑,设3030910i i k S S a ==−=∑,若9,30n m >=,则030301n ii n S S ak =+−≤<∑,此时式子取不了最大值;若9,30n m <=,则09301n ii n S S a k =+−≤+∑,又9i ≤时,0i a <, 因为09301n ii n S S a k k =+−≤+<∑,此时式子取不了最大值;因此这就说明09n n ==必成立. 若30m <,则0910m m i i S S a k =−≤<∑,这也就说明030m <不成立,因此030m =, 所以0021m n −=. 故答案为:21.14.已知数列 {}n a 是各项均为正数的等比数列, n S 为其前 n 项和, 1331614a a S ==,, 则2a = ; 记 ()1212n n T a a a n ==,,, 若存在 *0n ∈N 使得 n T 最大, 则 0n 的值为 .【答案】 4 3或4【解析】等比数列{}n a 中,公比0q >;由213216a a a ⋅==,所以24a =,又314S =,所以13131610a a a a ⋅=⎧⎨+=⎩解得1328a a =⎧⎨=⎩或1382a a =⎧⎨=⎩;若1328a a =⎧⎨=⎩时,可得2q,则21224a a q ==⨯=,且012,,,n a a a ⋯的值为2,4,8,16⋯,,可知数列{}n a 单调递增,且各项均大于1, 所以不会存在0n 使得012,,,n a a a ⋯的乘积最大(舍去);若1382a a =⎧⎨=⎩时,可得12q =,则211842a a q ==⨯=,且012,,,n a a a ⋯的值为118,4,2,1,,24,…,可知数列{}n a 单调递减,从第5项起各项小于1且为正数, 前4项均为正数且大于等于1,所以存在03n =或04n =,使得8421⨯⨯⨯的乘积最大, 综上,可得0n 的一个可能值是3或4. 故答案为:4;3或415.在数列{}n a 中,122,3a a ==−.数列{}n b 满足()*1n n n b a a n +=−∈N .若{}n b 是公差为1的等差数列,则{}n b 的通项公式为nb= ,n a 的最小值为 .【答案】 6n − 13−【解析】由题意1215b a a =−=−,又等差数列{}n b 的公差为1,所以()5116n b n n =−+−⋅=−; 故16n n a a n +−=−,所以当6n ≤时,10n n a a +−≤,当6n >时,10n n a a +−>, 所以123456789a a a a a a a a a >>>>>=<<<⋅⋅⋅,显然n a 的最小值是6a .又16n n a a n +−=−,所以()()()()()612132435465a a a a a a a a a a a a =+−+−+−+−+−()()()()()25432113=+−+−+−+−+−=−,即n a 的最小值是13−. 故答案为:6n −,13−16.第24届北京冬奥会开幕式由一朵朵六角雪花贯穿全场,为不少人留下深刻印象.六角雪花曲线是由正三角形的三边生成的三条1级Koch 曲线组成,再将六角雪花曲线每一边生成一条1级Koch 曲线得到2级十八角雪花曲线(如图3)……依次得到n 级*()n K n ∈N 角雪花曲线.若正三角形边长为1,我们称∧为一个开三角(夹角为60︒),则n 级n K 角雪花曲线的开三角个数为 ,n 级n K 角雪花曲线的内角和为 .。

高考文科数学一轮复习练习第五篇第4节 数列求和及综合应用

高考文科数学一轮复习练习第五篇第4节 数列求和及综合应用

第4节数列求和及综合应用【选题明细表】知识点、方法题号公式法、转化法、分组法求和1,3,5,7,10裂项相消、错位相减法求和2,4,11数列的综合应用8,9,12数列的实际应用 6基础巩固(时间:30分钟)1.(2017·山西临汾适应性训练考试)已知数列{a n}的前n项和S n=2n1,则数列{}的前n项和T n等于( C )(A)(B)4n1(C) (D)解析:由a1=S1=1,n≥2时,a n=S n S n1=2n1,则=4n1,该数列{}是以1为首项,公比为4的等比数列,其前n项和T n=.故选C.2.数列{a n}满足a1=1,且对于任意的n∈N*都有a n+1=a n+a1+n,则++…+等于( D )(A) (B)(C) (D)解析:由题意a n+1a n=n+1,所以a n a n1=n,所以a n=a n a n1+a n1a n2+…+a2a1+a1=1+2+…+n=,所以==2[].所以++…+=2(1++…+)=2×=.故选D.3.(2017·东北三省四市二模)已知数列{a n}满足a n+1a n=2,a1=5,则|a1|+|a2|+…+|a6|等于( C )(A)9 (B)15(C)18 (D)30解析:因为a n+1a n=2,a1=5,所以数列{a n}是公差为2的等差数列.所以a n=5+2(n1)=2n7.数列{a n}的前n项和S n==n26n.令a n=2n7≥0,解得n≥.所以n≤3时,|a n|=a n,n≥4时,|a n|=a n.则|a1|+|a2|+…+|a6|=a1a2a3+a4+a5+a6=S62S3=626×62(326×3)=18.故选C.4.(2017·宁夏石嘴山平罗县三模)已知函数f(x)=xα的图象过点(4,2),令a n=(n∈N*),记数列{a n}的前n项和为S n,则S2 017等于( B )(A)+1 (B) 1(C) 1 (D)+1解析:由题4α=2,解得α=,f(x)=.则a n===,则S2 017=1++…+= 1.故选B.5.(2018·广东广州月考)数列{a n}满足a2=2,a n+2+(1)n+1a n=1+(1)n(n∈N*),S n为数列{a n}的前n项和,则S100等于( B )(A)5 100 (B)2 550(C)2 500 (D)2 450解析:由a n+2+(1)n+1a n=1+(1)n(n∈N*),可得a1+a3=a3+a5=a5+a7=...=0,a4a2=a6a4=a8a6= (2)所以S100=50×0+50×2+×2=2 550.故选B.6.在2016年至2019年期间,甲每年6月1日都到银行存入m元的一年定期储蓄,若年利率为q保持不变,且每年到期的存款本息自动转为新的一年定期,到2020年6月1日甲去银行不再存款,而是将所有存款的本息全部取出,则取回的金额是( D )(A)m(1+q)4元 (B)m(1+q)5元(C)元 (D)解析:2019年存款的本息和为m(1+q),2018年存款的本息和为m(1+q)2,2017年存款的本息和为m(1+q)3,2016年存款的本息和为m(1+q)4,四年存款的本息和为m(1+q)+m(1+q)2+m(1+q)3+m(1+q)4= =.故选D.7.已知数列{a n}为1,3,7,15,31,…,2n1,数列{b n}满足b1=1,b n=a n a n1,则数列{}的前n1项和S n1为.解析:由题意可得:数列{b n}的通项公式为,b n=a n a n1=(2n1)(2n11)=2n1,所以=21n.数列{}是首项为1,公比为的等比数列,其前n1项和S n1==222n.答案:222n8.(2017·广东惠州龙门模拟)设R n是等比数列{a n}的前n项的积,若25(a1+a3)=1,a5=27a2,则当R n取最小值时,n= .解析:因为a5=27a2,所以=q3=27,所以q=3.因为25(a1+a3)=1,所以25a1(1+q2)=1,所以a1=.所以a n=·3n1,若使R n取得最小值,则则a n=·3n1≤1,a n+1=·3n≥1;解得n=6;故当R n取最小值时,n=6.答案:6能力提升(时间:15分钟)9.(2017·湖南长沙市一中模拟)已知等比数列{a n}的首项为,公比为,前n项和为S n,则当n∈N*时,S n的最大值与最小值之和为. 解析:由等比数列前n项和公式可得S n=1()n,令t=S n,当n为奇数时,S n=1+()n单调递减,1<S n≤S1=,当n为偶数时,S n=1()n单调递增,S n≥S2=,即≤S n<1,则≤S n≤,且S n≠1,即≤t≤,且t≠1,令f(t)=t=S n,则≤f(t)≤,且f(t)≠0,最大值与最小值之和为+=.答案:10.(2017·四川雅安市模拟)在等差数列{a n}中,a2+a7=23,a3+a8= 29.(1)求数列{a n}的通项公式;(2)设数列{a n+b n}是首项为1,公比为c的等比数列,求{b n}的前n项和S n.解:(1)设等差数列{a n}的公差是d.依题意a3+a8(a2+a7)=2d=6,从而d=3.所以a2+a7=2a1+7d=23,解得a1=1.所以数列{a n}的通项公式为a n=3n+2.(2)由数列{a n+b n}是首项为1,公比为c的等比数列,得a n+b n=c n1,即3n+2+b n=c n1,所以b n=3n2+c n1.所以S n=[1+4+7+…+(3n2)]+(1+c+c2+…+c n1)=+(1+c+c2+…+c n1).从而当c=1时,S n=+n=;当c≠1时,S n=+.11.(2017·广西玉林一模)已知数列{a n}中,a1=1,a n+1=(n∈N*).(1)求证:{+}为等比数列,并求{a n}的通项公式a n;(2)数列{b n}满足b n=(3n1)··a n,求数列{b n}的前n项和T n.解:(1)因为a1=1,a n+1=,所以==1+,即+=+=3(+),则{+}为等比数列,公比q=3,首项为+=1+=,则+=·3n1,即=+·3n1=(3n1),即a n=.(2)b n=(3n1)··a n=,则数列{b n}的前n项和T n=+++…+T n=+++…+,两式相减得T n=1+++…+==2=2,则T n=4.12.(2017·天津河北区一模)设等差数列{a n}的前n项和为S n,且a2=8,S4=40.数列{b n}的前n项和为T n,且T n2b n+3=0,n∈N*.(1)求数列{a n},{b n}的通项公式;(2)设c n=求数列{c n}的前n项和P n.解:(1)设等差数列{a n}的公差为d,由题意,得解得所以a n=4n,因为T n2b n+3=0,所以当n=1时,b1=3,当n≥2时,T n12b n1+3=0,两式相减,得b n=2b n1,(n≥2)则数列{b n}为等比数列,所以b n=3·2n1.(2)c n=当n为偶数时,P n=(a1+a3+…+a n1)+(b2+b4+…+b n)=+= 2n+1+n22,当n为奇数时,P n=(a1+a3+…+a n2+a n)+(b2+b4+…+b n1)=+=2n+n2+2n1.所以P n=。

2019高考真题名校模拟(文数)数列求和数列的综合应用(含答案)

2019高考真题名校模拟(文数)数列求和数列的综合应用(含答案)

