北京2016-2017东城区高三一模文科数学试卷与答案

合集下载

2016-2017学年北京市高三(上)入学数学试卷(文科)(解析版)

2016-2017学年北京市高三(上)入学数学试卷(文科)(解析版)
2
(Ⅰ)根据频率分布表中的数据,写出 a,b,c 的值; (Ⅱ)从该市调查的 1000 户居民中随机抽取一户居民,求该户居民用电量不超过 300 千 瓦时的概率; (Ⅲ)假设同组中的每个数据用该组区间的中点值代替,试估计该市每户居民该月的平
第 3 页(共 11 页)
均电费. 18. (14 分)如图,在四棱锥 P﹣ABCD 中,底面 ABCD 是矩形,PA=AD,PA⊥AB,N 是 棱 AD 的中点. (Ⅰ)求证:平面 PAB⊥平面 PAD; (Ⅱ)求证:PN⊥平面 ABCD; (Ⅲ)在棱 BC 上是否存在动点 E,使得 BN∥平面 DEP?并说明理由.
第 2 页(共 11 页)
(同国标码)mm 中国鞋码习惯叫法 (同欧码) 从上述表格中可以推算出 30 号的童鞋对应的脚的长度为 脚长为 282mm,则他该穿 号的鞋. ;若一个篮球运动员的 34 35 36 37 38 39 40 41 42 43
三、解答题:本大题共 6 小题,共 80 分.解答应写出文字说明、证明过程或演算步骤. 15. (13 分)已知数列{an}是等比数列,满足 a1=3,a4=24,数列{bn}是等差数列,满足 b2=4,b4=a3. (Ⅰ)求数列{an}和{bn}的通项公式; (Ⅱ)设 cn=an﹣bn,求数列{cn}的前 n 项和. 16. (13 分)已知函数 f(x)=sin2x﹣2sin x (Ⅰ)求函数 f(x)的最小正周期. (Ⅱ)求函数 f(x)的最大值及 f(x)取最大值时 x 的集合. 17. (13 分)某市为鼓励居民节约用电,将实行阶梯电价,该市每户居民每月用电量划分为 三档,电价实行分档递增. 第一档电量:用电量不超过 200 千瓦时,电价标准为 0.5 元/千瓦时; 第二档电量:用电量超过 200 但不超过 400 千瓦时,超出第一档电量的部分,电价标准 比第一档电价提高 0.1 元/千瓦时; 第三档电量:用电量超过 400 千瓦时,超出第二档电量的部分,电价标准比第一档电价 提高 0.3 元/千瓦时.随机调查了该市 1000 户居民,获得了他们某月的用电量数据,整理 得到如表的频率分布表: 用电量 (千 [0,100] 瓦时) 频数 频率 200 0.2 (100, (200,300] 200] 400 a 200 0.2 (300, 400] b 0.1 (400, 500] 100 c 1000 1 合计

北京市东城区2016届高三上学期期末考试数学(文)试题(扫描版)

北京市东城区2016届高三上学期期末考试数学(文)试题(扫描版)

东城区2015-2016学年第一学期期末教学统一检测高三数学参考答案及评分标准 (文科)一、选择题(本大题共8小题,每小题5分,共40分)(1) C (2)C (3)D (4)A(5)B (6)B (7)C (8)D二、填空题(本大题共6小题,每小题5分,共30分)(9) 54(10) 5 (11)25 (12)4(13) (14)4注:两个空的填空题第一个空填对得3分,第二个空填对得2分.三、解答题(本大题共6小题,共80分)(15)(共13分)解:(Ⅰ)设数列{}n a 的公差为d ,由题意知2310a a +=,即12+310a d =,由12a = ,解得2d =.所以22(1)2n a n n =+-=,即2n a n = ,n *∈N . ………………………………6分 (Ⅱ)由(Ⅰ)可得2(22)2n n n S n n +==+,所以2k S k k =+. 又3236a =⨯=,12(1)k a k +=+,由已知可得213k k a a S +=,即22(22)6()k k k +=+,整理得 220k k --=,*k ∈N .解得1k =-(舍去)或2k =.故2k =. ………………………………13分(16)(共13分)解:(Ⅰ)由表格可知,()f x 的周期()22T ππ=--=π, 所以22ωπ==π. 又由()sin 201ϕ⨯+=,且02ϕ<<π,所以2ϕπ=.所以()sin(2)cos 22f x x x π=+=. ………………………………6分 (Ⅱ)2()()2sin cos22sin 12sin 2sin g x f x x x x x x =+=+=-+ 2132(sin )22x =--+. 由sin [1,1]x ∈-,所以当1sin 2x =时,()g x 有最大值32; 当sin 1x =-时,()g x 有最小值3-. ………………………………13分(17)(共13分)解:(Ⅰ)由题可知,第2组的频数为0.3510035⨯=人,第3组的频率为300.300100=. 即①处的数据为35,②处的数据为0.300. ………………………………3分(Ⅱ)因为第3,4,5组共有60名学生,所以利用分层抽样,在60名学生中抽取6名学生,每组分别为:第3组:306360⨯=人;第4组:206260⨯=人;第5组:106160⨯=人. 所以第3,4,5组分别抽取3人,2人,人. ………………………………6分(Ⅲ)设第3组的3位同学为1A ,2A ,3A ,第4组的2位同学为1B ,2B ,第5组的位同学为1C ,则从6位同学中抽两位同学有15种可能,分别为: 12(,)A A ,13(,)A A ,11(,)AB ,12(,)A B ,11(,)AC ,23(,)A A ,21(,)A B ,22(,)A B ,21(,)A C ,31(,)A B ,32(,)A B ,31(,)A C ,12(,)B B ,11(,)B C ,21(,)B C .其中第4组的两位同学至少有一位同学被选中的有: 11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,11(,)B C ,21(,)B C ,12(,)B B 9种可能.所以第4组的两位同学至少有一位同学被选中的概率P =93155=. ………………………13分(18)(共13分) 证明:(Ⅰ)因为CD ⊥平面ADE ,AE ⊂平面A D E ,所以CD AE ⊥.又因为AE DE ⊥,CD DE D =,所以AE ⊥平面C D E .又因为AE ⊂平面ACE ,所以平面ACE ⊥平面CDE . ………………………………7分(Ⅱ)在线段DE 上存在一点F ,且13EF ED =,使AF 平面BCE . 设F 为线段DE 上一点, 且13EF ED =. 过点F 作FM CD 交CE 于M ,则13FM CD =. 因为CD ⊥平面ADE ,AB ⊥平面ADE , 所以CD AB . 又FMCD , 所以F M A B. 因为3C D A B =,所以FM AB =.所以四边形ABMF 是平行四边形.所以AF BM .又因为AF ⊄平面BCE ,BM ⊂平面BCE ,所以AF平面BCE . (13)分(19)(共14分)解:(Ⅰ)当1a =时,()e x f x x =-,()1e x f x '=-.当0x =时,1y =-,又(0)0f '=, 所以曲线()y f x =在点(0,f 处的切线方程为1y =-. ………………………………4分 ABC D F M(Ⅱ)由()e x f x x a =-,得()1e x f x a '=-.当0a ≤时,()0f x '>,此时()f x 在R 上单调递增.当x a =时,()e (1e )0a a f a a a a =-=-≤,当1x =时,(1)1e >0f a =-,所以当0a ≤时,曲线()y f x =与x 轴有且只有一个交点; …………………8分当0a >时,令()0f x '=,得ln x a =-.()f x 与()f x '在区间(,)-∞+∞上的情况如下:若曲线()y f x =与x 轴有且只有一个交点,则有(ln )0f a -=,即ln ln e 0a a a ---=.解得1ea =. 综上所述,当0a ≤或1e a =时,曲线()y f x =与x 轴有且只有一个交点. …………………12分 (Ⅲ)曲线()e x f x x a =-与曲线3()g x x =最多有3个交点. …………………14分(20)(共14分)解:(Ⅰ)由椭圆过点(0,则b =又a b +=故a =所以椭圆C 的方程为12822=+y x . ………………………………4分(Ⅱ)① 若直线过椭圆的左顶点,则直线的方程是1:2l y x =+,由2212182y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩解得110x y =⎧⎪⎨=⎪⎩,或220.x y ⎧=-⎪⎨=⎪⎩ 故2121--=k ,2122-=k . ………………………………8分 ②21k k + 为定值,且021=+k k . 设直线的方程为m x y +=21. 由2212182y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,消y ,得042222=-++m mx x . 当0168422>+-=∆m m ,即22<<-m 时,直线与椭圆交于两点. 设),(11y x A .),(22y x B ,则122x x m +=-,42221-=m x x . 又21111--=x y k ,21222--=x y k , 故2121221121--+--=+x y x y k k =)2)(2()2)(1()2)(1(211221----+--x x x y x y . 又m x y +=1121,m x y +=2221, 所以)2)(1()2)(1(1221--+--x y x y )2)(121()2)(121(1221--++--+=x m x x m x)1(4))(2(2121--+-+=m x x m x x 0)1(4)2)(2(422=----+-=m m m m . 故021=+k k . (14)。

2016年高考北京文科数学试题及答案(word解析版)

2016年高考北京文科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试〔北京卷〕数学〔文科〕第一部分〔选择题 共40分〕一、选择题:本大题共8小题,每题5分,共40分,在每题给出的四个选项中,选出符合题目要求的一项. 〔1〕【2016年北京,文1,5分】已知集合{}24A x x =<<,{}35B x x x =<>或,则A B =〔 〕〔A 〕{}25x x << 〔B 〕{}45x x x <>或 〔C 〕{}23x x << 〔D 〕{}25x x x <>或 【答案】C【解析】∵集合{}24A x x =<<,{}35B x x x =<>或,∴{}23Ax x B =<<,故选C .【点评】此题考查交集的求法,是基础题,解题时要认真审题,注意交集的定义的合理运用.〔2〕【2016年北京,文2,5分】复数12i2i+=-〔 〕〔A 〕i 〔B 〕1i + 〔C 〕i - 〔D 〕1i - 【答案】A【解析】()()()()12i 2i 12i 5ii 2i 2i 2i 5+++===--+,故选A . 【点评】此题考查的知识点是复数代数形式的加减运算,共轭复数的定义,难度不大,属于基础题. 〔3〕【2016年北京,文3】执行如下图的程序框图,输出s 的值为〔 〕〔A 〕8〔B 〕9 〔C 〕27 〔D 〕36【答案】B 【解析】当0k =时,满足进行循环的条件,故0S =,1k =,当1k =时,满足进行循环的条件,故1S =, 2k =,当2k =时,满足进行循环的条件,故9S =,3k =,当3k =时,不满足进行循环的 条件,故输出的S 值为9,故选B .【点评】此题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.〔4〕【2016年北京,文4,5分】以下函数中,在区间()1,1-上为减函数的是〔 〕〔A 〕11y x=- 〔B 〕cos y x = 〔C 〕()ln 1y x =+ 〔D 〕2x y -= 【答案】D【解析】A .x 增大时,x -减小,1x -减小,∴11x-增大;∴函数11y x =-在()1,1-上为增函数,该选项错误;B .cos y x =在()1,1-上没有单调性,该选项错误;C .x 增大时,1x +增大,()ln 1x +增大,∴()ln 1y x =+ 在()1,1-上为增函数,即该选项错误;D .122xxy -⎛⎫== ⎪⎝⎭;∴根据指数函数单调性知,该函数在()1,1-上 为减函数,∴该选项正确,故选D .【点评】考查根据单调性定义判断函数在一区间上的单调性的方法,以及余弦函数和指数函数的单调性,指数式的运算.〔5〕【2016年北京,文5,5分】圆()2212x y ++=的圆心到直线3y x =+的距离为〔 〕 〔A 〕1 〔B 〕2 〔C 〕2 〔D 〕22 【答案】C【解析】∵圆()2212x y ++=的圆心为()1,0-,∴圆()2212x y ++=的圆心到直线3y x =+的距离为:1322d -+==,故选C . 【点评】此题考查圆心到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式和圆的性质的合理运用.〔6〕【2016年北京,文6,5分】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为〔 〕〔A 〕15 〔B 〕25 〔C 〕825 〔D 〕925【答案】B【解析】从甲、乙等5名学生中随机选出2人,基本领件总数2510n C ==,甲被选中包含的基本领件的个数11144m C C ==,∴甲被选中的概率42105P n π===,故选B .【点评】此题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用. 〔7〕【2016年北京,文7,5分】已知()2,5A ,()4,1B .假设点(),P x y 在线段AB 上,则2x y -的最大值为〔 〕〔A 〕1- 〔B 〕3 〔C 〕7 〔D 〕8 【答案】C 【解析】如图()2,5A ,()4,1B .假设点(),P x y 在线段AB 上,令2z x y =-,则平行2y x z =-当直线经过B 时截距最小,z 取得最大值,可得2x y -的最大值为:2417⨯-=,故选C .【点评】此题考查线性规划的简单应用,判断目标函数经过的点,是解题的关键. 〔8〕【2016年北京,文8,5分】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊. 学生序号 1 2 3 4 5 6 7 8 9 10 立定跳远〔单位:米〕 30秒跳绳〔单位:次〕 63 a 75 60 63 72 70 a ﹣1 b 65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则〔 〕 〔A 〕2号学生进入30秒跳绳决赛 〔B 〕5号学生进入30秒跳绳决赛 〔C 〕8号学生进入30秒跳绳决赛 〔D 〕9号学生进入30秒跳绳决赛 【答案】B【解析】∵这10名学生中,进入立定跳远决赛的有8人,故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a ,60,63,1a -有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛,故选B .【点评】此题考查的知识点是推理与证明,正确利用已知条件得到合理的逻辑推理过程,是解答的关键.第二部分〔非选择题 共110分〕二、填空题:共6小题,每题5分,共30分。

2016年-2017年普通高等学校招生全国统一考试数学文试题(全国卷2,参考版解析)

2016年-2017年普通高等学校招生全国统一考试数学文试题(全国卷2,参考版解析)

高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。

穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。

食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。

如果可能的话,每天吃一两个水果,补充维生素。

另外,进考场前一定要少喝水!住:考前休息很重要。

好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。

考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。

用:出门考试之前,一定要检查文具包。

看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。

行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。

2016年高考新课标Ⅱ卷文数试题参考解析一、 选择题:本大题共12小题。

每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。

1. 已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =I ,故选D. 2. 设复数z 满足i 3i z +=-,则z =(A )12i -+ (B )12i - (C )32i + (D )32i - 【答案】C【解析】由3z i i +=-得,32z i =-,故选C. 3. 函数=sin()y A x ωϕ+ 的部分图像如图所示,则(A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(2+)6y x π=(D )2sin(2+)3y x π=【答案】A4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π (B )323π (C )8π (D )4π 【答案】A【解析】因为正方体的体积为8,所以正方体的体对角线长为233,所以球面的表面积为243)12ππ⋅=,故选A.5. 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = (A )12 (B )1 (C )32(D )2【答案】D【解析】(1,0)F ,又因为曲线(0)ky k x=>与C 交于点P ,PF x ⊥轴,所以21k =,所以2k =,选D.6. 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =(A )−43 (B )−34(C )3 (D )2 【答案】A【解析】圆心为(1,4),半径2r =,所以2211a =+,解得43a =-,故选A.7. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π 【答案】C【解析】因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为28S π=,故选C.8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯 ,则至少需要等待15秒才出现绿灯的概率为 (A )710 (B )58 (C )38 (D )310【答案】B【解析】至少需要等待15秒才出现绿灯的概率为40155408-=,故选B. 9. 中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34【答案】C【解析】第一次运算,a=2,s=2,n=2,k=1,不满足k>n; 第二次运算,a=2,s=2226⨯+=,k=2,不满足k>n; 第三次运算,a=5,s=62517⨯+=,k=3,满足k>n , 输出s=17,故选C .10. 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是 (A )y =x (B )y =lg x (C )y =2x(D )y x=【答案】D 【解析】lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .11. 函数π()cos 26cos()2f x x x =+-的最大值为 (A )4 (B )5(C )6(D )7【答案】B【解析】因为2311()2(sin )22f x x =--+,而sin [1,1]x ∈-,所以当sin 1x =时,取最大值5,选B.12. 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数 y =|x 2-2x -3| 与 y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑(A)0 (B)m (C) 2m (D) 4m 【答案】B【解析】因为2(),y |23|y f x x x ==--都关于1x =对称,所以它们交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=,因此选B. 二.填空题:共4小题,每小题5分.13. 已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. 【答案】6-【解析】因为a ∥b ,所以2430m --⨯=,解得6m =-.14. 若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则z =x -2y 的最小值为__________.【答案】5-15. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】2113【解析】因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin(C)sin cos cos sin 65B A AC A C =+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==.16. 有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 【答案】1和3【解析】由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{n a }中,34574,6a a a a +=+= (I )求{n a }的通项公式;(II)设nb =[na ],求数列{nb }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2【试题分析】(I )先设{}n a 的首项和公差,再利用已知条件可得1a 和d ,进而可得{}n a 的通项公式;(II )根据{}n b 的通项公式的特点,采用分组求和法,即可得数列{}n b 的前10项和.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”。

高三试卷—2016北京东城高三上期末数学文(含解析)

高三试卷—2016北京东城高三上期末数学文(含解析)
为 x : y 1: 2 ;
②将 A0 纸张沿长度方向对开成两等分,便成为 A1 规格, A1 纸张沿长度方向对开成两等分,便成为 A2 规格,L ,如此对开至 A8 规格.
现有 A0 ,A1 ,A2 ,L ,A8 纸各一张.若 A4 纸的宽度为 2 dm ,则 A0 纸的面积为__________ dm2 ; 这 9 张纸的面积之和等于__________ dm2 .
k)

整理得 k 2 k 2 0 , k N* . 解得 k 1(舍去)或 k 2 . 故k 2.
(16)(共 13 分)
解:(Ⅰ)由表格可知,
f
(x)
的周期 T
2
2

所以 2 2 .
又由 sin 2 0 1 ,且 0 2 ,所以 .
2
所以
f
(x)
sin
10
(Ⅱ)在线段
DE
上存在一点
F
,且
EF ED
1 3
,使
AF
平面 BCE .
设F
为线段 DE 上一点,
且 EF 1 . ED 3
过点
F

FM∥
CD
交 CE

M
,则
FM
1 CD 3

因为 CD 平面 ADE , AB 平面 ADE ,
所以 CD∥AB .
又 FM∥ CD ,
所 以 FM∥AB .
已知函数 f (x) sin(x )( 0 , 0 2 在一个周期内的部分对应值如下表:
x
0
2
6
2
f (x) 1
1
1 2
1
(Ⅰ)求 f (x) 的解析式;

北京市东城区2016届高三一模数学(文)试卷 含解析

北京市东城区2016届高三一模数学(文)试卷 含解析

北京市东城区2015-2016学年度第二学期高三综合练习(一)数学 (文科)本试卷共5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项)(1)若集合2{3}A x x x =∈<R ,{12}B x x =-<<,则A B =(A ){10}x x -<< (B ){13}x x -<<(C ){02}x x << (D ){03}x x <<【知识点】集合的运算【试题解析】因为, 所以,故答案为:B【答案】B(2)已知直线310ax y +-=与直线3+2=0x y -互相垂直,则a =(A )3- (B)1-(C)1 (D )3【知识点】两条直线的位置关系 【试题解析】因为直线与直线互相垂直,所以,故答案为:C【答案】C(3)已知4log 6a =,4log 0.2b =,2log 3c =,则三个数的大小关系是(A )c a b >> (B )a c b >>(C)a b c >> (D )b c a >>【知识点】对数与对数函数 【试题解析】因为所以,故答案为:A【答案】A(4)若,x y 满足0230230x x y x y ≥⎧⎪+-≥⎨⎪+-≤⎩,,,则2u x y =+的最大值为 (A )3 (B )52(C )2 (D )32【知识点】线性规划【试题解析】因为可行域如图,在AC 上任何一点取得最大值3.故答案为:A【答案】A(5)已知数列{}n a 的前n 项和1159131721(1)(43)n n S n -=-+-+-++--,则11S =(A )21- (B )19-(C)19 (D )21【知识点】数列的求和 【试题解析】因为故答案为:D【答案】D(6)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则“a b =”是“A b B a cos cos =”的。

2016年北京高考数学真题及答案(文科)

2016年北京高考数学真题及答案(文科)

数学(文)(北京卷) 第 1 页(共 10 页)绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试数 学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{|24}A x x =<<,{|3B x x =<或5}x >,则A B =I(A ){|25}x x << (B ){|4x x <或5}x > (C ){|23}x x << (D ){|2x x <或5}x >(2)复数12i2i+=- (A )i (B )1i + (C )i -(D )1i -(3)执行如图所示的程序框图,输出的s 值为(A )8 (B )9 (C )27 (D )36(4)下列函数中,在区间(1,1)-上为减函数的是(A )11y x=- (B )cos y x = (C )ln(1)y x =+(D )2x y -=数学(文)(北京卷) 第 2 页(共 10 页)(5)圆22(1)2x y ++=的圆心到直线3y x =+的距离为(A )1 (B )2 (C(D)(6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(A )15(B )25 (C )825(D )925(7)已知(2,5),(4,1)A B .若点(,)P x y 在线段AB 上,则2x y -的最大值为(A )1- (B )3 (C )7(D )8(8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则(A )2号学生进入30秒跳绳决赛 (B )5号学生进入30秒跳绳决赛 (C )8号学生进入30秒跳绳决赛(D )9号学生进入30秒跳绳决赛数学(文)(北京卷) 第 3 页(共 10 页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