6.4 数列求和、数列的综合应用五年高考A 组统一命题·课标卷题组考点一数列求和1.(2014课标I .17,12分.0.507)已知}{n a 是递增的等差数列42,,a a 是方程0652=+-x x 的根. (1)求}{n a 的通项公式: (2)求数列}2{nna 的前n 项和. 2.(2017课标全国Ⅲ.17,12分)设数列}{n a 满足+++ 213a a .2)12(n a n n =- (1)求}{n a 的通项公式: (2)求数列}12{+n a n的前n 项和. 考点二数列的综合问题1.(2017课标全国¨.17,12分)已知等差数列}{n a 的前n 项和为n s .等比数列}{n b 的前n 项和为.2,1,1,2211=+=-=b a b a T n(1)若,533=+b a 求}{n b 的通项公式; (2)若,213=T 求⋅3s2.(2016课标全国11,17,12分)等差数列}{n a 中.+=+543,4a a a .67=a (1)求}{n a 的通项公式:(2)设],[n n a b =求数列}{n b 的前10项和,其中[x]表示不超过x 的最大整数,如.2]6.2[,0]9.0[==B 组 自主命题·省(区、市)卷题组考点一数列求 合1.(2015江苏.11,5分)设数列}{n a 满足,11=a 且11+=-+n a a n n *),(N n ∈则数列}1{na 前10项的和为________2.(2018天津.18,13分)设}{n a 是等差数列,其前n 项和为}{*);(n n b N n S ∈是等比数列,公比大于0.其前n 项和为)(*∈N n T n .已知⋅+=+=+==6455342312,,2,1a a b a a b b b b (1)求n S 和,n T(2)若,4)(21n n n n b a T T T s +=++++ 求正整数n 的值.3.(2017天津,18,13分)已知}{n a 为等差数列,前n 项和为n S }{*),(n b N n ∈是首项为2的等比数列,且公比大于=+32,0b b ⋅=-=41114311,2,12b S a a b (1)求}{n a 和的通项公式:(2)求数列}{2n n b a 的前n 项和⋅∈*)(N n4.(2015天津.18,13分)已知}{n a 是各项均为正数的等比数列,}{n b 是等差数列,且.73,2,1253321=-=+==b a a b b b a l(1)求}{n a 和}{n b 的通项公式;(2)设*,,N n b a c n n n ∈=求数列}{n c 的前n 项和.5.(2017山东.19,12分)已知}{n a 是各项均为正数的等比数列,且⋅==+32121,6a a a a a (1)求数列}{n a 的通项公式:}){2(n b 为各项非零的等差数列,其前n 项和为⋅n s 已知=+12n s !1+n n b b 求数列}{nn a b的前n 项和⋅n T6.(2015山东.19,12分)已知数列}{n a 是首项为正数的等差数列,数列}1{1+⋅n n a a 的前n 项和为12+n n (1)求数列}{n a 的通项公式:(2)设,2)1(n an n a b ⋅+=求数列}{n b 的前n 项和⋅n T考点二数秘豹镰龠游题1.(2018江苏.14,5分)已知集合=⋅∈-==B N n n x x A },,12|{⋅∈=*},2|{N n x x n将B A的所有元素从小到大依次排列构成一个数列}.{n a 记n S 为数列}{n a 的前n 项和,则使得>n s 112+n a 成立的n 的最小值为_________2.(2018江苏.20,16分)设}{n a 是首项为,1a 公差为d 的等差数列,}{n b 是首项为,1b 公比为q 的等比数列.(1)设,2,1,011===q b a 若l n n b b a ≤-||对4,3,2,1=n 均成立,求d 的取值范围:(2)若],2,1(,,0*11m q N m b a ∈∈>=证明:存在,R d ∈使得1||b b a n n ≤-对1,,3,2+=m n 均成立,并求d 的取值范围(用q m b ,,1表示).3.(2017北京.15,13分)已知等差数列}{n a 和等比数列}{n b 满足⋅==+==542421,10,1a b b a a b a l (1)求}{n a 的通项公式:(2)求和:⋅++++-12531n b b b b4.12016浙江.17,15分)设数列}{n a 的前n 项和为⋅n s 已知=2s .*,12,41N n S a n n ∈+=+ (1)求通项公式,n a(2)求数列|}2{|--n a n 的前n 项和.5.(2014四川.19,12分)设等差数列}{n a 的公差为d ,点,(n a )n b 在函数xx f 2)(=的图象上⋅∈*)(N n (1)证明:数列}{n b 为等比数列;(2)若,11=a 函数)(x f 的图象在点),(22b a 处的切线在x 轴上的截距为,2ln 12求数列}{2n n b a 的前n 项和⋅n S6.(2016四川.19.12分)已知数列}{n a 的首项为n S ,1为数列}{n a 的前n 项和,,11+=+n n qs s 其中.*,0N n q ∈>(1)若3232,,a a a a +成等差数列,求数列}{n a 的通项公式;(2)设双曲线1-2/22=n a y x 的离心率为,n e 且,22=e 求 ++2221e e .2n e +7.(2017江苏.19,16分)对于给定的正整数k ,若数列}{n a 满足:1111-++-+--++++++k n n n k n k n a a a a an k n ka a 2=++对任意正整数)(k n n >总成立,则称数列}{n a 是“P(k)数列”.(1)证明:等差数列}{n a 是“P(3)数列”;(2)若数列}{n a 既是“P(2)数列”,又是“P(3)数列”,证明:}{n a 是等差数列,突破方法方法1 错位相减法求和例1(2016山东,19,12分)已知数列}{n a 的前n 项和n S }{,832n b n n +=是等差数列.且⋅+=+1n n n b b a (1)求数列}{n b 的通项公式:(2)令n n n n b a c )2()1(1++=+求数列}{n c 的前n 项和⋅n T1-1(2016吉林长春外国语学校期末.18)已知数列}{n a 是公差大于零的等差数列,数列}{n b 为等比数列,且1=t a ,.13,1,233221=+=-=b a a b b (1)求数列}{n a 和}{n b 的通项公式: (2)设,n n n b a c =求数列}{n c 的前n 项和⋅n T方法2裂项相消法求和例2(2015安徽.18,12分)已知数列}{n a 是递增的等比数列,且.8,93241==+a a a a (1)求数列}{n a 的通项公式;(2)设n S 为数列}{n a 的前n 项和,,11++=n n n n s s ab 求数列}{n b 的前n 项和⋅n T2-1(2017内蒙古呼和浩特一模)等差数列}{n a 中.=2a 8.前6项和,666=S 设⋅+++=+=n n nn b b b T a n b 21,)1(2.则=n T ( )111.+-n A 211.+-n B 1121.+-n C 2121.+-n D2-2(2016黑龙江哈尔滨六中期末.17)已知数列的前n 项和为,n S 且满足⋅∈+=*)(121N n s a n n (1)求数列}{n a 的通项公式; (2)若,1,log 12+==n n n n n b b c a b 且数列}{n c 的前n 项和为,n T 求n T 的取值范围,三年模拟A 组2016-2018年高考模拟·基础题组考点一数列求和1.(2018海南二模)已知数列}{n a 的前n 项和为,n S 且满足=1a ,12,11+=++n a a n n 则=20172017S ( ) 1009.A 1008.B 2.C 1.D2.(2018新疆乌鲁木齐第二次质量监测)把函数>=x x x f (sin )()0所有的零点按从小到大的顺序排列,构成数列}{n a .数列}{n b 满足,.3n n n a b =则数列}{n b 的前n 项和=n T _________3.(2018东北三省三校二模)数列}{n a 中,.)(1(,211n na n a +=*),(0)11N n na a a n n n ∈=-+++设数列}2{+n a n的前n 项和为,n s 则=n s ______ 4.(2017重庆八中月考(八))已知正项数列}{n a 满足,11=a ,4)11)(11(11=+++nn n n a a a a 数列}{n b 满足 ,1111nn n a a b +=+记{}n b 的前n 项和为,n T 则20T 的值为_______ 5.( 2017辽宁部分重点中学协作体考前模拟)已知数列}{n a 满足,12*),(12,111+=∈+==+n ab N n a a a x n n n n n 则数列}{n b 的前n 项和=n s ________6.(2017吉林大学附中七模)在各项均为正数的等比数列}{n a 中,,21=a 且2313,,2a a a 成等差数列.(1)求数列}{n a 的通项公式;(2)若数列}{n b 满足,log 2n n a b =数列}{nn a b的前n 项和为,n T 求证:.2<n T7.(2017甘肃二诊)已知等差数列}{n a 中,,8,2532=+=a a a 数列}{n b 中,,21=b 其前n 项和n S 满足:*).(21N n s b n n ∈+=+(1)求数列}{}{n n b a 、的通项公式: (2)设,nnn b a c =求数列}{n c 的前n 项和⋅n T考点二 数列的综合问题1.(2018陕西西安八校第一次联考)设等差数列}{n a 的前n 项和为,n S 若,576S S S >>则满足01<+n n s s 的正整数n 的值为( )10.A 11.B 12.C 13.D2.(2017陕西西安铁一中五模)已知∈+=+n n a n n )(2(log )1(*),N 我们把使n a a a a 321为整数的数n 叫做“优数”,则在区间(1,2004)内的所有优数的和为( )1024.A 2003.B 2026.C 2048.D3.(2017黑龙江八校联考)已知数列}{n a 的前n 项和为n S ,且1a ,2,11+==+n n s a 则满足1012<nn s S的n 的最小值为 ( )4.A5.B6.C7.D4.(2018新疆乌鲁木齐地区第一次诊断测试)设n S 是等差数列}{n a 的前n 项和,若,0,02625<>S S 则数列25252211,,,a sa s a s 的最大项是第________项.5.(2018吉林四平质量检测)等比数列}{n a 中,,4,281==a a 函数),())(()(821a x a x a x x x f ---= 则=)0(f ________6.(2017吉林第二次调研)设n S 为数列}{n a 的前n 项和,若n a 2*),(2)1(2)1(N n a n n n n n ∈⋅-+=⋅-+ 则=10S ________B 组2016-2018年高考模拟·综合题组一、选择题(每题5分,共10分)1.(2018甘肃兰州一诊)数列}{n a 中,,11=a 对任意*,N n ∈有,11n n a n a ++=+设,1nn a b =则 =+++201821b b b ( )10092017.A 20182017.B 20192018.C 2019640.3D 2.(2018陕西西安长安一中第八次质检)已知定义在R 上的函数)(x f 是奇函数且满足,3)2(),()23(-=-=f x f x f 数列}{n a 满足,1-=l a 且n a s n n +=2(其中n s 为}n a 的前n 项和).则 =+)()(65a f a f ( )3.A 2.-B 3.-C 2.D二、填空题(每题5分,共30分)3.(2018辽宁抚顺3月模拟)已知数列}{n a 的前n 项和为,n S 且,2,111+==+n n S a a 则满足1012<n n S S 的n 的最小值为______4.(2017内蒙古百校联盟3月质量监测甲卷)各项均为正数的数列}{n a 的前n 项和为,n S 且n S 满足n n S n n S n n )1()1(22-+++),(01⋅∈=-N n 则=+++201721s s s _______5.(2017辽宁沈阳东北育才学校九模)设n s 是数列}{n a 的前n 项和.且,,1111n n n s s aa =-=++则=100a _____6.(2017陕西咸阳三模)设数列}{n a 满足,6,221==a a 且-+2n a ,221=++n n a a 用[x]表示不超过x 的最大整数,如[0.6]=O ,[1.2]=1,则*)]([21N m a ma m a m m∈+++ 的值用m 表示为_________ 7.(2017甘肃兰州一中冲刺模拟)已知数列}{}{n n b a 、满足=n b *,,log 2nEN a n 其中}{n b 是等差数列,且,4929=ωa a 则++21b b =++20173b b _________8.(2017东北师大附中等四校第四次联合模拟)已知数列}{n a 满足,2n n a =则数列}{n n b a ⋅满足对任意的,⋅∈N n 都有+n a b 1,122112--=++-na b a b n n n 则数列}{n n b a ⋅的前n 项和n T =________三、解答题(共50分)9.(2018吉林长春质量监测(二))已知数列}{n a 的通项公式为.112-=n a n (1)求证:数列}{n a 是等差数列:(2)令|,|n n a b =求数列}{n b 的前10项和⋅10S10.(2018内蒙古呼和浩特质量普查)已知数列}{n a 的前n 项和,22nn S n +=数列}{n b 的前n 项和n T 满足 .*,844N n b T n n ∈=+(1)分别求数列}{n a 和}{n b 的通项公式; (2)求数列}{n n b a 的前n 项和⋅n C11.(2018新疆乌鲁木齐地区第二次诊断)已知}{n a 是等差数列,且,4,84243a a a a =+=+数列}{n b 满足⋅=++211n n n a a b(1)求数列}{n a 的通项公式: (2)设数列}{n b 的前n 项和为,n S 若,2011>+n s n 求n 的最大值.12.(2016重庆南开中学二诊.17)若n A 和n B 分别表示数列}{n a 和}{n b 的前n 项和,对任意正整数 -+=n n A n a n 3),1(2,.4n B n =(1)求数列}{n b 的通项公式;(2)记,2nn n B A c +=求}{n c 的前n 项和⋅n S答案。