北京2016-2017东城区一模文科数学试卷与答案

北京2016-2017东城区一模文科数学试卷与答案

北京市东城区2016-2017学年度第二学期高三综合练习(一)数学 (文科)本试卷共5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项) (1)如果{}|0R =∈>A x x ,{}0,1,2,3B =,那么集合=B A IA.空集B.{}0C.{}0,1D.{}1,2,3(2)某高校共有学生3000人,新进大一学生有800人.现对大学生社团活动情况进行抽样调查,用分层抽样方法在全校抽取300人,那么应在大一抽取的人数为A.200B.100C.80D.75(3)如果4log 1a =,2log 3b =,2log c π=,那么三个数的大小关系是 A.c b a >> B.a c b >> C.a b c >>D.b c a >>(4)如果过原点的直线l 与圆22(4)4x y +-= 切于第二象限,那么直线l 的方程是A.y =B.y =C.2y x =D.2y x =-(5)设函数30()0.2x x f x x -<=≥⎧,,若()1f a >,则实数a 的取值范围是A.(0,2)B.(0,)+∞C.(2,)+∞D.(,0)-∞∪(2,+)∞ (6) “0cos sin =+αα”是 “cos20α=”的A.充分而不必要条件B.必要而不充分条件C.充分且必要条件D.既不充分也不必要条件(7)如果某四棱锥的三视图如图所示,那么该四棱锥的四个侧面中是直角三角形的有 A.1 B.2C.3D.4(8)如果函数)(x f y =在定义域内存在区间],[b a ,使)(x f 在],[b a 上的值域是]2,2[b a ,那么称)(x f 为“倍增函数”.若函数)ln()(m e x f x+=为“倍增函数”,则实数m 的取值范围是A.),41(+∞-B.)0,21(-C.)0,1(-D.)0,41(-第Ⅱ卷(非选择题 共110分)二、填空题(共6小题,每小题5分,共30分)(9)如果2(1)(1)i x x -+-是纯虚数,那么实数x = .(10)如果执行如图所示的程序框图,那么输出的k =___.(11)如果直线l : 1 (0)y kx k =->与双曲线221169x y -=的一条渐近线平 行,那么k = __ .(12)“墨子号”是由我国完全自主研制的世界上第一颗空间量子科学实验卫星,于2016年8月16日发射升空.“墨子号”的主要应用目标是通过卫星中转实现可覆盖全球的量子保密通信.量子通信是通过光子的偏振状态,使用二进制编码,比如,码元0对应光子偏振方向为水平或斜向下45度,码元1对应光子偏振方向为垂直或斜向上45度.如下图所示开始结束是 输出 否信号发出后,我们在接收端将随机选择两种编码方式中的一种来解码,比如,信号发送端如果按编码方式1发送,同时接收端按编码方式1进行解码,这时能够完美解码;信号发送端如果按编码方式1发送,同时接收端按编码方式2进行解码,这时无法获取信息.如果发送端发送一个码元,那么接收端能够完美解码的概率是____;如果发送端发送3个码元,那么恰有两个码元无法获取信息的概率是____.(13)已知ABC ∆中,=120A ∠︒,且2AB AC ==,那么BC =_______,BC CA =u u u r u u u rg____ .(14)已知甲、乙、丙三人组成考察小组,每个组员最多可以携带供本人在沙漠中生存36天的水和食物,且计划每天向沙漠深处走30公里,每个人都可以在沙漠中将部分水和食物交给其他人然后独自返回. 若组员甲与其他两个人合作,且要求三个人都能够安全返回,则甲最远能深入沙漠_________公里.三、解答题(共6小题,共80分.答应写出文字说明,演算步骤或证明过程) (15)(本小题13分) 已知点)1,4(π在函数()2sin cos cos 2f x a x x x =+的图象上.(Ⅰ) 求a 的值和()f x 最小正周期; (Ⅱ) 求函数()f x 在(0,π)上的单调减区间.(16)(本小题13分)已知数列}{n a 是等差数列,前n 项和为n S ,若139,21a S ==. (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若58,k a a S ,成等比数列,求k 的值.如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AD BD ⊥且=AD BD ,AC BD O =I ,PO ⊥平面ABCD .(I )E 为棱PC 的中点,求证://OE 平面PAB ; (II )求证:平面PAD ⊥平面PBD ;(III) 若PD PB ⊥,=2AD ,求四棱锥P ABCD -的体积.(18)(本小题13分)某校学生在进行“南水北调工程对北京市民的影响”的项目式学习活动中,对某居民小区进行用水情况随机抽样调查,获得了该小区400位居民某月的用水量数据(单位:立方米),整理得到如下数据分组及频数分布表和频率分布直方图: 组号 分组 频数1 [0.5,1) 202 [1,1.5) 403 [1.5,2) 804 [2,2.5) 1205 [2.5,3) 606 [3,3.5) 407 [3.5,4) 20 8[4,4.5) 20(Ⅰ)求a ,b 的值;(Ⅱ)从该小区随机选取一名住户,试估计这名住户一个月用水量小于3立方米的概率; (Ⅲ)若小区人均月用水量低于某一标准,则称该小区为“节水小区”.假设同组中的每个数据用该组区间的右端点值代替,经过估算,该小区未达到“节水小区”标准,而且该小区居民月用水量不高于这一标准的比例为65%,经过同学们的节水宣传,三个月后,又进行一次同等规模的随机抽样调查,数据如右图所示,估计这时小区是否达到“节水小区”的标准?并说明理由.ABCDPOAB CDO F 1xy F 2E 已知椭圆2222:1(0)+=>>x y W a b a b的左右两个焦点为12,F F ,且122F F =,椭圆上一动点P 满足1223PF PF +=(Ⅰ)求椭圆W 的标准方程及离心率;(Ⅱ)如图,过点1F 作直线1l 与椭圆W 交于点,A C ,过点2F 作直线21l l ⊥,且2l 与椭圆W 交于点,B D ,1l 与2l 交于点E ,试求四边形ABCD 面积的最大值.(20)(本小题14分) 设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性; (Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由.北京市东城区2016-2017学年第二学期高三综合练习(一)数学(文科)参考答案一、选择题(本大题共8小题,每小题5分,共40分) (1)D (2)C (3)A (4)B (5)B (6)A (7)D (8)D二、填空题(本大题共6小题,每小题5分,共30分) (9)-1 (10)5 (11)34 (12)12,38(13)-6(14)810注:两个空的填空题第一个空填对得3分,第二个空填对得2分.三、解答题(本大题共6小题,共80分) (15)(共13分)解:(Ⅰ) Q 点π(,1)4在函数()f x 的图象上,()=2sin cos cos 14442ππππf a ∴+=.∴ 1.a =()2sin cos cos 2sin 2cos 2)4f x x x x x x πx ∴=+=+=+T π∴=.------------------6分(Ⅱ)由3222242k x k πππ+π++π≤≤, 得 522244k x k +π+π≤≤ππ,588k x k ∴+π+π.≤≤ππ ∴函数()f x 的单调减区间为 5,().88k k k Z ⎡⎤+π+π∈⎢⎥⎣⎦ππ∴函数()f x 在(0,π)上的单调减区间为5,.88⎡⎤⎢⎥⎣⎦ππ ------------------ 13分(16)(共13分)解:(Ⅰ)Q 等差数列}{n a 中,139,21a S ==,13321a d ∴+=.97d ∴+=.2.d ∴=-∴数列}{n a 的通项公式为211n a n =-+.------------------6分(Ⅱ)Q 数列}{n a 是等差数列,1=92a d =-,,∴210n S n n =-+. ∴2-k 10k S k =+.211n a n =-+Q , ∴15=a ,85a =-. Q 58k a a S ,,成等比数列, ∴285k a a S =⋅.∴22510k k -=-+().即210250k k -+=, 解得5k =.------------------13分(17)(共14分)解:(I ) 因为O 是平行四边形ABCD 对角线交点,所以O 为AC 中点 又E 为棱PC 中点,所以//OE PA因为OE ⊄平面PAB ,PA ⊂平面PAB ,所以//OE 平面PAB ……………………5分(II ) 因为PO ABCD ⊥面,所以PO AD ⊥又BD AD ⊥,BD PO O ⋂=, 所以AD PBD ⊥面 因为AD PAD ⊂面,所以PAD PBD ⊥面面 ……………………10分(III )因为O 是平行四边形ABCD 对角线交点,所以O 为BD 中点又PD PB ⊥,2AD BD ==,可求得112PO BD == 因为PO ABCD ⊥面,所以13P ABCD ABCD V S PO -=g 1222242ABCD ABD S S ∆==⨯⨯⨯=所以11441333P ABCD ABCD V S PO -==⨯⨯=g 四边形 ……………………14分(18)(共13分)解答:(Ⅰ)由数据分组及频数分布表可知,404000.20.5a ==;1204000.60.5b == ……………………4分(Ⅱ)设这名住户一个月用水量小于3立方米为事件A ,那么20408012060()0.8400P A ++++== ……………………8分(Ⅲ)因为该小区居民月用水量低于这一标准的比例为35%,所以由图可知,小区人均月用水量低于2.5立方米,则称为“节水小区”. ……………………10分 由图可知,三个月后的该小区人均月用水量为10.1 1.50.1520.25 2.50.330.1 3.50.0540.05⨯+⨯+⨯+⨯+⨯+⨯+⨯ 2.25 2.5=<所以三个月后该小区达到了“节水小区”标准. ……………………13分(19)(共13分)解:(Ⅰ)由已知,222222c a a b c =⎧⎪=⎨⎪=+⎩,解得1c a b =⎧⎪=⎨⎪=⎩所以椭圆W 的标准方程为22132x y +=,离心率c e a == . ……………………4分(Ⅱ)由题意可知12EF EF ⊥,由此可求得121||||12EO F F == 所以E 点轨迹为以原点为圆心,半径为1的圆,显然E 点在椭圆W 的内部所以111||||||||||||222ABC ADC ABCD S S S AC BE AC DE AC BD ∆∆=+=+=g g g 四边形当直线12,l l 一条为椭圆的长轴,一条与x 轴垂直时,例如AC 为长轴,BD x ⊥轴时 把1x =代入椭圆方程,可求得3y =±||3BD =,又||AC =所以此时1||||42ABCD S AC BD ==g 当直线12,l l 的斜率都存在时,设直线1:1,(0)l x my m =-≠,设1122(,),(,)A x y B x y联立221132x my x y =-⎧⎪⎨+=⎪⎩消去x 可得22(23)440m y my +--=所以122122423423m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩.AC ==同理,由21:1l x x m=-+可求得BD =2222424224242421124(1)||||22(23)(32)24(21)4(6126)4(1)4613661366136ABCDm S AC BD m m m m m m mm m m m m m +===++++++===-<++++++g 四边形综上,四边形ABCD 面积的最大值为4,此时直线12,l l 一条为椭圆的长轴,一条与x 轴垂直.……………………13分(20)(共14分)解析:(Ⅰ) 由ax x x x f +-=232131)(求得a x x x f +-=2)(' 2024)2('-=⇒=+-=∴a a f ,代入)1)(2(2)('2+-=--=x x x x x f令0)('=x f 得21=x ,12-=x),2(),1,(+∞--∞∈∴x 当时,0)('>x f ,)(x f 单调递增; )2,1(-∈x 当时,0)('<x f ,)(x f 单调递减.……………………4分(Ⅱ) 由32)2121(313221)()(232+++-=+-=ax x a x ax x f x g 求得))(1()1()('2a x x a x a x x g --=++-=1≥∴a 当时,当)1,0(∈x 时,0)('>x g 恒成立,)(x g 单调递增,又032)0(>=g此时)(x g 在区间)1,0(内没有零点;当10<<a 时,当),0(a x ∈时,0)('>x g ,)(x g 单调递增;当)1,(a x ∈时,0)('<x g ,)(x g 单调递减.又032)0(>=g 此时欲使)(x g 在区间)1,0(内有零点,必有0)1(<g .10212132)2121(310)1(-<⇒<+=+++-⇒<a a a a g无解当0≤a 时,当)1,0(∈x 时,0)('<x g 恒成立,)(x g 单调递减此时欲使)(x g 在区间)1,0(内有零点,必有10)1(-<⇒<a g .综上,a 的取值范围为)1,(--∞.……………………9分(Ⅲ)不能.原因如下:设)(x f 有两个极值点1x ,2x ,则导函数a x x x f +-=2)('有两个不同的零点410410<⇒>-⇒>∴a a ∆,且1x ,2x 为方程02=+-a x x 的两根 a x x a x x -=⇒=+-1211210111211211112131132)(61326121)(312131)(ax a x ax x ax x a x x ax x x x f +--=+-=+--=+-=∴ a x a x f 61)6132()(11+-=∴ 同理a x a x f 61)6132()(22+-=由此可知过两点))(,(11x f x ,))(,(22x f x 的直线方程为a x a y 61)6132(+-=若直线过点)1,1(,则57676561)6132(1=⇒=⇒+-=a a a a前面已经讨论过若)(x f 有两个极值点,则41<a ,显然不合题意.综上,过两点))(,(11x f x ,))(,(22x f x 的直线不能过点)1,1(.……………………14分。