2024届高考二轮复习文科数学课件:数列求和方法及其综合应用

2024届高考二轮复习文科数学课件:数列求和方法及其综合应用

设等比数列{bn}的公比为 q,则 q

5
2
= =8,q=2,则 b1= =2,
2

3
所以 bn=2n. ......................................................................................................6 分
所以 an=a1+(n-1)d=15-2n.
(1 + )
(2)设等差数列{an}的前 n 项和为 Sn,则 Sn= 2
可知,an=15-2n,令 an≥0,解得
=
(13+15-2)
2
=14n-n
,由(1)
2
15
n≤ 2 ,所以该数列的前
7 项是正数,从第 8 项起
为负数,当 n≤7 时,Tn=Sn=14n-n2,当 n≥8 时,Tn=-Sn+2S7=n2-14n+98.综上所
的递推关系,然后转化为数列{an-1}的递推关系即可得证;
分析2:(2)问中{cn}的奇数项和偶数项对应不同的数列,所以分奇、偶项分
别求解.显然奇数项是一个等比数列,但要注意其公比不是3,而是32=9;偶数
项的求和需要利用裂项相消法求解;
分析3:数列分组求和的关键在于根据通项公式的结构特征准确分组,通过
分组将其转化为两个或多个简单数列的求和,从而达到最终目标.
对点训练3
(12分)(2023甘肃高考一诊)已知等差数列{an}的前n项和为Sn,且a6=2,S5=5,
等比数列{bn}中,b2=4,b5=32.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=an+bn,求数列{cn}的前n项和Tn.

文科数学专题数列求和及其应用(专练)高考二轮复习资料含答案

文科数学专题数列求和及其应用(专练)高考二轮复习资料含答案

号题10数列求和及其应用(押題专练〉11111 .已知数列12, 3才,5§, 7^6,…,则其前n 项和S n 为(2 1 2 1 A . n + 1 —尹B . n + 2-尹2 1 2 1C. n + 1 — 2^—1 D . n + 2 — 2^1【答案】A1【解析】••• a n = 2n — 1 + 2n ,22.若数列{an }的通项公式为an = n ( n + 2),则其前n 项和Sn 为()1A .1 一3 1 1 — ___ ____ 2 n +1 n +2【答案】D【解析】丁弘=用(二)斗着一 1一 n + 2.3. 已知等比数列{a n }中,a 2a s = 4a §,等差数列{b n }中,b 4 + b 6 = a 5,则数列{b n }的前9项 和S g 等于()A . 9 B. 18C. 36D . 72【答案】B【解析】•••在等比数列{a n }中,a 2 a 8= 4a 5,即卩a 5= 4a 5, --a 5 = 4.由题意可知 a 5 = b 4+ b 6= 2b 5= 4,「. b 5= 2. S g = 9b 5= 18.4. 等比数列{a n }中,a 4 = 2,a 7= 5,则数列{lg a *}的前10项和等于().S?!=血十如+…+心=1 ―1 1 _ 1__ 1 _3__1_ M M +22 ?t+l M +2 2 -1--S n =n (1 + 2n — 1)2(1-站21---- = ” + 1 —T n1 2 - 1 一 21 n + 2A. 2B. lg 50C. 5D. 10【答案】C【解析】由题意可知 a 4a 7= a 5a 6= a 3a 8= a 2a 9= a i a io ,即 a i a 2・・a 9a io = 10,所以数列{lg a n }的前 10 项和等于 lg a i + lg a 2+ "•+ lg a ?+ lg a io = Ig a i a 2・・a io = lg 105= 5. 5•中国古代数学著作《算法统宗》中有这样一个问题:三百七十八里关,初行健不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半, 走了 6天后到达目的地,请问第二天走了( )A . 192 里 B. 96 里 C . 48 里 D . 24 里 1a 1 1 — 6a1为首项,公比为2的等比数列,贝U —'—11 —_ 1 2=378,解得a 1= 192,则96,即第二天走了 96里.6.在数列{a n }中,a n + 1 — a n = 2, S 为{an }的前n 项和.若S10 = 50 ,则数列{an + an + 1}的前 10项和为 .【答案】120【解析】{a n + a n +1}的前 10 项和为 a 1 + a ?+ a ?+ a 3 + "•+ a 1°+ an = 2(a 1 + a ?+•••+ a^) + an — a 1 = 2S )0 + 10X2= 120.7•已知数列5, 6, 1,— 5,…,该数列的特点是从第二项起,每一项都等于它的前后 两项之和,则这个数列的前 16项之和S6等于 ____________ .【答案】7来源【解折】根据题意这个数列的前了项分别为几® 1, -5; -爲-1, 5, 6,发现从第7项起,数字 重复出现,所臥此数列为周期数列,且周期为6前6项和为、+6+1 + (—5)+(—6) + (—1)=0又因为16=2溺十4』所以这个数列的前6项之和Sif=2x0 + 7=7.&已知定义在 R 上的函数f(x)是奇函数,且满足 f(x)= f(x + 3), f(— 2)=— 3•若数列{a n } 中,a 1 = — 1,且前n 项和$满足 学=2晋+ 1 ,贝V f(a 5) + f(a 6)= ____________________________ .【答案】3【解析】•••函数f(x)是奇函数, ••• f (— x)=— f(x), f(0)= 0. •-f(x) = f(x + 3),• f(x)是以3为周期的周期函数.S 1= 2a n + n ,• 5-1 =2an - 1+ (n — 1)(n > 2)【答案】B【解析】由题意,知每天所走路程形成 1 26即’a 1+ d = 2, 81+ 2d = 3,解得’a 1= 1, d = 1.两式相减并整理得 a n = 2a n -1 — 1,即a n — 1 == 2(a n -1 — 1)(n 》2) •••数列{a n — 1}是以2为公比的等比数列, 首项为a 1 — 1 = — 2,• a n — 1 = — 2x2—1 = — 2n , a n =— 2n + 1,--a 5 = — 31 , a 6= — 63 ,•-f(a 5)+ f(a 6)= f( — 31) + f(— 63) = f (2) + f(0) = f(2)=— f(— 2)= 3.9.已知{a n }是等差数列,{b n }是等比数列,且 b 2= 3, b 3 = 9, a 1 = b , a^= b 4. (1)求 {a n }的通项公式;⑵设C n = a n + b n ,求数列G }的前n 项和.解:⑴设等比数列㈣松t 力形1 j 加二加q —2?} g二如二萨«用=1, 2』3,…).设等差数列{血}的公差为d.二 1 + 13*27, 即血n=2fl — l(?t= 1 / 2, 3 j _ ).⑵由(1禹1有加一 1』人=萨1, 因此 cir=at+^=2n-1+3" L 从而数列{"}的前H 项和(1)求 {a n }的通项公式;⑵设b n = 20^,求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的公差为d ,首项为a 1,T S 3= 6, S 5= 15, [.Com]10 .已知等差数列{a n }的前n 项和S n 满足S 3= 6, S 5= 15.[5a 1+ x 5X 5— 1) d = 15.二8心的通项公式为幺=创+ (用一lX=H-(w-l)xl=w.(2}由(1并导加=豈=気・'忑詁+寻+春+…+^~^+轧®n2™-11.已知函数f(x)= x2+ bx为偶函数,数列何}满足a n+i = 2临一1) + 1,且a y= 3, a n>1.⑴设b n= log2(a n- 1),证明:数列{b n+ 1}为等比数列;⑵设c n= nb n,求数列G}的前n项和S n.(1)证明:•••函数f(x)= X2+ bx为偶函数,b = 0,f(x)= x,2--a n +1 = 2(a n —1) + 1,二a n + 1 — 1 = 2(a n—1)2,b n + 1 + 1 Iog2 ( a n+ 1 —1)+ 1 2 + 2log2 ( a“—1 )b n+1 Iog2 (a n —1) + 1 log2 (a“一1) + 1-a1 = 3,--b1 = log22= 1 ,••• b n+ 1 = 2n.即b n = 2—1 ,•数列{b n+ 1}是以2为首项,以2为公比的等比数列.⑵解:由题意得Cn = n 2n—n.设A n= 1X2 2x2+ 3x2+ •••+ n x2,设B n= 1 + 2+ 3+ 4+ •••+n =• 2A n= 1x2+ 2x2+ 3x2+ •••+ n x21.••• —A = 2 + 22+ 23+•••+ 2n—n x21n (n + 1)2①式两边同乘g得2 (1 —2n)n x21= 2n+1—n x n+1—2,1 —2/.^=(n-l)2n+1 + 2.1) :.Sn=An-Bn=(n- 1)2小+ 2-(刃+。

高考文数考点解析 数列求和及综合应用

高考文数考点解析 数列求和及综合应用

数列求和及综合应用一、选择题1.(2017·全国乙卷理科·T12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【命题意图】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项,进行求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.【解题指南】将已知的数列列举成下列形式,20第一行,1个数,求和为21-12021第二行,2个数,求和为22-1202122第三行,3个数,求和为23-120212223第四行,4个数,求和为24-12021222324第五行,5个数,求和为25-1故而可得,第n行,n个数,求和为2n-1,因此前n行,一共有错误!未找到引用源。

个数,求和为2n+1-n-2.【解析】选A.由题意得,数列如下:1,1,2,1,2,4,…1,2,4,…,2k-1…则该数列的前1+2+…+k=错误!未找到引用源。

项和为S错误!未找到引用源。

=1+(1+2)+…+(1+2+…+2k)=2k+1-k-2,要使错误!未找到引用源。

>100,有k≥14,此时k+2<2k+1,所以k+2是之后的等比数列1,2,…,2k+1的部分和,即k+2=1+2+…+2t-1=2t-1,所以k=2t-3≥14,则t≥5,此时k=25-3=29,对应满足的最小条件为N=错误!未找到引用源。

2021年高考数学8.4 数列求和、数列的综合应用

2021年高考数学8.4 数列求和、数列的综合应用

12=b2>0,所以 b2=3,所以
2 1+
=3.
2 10
【答案】C
4.(2020 届河南安阳市模拟)已知数列{an}的前 n 项和 Sn=2n-1,则数列{log2an}的前 10 项和等于( ).
A.1023 B.55 C.45 D.35 【解析】因为 Sn=2n-1,所以当 n=1 时,a1=S1=1;当 n≥2 时,an=Sn-Sn-1=2n-2n-1=2n-1.当 n=1 时,an=2n-1 亦满足,所
1- 3· 9
A.1 B. 2 C.- 2
2
2
D.- 3
【解析】因为{an}是等比数列,所以 a2·a6·a10= 63=3 3,所以 a6= 3.
因为{bn}是等差数列,所以 b1+b6+b11=3b6=7π,所以 b6=73π.
14π
所以
tan 2+ 10=tan 2
1- 3· 9
1-
62=tan
∴S7=
1(11-
7)=1-27=27-1=127.
1-2
【答案】C
2.(2020 届四川八校模拟)数列{an}的前 n 项和为 Sn,已知 Sn=1-2+3-4+…+(-1)n-1·n,则 S17=( ).
A.9 B.8 C.17 D.16 【解析】S17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9. 【答案】A