2016年北京市东城区第一学期期末教学统一检测高三数学(文科)试卷(含答案)

2016年北京市东城区第一学期期末教学统一检测高三数学(文科)试卷(含答案)

北京市东城区2015-2016学年第一学期期末教学统一检测高三数学 (文科)学校_____________班级_______________姓名______________考号___________ 本试卷共5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{}1,2,A m =,{}3,4B =.若{}3AB =,则实数m =(A ) (B )2 (C )3 (D )4 (2)在复平面内,复数2iiz -=对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(3)已知向量(1,2)=a ,(2,)x =-b .若+a b 与-a b 平行,则实数x 的值是 (A )4 (B )(C )1-(D )4-(4)经过圆22220x y x y +-+=的圆心且与直线20x y -=平行的直线方程是 (A )230x y --= (B ) 210x y --= (C )230x y -+= (D )210x y ++=(5)给出下列函数:①2log y x = ; ②2y x = ; ③2xy =; ④2y x=. 其中图象关于y 轴对称的是(A )①② (B )②③ (C )①③ (D )②④(6)“sin 221αα-=”是“4απ=”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(7)某程序框图如图所示,当输入的x 的值为5时,输出的y 值恰好是13,则在空白的处理框处应填入的关系式可以是(A )3y x = (B )3y x = (C ) 3x y = (D )3y x=(8)已知函数)21()(2≤≤-=x x a x f 与1)(+=x x g 的图象上存在关于x 轴对称的点,则实数a 的取值范围是(A )5[,)4-+∞ (B )[1,2] (C )5[,1]4- (D )[1,1]-第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

北京市高三一模考试数学文试题真题(word版含答案)

北京市高三一模考试数学文试题真题(word版含答案)

北京市海淀区高三一模数学(文科)第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|13A x x =<<,集合{}2|4B x x =>,则集合A B 等于( ) A .{}|23x x << B .{}|1x x > C .{}|12x x << D .{}|2x x >2.圆心为(0,1)且与直线2y =相切的圆的方程为( )A .22(1)1x y -+=B .22(1)1x y ++=C .22(1)1x y +-=D .22(1)1x y ++= 3.执行如图所示的程序框图,输出的x 的值为( )A .4B .3C .2D .14.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥中最长棱的长度为( )ABC. D .36.在ABC ∆上,点D 满足2AD AB AC =-,则( )A .点D 不在直线BC 上B .点D 在BC 的延长线上 C .点D 在线段BC 上 D .点D 在CB 的延长线上7.若函数cos ,,()1,x x a f x x a x ≤⎧⎪=⎨>⎪⎩的值域为[]1,1-,则实数a 的取值范围是( ) A .[1,)+∞ B .(,1]-∞- C .(0,1] D .(1,0)-8.如图,在公路MN 两侧分别有1A ,2A ,…,7A 七个工厂,各工厂与公路MN (图中粗线)之间有小公路连接.现在需要在公路MN 上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”.则下面结论中正确的是( )①车站的位置设在C 点好于B 点;②车站的位置设在B 点与C 点之间公路上任何一点效果一样;③车站位置的设置与各段小公路的长度无关.A .①B .②C .①③D .②③第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.已知复数(1)2z a i =+-为纯虚数,则实数a = .10.已知等比数列{}n a 中,245a a a =,48a =,则公比q = ,其前4项和4S = .11.若抛物线22y px =的准线经过双曲线2213y x -=的左焦点,则实数p = . 12.若x ,y 满足240,20,1,x y x y x +-=⎧⎪-≤⎨⎪≥⎩则y x 的最大值是 . 13.已知函数()sin f x x ω=(0ω>),若函数()y f x a =+(0a >)的部分图象如图所示,则ω= ,a 的最小值是 .14.阅读下列材料,回答后面问题:在2014年12月30日13CCTV 播出的“新闻直播间”节目中,主持人说:“……加入此次亚航失联航班8501QZ 被证实失事的话,2014年航空事故死亡人数将达到1320人.尽管如此,航空安全专家还是提醒:飞机仍是相对安全的交通工具.①世界卫生组织去年公布的数据显示,每年大约有124万人死于车祸,而即使在航空事故死亡人数最多的一年,也就是1972年,其死亡数字也仅为3346人;②截至2014年9月,每百万架次中有2.1次(指飞机失事),乘坐汽车的百万人中其死亡人数在100人左右.”对上述航空专家给出的①、②两段表述(划线部分),你认为不能够支持“飞机仍是相对安全的交通工具”的所有表述序号为 ,你的理由是 .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.已知等差数列{}n a 满足126a a +=,2310a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求数列{}1n n a a ++的前n 项和.16.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a ,b 两种“共享单车”(以下简称a 型车,b 型车).某学习小组7名同学调查了该地区共享单车的使用情况.(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a 型车,3人租到b 型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a 型车的概率;(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a 型车的用户中,在第4个月有60%的用户仍租a 型车.若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用a ,b 两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.17.在ABC ∆中,2A B =.(Ⅰ)求证:2cos a b B =;(Ⅱ)若2b =,4c =,求B 的值.18.在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,2PA AB ==,E ,F 分别是PB ,PD 的中点.(Ⅰ)求证://PB 平面FAC ;(Ⅱ)求三棱锥P EAD -的体积;(Ⅲ)求证:平面EAD ⊥平面FAC .19.已知椭圆C :22221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12. (Ⅰ)求椭圆C 的方程;(Ⅱ)设点(4,0)Q ,若点P 在直线4x =上,直线BP 与椭圆交于另一点M .判断是否存在点P ,使得四边形APQM 为梯形?若存在,求出点P 的坐标;若不存在,说明理由.20.已知函数2()x f x e x ax =-+,曲线()y f x =在点(0,(0))f 处的切线与x 轴平行.(Ⅰ)求a 的值;(Ⅱ)若()21x g x e x =--,求函数()g x 的最小值;(Ⅲ)求证:存在0c <,当x c >时,()0f x > .高三年级第二学期期中练习数学(文科)答案一、选择题1-5:ACCCB 6-8:DAC二、填空题9.2 10.2,15 11.4 12.32 13.2,12π 14.选①,数据①虽是同类数据,但反映不出乘车出行和乘飞机出行的总人数的关系;选②,数据②两个数据不是同一类数据,这与每架次飞机的乘机人数有关;不选②,数据②两个数据虽表面不是同一类数据,但是可以做如下大致估算,考虑平均每架次飞机的乘机人数为x ,这样每百万人乘机死亡人数2.1人,要远远少于乘车每百万人中死亡人数.三、解答题15.解:(Ⅰ)设数列{}n a 的公差为d ,因为126a a +=,2310a a +=,所以314a a -=,所以24d =,2d =.又116a a d ++=,所以12a =,所以1(1)2n a a n d n =+-=.(Ⅱ)记1n n n b a a +=+,所以22(1)42n b n n n =++=+,又14(1)2424n n b b n n +-=++--=,所以{}n b 是首项为6,公差为4的等差数列,其前n 项和21()(642)2422n n n b b n n S n n +++===+. 16.解:(Ⅰ)依题意租到a 型车的4人为1A ,2A ,3A ,4A ;租到b 型车的3人为1B ,2B ,3B ; 设事件A 为“7人中抽到2人,至少有一人租到a 型车”, 则事件A 为“7人中抽到2人都租到b 型车”.如表格所示:从7人中抽出2人共有21种情况,事件A 发生共有3种情况,所以事件A 概率36()1()1217P A P A =-=-=.(Ⅱ)依题意,市场4月份租用a 型车的比例为50%60%50%50%55%+=,租用b 型车的比例为50%40%50%50%45%+=,所以市场4月租用a ,b 型车的用户比例为55%1145%9=. 17.解:(Ⅰ)因为2A B =, 所以由正弦定理sin sin a b A B =,得sin sin 2a a A B=, 得2sin cos sin a b B B B =,所以2cos a b B =. (Ⅱ)由余弦定理,2222cos a b c bc A =+-,因为2b =,4c =,2A B =,所以216cos 41616cos 2B B =+-, 所以23cos 4B =, 因为2A B B B π+=+<,所以3B π<,所以cos B =,所以6B π=. 18.(Ⅰ)证明:连接BD ,与AC 交于点O ,连接OF ,在PBD ∆中,O ,F 分别是BD ,PD 的中点,所以//OF PB ,又因为OF ⊂平面FAC ,PB ⊄平面FAC ,所以//PB 平面FAC .(Ⅱ)解:因为PA ⊥平面ABCD ,所以PA 为棱锥P ABD -的高. 因为2PA AB ==,底面ABCD 是正方形, 所以13P ABD ABD V S PA -∆=⨯⨯114222323=⨯⨯⨯⨯=, 因为E 为PB 中点,所以PAE ABE S S ∆∆=, 所以1223P EAD P ABD V V --=⨯=. (Ⅲ)证明:因为AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,在等腰直角PAB ∆中,AE PB ⊥,又AE AD A =,AE ⊂平面EAD ,AD ⊂平面EAD ,所以PB ⊥平面EAD ,又//OF PB ,所以OF ⊥平面EAD ,又OF ⊂平面FAC ,所以平面EAD ⊥平面FAC .19.解:(Ⅰ)由||4AB =,得2a =. 又因为12c e a ==,所以1c =,所以2223b a c =-=, 所以椭圆C 的方程为22143x y +=. (Ⅱ)假设存在点P ,使得四边形APQM 为梯形.由题意知,显然AM ,PQ 不平行,所以//AP MQ , 所以||||||||BQ BM AB BP =,所以||1||2BM BP =. 设点11(,)M x y ,(4,)P t ,过点M 作MH AB ⊥于H ,则有||||1||||2BH BM BQ BP ==, 所以||1BH =,所以(1,0)H ,所以11x =, 代入椭圆方程,求得132y =±, 所以(4,3)P ±.20.解:(Ⅰ)'()2x f x e x a =-+,由已知可得'(0)0f =,所以10a +=,得1a =-.(Ⅱ)'()2x g x e =-,令'()0g x =,得ln 2x =,所以x ,'()g x ,()g x 的变化情况如表所示:所以()g x 的最小值为ln 2(ln 2)2ln 2112ln 2g e =--=-.(Ⅲ)证明:显然()'()g x f x =,且(0)0g =,由(Ⅱ)知,()g x 在(,ln 2)-∞上单调递减,在(ln 2,)+∞上单调递增. 又(ln 2)0g <,2(2)50g e =->,由零点存在性定理,存在唯一实数0(ln 2,)x ∈+∞,满足0()0g x =, 即00210x e x --=,0021x e x =+,综上,()'()g x f x =存在两个零点,分别为0,0x .所以0x <时,()0g x >,即'()0f x >,()f x 在(,0)-∞上单调递增; 00x x <<时,()0g x <,即'()0f x <,()f x 在0(0,)x 上单调递减; 0x x >时,()0g x >,即'()0f x >,()f x 在0(,)x +∞上单调递增, 所以(0)f 是极大值,0()f x 是极小值,0222200000000015()211()24x f x e x x x x x x x x =--=+--=-++=--+, 因为(1)30g e =-<,323()402g e =->, 所以03(1,)2x ∈,所以0()0f x >,因此0x ≥时,()0f x >.因为(0)1f =且()f x 在(,0)-∞上单调递增,所以一定存在0c <满足()0f c >,所以存在0c <,当x c >时,()0f x >.。

(全优试卷)北京市东城区高三数学一模试卷(文科) Word版含解析

(全优试卷)北京市东城区高三数学一模试卷(文科) Word版含解析

2017年北京市东城区高考数学一模试卷(文科)一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.如果A={x∈R|x>0},B={0,1,2,3},那么集合A∩B=()A.空集B.{0}C.{0,1}D.{1,2,3}2.某高校共有学生3000人,新进大一学生有800人.现对大学生社团活动情况进行抽样调查,用分层抽样方法在全校抽取300人,那么应在大一抽取的人数为()A.200 B.100 C.80 D.753.如果a=log41,b=log23,c=log2π,那么三个数的大小关系是()A.c>b>a B.a>c>b C.a>b>c D.b>c>a4.如果过原点的直线l与圆x2+(y﹣4)2=4切于第二象限,那么直线l的方程是()A.B. C.y=2x D.y=﹣2x5.设函数若f(a)>1,则实数a的取值范围是()A.(0,2) B.(0,+∞)C.(2,+∞)D.(﹣∞,0)∪(2,+∞)6.“sinα+cosα=0”是“cos2α=0”的()A.充分而不必要条件B.必要而不充分条件C.充分且必要条件 D.既不充分也不必要条件7.如果某四棱锥的三视图如图所示,那么该四棱锥的四个侧面中是直角三角形的有()A .1B .2C .3D .48.如果函数y=f (x )在定义域内存在区间[a ,b ],使f (x )在[a ,b ]上的值域是[2a ,2b ],那么称f (x )为“倍增函数”.若函数f (x )=ln (e x +m )为“倍增函数”,则实数m 的取值范围是( )A .B .C .(﹣1,0)D .二、填空题(共6小题,每小题5分,共30分)9.如果(x 2﹣1)+(x ﹣1)i 是纯虚数,那么实数x= . 10.如果执行如图所示的程序框图,那么输出的k= .11.如果直线l :y=kx ﹣1(k >0)与双曲线的一条渐近线平行,那么k= .12.“墨子号”是由我国完全自主研制的世界上第一颗空间量子科学实验卫星,于2016年8月16日发射升空.“墨子号”的主要应用目标是通过卫星中转实现可覆盖全球的量子保密通信.量子通信是通过光子的偏振状态,使用二进制编码,比如,码元0对应光子偏振方向为水平或斜向下45度,码元1对应光子偏振方向为垂直或斜向上45度.如图所示信号发出后,我们在接收端将随机选择两种编码方式中的一种来解码,比如,信号发送端如果按编码方式1发送,同时接收端按编码方式1进行解码,这时能够完美解码;信号发送端如果按编码方式1发送,同时接收端按编码方式2进行解码,这时无法获取信息.如果发送端发送一个码元,那么接收端能够完美解码的概率是 ;如果发送端发送3个码元,那么恰有两个码元无法获取信息的概率是 .13.已知△ABC 中,∠A=120°,且AB=AC=2,那么BC= ,= .14.已知甲、乙、丙三人组成考察小组,每个组员最多可以携带供本人在沙漠中生存36天的水和食物,且计划每天向沙漠深处走30公里,每个人都可以在沙漠中将部分水和食物交给其他人然后独自返回.若组员甲与其他两个人合作,且要求三个人都能够安全返回,则甲最远能深入沙漠 公里.三、解答题(共6小题,共80分.答应写出文字说明,演算步骤或证明过程) 15.已知点(,1)在函数f (x )=2asinxcosx +cos2x 的图象上.(Ⅰ) 求a 的值和f (x )最小正周期;(Ⅱ) 求函数f (x )在(0,π)上的单调减区间.16.已知数列{a n }是等差数列,前n 项和为S n ,若a 1=9,S 3=21. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若a 5,a 8,S k 成等比数列,求k 的值.17.如图,在四棱锥P ﹣ABCD 中,四边形ABCD 是平行四边形,AD ⊥BD 且AD=BD ,AC ∩BD=O ,PO ⊥平面ABCD .(I)E为棱PC的中点,求证:OE∥平面PAB;(II)求证:平面PAD⊥平面PBD;(III)若PD⊥PB,AD=2求四棱锥P﹣ABCD体积.18.某校学生在进行“南水北调工程对北京市民的影响”的项目式学习活动中,对某居民小区进行用水情况随机抽样调查,获得了该小区400位居民某月的用水量数据(单位:立方米),整理得到如下数据分组及频数分布表和频率分布直方图(图1):(Ⅰ)求a,b的值;(Ⅱ)从该小区随机选取一名住户,试估计这名住户一个月用水量小于3立方米的概率;(Ⅲ)若小区人均月用水量低于某一标准,则称该小区为“节水小区”.假设同组中的每个数据用该组区间的右端点值代替,经过估算,该小区未达到“节水小区”标准,而且该小区居民月用水量不高于这一标准的比例为65%,经过同学们的节水宣传,三个月后,又进行一次同等规模的随机抽样调查,数据如图2所示,估计这时小区是否达到“节水小区”的标准?并说明理由.19.已知椭圆W:=1(a>b>0)的左右两个焦点为F1,F2,且|F1F2|=2,椭圆上一动点P满足|PF1|+|PF2|=2.(Ⅰ)求椭圆W的标准方程及离心率;(Ⅱ)如图,过点F1作直线l1与椭圆W交于点A,C,过点F2作直线l2⊥l1,且l2与椭圆W交于点B,D,l1与l2交于点E,试求四边形ABCD面积的最大值.20.设函数,a∈R.(Ⅰ)若x=2是f(x)的极值点,求a的值,并讨论f(x)的单调性;(Ⅱ)已知函数,若g(x)在区间(0,1)内有零点,求a 的取值范围;(Ⅲ)设f(x)有两个极值点x1,x2,试讨论过两点(x1,f(x1)),(x2,f(x2))的直线能否过点(1,1),若能,求a的值;若不能,说明理由.2017年北京市东城区高考数学一模试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.如果A={x∈R|x>0},B={0,1,2,3},那么集合A∩B=()A.空集B.{0}C.{0,1}D.{1,2,3}【考点】交集及其运算.【分析】利用交集定义直接求解.【解答】解:∵A={x∈R|x>0},B={0,1,2,3},∴集合A∩B={1,2,3}.故选:D.2.某高校共有学生3000人,新进大一学生有800人.现对大学生社团活动情况进行抽样调查,用分层抽样方法在全校抽取300人,那么应在大一抽取的人数为()A.200 B.100 C.80 D.75【考点】分层抽样方法.【分析】根据分层抽样的定义建立比例关系即可得到结论.【解答】解:设大一抽取的人数为n人,则用分层抽样的方法可得=,∴x=80.故选:C.3.如果a=log41,b=log23,c=log2π,那么三个数的大小关系是()A.c>b>a B.a>c>b C.a>b>c D.b>c>a【考点】对数值大小的比较.【分析】利用对数函数的单调性即可得出.【解答】解:∵a=log41=0,1<b=log23<c=log2π,∴c>b>a.故选:A.4.如果过原点的直线l与圆x2+(y﹣4)2=4切于第二象限,那么直线l的方程是()A.B. C.y=2x D.y=﹣2x【考点】直线与圆的位置关系.【分析】由已知得圆心坐标为(0,4),半径长为2.因为直线斜率存在.设直线方程为y=kx,根据圆心到直线的距离等于半径,确定k的值,从而求出直线方程【解答】解:圆心坐标为(0,4),半径长为2.由直线过原点,当直线斜率不存在时,不合题意,设直线方程为;y=kx,即kx﹣y=0.则圆心到直线的距离d==r=2化简得:k2=3又∵切点在第二象限,∴∴直线方程为;y=﹣x故选:B.5.设函数若f(a)>1,则实数a的取值范围是()A.(0,2) B.(0,+∞)C.(2,+∞)D.(﹣∞,0)∪(2,+∞)【考点】函数单调性的判断与证明.【分析】分别讨论2a﹣3>1,与>1,求出a的范围即可.【解答】解:若2a﹣3>1,解得:a>2,与a<0矛盾,若>1,解得:a>0,故a的范围是(0,+∞),故选:B.6.“sinα+cosα=0”是“cos2α=0”的()A.充分而不必要条件B.必要而不充分条件C.充分且必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】cos2α=0⇔(cosα+sinα)(cosα﹣sinα)=0⇔(cosα+sinα)=0或(cosα﹣sinα)=0,即可判断出结论.【解答】解:cos2α=0⇔(cosα+sinα)(cosα﹣sinα)=0⇔(cosα+sinα)=0或(cosα﹣sinα)=0,∴“sinα+cosα=0”是“cos2α=0”的充分不必要条件.故选:A.7.如果某四棱锥的三视图如图所示,那么该四棱锥的四个侧面中是直角三角形的有()A.1 B.2 C.3 D.4【考点】由三视图求面积、体积.【分析】由三视图,可得直观图是四棱锥,底面是正方形,有一侧棱垂直于底面,即可得出结论.【解答】解:由三视图,可得直观图是四棱锥,底面是正方形,有一侧棱垂直于底面,则四棱锥的四个侧面都是直角三角形,故选D.8.如果函数y=f(x)在定义域内存在区间[a,b],使f(x)在[a,b]上的值域是[2a,2b],那么称f(x)为“倍增函数”.若函数f(x)=ln(e x+m)为“倍增函数”,则实数m的取值范围是()A.B.C.(﹣1,0)D.【考点】函数的值.【分析】由题意,函数f(x)在[a,b]上的值域且是增函数;可得,可以转化为方程e2x﹣e x﹣m=0有两个不等的实根,且两根都大于0的问题,从而求出t的范围.【解答】解:∵函数f(x)=ln(e x+m)为“倍增函数”,且满足存在[a,b],使f(x)在[a,b]上的值域是[2a,2b],∴f(x)在[a,b]上是增函数;∴,即;∴方程e2x﹣e x﹣m=0可化为y2﹣y﹣m=0(其中y=e x),∴该方程有两个不等的实根,且两根都大于0;即,解得﹣<m<0;∴满足条件的m的范围是(﹣,0);故选:D.二、填空题(共6小题,每小题5分,共30分)9.如果(x2﹣1)+(x﹣1)i是纯虚数,那么实数x=﹣1.【考点】复数的基本概念.【分析】直接由实部为0且虚部不为0列式求解.【解答】解:∵(x2﹣1)+(x﹣1)i是纯虚数,∴,解得:x=﹣1.故答案为:﹣1.10.如果执行如图所示的程序框图,那么输出的k=5.【考点】程序框图.【分析】由程序框图,运行操作,直到条件满足为止,即可得出结论.【解答】解:由程序框图知第一次运行k=2,m=;第二次运行k=3,m=;第三次运行k=4,m=;第四次运行k=5,m=;退出循环.故答案为:5.11.如果直线l:y=kx﹣1(k>0)与双曲线的一条渐近线平行,那么k=.【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,由两直线平行的条件:斜率相等,即可得到所求k的值.【解答】解:双曲线的渐近线方程为y=±x,由直线l:y=kx﹣1(k>0)与双曲线的一条渐近线平行,可得k=.故答案为:.12.“墨子号”是由我国完全自主研制的世界上第一颗空间量子科学实验卫星,于2016年8月16日发射升空.“墨子号”的主要应用目标是通过卫星中转实现可覆盖全球的量子保密通信.量子通信是通过光子的偏振状态,使用二进制编码,比如,码元0对应光子偏振方向为水平或斜向下45度,码元1对应光子偏振方向为垂直或斜向上45度.如图所示信号发出后,我们在接收端将随机选择两种编码方式中的一种来解码,比如,信号发送端如果按编码方式1发送,同时接收端按编码方式1进行解码,这时能够完美解码;信号发送端如果按编码方式1发送,同时接收端按编码方式2进行解码,这时无法获取信息.如果发送端发送一个码元,那么接收端能够完美解码的概率是;如果发送端发送3个码元,那么恰有两个码元无法获取信息的概率是.【考点】列举法计算基本事件数及事件发生的概率.【分析】发送端发送一个码元,基本事件总数n=2,接收端能够完美解码包含的基本事件个数m=1,由此能求出发送端发送一个码元,那么接收端能够完美解码的概率;进而利用n次独立重复试验中事件A恰好发生k次的概率计算公式能求出发送端发送3个码元,恰有两个码元无法获取信息的概率.【解答】解:发送端发送一个码元,基本事件总数n=2,接收端能够完美解码包含的基本事件个数m=1,∴发送端发送一个码元,那么接收端能够完美解码的概率p1==.