数列求和 高考数学真题分类题库2021解析版 考点24

数列求和 高考数学真题分类题库2021解析版 考点24

考点24数列求和及综合应用1.(2021·浙江高考·T10)已知数列{an }满足a 1=1,a n +1n ∈N *).记数列{a n }的前n 项和为S n ,则()A .12<S 100<3B .3<S 100<4C .4<S 100<92D .92<S 100<5【命题意图】本题主要考查数列的综合应用及均值不等式.考查考生分析问题及解决问题的能力.【解析】选A .因为数列{a n }满足a 1=1,a n +1=1+(n ∈N *),所以a 2=12,a 3a n +1<a n ≤1.由a n +1=1+,可得1=1+1=-14,1r1<r1+12,<12,由累加法得≤1+-12=r12,当且仅当n =1时,等号成立.所以a n ,即≥2r1,所以a n +1≤1+2r1=r1r3a n ,r1≤r1r3,则r1·-1·-1-2·-2-3·…·3·2≤r1r3·r2·-1r1·-2·…·35·24,即r1≤3×2(r3)(r2),所以a n ≤6(r2)(r1)=6S 100≤1102+1100-1101+…+13-14+122102<6×12=3,显然S 100>a 1=1>12.综上所述,12<S 100<3.【反思总结】本题解题关键是通过倒数法先找到,r1的不等关系,再由累加法可求得a n ≥4(r1)2,由题目条件可知要证S 100小于某数,从而通过局部放缩得到a n ,a n +1的不等关系,改变不等式的方向得到a n ≤6(r1)(r2),最后由裂项相消法求得S 100<3.2.(2021·北京新高考·T10)数列{a n }是递增的整数数列,且a 1≥3,a 1+a 2+…+a n =100,则n 的最大值为()A.9B.10C.11D.12【命题意图】本题考查数列求和、数列单调性、整数的性质等问题,意在考查考生的化归与转化思想,逻辑推理、数学运算素养.【解析】选C .要想n 最大,前面的项越小越好.考虑从3开始的连续整数,3到13的和不足100,3到14的和超过100,所以要想n 最大,需取3到12,再添上一个数使得和为100(此数为25,但不需要算出),此时有11个数,即n 最大为11.3.(2021·新高考I 卷·T16)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm 的长方形纸,对折1次共可以得到10dm×12dm ,20dm×6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm×12dm ,10dm×6dm ,20dm×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推,则对折4次共可以得到不同规格图形的种数为;如果对折n 次,那么∑J1S k =dm 2.【命题意图】本题主要考查实际应用问题,旨在考查数据处理能力及逻辑推理能力.【解析】对折3次有2.5×12,6×5,3×10,20×1.5共4种,面积和为S 3=4×30=120dm 2,对折4次有1.25×12,2.5×6,3×5,1.5×10,20×0.75共5种,面积和为S 4=5×15=75dm 2,对折n次有n+1种类型,S n=2402(n+1),因此∑J1S k+32212∑J1S k323+2∑J1S k=240·32.答案:5240·34.(2021·浙江高考·T20)已知数列{an}的前n项和为S n,a1=-94,且4S n+1=3S n-9(n∈N*).(1)求数列{a n}的通项公式;(2)设数列{b n}满足3b n+(n-4)a n=0(n∈N*),记{b n}的前n项和为T n.若T n≤λb n对任意n∈N*恒成立,求实数λ的取值范围.【命题意图】本题主要考查构造递推公式、错位相减等基础知识,同时考查运算求解能力和综合应用能力.【解析】(1)当n=1时,4(a1+a2)=3a1-9,4a2=94-9=-274,∴a2=-2716,当n≥2时,由4S n+1=3S n-9①,得4S n=3S n-1-9②,①-②得4a n+1=3a n,a2=-2716≠0,∴a n≠0,∴r1=34,又21=34,∴{an}是首项为-94,公比为34的等比数列,∴a n=-94·-1;(2)由3b n+(n-4)a n=0,得b n=--43a n=(n-4,所以T n=-3×34-2×+…+(n-4),34T n+…+(n-5)+(n-4),两式相减得14T n=-3×34++…-(n-4)=-94+4-34(n-4=-94+94-4-(n-4)=-n,所以T n=-4n,由T n≤λb n得-4n≤λ(n-4)恒成立,即λ(n-4)+3n≥0恒成立,n=4时不等式恒成立,n<4时,λ≤-3-4=-3-12-4,得λ≤1,n>4时,λ≥-3-4=-3-12-4,得λ≥-3,所以-3≤λ≤1.【反思总结】本题易错点:(1)已知S n求a n不要忽略n=1的情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中λ(n-4)+3n≥0恒成立,要对n-4=0,n-4>0,n-4<0讨论,还要注意n-4<0时,分离参数不等式要变号.5.(2021·北京新高考·T21)(12分)定义R p数列{a n}:对实数p,满足:①a1+p≥0,a2+p=0;②∀n∈N*,a4n-1<a4n;③am+n ∈{am+an+p,am+an+p+1},m,n∈N*.(Ⅰ)对于前4项2,-2,0,1的数列,可以是R2数列吗?说明理由; (Ⅱ)若{a n}是R0数列,求a5的值;(Ⅲ)是否存在p,使得存在R p数列{a n},对∀n∈N*,S n≥S10?若存在,求出所有这样的p;若不存在,说明理由.【命题意图】本题考查数列通项、求和等等,意在考查考生的数学抽象、逻辑推理、数学运算、直观想象素养.【解析】(I)不可以是R2数列.理由如下:当m=n=1时,a2∉{a1+a1+2,a1+a1+3},不满足③,故不可以是R2数列; (II)若是R0是数列,则a2+0=0,故a2=0,令m=n=1,a2∈{2a1,2a1+1},故a1=0或a1=-12(舍),则a1=0,令m=1,n=2,得到a3∈{0,1},令m=n=2,得到a4∈{0,1},又a3<a4,所以a3=0,a4=1,令m=2,n=3,a5∈{0,1},令m=1,n=4,a5∈{1,2},故a5=1;(Ⅲ)存在p=2,使得存在R f数列{a n},对∀n∈N*,S n≥S10.由题意知,a2=-p,a2∈{2a1+p,2a1+p+1},又a1+p≥a2+p,故a1≥a2,可得a1=-p,因为a3∈{-p,-p+1},a4∈{-p,-p+1},且a4>a3,故a3=-p,a4=-p+1,因为a5∈{-p+1,-p+2},a5∈{-p,-p+1},故a5=-p+1,a 6∈{-p+1,-p+2},a6∈{-p,-p+1},故a6=-p+1,a 7∈{-p+1,-p+2},a8∈{-p+1,-p+2},又a8>a7,故a7=-p+1,a8=-p+2,a 9∈{-p+2,-p+3},a9∈{-p+1,-p+2},故a9=-p+2,a 10∈{-p+2,-p+3},a10∈{-p+1,-p+2},故a10=-p+2,a 11∈{-p+2,-p+3},a12∈{-p+2,-p+3},又a12>a11,故a11=-p+2,a12=-p+3,故a1=a2=a3=-p,a4=a5=a6=a7=-p+1,a8=a9=a10=a11=-p+2,a12=-p+3…可知a n=-p+k(4k≤n≤4k+3,k∈N,n∈N*),a n+1≥a n(n∈N*).由题意知,n=10时,S n取得最小值,所以a10≤0,a11≥0.。

高三复习数学32_数列求和及数列的综合应用(有答案)

高三复习数学32_数列求和及数列的综合应用(有答案)

3.2 数列求和及数列的综合应用一、解答题。

1. S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28,记b n =[lg a n ],其中[x]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.求b 1,b 11,b 101;求数列{b n }的前1000项和.2. 设数列{a n }的前n 项和S n =2a n −a 1,且a 1,a 2+1,a 3成等差数列. 求数列{a n }的通项公式;记数列{1a n }的前n 项和T n ,求使得|T n −1|<11000成立的n 的最小值.3. 已知{a n }是各项均为正数的等差数列,公差为d ,对任意的n ∈N ∗,b n 是a n 和a n+1的等比中项.设c n =b n+1−b n 2,n ∈N ∗,求证:{c n }是等差数列;设a 1=d,T n =∑(−1)n 2n k=1b n 2,n ∈N ∗,求证:∑1T k n k=1<12d 2.4. 设{a n }是等差数列,{b n }是等比数列,公比大于0,已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.求{a n }和{b n }的通项公式;设数列{c n }满足c n =1,c n ={1,n 为奇数,b n 2,n 为偶数,求a 1c 1+a 2c 2+⋯+a 2n c 2n (n ∈N ∗).5. 已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3−x 2=2. 求数列{x n }的通项公式;如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n+1(x n+1,n +1)得到折线P 1P 2⋯P n+1,求由该折线与直线y =0,x =x 1,x =x n+1所围成的区域的面积T n .6. 设n∈N∗,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.求数列{x n}的通项公式;记T n=x12x32⋯x22n−1,证明T n≥14n.7. 已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明{a n+12}是等比数列,并求{a n}的通项公式;(2)证明:1a1+1a2+⋯+1a n<32.8. 对于给定的正整数k,若数列{a n}满足:a n−k+a n−k+1+⋯+a n−1+a n+1+⋯+a n+k−1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.证明:等差数列{a n}是“P(3)数列”;若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.参考答案与试题解析3.2 数列求和及数列的综合应用一、解答题。

高考文科数学一轮复习练习-数列的综合应用

高考文科数学一轮复习练习-数列的综合应用

§6.4 数列的综合应用探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点数列求和掌握数列的求和方法2019天津,18,13分数列求和(错位相减法) 求通项公式★★★2017课标全国Ⅲ,17,12分数列求和(裂项相消法) 由递推式求通项公式数列的综合应用能综合应用等差、等比数列解决相应问题2016课标全国Ⅰ,17,12分等差、等比数列的综合问题等差数列的判定★★★分析解读综合运用数列,特别是等差数列、等比数列的有关知识,解答数列综合问题和实际问题,培养学生的理解能力、数学建模能力和运算能力.数列是特殊的函数,是高考的常考点.历年高考考题中低、中、高档试题均有出现,需引起充分的重视.本节内容在高考中分值为12分左右,属于中档题.破考点练考向【考点集训】考点一数列求和1.(2018福建闽侯第八中学期末,16)已知数列{na n}的前n项和为S n,且a n=2n,则使得S n-na n+1+50<0的最小正整数n的值为.答案 52.(2019湖南郴州第二次教学质量监测,16)已知数列{a n}和{b n}满足a1a2a3…a n=2b n(n∈N*),若数列{a n}为等比数列,且a1=2,a4=16,则数列{1b n}的前n项和S n=.答案2nn+13.(2018河南、河北两省联考,18)已知数列{a n}的前n项和为S n,a1=5,nS n+1-(n+1)S n=n2+n.(1)求证:数列{S nn}为等差数列;(2)令b n=2n a n,求数列{b n}的前n项和T n.答案(1)证明:由nS n+1-(n+1)S n=n2+n得S n+1n+1-S nn=1,又S11=5,所以数列{S nn}是首项为5,公差为1的等差数列.(2)由(1)可知S nn=5+(n-1)=n+4,所以S n=n2+4n.当n≥2时,a n=S n-S n-1=n2+4n-(n-1)2-4(n-1)=2n+3. 又a1=5符合上式,所以a n=2n+3(n∈N*),所以b n=(2n+3)2n,所以T n=5×2+7×22+9×23+…+(2n+3)2n,①2T n =5×22+7×23+9×24+…+(2n+1)2n+(2n+3)2n+1,② 所以②-①得T n =(2n+3)2n+1-10-(23+24+…+2n+1) =(2n+3)2n+1-10-23(1-2n -1)1-2=(2n+3)2n+1-10-(2n+2-8) =(2n+1)2n+1-2.考点二 数列的综合应用1.(2018福建漳州期末调研测试,5)等差数列{a n }和等比数列{b n }的首项均为1,公差与公比均为3,则a b 1+a b 2+a b 3=( ) A.64B.32C.38D.33答案 D2.(2018河南商丘第二次模拟,6)已知数列{a n }满足a 1=1,a n+1-a n ≥2(n ∈N *),且S n 为{a n }的前n 项和,则( ) A.a n ≥2n+1 B.S n ≥n 2C.a n ≥2n-1D.S n ≥2n-1答案 B3.(2019福建晋江(安溪一中、养正中学、惠安一中、泉州实验中学四校)期中,18)已知数列{a n }的前n 项和为S n ,且S n =2a n -2. (1)求数列{a n }的通项公式; (2)若数列{n+1a n}的前n 项和为T n ,求T n 以及T n 的最小值.答案 (1)当n=1时,a 1=2.当n ≥2时,S n-1=2a n-1-2, 所以a n =S n -S n-1=2a n -2a n-1,整理得a na n -1=2(常数), 所以数列{a n }是首项为2,公比为2的等比数列,故a n =2n. (2)令b n =n+1a n,则b n =n+12n, 所以T n =221+322+…+n+12n①, 12T n =222+323+…+n+12n+1②, ①-②,得12T n =32-n+32n+1, 所以T n =3-n+32n, 令c n =n+32n ,则c n+1c n =n+42n+6<1, 所以c n >c n+1,从而数列{T n }是单调递增数列, 所以T n ≥T 1=1. 故T n 的最小值为1.4.(命题标准样题,16)设三角形的边长为不相等的整数,且最大边长为n,这些三角形的个数为a n . (1)求数列{a n }的通项公式;(2)在1,2,…,100中任取三个不同的整数,求它们可以是一个三角形的三条边长的概率. 附:1+22+32+…+n 2=n(n+1)(2n+1)6. 答案 本题考查三角形三边的关系、数列的概念、通项公式,等差数列求和,古典概型等数学知识.试题将数列与概率相结合,体现了理性思维、数学探究的学科素养,考查了逻辑推理能力、运算求解能力和创新能力,落实了基础性、综合性、创新性的考查要求.(1)设x,y,n 为满足题意的三角形的边长,不妨设x<y<n, 则x+y>n.由题设,易得a 1=a 2=a 3=0. 当n ≥4,且n 为偶数时,若y ≤n 2,x 不存在;若y=n 2+1,则x 为n 2;若y=n 2+2,则x 为n 2-1,n 2,n 2+1;……; 若y=n-1,则x 为2,3,…,n-2. 所以a n =1+3+…+(n-3)=(n -2)24. 当n>4,且n 为奇数时,可得 a n =2+4+…+(n-3)=(n -1)(n -3)4. 所以{a n }的通项公式为a n ={0,n =1,2,3,(n -2)24,n ≥4,且n 为偶数,(n -1)(n -3)4,n ≥5,且n 为奇数.(2)记S n 为数列{a n }的前n 项和.由(1)可得 S 100=14×(22+42+…+982)+14×(2×4+4×6+…+96×98) =(12+22+…+492)+12+22+…+482+(1+2+…+48) =49×50×1956. 故所求概率为S100100×99×983×2×1=65132.炼技法 提能力 【方法集训】方法 数列求和的方法1.(2018河南中原名校11月联考,10)设函数f(x)满足f(n+1)=2f(n)+n 2(n ∈N *),且f(1)=2,则f(40)=( )A.95B.97C.105D.392答案 D2.(2019吉林长春模拟,7)已知数列{a n }的前n 项和S n =n 2+2n,则数列{1a n ·a n+1}的前6项和为( )A.215B.415C.511D.1011答案 A3.(2019湘赣十四校第一次联考,17)已知函数f(x)=2 019·sin (πx -π3)(x ∈R )的所有正零点构成递增数列{a n }. (1)求数列{a n }的通项公式;(2)设b n =2n(a n +23),求数列{b n }的前n 项和S n .答案 (1)令f(x)=2 019sin (πx -π3)=0, 得πx -π3=kπ(k∈Z ),则有x=13+k(k ∈Z ). ∵f(x)的所有正零点构成递增数列{a n }, ∴{a n }是以13为首项,1为公差的等差数列, ∴a n =13+(n-1)×1=n -23(n ∈N *). (2)由(1)知b n =n ·2n.∴S n =1×21+2×22+3×23+…+(n-1)×2n-1+n×2n,① ∴2S n =1×22+2×23+3×24+…+(n-1)×2n+n×2n+1,② ②-①得S n =-1×21-22-23- (2)+n×2n+1=n×2n+1-21(1-2n )1-2=(n-1)·2n+1+2. 4.(2018河南安阳第二次模拟,17)设等差数列{a n }的前n 项和为S n ,点(n,S n )在函数f(x)=x 2+Bx+C-1(B,C ∈R )的图象上,且a 1=C. (1)求数列{a n }的通项公式;(2)记b n =a n (a 2n -1+1),求数列{b n }的前n 项和T n . 答案 (1)设数列{a n }的公差为d, 则S n =na 1+n(n -1)2d=d 2n 2+(a 1-d2)n, 又S n =n2+Bn+C-1,两式对照得{d 2=1,C -1=0,解得{d =2,C =1,又因为a 1=C,所以a 1=1,所以数列{a n }的通项公式为a n =2n-1.(2)由(1)知b n =(2n-1)(2·2n-1-1+1)=(2n-1)2n, 则T n =1×2+3×22+…+(2n-1)·2n,2T n =1×22+3×23+…+(2n-3)·2n +(2n-1)·2n+1, 两式相减得T n =(2n-1)·2n+1-2(22+23+ (2))-2 =(2n-1)·2n+1-2×22(1-2n -1)1-2-2 =(2n-3)·2n+1+6.【五年高考】A 组 统一命题·课标卷题组考点一 数列求和(2017课标全国Ⅲ,17,12分)设数列{a n }满足a 1+3a 2+…+(2n-1)a n =2n. (1)求{a n }的通项公式; (2)求数列{a n2n+1}的前n 项和.答案 (1)因为a 1+3a 2+…+(2n-1)a n =2n, 故当n ≥2时,a 1+3a 2+…+(2n-3)a n-1=2(n-1).两式相减得(2n-1)a n =2. 所以a n =22n -1(n ≥2). 又由题设可得a 1=2, 从而{a n }的通项公式为a n =22n -1(n ∈N *). (2)记{a n2n+1}的前n 项和为S n .由(1)知a n 2n+1=2(2n+1)(2n -1)=12n -1-12n+1. 则S n =11-13+13-15+…+12n -1-12n+1=2n 2n+1.考点二 数列的综合应用(2016课标全国Ⅰ,17,12分)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n+1+b n+1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.答案 (1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2,(3分)所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n-1.(5分) (2)由(1)和a n b n+1+b n+1=nb n 得b n+1=b n 3,(7分) 因此{b n }是首项为1,公比为13的等比数列.(9分) 记{b n }的前n 项和为S n , 则S n =1-(13)n1-13=32-12×3n -1.(12分)B 组 自主命题·省(区、市)卷题组考点一 数列求和1.(2019天津,18,13分)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3. (1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).答案 本题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力,体现了数学运算的核心素养.(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q. 依题意,得{3q =3+2d,3q 2=15+4d,解得{d =3,q =3,故a n =3+3(n-1)=3n,b n =3×3n-1=3n.所以,{a n }的通项公式为a n =3n,{b n }的通项公式为b n =3n.(2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n-1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n )=[n ×3+n(n -1)2×6]+(6×31+12×32+18×33+…+6n×3n)=3n 2+6(1×31+2×32+…+n×3n). 记T n =1×31+2×32+…+n×3n,①则3T n =1×32+2×33+…+n×3n+1,②②-①得,2T n =-3-32-33-…-3n +n×3n+1=-3(1-3n )1-3+n×3n+1=(2n -1)3n+1+32. 所以,a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n+1+32=(2n -1)3n+2+6n 2+92(n ∈N *). 2.(2018浙江,20,15分)已知等比数列{a n }的公比q>1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1-b n )a n }的前n 项和为2n 2+n.(1)求q 的值;(2)求数列{b n }的通项公式.答案 (1)由a 4+2是a 3,a 5的等差中项得a 3+a 5=2a 4+4, 所以a 3+a 4+a 5=3a 4+4=28, 解得a 4=8.由a 3+a 5=20得8(q +1q)=20, 解得q=2或q=12, 因为q>1,所以q=2.(2)设c n =(b n+1-b n )a n ,数列{c n }的前n 项和为S n . 由c n ={S 1, n =1,S n -S n -1,n ≥2,解得c n =4n-1.由(1)可知a n =2n-1,所以b n+1-b n =(4n-1)·(12)n -1, 故b n -b n-1=(4n-5)·(12)n -2,n ≥2, b n -b 1=(b n -b n-1)+(b n-1-b n-2)+…+(b 3-b 2)+(b 2-b 1) =(4n-5)·(12)n -2+(4n-9)·(12)n -3+…+7·12+3. 设T n =3+7·12+11·(12)2+…+(4n-5)·(12)n -2,n ≥2, 12T n =3·12+7·(12)2+…+(4n-9)·(12)n -2+(4n-5)·(12)n -1(n ≥2), 所以12T n =3+4·12+4·(12)2+…+4·(12)n -2-(4n-5)·(12)n -1(n ≥2), 因此T n =14-(4n+3)·(12)n -2,n ≥2, 又b 1=1,所以b n =15-(4n+3)·(12)n -2. 3.(2017山东,19,12分)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n+1=b n b n+1,求数列{b n a n}的前n 项和T n . 答案 (1)设{a n }的公比为q,由题意知:a 1(1+q)=6,a 12q=a 1q 2,又a n >0,解得a 1=2,q=2,所以a n =2n.(2)由题意知:S 2n+1=(2n+1)(b 1+b 2n+1)2=(2n+1)b n+1,又S 2n+1=b n b n+1,b n+1≠0,所以b n =2n+1. 令c n =b n a n,则c n =2n+12n. 因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n+12n , 又12T n =322+523+724+…+2n -12n +2n+12n+1, 两式相减得12T n =32+(12+122+…+12n -1)-2n+12n+1,所以T n =5-2n+52n. 4.