发送端发送3个码元,恰有两个码元无法获取信息的概率p2==.故答案为:,.13.已知△ABC中,∠A=120°,且AB=AC=2,那么BC=2,=﹣6.【考点】平面向量数量积的运算.【分析】利用余弦定理求出BC的值,根据平面向量数量积的定义求出的值.【解答】解:△ABC中,∠A=120°,且AB=AC=2,由余弦定理得BC2=AB2+AC2﹣2AB•AC•cos∠A=22+22﹣2×2×2×cos120°=12,∴BC=2,∴=(﹣)•(﹣)=﹣+•=﹣22+2×2×cos120°=﹣6.故答案为:2,﹣6.14.已知甲、乙、丙三人组成考察小组,每个组员最多可以携带供本人在沙漠中生存36天的水和食物,且计划每天向沙漠深处走30公里,每个人都可以在沙漠中将部分水和食物交给其他人然后独自返回.若组员甲与其他两个人合作,且要求三个人都能够安全返回,则甲最远能深入沙漠900公里.【考点】进行简单的合情推理.【分析】因为要求最远,所以3人同去耗食物,即只一人去,另2人中途返回,3人一起出发.12天后两人都只剩24天的食物.乙、丙分给甲12+12=24天的食物后独自带12天的食物返回;甲独自前进18天后返回,甲一共走了30天,他们每天向沙漠深处走30千米,据此解答即可.【解答】解:因为要求最远,所以3人同去耗水和食物,即只一人去,3人一起出发.12天后两人都只剩24天的食物.乙、丙分给甲12+12=24天的食物后独自带12天的水和食物返回.则甲有的食物:36﹣12+12+12=48(天)甲再走:(48﹣12)÷2=18(天)30×(12+18)=900公里.故答案为900.三、解答题(共6小题,共80分.答应写出文字说明,演算步骤或证明过程)15.已知点(,1)在函数f(x)=2asinxcosx+cos2x的图象上.(Ⅰ)求a的值和f(x)最小正周期;(Ⅱ)求函数f(x)在(0,π)上的单调减区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(Ⅰ)利用二倍角以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,图象过点(,1),可得a的值.利用周期公式求函数的最小正周期.(Ⅱ)将内层函数看作整体,放到正弦函数的减区间上,解不等式得函数的单调递减区间;根据k的取值,即可得x在(0,π)的减区间.【解答】解:(Ⅰ)函数f(x)=2asinxcosx+cos2x.化解可得:f(x)=asin2x+cos2x.∵图象过点(,1),即1=asin+cos可得:a=1.∴f(x)=sin2x+cos2x=sin(2x+)∴函数的最小正周期T=.(Ⅱ)由2kπ+2x+,k∈Z.可得:≤x≤,k∈Z.函数f(x)的单调减区间为[,],k∈Z.∵x∈(0,π).当k=0时,可得单调减区间为[,].函数f(x)在(0,π)上的单调减区间为[,].16.已知数列{a n}是等差数列,前n项和为S n,若a1=9,S3=21.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若a5,a8,S k成等比数列,求k的值.【考点】等比数列的通项公式;数列递推式.【分析】(Ⅰ)利用等差数列前n项和公式求出d=﹣2,由此能求出数列{a n}的通项公式.(Ⅱ)由a5,a8,S k成等比数列,得,由此能求出k.【解答】解:(Ⅰ)∵数列{a n}是等差数列,前n项和为S n,a1=9,S3=21.∴,解得d=﹣2,∴a n=9+(n﹣1)×(﹣2)=﹣2n+11.(Ⅱ)∵a5,a8,S k成等比数列,∴,即(﹣2×8+11)2=(﹣2×5+11)•[9k+],解得k=5.17.如图,在四棱锥P﹣ABCD中,四边形ABCD是平行四边形,AD⊥BD且AD=BD,AC∩BD=O,PO⊥平面ABCD.(I)E为棱PC的中点,求证:OE∥平面PAB;(II)求证:平面PAD⊥平面PBD;(III)若PD⊥PB,AD=2求四棱锥P﹣ABCD体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(Ⅰ)由四边形ABCD是平行四边形,可得O为AC中点,又E为PC中点,由三角形中位线定理可得OE∥PA,再由线面平行的判定可得OE∥平面PAB;(Ⅱ)由PO⊥平面ABCD,得PO⊥AD,再由AD⊥BD,可得AD⊥平面PBD,进一步得到平面PAD⊥平面PBD;(Ⅲ)由已知求出平行四边形ABCD的面积,进一步求出高PO,再由体积公式得答案.【解答】(Ⅰ)证明:∵四边形ABCD是平行四边形,∴O为AC中点,又E为PC中点,∴OE是△PAC的中位线.∴OE∥PA,而OE⊄平面PAB,PA⊂平面PAB,∴OE∥平面PAB;(Ⅱ)证明:∵PO⊥平面ABCD,∴PO⊥AD,又AD⊥BD,且BD∩PO=O,∴AD⊥平面PBD,而AD⊂平面PBD,∴平面PAD⊥平面PBD;=2×2=4,(Ⅲ)由AD⊥BD,且AD=BD,AD=2,∴S四边形ABCD又PD⊥PB,PO⊥BD,可得PO=,∴.18.某校学生在进行“南水北调工程对北京市民的影响”的项目式学习活动中,对某居民小区进行用水情况随机抽样调查,获得了该小区400位居民某月的用水量数据(单位:立方米),整理得到如下数据分组及频数分布表和频率分布直方图(图1):(Ⅰ)求a,b的值;(Ⅱ)从该小区随机选取一名住户,试估计这名住户一个月用水量小于3立方米的概率;(Ⅲ)若小区人均月用水量低于某一标准,则称该小区为“节水小区”.假设同组中的每个数据用该组区间的右端点值代替,经过估算,该小区未达到“节水小区”标准,而且该小区居民月用水量不高于这一标准的比例为65%,经过同学们的节水宣传,三个月后,又进行一次同等规模的随机抽样调查,数据如图2所示,估计这时小区是否达到“节水小区”的标准?并说明理由.【考点】频率分布直方图;列举法计算基本事件数及事件发生的概率.【分析】(Ⅰ)由数据分组及频数分布表能求出a,b的值.(Ⅱ)设这名住户一个月用水量小于3立方米为事件A,利用等可能事件概率计算公式能求出这名住户一个月用水量小于3立方米的概率.(Ⅲ)由图可知小区人均月用水量低于2.5立方米,则称为“节水小区”,由图求出三个月后的该小区人均用水量,由此得到三个月后,估计小区能达到“节水小区”的标准.【解答】解:(Ⅰ)由数据分组及频数分布表知:a==0.2,b==0.6.(Ⅱ)设这名住户一个月用水量小于3立方米为事件A,则这名住户一个月用水量小于3立方米的概率P(A)==0.8.(Ⅲ)∵该小区居民月用水量低于这一标准的比例为30%,∴由图可知小区人均月用水量低于2.5立方米,则称为“节水小区”,由图可知,三个月后的该小区人均用水量为:1×0.1+1.5×0.15+2×0.25+2.5×0.3+3×0.1+3.5×0.05+4×0.05=2.25<2.5,∴三个月后,估计小区能达到“节水小区”的标准.19.已知椭圆W:=1(a>b>0)的左右两个焦点为F1,F2,且|F1F2|=2,椭圆上一动点P 满足|PF 1|+|PF 2|=2.(Ⅰ)求椭圆W 的标准方程及离心率;(Ⅱ)如图,过点F 1作直线l 1与椭圆W 交于点A ,C ,过点F 2作直线l 2⊥l 1,且l 2与椭圆W 交于点B ,D ,l 1与l 2交于点E ,试求四边形ABCD 面积的最大值.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由椭圆的定义及焦距|F 1F 2|=2c=2,求得a 和c 的值,则b 2=a 2﹣c 2=2,即可求得椭圆的方程及离心率.(Ⅱ)当直线的斜率不存在时,由S=丨AC 丨•丨BD 丨=4,当直线斜率存在时,设直线方程,代入椭圆方程,由韦达定理及弦长公式分别求得丨AC 丨,丨BD 丨根据函数的单调性即可求得四边形ABCD 面积的最大值.【解答】解:(Ⅰ)由题意可知:|F 1F 2|=2c=2,c=1,2a=|PF 1|+|PF 2|=2,a=,b 2=a 2﹣c 2=2,离心率e==,∴椭圆的标准方程为:;(Ⅱ)当直线l 2⊥l 1,当斜率不存在时,EF 1⊥EF 2,此时求得丨EO 丨=丨F 1F 2丨=1,∴E 点轨迹为以原点为圆心,半径为1的圆,显然点E 在椭圆W 上内部,∴四边形ABCD 面积S=S △ABC +S △ADC =丨AC 丨•丨BE 丨+丨AC 丨•丨DE 丨=丨AC 丨•丨BD 丨,将x=﹣1代入椭圆方程,求得y=±,此时丨BD 丨=,丨AC 丨=2,则四边形ABCD 面积S=丨AC 丨•丨BD 丨=4,当直线l 2,l 1都存在时,设直线l 1,x=my ﹣1,(m ≠0),设A(x1,y1),B(x2,y2),,整理得:(2m2+3)y2﹣4my﹣4=0,则y1+y2=,y1y2=﹣,则丨AC丨=•=,同理直线l1,x=﹣x+1,同理求得丨BD丨=,∴四边形ABCD面积S=丨AC丨•丨BD丨=××,=,==4×,=4(1﹣)<4,综上可知四边形ABCD面积的最大值4,此时直线l2,l1一条为椭圆的长轴,一条与x轴垂直.20.设函数,a∈R.(Ⅰ)若x=2是f(x)的极值点,求a的值,并讨论f(x)的单调性;(Ⅱ)已知函数,若g(x)在区间(0,1)内有零点,求a 的取值范围;(Ⅲ)设f(x)有两个极值点x1,x2,试讨论过两点(x1,f(x1)),(x2,f(x2))的直线能否过点(1,1),若能,求a的值;若不能,说明理由.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(I)f′(x)=x2﹣x+a,由x=2是f(x)的极值点,可得f′(2)=0,解得a=﹣2.代入f′(x)进而得出单调性.(II)=﹣+ax+,g′(x)=x2﹣(1+a)x+a=(x﹣1)(x﹣a).对a与1的大小关系分类讨论可得a的取值范围.(III)不能,原因如下:设f(x)有两个极值点x1,x2,则f′(x)=x2﹣x+a有两个不同的零点.△>0,解得a<,且x1,x2,为方程x2﹣x+a=0的两根.则﹣x1+a=0,可得=x1﹣a,可得f(x1)=x1+a,同理可得:f(x2)=x2+a.由此可得:过两点(x1,f(x1)),(x2,f(x2))的直线方程为:y=x+a.进而判断出结论.【解答】解:(I),a∈R.f′(x)=x2﹣x+a,∵x=2是f(x)的极值点,∴f′(2)=4﹣2+a=0,解得a=﹣2.代入f′(x)=x2﹣x﹣2=(x+1)(x﹣2),令f′(x)=0,解得x=﹣1,或x=2.令f′(x)>0,解得x>2或x<﹣1,∴f(x)在x∈(﹣∞,﹣1),(2,+∞)时单调递增;令f′(x)<0,解得﹣1<x<2,∴f(x)在x∈(﹣1,2)时单调递减.(II)=﹣+ax+,g′(x)=x2﹣(1+a)x+a=(x﹣1)(x﹣a).①当a≥1时,x∈(0,1)时,g′(x)>0恒成立,g(x)单调递增,又g(0)=>0,因此此时函数g(x)在区间(0,1)内没有零点.②当0<a<1时,x∈(0,a)时,g′(x)>0,g(x)单调递增,x∈(a,1)时,g′(x)<0,g(x)单调递减,又g(0)=>0,因此要使函数g(x)在区间(0,1)内有零点.必有g(1)<0,∴(1+a)+a+<0,解得a<﹣1.舍去.③当a≤0时,x∈(0,1)时,g′(x)<0,g(x)单调递减,又g(0)=>0,因此要使函数g(x)在区间(0,1)内有零点.必有g(1)<0,解得a<﹣1.满足条件.综上可得:a的取值范围是(﹣∞,﹣1).(III)不能,原因如下:设f(x)有两个极值点x1,x2,则f′(x)=x2﹣x+a有两个不同的零点.∴△=1﹣4a>0,解得a<,且x1,x2,为方程x2﹣x+a=0的两根.则﹣x1+a=0,可得=x1﹣a,∴f(x1)=﹣+ax1=﹣+ax1=+=﹣(x1﹣a)+=x1+a,同理可得:f(x2)=x2+a.由此可得:过两点(x1,f(x1)),(x2,f(x2))的直线方程为:y=x+a.若上述直线过点(1,1),则:1=+a.解得a=.上述已知得出:若f(x)有两个极值点x1,x2,则a<,而a=,不合题意,舍去.因此过两点(x1,f(x1)),(x2,f(x2))的直线不能过点(1,1).2017年4月25日。