(2017北京,15,13分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n-1.答案 (1)设等差数列{a n }的公差为d. 因为a 2+a 4=10,所以2a 1+4d=10. 解得d=2. 所以a n =2n-1.(2)设等比数列{b n }的公比为q. 因为b 2b 4=a 5,所以b 1qb 1q 3=9.解得q 2=3.所以b 2n-1=b 1q 2n-2=3n-1.从而b 1+b 3+b 5+…+b 2n-1=1+3+32+…+3n-1=3n -12. 5.(2016天津,18,13分)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63. (1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n+1的等差中项,求数列{(-1)nb n2}的前2n 项和. 答案 (1)设数列{a n }的公比为q.由已知,有1a 1-1a 1q =2a 1q 2,解得q=2,或q=-1.又由S 6=a 1·1-q 61-q=63,知q ≠-1,所以a 1·1-261-2=63,得a 1=1.所以a n =2n-1.(2)由题意,得b n =12(log 2a n +log 2a n+1)=12(log 22n-1+log 22n)=n-12, 即{b n }是首项为12,公差为1的等差数列.设数列{(-1)nb n 2}的前n 项和为T n ,则T 2n =(-b 12+b 22)+(-b 32+b 42)+…+(-b 2n -12+b 2n 2)=b 1+b 2+b 3+b 4+…+b 2n-1+b 2n =2n(b 1+b 2n )2=2n 2.考点二 数列的综合应用1.(2018北京,15,13分)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln2. (1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e a n . 答案 (1)设{a n }的公差为d. 因为a 2+a 3=5ln 2, 所以2a 1+3d=5ln 2. 又a 1=ln 2,所以d=ln 2. 所以a n =a 1+(n-1)d=nln 2. (2)因为e a 1=e ln 2=2,e a n e a n -1=e a n -a n -1=e ln 2=2, 所以{e a n }是首项为2,公比为2的等比数列. 所以e a 1+e a 2+…+e a n =2×1-2n 1-2=2(2n-1). 2.(2017天津,18,13分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).答案 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0.又因为q>0,解得q=2. 所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8①. 由S 11=11b 4,可得a 1+5d=16②, 联立①②,解得a 1=1,d=3, 由此可得a n =3n-2.所以,{a n }的通项公式为a n =3n-2,{b n }的通项公式为b n =2n.(2)设数列{a 2n b n }的前n 项和为T n ,由a 2n =6n-2,有T n =4×2+10×22+16×23+…+(6n-2)×2n, 2T n =4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1, 上述两式相减,得-T n =4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=12×(1-2n )1-2-4-(6n-2)×2n+1=-(3n-4)2n+2-16. 得T n =(3n-4)2n+2+16.所以,数列{a 2n b n }的前n 项和为(3n-4)2n+2+16.3.(2016浙江,17,15分)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.答案 (1)由题意得{a 1+a 2=4,a 2=2a 1+1,则{a 1=1,a 2=3.又当n ≥2时,由a n+1-a n =(2S n +1)-(2S n-1+1)=2a n ,得a n+1=3a n .又因为a 2=3=3a 1,所以数列{a n }是首项为1,公比为3的等比数列. 所以,数列{a n }的通项公式为a n =3n-1,n ∈N *.(2)设b n =|3n-1-n-2|,n ∈N *,则b 1=2,b 2=1. 当n ≥3时,由于3n-1>n+2,故b n =3n-1-n-2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.当n ≥3时,T n =3+9(1-3n -2)1-3-(n+7)(n -2)2=3n -n 2-5n+112,经检验,n=2时也符合.所以T n ={2, n =1,3n -n 2-5n+112,n ≥2,n ∈N *.C 组 教师专用题组考点一 数列求和1.(2015湖北,19,12分)设等差数列{a n }的公差为d,前n 项和为S n ,等比数列{b n }的公比为q.已知b 1=a 1,b 2=2,q=d,S 10=100. (1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =an b n,求数列{c n }的前n 项和T n .解析 (1)由题意有,{10a 1+45d =100,a 1d =2,即{2a 1+9d =20,a 1d =2,解得{a 1=1,d =2,或{a 1=9,d =29.故{a n =2n -1,b n =2n -1,或{a n =19(2n +79),b n=9·(29)n -1. (2)由d>1,知a n =2n-1,b n =2n-1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n+32n , 故T n =6-2n+32n -1.2.(2015安徽,18,12分)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n+1S n S n+1,求数列{b n }的前n 项和T n .答案 (1)由题设知a 1·a 4=a 2·a 3=8, 又a 1+a 4=9,可解得{a 1=1,a 4=8或{a 1=8,a 4=1(舍去).由a 4=a 1q 3得公比为q=2,故a n =a 1q n-1=2n-1.(2)S n =a 1(1-q n )1-q=2n-1,又b n =a n+1S n S n+1=S n+1-S n S n S n+1=1S n -1S n+1, 所以T n =b 1+b 2+…+b n =(1S 1-1S 2)+(1S 2-1S 3)+…+(1S n -1S n+1)=1S 1-1S n+1=1-12n+1-1.3.(2015山东,19,12分)已知数列{a n }是首项为正数的等差数列,数列{1a n ·a n+1}的前n 项和为n2n+1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 答案 (1)设数列{a n }的公差为d. 令n=1,得1a 1a 2=13, 所以a 1a 2=3. 令n=2,得1a 1a 2+1a 2a 3=25, 所以a 2a 3=15. 解得a 1=1,d=2, 所以a n =2n-1. (2)由(1)知b n =2n ·22n-1=n ·4n,所以T n =1·41+2·42+…+n ·4n , 所以4T n =1·42+2·43+…+n ·4n+1,两式相减,得-3T n =41+42+ (4)-n ·4n+1=4(1-4n )1-4-n ·4n+1 =1-3n 3×4n+1-43. 所以T n =3n -19×4n+1+49=4+(3n -1)4n+19. 4.(2014课标Ⅰ,17,12分)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x+6=0的根. (1)求{a n }的通项公式; (2)求数列{a n 2n }的前n 项和.答案 (1)方程x 2-5x+6=0的两根为2,3,由题意得a 2=2,a 4=3.设数列{a n }的公差为d,则a 4-a 2=2d,故d=12,从而a 1=32. 所以{a n }的通项公式为a n =12n+1.(2)设{a n 2n }的前n 项和为S n ,由(1)知a n2n =n+22n+1,则S n =322+423+…+n+12n +n+22n+1, 12S n =323+424+…+n+12n+1+n+22n+2. 两式相减得12S n =34+(123+…+12n+1)-n+22n+2=34+14(1-12n -1)-n+22n+2.所以S n =2-n+42n+1.5.(2014湖北,19,12分)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n,使得S n >60n+800?若存在,求n 的最小值;若不存在,说明理由. 答案 (1)设数列{a n }的公差为d,依题意,得2,2+d,2+4d 成等比数列,故有(2+d)2=2(2+4d),化简得d 2-4d=0,解得d=0或d=4.当d=0时,a n =2;当d=4时,a n =2+(n-1)·4=4n-2,从而得数列{a n }的通项公式为a n =2或a n =4n-2. (2)当a n =2时,S n =2n.显然2n<60n+800, 此时不存在正整数n,使得S n >60n+800成立. 当a n =4n-2时,S n =n[2+(4n -2)]2=2n 2. 令2n 2>60n+800,即n 2-30n-400>0, 解得n>40或n<-10(舍去),此时存在正整数n,使得S n >60n+800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n;当a n =4n-2时,存在满足题意的n,其最小值为41.6.(2014安徽,18,12分)数列{a n }满足a 1=1,na n+1=(n+1)a n +n(n+1),n ∈N *. (1)证明:数列{an n}是等差数列;(2)设b n =3n·√a n ,求数列{b n }的前n 项和S n . 答案 (1)证明:由已知可得a n+1n+1=a n n +1,即a n+1n+1-an n=1. 所以{a n n}是以a 11=1为首项,1为公差的等差数列. (2)由(1)得a n n=1+(n-1)·1=n,所以a n =n 2.从而b n =n ·3n.∴S n =1·31+2·32+3·33+…+n ·3n,① 3S n =1·32+2·33+…+(n-1)·3n+n ·3n+1.② ①-②得-2S n =31+32+ (3)-n ·3n+1=3·(1-3n )1-3-n ·3n+1=(1-2n)·3n+1-32. 所以S n =(2n -1)·3n+1+34.7.(2014山东,19,12分)在等差数列{a n }中,已知公差d=2,a 2是a 1与a 4的等比中项. (1)求数列{a n }的通项公式;(2)设b n =a n(n+1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .答案 (1)由题意知(a 1+d)2=a 1(a 1+3d),即(a 1+2)2=a 1(a 1+6),解得a 1=2,所以数列{a n }的通项公式为a n =2n. (2)由题意知b n =a n(n+1)2=n(n+1).所以b n+1-b n =2(n+1), 所以当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n-1+b n ) =4+8+12+…+2n =n2(4+2n)2=n(n+2)2,当n 为奇数时,若n=1,则T 1=-b 1=-2, 若n>1,则T n =T n-1+(-b n ) =(n -1)(n+1)2-n(n+1) =-(n+1)22,n=1时,满足上式. 所以T n ={-(n+1)22,n 为奇数,n(n+2)2,n 为偶数. 8.(2013重庆,16,13分)设数列{a n }满足:a 1=1,a n+1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为其前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20. 答案 (1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n-1,S n =1-3n 1-3=12(3n-1). (2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d,所以公差d=5, 故T 20=20×3+20×192×5=1 010. 9.(2013安徽,19,13分)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f(x)=(a n -a n+1+a n+2)x+a n+1cos x-a n+2sin x 满足 f '(π2)=0.(1)求数列{a n }的通项公式; (2)若b n =2(a n +12a n),求数列{b n }的前n 项和S n .答案 (1)由题设可得, f '(x)=a n -a n+1+a n+2-a n+1sin x-a n+2·cos x. 对任意n ∈N *,f '(π2)=a n -a n+1+a n+2-a n+1=0,即a n+1-a n =a n+2-a n+1, 故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d=1,所以a n =2+1·(n-1)=n+1. (2)由b n =2(a n +12a n)=2(n +1+12n+1)=2n+12n +2知,S n =b 1+b 2+…+b n =2n+2·n(n+1)2+12[1-(12)n ]1-12=n 2+3n+1-12n . 10.(2013湖南,19,13分)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *. (1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.答案 (1)令n=1,得2a 1-a 1=a 12, 即a 1=a 12.因为a 1≠0, 所以a 1=1. 令n=2,得2a 2-1=S 2=1+a 2. 解得a 2=2.当n ≥2时,2a n -1=S n ,2a n-1-1=S n-1,两式相减得2a n -2a n-1=a n .即a n =2a n-1. 于是数列{a n }是首项为1,公比为2的等比数列. 因此,a n =2n-1.所以数列{a n }的通项公式为a n =2n-1.(2)由(1)知na n =n ·2n-1.记数列{n ·2n-1}的前n 项和为B n ,于是B n =1+2×2+3×22+…+n×2n-1,① 2B n =1×2+2×22+3×23+…+n×2n.②①-②得-B n =1+2+22+…+2n-1-n ·2n=2n-1-n ·2n. 从而B n =1+(n-1)·2n .考点二 数列的综合应用1.(2018江苏,14,5分)已知集合A={x|x=2n-1,n ∈N *},B={x|x=2n,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为 . 答案 272.(2017江苏,19,16分)对于给定的正整数k,若数列{a n }满足:a n-k +a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k =2ka n 对任意正整数n(n>k)总成立,则称数列{a n }是“P(k)数列”. (1)证明:等差数列{a n }是“P(3)数列”;(2)若数列{a n }既是“P(2)数列”,又是“P(3)数列”,证明:{a n }是等差数列. 证明 (1)因为{a n }是等差数列,设其公差为d,则a n =a 1+(n-1)d,从而,当n ≥4时,a n-k +a n+k =a 1+(n-k-1)d+a 1+(n+k-1)d=2a 1+2(n-1)d=2a n ,k=1,2,3, 所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n , 因此等差数列{a n }是“P(3)数列”.(2)数列{a n }既是“P(2)数列”,又是“P(3)数列”,因此, 当n ≥3时,a n-2+a n-1+a n+1+a n+2=4a n ,① 当n ≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n .② 由①知,a n-3+a n-2=4a n-1-(a n +a n+1),③ a n+2+a n+3=4a n+1-(a n-1+a n ).④将③④代入②,得a n-1+a n+1=2a n ,其中n ≥4, 所以a 3,a 4,a 5,…是等差数列,设其公差为d'. 在①中,取n=4,则a 2+a 3+a 5+a 6=4a 4,所以a 2=a 3-d', 在①中,取n=3,则a 1+a 2+a 4+a 5=4a 3,所以a 1=a 3-2d', 所以数列{a n }是等差数列.3.(2016四川,19,12分)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n+1=qS n +1,其中q>0,n ∈N *. (1)若a 2,a 3,a 2+a 3成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a n2=1的离心率为e n ,且e 2=2,求e 12+e 22+…+e n 2.答案 (1)由已知,S n+1=qS n +1,S n+2=qS n+1+1,两式相减得到a n+2=qa n+1,n ≥1. 又由S 2=qS 1+1得到a 2=qa 1, 故a n+1=qa n 对所有n ≥1都成立.所以,数列{a n }是首项为1,公比为q 的等比数列. 从而a n =q n-1.由a 2,a 3,a 2+a 3成等差数列,可得2a 3=a 2+a 2+a 3, 所以a 3=2a 2,故q=2. 所以a n =2n-1(n ∈N *).(2)由(1)可知,a n =q n-1.所以双曲线x 2-y 2a n2=1的离心率e n =√1+a n2=√1+q 2(n -1). 由e 2=√1+q 2=2解得q=√3.所以,e 12+e 22+…+e n2 =(1+1)+(1+q 2)+…+[1+q 2(n-1)]=n+[1+q 2+…+q2(n-1)]=n+q 2n -1q 2-1 =n+12(3n-1).4.(2015天津,18,13分)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7. (1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.答案 (1)设数列{a n }的公比为q,数列{b n }的公差为d,由题意知q>0.由已知,有{2q 2-3d =2,q 4-3d =10,消去d,整理得q 4-2q 2-8=0.又因为q>0,解得q=2,所以d=2.所以数列{a n }的通项公式为a n =2n-1,n ∈N *;数列{b n }的通项公式为b n =2n-1,n ∈N *.(2)由(1)有c n =(2n-1)·2n-1,设{c n }的前n 项和为S n ,则 S n =1×20+3×21+5×22+…+(2n-3)×2n-2+(2n-1)×2n-1, 2S n =1×21+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n,上述两式相减,得-S n =1+22+23+ (2)-(2n-1)×2n=2n+1-3-(2n-1)×2n=-(2n-3)×2n-3,所以,S n =(2n-3)·2n+3,n ∈N *.5.(2015浙江,17,15分)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n ∈N *),b 1+12b 2+13b 3+ (1)b n =b n+1-1(n ∈N *). (1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n . 答案 (1)由a 1=2,a n+1=2a n ,得a n =2n(n ∈N *).由题意知,当n=1时,b 1=b 2-1,故b 2=2. 当n ≥2时,1n b n =b n+1-b n ,整理得b n+1n+1=b nn, 所以b n =n(n ∈N *).(2)由(1)知a n b n =n ·2n,因此T n =2+2·22+3·23+…+n ·2n,2T n =22+2·23+3·24+…+n ·2n+1, 所以T n -2T n =2+22+23+ (2)-n ·2n+1.故T n =(n-1)2n+1+2(n ∈N *).6.(2014广东,19,14分)设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S n 2-(n 2+n-3)S n-3(n 2+n)=0,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式; (3)证明:对一切正整数n,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.答案 (1)∵S n 2-(n 2+n-3)S n -3(n 2+n)=0, ∴令n=1,得a 12+a 1-6=0,解得a 1=2或a 1=-3. 又a n >0,∴a 1=2.(2)由S n 2-(n 2+n-3)S n -3(n 2+n)=0,得[S n -(n 2+n)](S n +3)=0,又a n >0,所以S n +3≠0, 所以S n =n 2+n,所以当n ≥2时,a n =S n -S n-1=n 2+n-[(n-1)2+n-1]=2n,又由(1)知,a 1=2,符合上式, 所以a n =2n.(3)证明:由(2)知,1a n (a n +1)=12n(2n+1),所以1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)=12×3+14×5+…+12n(2n+1)<12×3+13×5+15×7+…+1(2n -1)(2n+1) =16+12[(13-15)+(15-17)+…+(12n -1-12n+1)]=16+12(13-12n+1)<16+12×13=13.7.(2013课标Ⅱ,17,12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n-2.解析 (1)设{a n }的公差为d.由题意得,a 112=a 1a 13,即(a 1+10d)2=a 1(a 1+12d).于是d(2a 1+25d)=0.又a 1=25,所以d=0(舍去)或d=-2. 故a n =-2n+27.(2)令S n =a 1+a 4+a 7+…+a 3n-2.由(1)知a 3n-2=-6n+31,故{a 3n-2}是首项为25,公差为-6的等差数列.从而 S n =n 2(a 1+a 3n-2) =n 2(-6n+56) =-3n 2+28n.8.(2013山东,20,12分)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n=1-12n ,n ∈N *,求{b n }的前n 项和T n .答案 (1)设等差数列{a n }的首项为a 1,公差为d. 由S 4=4S 2,a 2n =2a n +1得{4a 1+6d =8a 1+4d,a 1+(2n -1)d =2a 1+2(n -1)d +1,解得a 1=1,d=2. 因此a n =2n-1,n ∈N *.(2)由已知b 1a 1+b 2a 2+…+b n a n=1-12n ,n ∈N *,得当n=1时,b 1a 1=12; 当n ≥2时,b n a n=1-12n -(1-12n -1)=12n .所以b n a n =12n ,n ∈N *.由(1)知,a n =2n-1,n ∈N *,所以b n =2n -12n ,n ∈N *,又T n =12+322+523+…+2n -12n, 12T n =122+323+…+2n -32n +2n -12n+1, 两式相减得12T n =12+(222+223+…+22n )-2n -12n+1 =32-12n -1-2n -12n+1,所以T n =3-2n+32n. 【三年模拟】时间:70分钟 分值:95分一、选择题(每小题5分,共20分)1.(2018福建厦门第一学期期末质检,7)已知数列{a n }满足a n+1+(-1)n+1a n =2,则其前100项和为( ) A.250 B.200 C.150 D.100 答案 D2.(2020届河南商丘模拟,6)对于函数y=f(x),部分x 与y 的对应值如下表:x 1 2 3 4 5 6 7 8 9 y745813526数列{x n }满足x 1=2,且对任意n ∈N *,点(x n ,x n+1)都在函数y=f(x)的图象上,则x 1+x 2+x 3+…+x 2 019的值为( )A.9 408B.9 422C.9 424D.9 428答案 B3.(2020届福建福州模拟,10)已知数列{a n }满足a 1=1,a n+1=(n+1)a n22a n 2+4na n +n 2,则a 8=( )A.8964-2B.8932-2C.8916-2D.897-2答案 A4.(2019河北衡水中学第一次摸底,12)已知函数f(x)={m x -2 017,x ≥2 019,(3m 2 018+1)x -2 020,x <2 019,数列{a n }满足:a n =f(n),n ∈N *,且{a n }是单调递增数列,则实数m 的取值范围是( ) A.(1,2] B.(1,2)C.(2,+∞)D.(1,+∞)答案 C二、解答题(共75分)5.(2019安徽黄山毕业班第二次质量检测,17)已知数列{na n -1}的前n 项和S n =n,n ∈N *.(1)求数列{a n }的通项公式; (2)令b n =2n+1(a n -1)2(a n+1-1)2,数列{b n }的前n 项和为T n ,求证:对任意的n ∈N *,都有T n <1.答案 (1)因为 S n =n,① 所以当n ≥2时,S n-1=n-1,②由①-②得na n -1=1,故a n =n+1,又因为a 1=2适合上式, 所以a n =n+1(n ∈N *).(2)证明:由(1)知,b n =2n+1(a n -1)2(a n+1-1)2=2n+1n 2(n+1)2=1n 2-1(n+1)2, 所以T n =(112-122)+(122-132)+…+[1n 2-1(n+1)2]=1-1(n+1)2.所以T n <1.6.(2020届皖江名校联盟第一次联考,17)已知数列{a n }满足a 1=1,n 2a n+1-(n+1)2a n =2n 2(n+1)2,n ∈N *,设b n =an n2.(1)求数列{b n }的通项公式; (2)求数列{1b n b n+1}的前n 项和S n .答案 (1)因为n 2a n+1-(n+1)2a n =2n 2(n+1)2,n ∈N *, 所以a n+1(n+1)2-a n n 2=2(n ∈N *),又b n =an n2,所以数列{b n }是等差数列.因为a 1=1,所以b n =an n2=a 112+2(n-1)=2n-1(n ∈N *).(6分)(2)因为1b n b n+1=1(2n -1)(2n+1)=12(12n -1-12n+1), 所以S n =12×(11-13+13-15+…+12n -1-12n+1)=12×(1-12n+1)=n2n+1.(12分)7.(2020届新疆哈密月考,17)已知数列{a n },{b n },其中a 1=5,b 1=-1,且满足a n =12(3a n-1-b n-1),b n =-12(a n-1-3b n-1),n ∈N *,n ≥2. (1)求证:数列{a n -b n }为等比数列; (2)求数列{3×2n -1a n a n+1}的前n 项和S n .答案 (1)证明:a n -b n =12(3a n-1-b n-1)-(-12)(a n-1-3b n-1)=2(a n-1-b n-1),n ∈N *,n ≥2, 又a 1-b 1=5-(-1)=6,所以{a n -b n }是首项为6,公比为2的等比数列. (2)由(1)知,a n -b n =3×2n.①因为a n +b n =12(3a n-1-b n-1)+(-12)(a n-1-3b n-1)=a n-1+b n-1,n ∈N *,n ≥2,又a 1+b 1=5+(-1)=4,所以{a n +b n }为常数列且a n +b n =4.② 联立①②得a n =3×2n-1+2,故3×2n -1a n a n+1=3×2n -1(3×2n -1+2)(3×2n +2)=13×2n -1+2-13×2n +2. 所以S n =(13×20+2-13×21+2)+(13×21+2-13×22+2)+…+(13×2n -1+2-13×2n+2)=15-13×2n +2. 8.(2019湖南百所重点名校大联考,17)已知数列{a n }满足:a 1+a 2+a 3+…+a n =n-a n (n=1,2,3,…). (1)求证:数列{a n -1}是等比数列;(2)令b n =(2-n)(a n -1)(n=1,2,3,…),如果对任意n ∈N *,都有b n +14t ≤t 2,求实数t 的取值范围. 