2016-2017东城区综合练习一数学文科答案5.0

2016-2017东城区综合练习一数学文科答案5.0

北京市东城区2016-2017学年第二学期高三综合练习(一)数学(文科)参考答案一、选择题(本大题共8小题,每小题5分,共40分) (1)D (2)C (3)A (4)B (5)B (6)A (7)D (8)D二、填空题(本大题共6小题,每小题5分,共30分) (9)-1 (10)5 (11)34(12)12,38(13)-6(14)810注:两个空的填空题第一个空填对得3分,第二个空填对得2分.三、解答题(本大题共6小题,共80分) (15)(共13分)解:(Ⅰ) 点π(,1)4在函数()f x 的图象上, ()=2sin cos cos 14442ππππf a ∴+=.∴ 1.a =()2sin cos cos 2sin 2cos 2)4f x x x x x x πx ∴=+=+=+ T π∴=.------------------6分(Ⅱ)由3222242k x k πππ+π++π≤≤, 得 522244k x k +π+π≤≤ππ, 588k x k ∴+π+π.≤≤ππ ∴函数()f x 的单调减区间为 5,().88k k k Z ⎡⎤+π+π∈⎢⎥⎣⎦ππ ∴函数()f x 在(0,π)上的单调减区间为5,.88⎡⎤⎢⎥⎣⎦ππ------------------ 13分(16)(共13分)解:(Ⅰ) 等差数列}{n a 中,139,21a S ==,13321a d ∴+=.97d ∴+=.2.d ∴=-∴数列}{n a 的通项公式为211n a n =-+.------------------6分(Ⅱ) 数列}{n a 是等差数列,1=92a d =-,,∴210n S n n =-+. ∴2-k 10k S k =+. 211n a n =-+ ,∴15=a ,85a =-. 58k a a S ,,成等比数列, ∴285k a a S =⋅.∴22510k k -=-+(). 即210250k k -+=, 解得5k =.------------------13分(17)(共14分)解:(I ) 因为O 是平行四边形ABCD 对角线交点,所以O 为AC 中点 又E 为棱PC 中点,所以//OE PA因为OE ⊄平面PAB ,PA ⊂平面PAB ,所以//OE 平面PAB ……………………5分(II ) 因为PO ABCD ⊥面,所以PO AD ⊥又BD AD ⊥,BD PO O ⋂=,所以AD PBD ⊥面 因为AD PAD ⊂面,所以PAD PBD ⊥面面 ……………………10分(III )因为O 是平行四边形ABCD 对角线交点,所以O 为BD 中点又PD PB ⊥,2AD BD ==,可求得112PO BD == 因为PO ABCD ⊥面,所以13P ABCD ABCD V S PO -=1222242ABCD ABD S S ∆==⨯⨯⨯=所以11441333P ABCD ABCD V S PO -==⨯⨯= 四边形 ……………………14分(18)(共13分)解答:(Ⅰ)由数据分组及频数分布表可知,404000.20.5a ==;1204000.60.5b == ……………………4分(Ⅱ)设这名住户一个月用水量小于3立方米为事件A ,那么20408012060()0.8400P A ++++== ……………………8分(Ⅲ)因为该小区居民月用水量低于这一标准的比例为35%,所以由图可知,小区人均月用水量低于2.5立方米,则称为“节水小区”. ……………………10分 由图可知,三个月后的该小区人均月用水量为10.1 1.50.1520.25 2.50.330.1 3.50.0540.05⨯+⨯+⨯+⨯+⨯+⨯+⨯ 2.25 2.5=<所以三个月后该小区达到了“节水小区”标准. ……………………13分(19)(共13分)解:(Ⅰ)由已知,222222c a a b c =⎧⎪=⎨⎪=+⎩,解得1c a b =⎧⎪=⎨⎪=⎩所以椭圆W 的标准方程为22132x y +=,离心率c e a ==. ……………………4分(Ⅱ)由题意可知12EF EF ⊥,由此可求得121||||12EO F F == 所以E 点轨迹为以原点为圆心,半径为1的圆,显然E 点在椭圆W 的内部所以111||||||||||||222ABC ADC ABCD S S S AC BE AC DE AC BD ∆∆=+=+=四边形 当直线12,l l 一条为椭圆的长轴,一条与x 轴垂直时,例如AC 为长轴,BD x ⊥轴时 把1x =代入椭圆方程,可求得y =||BD =||AC =所以此时1||||42ABCD S AC BD == 当直线12,l l 的斜率都存在时,设直线1:1,(0)l x my m =-≠,设1122(,),(,)A x y B x y联立221132x my x y =-⎧⎪⎨+=⎪⎩消去x 可得22(23)440m y my +--=所以122122423423m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩.221)23m AC m +==+ 同理,由21:1l x x m =-+可求得221)23m BD m +=+2222424224242421124(1)||||22(23)(32)24(21)4(6126)4(1)4613661366136ABCDm S AC BD m m m m m m mm m m m m m +===++++++===-<++++++ 四边形综上,四边形ABCD 面积的最大值为4,此时直线12,l l 一条为椭圆的长轴,一条与x 轴垂直.……………………13分(20)(共14分)解析:(Ⅰ) 由ax x x x f +-=232131)(求得a x x x f +-=2)(' 2024)2('-=⇒=+-=∴a a f ,代入)1)(2(2)('2+-=--=x x x x x f令0)('=x f 得21=x ,12-=x),2(),1,(+∞--∞∈∴x 当时,0)('>x f ,)(x f 单调递增;)2,1(-∈x 当时,0)('<x f ,)(x f 单调递减.……………………4分(Ⅱ) 由32)2121(313221)()(232+++-=+-=ax x a x ax x f x g 求得))(1()1()('2a x x a x a x x g --=++-=1≥∴a 当时,当)1,0(∈x 时,0)('>x g 恒成立,)(x g 单调递增,又032)0(>=g此时)(x g 在区间)1,0(内没有零点;当10<<a 时,当),0(a x ∈时,0)('>x g ,)(x g 单调递增;当)1,(a x ∈时,0)('<x g ,)(x g 单调递减. 又032)0(>=g 此时欲使)(x g 在区间)1,0(内有零点,必有0)1(<g .10212132)2121(310)1(-<⇒<+=+++-⇒<a a a a g 无解当0≤a 时,当)1,0(∈x 时,0)('<x g 恒成立,)(x g 单调递减此时欲使)(x g 在区间)1,0(内有零点,必有10)1(-<⇒<a g .综上,a 的取值范围为)1,(--∞.……………………9分(Ⅲ)不能.原因如下:设)(x f 有两个极值点1x ,2x ,则导函数a x x x f +-=2)('有两个不同的零点410410<⇒>-⇒>∴a a ∆,且1x ,2x 为方程02=+-a x x 的两根 a x x a x x -=⇒=+-1211210111211211112131132)(61326121)(312131)(ax a x ax x ax x a x x ax x x x f +--=+-=+--=+-=∴ a x a x f 61)6132()(11+-=∴ 同理a x a x f 61)6132()(22+-=由此可知过两点))(,(11x f x ,))(,(22x f x 的直线方程为a x a y 61)6132(+-= 若直线过点)1,1(,则57676561)6132(1=⇒=⇒+-=a a a a 前面已经讨论过若)(x f 有两个极值点,则41<a ,显然不合题意.综上,过两点))(,(11x f x ,))(,(22x f x 的直线不能过点)1,1(.……………………14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市东城区2016-2017学年度第二学期高三综合练习(一)数学 (文科)本试卷共5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项) (1)如果{}|0R =∈>A x x ,{}0,1,2,3B =,那么集合=B AA.空集B.{}0C.{}0,1D.{}1,2,3(2)某高校共有学生3000人,新进大一学生有800人.现对大学生社团活动情况进行抽样调查,用分层抽样方法在全校抽取300人,那么应在大一抽取的人数为A.200B.100C.80D.75(3)如果4log 1a =,2log 3b =,2log c π=,那么三个数的大小关系是A.c b a >>B.a c b >>C.a b c >>D.b c a >>(4)如果过原点的直线l 与圆22(4)4x y +-= 切于第二象限,那么直线l 的方程是A.y =B.y =C.2y x =D.2y x =-(5)设函数30()0.2x x f x x -<=≥⎧,,若()1f a >,则实数a 的取值范围是A.(0,2)B.(0,)+∞C.(2,)+∞D.(,0)-∞∪(2,+)∞ (6) “0cos sin =+αα”是 “cos20α=”的A.充分而不必要条件B.必要而不充分条件C.充分且必要条件D.既不充分也不必要条件 (7)如果某四棱锥的三视图如图所示,那么该四棱锥的四个侧面中是直角三角形的有 A.1 B.2C.3D.4(8)如果函数)(x f y =在定义域内存在区间],[b a ,使)(x f 在],[b a 上的值域是]2,2[b a ,那么称)(x f 为“倍增函数”.若函数)ln()(m e x f x+=为“倍增函数”,则实数m 的取值范围是A.),41(+∞-B.)0,21(-C.)0,1(-D.)0,41(-第Ⅱ卷(非选择题 共110分)二、填空题(共6小题,每小题5分,共30分)(9)如果2(1)(1)i x x -+-是纯虚数,那么实数x = .(10)如果执行如图所示的程序框图,那么输出的k =___.(11)如果直线l : 1 (0)y kx k =->与双曲线221169x y -=的一条渐近线平 行,那么k = __ .(12)“墨子号”是由我国完全自主研制的世界上第一颗空间量子科学实验卫星,于2016年8月16日发射升空.“墨子号”的主要应用目标是通过卫星中转实现可覆盖全球的量子保密通信.量子通信是通过光子的偏振状态,使用二进制编码,比如,码元0对应光子偏振方向为水平或斜向下45度,码元1对应光子偏振方向为垂直或斜向上45度.如下图所示信号发出后,我们在接收端将随机选择两种编码方式中的一种来解码,比如,信号发送端如果按编码方式1发送,同时接收端按编码方式1进行解码,这时能够完美解码;信号发送端如果按编码方式1发送,同时接收端按编码方式2进行解码,这时无法获取信息.如果发送端发送一个码元,那么接收端能够完美解码的概率是____;如果发送端发送3个码元,那么恰有两个码元无法获取信息的概率是____.