答案 (1)证明:由a 1+a 2+a 3+…+a n =n-a n ,① 得a 1+a 2+a 3+…+a n+1=n+1-a n+1,②②-①可得 2a n+1-a n =1. 即a n+1-1=12(a n -1), 又a 1-1=-12,∴{a n -1}是以-12为首项,12为公比的等比数列. (2)由(1)可得a n =1-(12)n , 故b n =n -22n. 设数列{b n }的第r 项最大,则有{r -22r≥r -12r+1,r -22r≥r -32r -1,即{2(r -2)≥r -1,r -2≥2(r -3). ∴3≤r ≤4,故数列{b n }的最大项是b 3或b 4,且b 3=b 4=18.∵对任意n ∈N *,都有b n +14t ≤t 2,即b n ≤t 2-14t 对任意n ∈N *恒成立,∴18≤t 2-14t,解得t ≥12或t ≤-14.∴实数t 的取值范围是[12,+∞)∪(-∞,-14].9.(2020届山东夏季高考模拟,17)在①b 1+b 3=a 2,②a 4=b 4,③S 5=-25这三个条件中任选一个,补充在下面问题中,若问题中的k 存在,求出k 的值;若k 不存在,说明理由.设等差数列{a n }的前n 项和为S n ,{b n }是等比数列, ,b 1=a 5,b 2=3,b 5=-81,是否存在k,使S k >S k+1且S k+1<S k+2?注:如果选择多个条件分别解答,按第一个解答计分. 答案 方案一:选条件①.设{b n }的公比为q,则q 3=b 5b 2=-27,解得q=-3,所以b n =-(-3)n-1.从而a 5=b 1=-1,a 2=b 1+b 3=-10, 由于{a n }是等差数列,所以a n =3n-16. 因为S k >S k+1且S k+1<S k+2等价于a k+1<0且a k+2>0,所以满足题意的k 存在,当且仅当{3(k +1)-16<0,3(k +2)-16>0,解得k=4.方案二:选条件②.设{b n }的公比为q,则q 3=b 5b 2=-27,解得q=-3,所以b n =-(-3)n-1.从而a 5=b 1=-1,a 4=b 4=27,所以{a n }的公差d=-28.S k >S k+1且S k+1<S k+2等价于a k+1<0且a k+2>0,此时d=a k+2-a k+1>0,与d=-28矛盾,所以满足题意的k 不存在. 方案三:选条件③.设{b n }的公比为q,则q 3=b 5b 2=-27,解得q=-3 ,所以b n =-(-3)n-1.从而a 5=b 1=-1, 由{a n }是等差数列得S 5=5(a 1+a 5)2, 由S 5=-25得a 1=-9. 所以a n =2n-11.因为S k >S k+1且S k+1<S k+2等价于a k+1<0且a k+2>0,所以满足题意的k 存在,当且仅当{2(k +1)-11<0,2(k +2)-11>0,解得k=4.10.(2020届江西高安模拟,20)已知函数f(x)满足f(x+y)=f(x)·f(y)且f(1)=12. (1)当n ∈N *时,求f(n)的表达式;(2)设a n =n ·f(n),n ∈N *,求证:a 1+a 2+a 3+…+a n <2. 答案 (1)∵f(x+y)=f(x)·f(y)且f(1)=12, ∴令x=n,y=1,得f(n+1)=f(n)·f(1)=12f(n), ∵n∈N *,∴数列{f(n)}是以f(1)=12为首项,12为公比的等比数列, ∴f(n)=12·(12)n -1=(12)n (n ∈N *). (2)证明:设T n =a 1+a 2+…+a n , ∵a n =n ·f(n)=n ·(12)n (n ∈N *),∴T n =12+2×(12)2+3×(12)3+…+n×(12)n ,则12T n =(12)2+2×(12)3+3×(12)4+…+(n-1)×(12)n +n×(12)n+1,两式相减,得12T n =12+(12)2+(12)3+…+(12)n -n×(12)n+1=12[1-(12)n]1-12-n×(12)n+1=1-(12)n -n×(12)n+1=1-2+n2n+1, ∴T n =2-2+n2n<2. 11.(2020届河南洛阳联考,19)已知数列{a n }满足a 1=12,2a n+1a n =1+1n(n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和T n ;(3)设数列{b n }满足b n ={-2n -10,n =2k,n a n,n =2k -1,其中k ∈N *.记{b n }的前n 项和为S n ,是否存在正整数m,p(m<p),使得S m =S p 成立?若存在,请求出所有满足条件的m,p;若不存在,请说明理由. 答案 (1)数列{a n }满足a 1=12,2a n+1a n =1+1n,整理得2a n+1n+1=an n,即a n+1n+1a n n =12(常数),则数列{a n n}是等比数列,其中首项为12,公比为12. 所以a n n =12·(12)n -1=(12)n,即a n =n 2n (n ∈N *).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题限时集训(四) 数列求和与综合应用[专题通关练] (建议用时:30分钟)1.已知数列{a n }满足a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =( ) A .9 B .8 C .7 D .6D [因为a 1=2,a n +1=2a n ,所以{a n }是首项和公比均为2的等比数列,所以S n =21-2n1-2=126,解得n = 6.]2.设等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足S n S n +1<0的正整数n 的值为( )A .10B .11C .12D .13C [由S 6>S 7>S 5,得S 7=S 6+a 7<S 6,S 7=S 5+a 6+a 7>S 5,所以a 7<0,a 6+a 7>0,所以S 13=13a 1+a 132=13a 7<0,S 12=12a 1+a 122=6(a 6+a 7)>0,所以S 12S 13<0,即满足S n S n +1<0的正整数n 的值为12,故选C.]3.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5 B.3116或5 C.3116D.158C [依题意知{a n }的公比q ≠1,否则9S 3=27a 1≠S 6=6a 1,9S 3=S 6⇒9×1·1-q 31-q=1·1-q61-q⇒q 3=8⇒q =2,∴数列⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公比为12的等比数列,∴数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为S 5=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=3116.]4.已知函数f (n )=⎩⎪⎨⎪⎧n 2当n 为奇数时,-n 2当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( )A .0B .100C .-100D .10 200B [由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,故选B.]5.已知数列{a n }满足a n =n n +1,则a 1+a 222+a 332+…+a 2 0182 0182的值为( ) A.2 0182 019 B.2 0172 019 C.2 0184 035D.2 0172 018A [由题意,因为数列{a n }满足a n =nn +1,所以数列⎩⎨⎧⎭⎬⎫a n n 2的通项公式为a nn 2=1n n +1=1n-1n +1,所以a 1+a 222+a 332+…+a 2 0182 0182=1-12+12-13+…+12 018-12 019=1-12 019=2 0182 019.] 6.(2019·太原模拟)已知数列{a n }满足a n +1a n +1+1=12,且a 2=2,则a 4=________.11 [因为数列{a n }满足a n +1a n +1+1=12,所以a n +1+1=2(a n +1),即数列{a n +1}是等比数列,公比为2,则a 4+1=22(a 2+1)=12,解得a 4=11.]7.已知数列{a n }的前n 项和为S n ,过点P (n ,S n )和点Q (n +1,S n +1)(n ∈N *)的直线的斜率为3n -2,则a 2+a 4+a 5+a 9=________.40 [因为过点P (n ,S n )和点Q (n +1,S n +1)(n ∈N *)的直线的斜率为3n -2,所以S n +1-S n n +1-n=S n +1-S n =a n +1=3n -2(n ∈N *),所以a 2=1,a 4=7,a 5=10,a 9=22,所以a 2+a 4+a 5+a 9=40.]8.若数列{a n }满足a 1=1,且对于任意的n ∈N *都有a n +1=a n +n +1,则1a 1+1a 2+…+1a 2 017+1a 2 018=________.4 0362 019[由a n +1=a n +n +1, 得a n +1-a n =n +1, 则a 2-a 1=1+1,a 3-a 2=2+1, a 4-a 3=3+1,…,a n -a n -1=(n -1)+1,n ≥2.以上等式相加,得a n -a 1=1+2+3+…+(n -1)+n -1,n ≥2, 把a 1=1代入上式得,a n =1+2+3+…+(n -1)+n =n n +12,1a n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1, 则1a 1+1a 2+…+1a 2 017+1a 2 018=21-12+12-13+…+12 017-12 018+12 018-12 019=21-12 019=4 0362 019.] [能力提升练] (建议用时:15分钟)9.(2019·泰安模拟)数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2,n ∈N *),那么a 2 019=( )A .1B .-2C .3D .-3A [因为a n +1=a n -a n -1(n ≥2),所以a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n -1=(a n -1-a n -2)-a n -1=-a n -2(n ≥3).所以a n +3=-a n (n ∈N *), 所以a n +6=-a n +3=a n ,故{a n }是以6为周期的周期数列. 因为2 019=336×6+3,所以a 2 019=a 3=a 2-a 1=3-2=1.故选A.]10.(2019·洛阳模拟)已知数列{a n }的前n 项和为S n ,且S n =2a n -1. (1)求数列{a n }的通项公式; (2)记b n =2a na n +1a n +1+1,求数列{b n }的前n 项和T n .[解] (1)当n =1时,a 1=S 1=2a 1-1,得a 1=1.当n ≥2时,有S n -1=2a n -1-1, 所以a n =S n -S n -1=2a n -2a n -1,即a n =2a n -1.所以{a n }是公比为2,首项为1的等比数列,故通项公式a n =2n -1(n ∈N *).(2)b n =2a na n +1a n +1+1=2n2n -1+12n+1=2⎝⎛⎭⎪⎫12n -1+1-12n +1,T n =b 1+b 2+b 3+…+b n =2×⎝⎛⎭⎪⎫120+1-121+1+2×⎝ ⎛⎭⎪⎫121+1-122+1+2×⎝ ⎛⎭⎪⎫122+1-123+1+…+2×⎝ ⎛⎭⎪⎫12n -1+1-12n +1=2n-12n +1.11.已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和T n .[解](1)设{a n}的公比为q,由题意知:a1(1+q)=6,a21q=a1q2,又a n>0,解得a1=2,q=2,所以a n=2n.(2)由题意知:S2n+1=2n+1b1+b2n+12=(2n+1)b b+1,又S2n+1=b n b n+1,b n+1≠0,所以b n=2n+1.令c n=b na n,则c n=2n+12n.因此T n=c1+c2+…+c n=32+522+723+…+2n-12n-1+2n+12n,又12T n=322+523+724+…+2n-12n+2n+12n+1,两式相减得12T n=32+⎝⎛⎭⎪⎫12+122+…+12n-1-2n+12n+1,所以T n=5-2n+52n.题号内容押题依据1由a n与S n的关系求通项公式由a n与S n的关系求通项公式常以小题形式出现,有时也出现在解答题的第(1)问,难度中等.本题考查逻辑推理和数学运算等核心素养,综合性强,符合全国卷的命题趋势2等差数列、三个“二次”间的关系、分组求和本题将等差数列的基本运算、三个“二次”的关系及数列分组求和有机组合且难度不大,符合全国卷的命题需求,主要考查通项公式的求解与分组求和,在运算过程中体现了数学运算及逻辑推理的核心素养n n n n na n=________.2-⎝⎛⎭⎪⎫12n[当n=1时,由an+S n=2n+1知,a1+S1=2×1+1,即a1+a1=3,解得a1=32.由a n+S n=2n+1,①知当n≥2时,a n-1+S n-1=2(n-1)+1=2n-1,②①-②得a n-a n-1+(S n-S n-1)=2,即2a n-a n-1=2,即2(a n -2)=a n -1-2,即a n -2=12(a n -1-2),故数列{a n -2}是以a 1-2=-12为首项,12为公比的等比数列,所以a n -2=-12×⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n ,即a n =2-⎝ ⎛⎭⎪⎫12n.] 【押题2】 已知等差数列{a n }的公差为d ,且关于x 的不等式a 1x 2-dx -3<0的解集为(-1,3).(1)求数列{a n }的通项公式; (2)若b n =2a n +12+a n ,求数列{b n }的前n 项和S n .[解] (1)由题意知,方程a 1x 2-dx -3=0的两个根分别为-1和3.则⎩⎪⎨⎪⎧da 1=2,-3a 1=-3,解得⎩⎪⎨⎪⎧d =2,a 1=1.故数列{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×2=2n -1. (2)由(1)知a n =2n -1,所以b n =2a n +12+a n =2n+(2n -1),所以S n =(2+22+23+ (2))+(1+3+5+…+2n -1)=2n +1+n 2-2.。

相关文档
最新文档