(13)已知ABC ∆中,=120A ∠︒,且2AB AC ==,那么BC =_______,BC CA =____ .(14)已知甲、乙、丙三人组成考察小组,每个组员最多可以携带供本人在沙漠中生存36天的水和食物,且计划每天向沙漠深处走30公里,每个人都可以在沙漠中将部分水和食物交给其他人然后独自返回. 若组员甲与其他两个人合作,且要求三个人都能够安全返回,则甲最远能深入沙漠_________公里.三、解答题(共6小题,共80分.答应写出文字说明,演算步骤或证明过程) (15)(本小题13分)已知点)1,4(π在函数()2sin cos cos 2f x a x x x =+的图象上.(Ⅰ) 求a 的值和()f x 最小正周期;(Ⅱ) 求函数()f x 在(0,π)上的单调减区间.(16)(本小题13分)已知数列}{n a 是等差数列,前n 项和为n S ,若139,21a S ==.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若58,k a a S ,成等比数列,求k 的值.(17)(本小题14分)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AD BD ⊥且=AD BD ,ACBD O =,PO ⊥平面ABCD .(I )E 为棱PC 的中点,求证://OE 平面PAB ;ABCDPO(II )求证:平面PAD ⊥平面PBD ;(III) 若PD PB ⊥,=2AD ,求四棱锥P ABCD -的体积.(18)(本小题13分)某校学生在进行“南水北调工程对北京市民的影响”的项目式学习活动中,对某居民小区进行用水情况随机抽样调查,获得了该小区400位居民某月的用水量数据(单位:立方米),整理得到如下数据分组及频数分布表和频率分布直方图:组号分组频数1 [0.5,1)202 [1,1.5)403 [1.5,2)804 [2,2.5)1205 [2.5,3)606 [3,3.5)407 [3.5,4)208 [4,4.5)20(Ⅰ)求a,b的值;(Ⅱ)从该小区随机选取一名住户,试估计这名住户一个月用水量小于3立方米的概率;(Ⅲ)若小区人均月用水量低于某一标准,则称该小区为“节水小区”.假设同组中的每个数据用该组区间的右端点值代替,经过估算,该小区未达到“节水小区”标准,而且该小区居民月用水量不高于这一标准的比例为65%,经过同学们的节水宣传,三个月后,又进行一次同等规模的随机抽样调查,数据如右图所示,估计这时小区是否达到“节水小区”的标准?并说明理由.(19)(本小题13分)已知椭圆2222:1(0)+=>>x y W a b a b的左右两个焦点为12,F F ,且122F F =,椭圆上一动点P 满足12PF PF +=(Ⅰ)求椭圆W 的标准方程及离心率;(Ⅱ)如图,过点1F 作直线1l 与椭圆W 交于点,A C ,过点2F 作直线21l l ⊥,且2l 与椭圆W 交于点,B D ,1l 与2l 交于点E ,试求四边形ABCD 面积的最大值.(20)(本小题14分)设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性;(Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由.北京市东城区2016-2017学年第二学期高三综合练习(一)数学(文科)参考答案一、选择题(本大题共8小题,每小题5分,共40分)(1)D(2)C (3)A(4)B(5)B (6)A (7)D (8)D二、填空题(本大题共6小题,每小题5分,共30分)(9)-1(10)5(11)34(12)12,38(13)-6(14)810注:两个空的填空题第一个空填对得3分,第二个空填对得2分.三、解答题(本大题共6小题,共80分)(15)(共13分)解:(Ⅰ) 点π(,1) 4在函数()f x的图象上,()=2sin cos cos 14442ππππf a ∴+=.∴ 1.a =()2sin cos cos 2sin 2cos 2)4f x x x x x x πx ∴=+=+=+T π∴=.------------------6分(Ⅱ)由3222242k x k πππ+π++π≤≤, 得522244k x k +π+π≤≤ππ, 588k x k ∴+π+π.≤≤ππ∴函数()f x 的单调减区间为 5,().88k k k Z ⎡⎤+π+π∈⎢⎥⎣⎦ππ∴函数()f x 在(0,π)上的单调减区间为5,.88⎡⎤⎢⎥⎣⎦ππ ------------------ 13分(16)(共13分)解:(Ⅰ)等差数列}{n a 中,139,21a S ==,13321a d ∴+=.97d ∴+=.2.d ∴=-∴数列}{n a 的通项公式为211n a n =-+.------------------6分(Ⅱ)数列}{n a 是等差数列,1=92a d =-,,∴210n S n n =-+. ∴2-k 10k S k =+.211n a n =-+, ∴15=a ,85a =-.58k a a S ,,成等比数列, ∴285k a a S =⋅.∴22510k k -=-+().即210250k k -+=, 解得5k =.------------------13分(17)(共14分)解:(I ) 因为O 是平行四边形ABCD 对角线交点,所以O 为AC 中点 又E 为棱PC 中点,所以//OE PA因为OE ⊄平面PAB ,PA ⊂平面PAB ,所以//OE 平面PAB ……………………5分(II ) 因为PO ABCD ⊥面,所以PO AD ⊥又BD AD ⊥,BD PO O ⋂=, 所以AD PBD ⊥面因为AD PAD ⊂面,所以PAD PBD ⊥面面 ……………………10分(III )因为O 是平行四边形ABCD 对角线交点,所以O 为BD 中点又PD PB ⊥,2AD BD ==,可求得112PO BD == 因为PO ABCD ⊥面,所以13P ABCD ABCD V S PO -=1222242ABCD ABD S S ∆==⨯⨯⨯=所以11441333P ABCD ABCD V S PO -==⨯⨯=四边形 ……………………14分(18)(共13分)解答:(Ⅰ)由数据分组及频数分布表可知,404000.20.5a ==;1204000.60.5b == ……………………4分(Ⅱ)设这名住户一个月用水量小于3立方米为事件A ,那么20408012060()0.8400P A ++++== ……………………8分(Ⅲ)因为该小区居民月用水量低于这一标准的比例为35%,所以由图可知,小区人均月用水量低于2.5立方米,则称为“节水小区”. ……………………10分 由图可知,三个月后的该小区人均月用水量为10.1 1.50.1520.25 2.50.330.1 3.50.0540.05⨯+⨯+⨯+⨯+⨯+⨯+⨯2.25 2.5=<所以三个月后该小区达到了“节水小区”标准. ……………………13分(19)(共13分)解:(Ⅰ)由已知,222222c a a b c =⎧⎪=⎨⎪=+⎩,解得1c a b =⎧⎪=⎨⎪=⎩所以椭圆W 的标准方程为22132x y +=,离心率3c e a == . ……………………4分(Ⅱ)由题意可知12EF EF ⊥,由此可求得121||||12EO F F == 所以E 点轨迹为以原点为圆心,半径为1的圆,显然E 点在椭圆W 的内部所以111||||||||||||222ABC ADC ABCD S S S AC BE AC DE AC BD ∆∆=+=+=四边形 当直线12,l l 一条为椭圆的长轴,一条与x 轴垂直时,例如AC 为长轴,BD x ⊥轴时把1x =代入椭圆方程,可求得3y =±||3BD =,又||AC =所以此时1||||42ABCD S AC BD == 当直线12,l l 的斜率都存在时,设直线1:1,(0)l x my m =-≠,设1122(,),(,)A x y B x y联立221132x my x y =-⎧⎪⎨+=⎪⎩消去x 可得22(23)440m y my +--=所以122122423423m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩.AC == 同理,由21:1l x x m=-+可求得BD =2222424224242421124(1)||||22(23)(32)24(21)4(6126)4(1)4613661366136ABCDm S AC BD m m m m m m mm m m m m m +==⨯=++++++===-<++++++四边形综上,四边形ABCD 面积的最大值为4,此时直线12,l l 一条为椭圆的长轴,一条与x 轴垂直.……………………13分(20)(共14分)解析:(Ⅰ) 由ax x x x f +-=232131)(求得a x x x f +-=2)(' 2024)2('-=⇒=+-=∴a a f ,代入)1)(2(2)('2+-=--=x x x x x f令0)('=x f 得21=x ,12-=x),2(),1,(+∞--∞∈∴x 当时,0)('>x f ,)(x f 单调递增; )2,1(-∈x 当时,0)('<x f ,)(x f 单调递减.……………………4分(Ⅱ) 由32)2121(313221)()(232+++-=+-=ax x a x ax x f x g 求得))(1()1()('2a x x a x a x x g --=++-=1≥∴a 当时,当)1,0(∈x 时,0)('>x g 恒成立,)(x g 单调递增,又032)0(>=g此时)(x g 在区间)1,0(内没有零点;当10<<a 时,当),0(a x ∈时,0)('>x g ,)(x g 单调递增;当)1,(a x ∈时,0)('<x g ,)(x g 单调递减. 又032)0(>=g 此时欲使)(x g 在区间)1,0(内有零点,必有0)1(<g .10212132)2121(310)1(-<⇒<+=+++-⇒<a a a a g无解当0≤a 时,当)1,0(∈x 时,0)('<x g 恒成立,)(x g 单调递减 此时欲使)(x g 在区间)1,0(内有零点,必有10)1(-<⇒<a g . 综上,a 的取值范围为)1,(--∞.……………………9分(Ⅲ)不能.原因如下:设)(x f 有两个极值点1x ,2x ,则导函数a x x x f +-=2)('有两个不同的零点410410<⇒>-⇒>∴a a ∆,且1x ,2x 为方程02=+-a x x 的两根 a x x a x x -=⇒=+-1211210111211211112131132)(61326121)(312131)(ax a x ax x ax x a x x ax x x x f +--=+-=+--=+-=∴ a x a x f 61)6132()(11+-=∴同理a x a x f 61)6132()(22+-= 由此可知过两点))(,(11x f x ,))(,(22x f x 的直线方程为a x a y 61)6132(+-= 若直线过点)1,1(,则57676561)6132(1=⇒=⇒+-=a a a a 前面已经讨论过若)(x f 有两个极值点,则41<a ,显然不合题意. 综上,过两点))(,(11x f x ,))(,(22x f x 的直线不能过点)1,1(.……………………14分。

相关文档
最新文档