专题二圆中阴影部分面积的计算
圆求阴影部分面积方法
![圆求阴影部分面积方法](https://img.taocdn.com/s3/m/16169b4519e8b8f67d1cb93b.png)
学生姓名:年级:课时数:辅导科目:数学学科教师:课题求阴影部分面积方法专题授课日期及其时段教学内容一、阴影部分面积的求法(一)、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。
(二)、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可。
(三)、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它是一个底2,高4的三角形,就可以直接求面积了。
(四)、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。
(五)、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可。
如右图,右图中大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.(六)、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.(七)、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
外方内圆求阴影部分面积的公式
![外方内圆求阴影部分面积的公式](https://img.taocdn.com/s3/m/a8c530546fdb6f1aff00bed5b9f3f90f77c64d6c.png)
外方内圆求阴影部分面积的公式外方内圆的阴影部分面积可以通过以下公式进行计算:
阴影部分面积=外圆面积-内圆面积
其中,外圆面积的公式为:
外圆面积= π *外圆半径²
内圆面积的公式为:
内圆面积= π *内圆半径²
所以,阴影部分面积的公式可以简化为:
阴影部分面积= π * (外圆半径² -内圆半径²)
在拓展方面,如果我们考虑不规则形状的外方内圆,由于没有确定的数学公式,我们可能需要使用数值方法,如数值积分或数值逼近方法来近似计算阴影部分面积。
这种方法可以将阴影部分的形状划分成小的区域,并对每个区域进行面积的计算,然后将这些小区域的面积相加来得到总面积。
这种方法非常灵活,适用于各种形状的阴影部
分的计算。
不过,这也意味着计算的精度会受到划分区域的大小和数量的影响。
中考复习专题---阴影部分面积计算
![中考复习专题---阴影部分面积计算](https://img.taocdn.com/s3/m/91a7ffcaa216147916112877.png)
中考复习专题---阴影部分面积计算(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除专题二 阴影部分面积计算例 如图,在扇形OAB 中,C 是OA 的中点,CD ⊥OA ,CD 与 AB 交于点D ,以O 为圆心,OC 的长为半径作 CE 交OB 于点E ,若OA =4,∠AOB =120°,则图中阴影部分的面积为________(结果保留π)。
1. 如图,把八个等圆按相邻的两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S 1,正八边形外侧八个扇形(阴影部分)面积之和为S 2,则S 1S 2=( ) A. 34 B. 35 C. 23D. 1 第1题图2. 如图,正方形ABCD 内接于⊙O ,直径MN ∥AD ,则阴影部分的面积占圆面积的( )A. 12B. 14C. 16D. 18第2题图3.正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则△DEK 的面积为( )A. 10B. 12C. 14D. 16第3题图4. 如图,四个半径为1的小圆都过大圆圆心且与大圆相内切,阴影部分的面积为( )A. πB. 2π-4C. π2D. π2+1第4题图答案1. B 【解析】设每个等圆的半径为r .∵正八边形的内角度数是(8-2)×180°8=135°,∴正八边形外侧每一个小扇形的圆心角度数都是360°-135°=225°,∴正八边形内侧八个扇形(无阴影部分)面积之和S 1=8×135π×r 2360,正八边形外侧八个扇形(阴影部分)面积之和S 2=8×225π×r 2360,∴S 1S 2=8×135π×r 23608×225π×r 2360=35. 2. B 【解析】如解图,连接OD ,∵MN ∥AD ,∴S △ODN =S △AON ,∴S 阴影=2S 扇形ODN =14S ⊙O ,则阴影部分的面积占圆面积的14.第2题解图3. D 【解析】如解图,连接DB ,GE ,FK ,则DB ∥GE ∥FK ,∴S △DGB =S △DBE ,∴S △DGE =S △GBE ,同理,S △GKE =S △GFE ,∴S △DEK =S △DGE +S △GKE =S △GBE +S △GFE =S 正方形BEFG =42=16.第3题解图4. B 【解析】如解图,设两小圆交点为A 、C ,其中一小圆圆心为B ,连接AB ,AC ,BC ,∵四个小圆面积和为4π,大圆的面积也是4π,∴S 阴影=S 小圆重合部分,∴S 阴影=8S 弓形AC =8(S 扇形ABC -S △ABC )=8×(90×π×12360-12×1×1)= 2π-4.第4题解图针对演练◆直接和差法1. 如图,正方形AEFG 的一边AE 放置在正方形ABCD 的对角线AC 上,EF 与CD 交于点M ,得四边形AEMD ,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为( )A. -4-4 2B. 42-4C. 8-4 2D. 42+4第1题图2. 如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ︵,则图中阴影部分的面积是( )A. π6B. π3C. π2-12D. 12第2题图3. 如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 是AB ︵的中点,点D 在OB 上,点E 在OB 的延长线上.当正方形CDEF 的边长为2时,阴影部分的面积为( )A. 3π2+2B. 2π-2C. π2+2D. π-2第3题图 第4题图4. 如图,在圆心角为135°的扇形OAB 中,半径OA =2,点C ,D 为AB ︵的三等分点,连接OC ,OD ,AC ,CD ,BD ,则图中阴影部分的面积为( )A. 3π2B. π+ 2C. 3π2-3 2D. 3π2- 25. 如图,已知边长为2的正六边形ABCDEF ,点A 1,B 1,C 1,D 1,E 1,F 1分别为所在各边的中点,则图中阴影部分的总面积是( ) A. 334 B. 234 C. 34 D. 38第5题图 第6题图6. 如图,在圆心角为90°的扇形OAB 中,半径OA =2,C 为AB ︵的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为________.7. 用等分圆周的方法,在半径为1的圆中画出如图所示图形,则图中阴影部分面积为________.第7题图◆割补法8. 如图,△ABC 的面积为16,点D 是BC 边上一点,且BD =14BC ,点G 是AB 上一点,点H 在△ABC 内部,且四边形BDHG 是平行四边形.则图中阴影部分的面积是( )A. 3B. 4C. 5D. 6第8题图 第9题图9. 如图,在△ABC 中,∠A =90°,AB =AC =2,点O 是边BC 的中点,半圆O 与△ABC 的边AB ,AC 分别相切于点D ,E ,则阴影部分的面积为( )A. 1-π4B. π4C. 1-π8D. π810. 如图是某商品的标志图案.AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC =10 cm ,∠BAC =36°,则图中阴影部分的面积为( )A. 5π cm 2B. 10π cm 2C. 15π cm 2D. 20π cm 2第10题图11. 如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF ,EG 分别交BC ,DC 于点M ,N ,若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A. 23a 2B. 14 a 2C. 59 a 2D. 49 a 2第11题图12. 如图,正方形的边长为3 cm ,点E ,F 为对角线AC 的三等分点,则图中阴影部分的面积为________cm 2.第12题图 第13题图13. 如图,菱形ABCD 的边长为2 cm ,∠A =60°,BD ︵是以点A 为圆心、AB 长为半径的弧,CD ︵是以点B 为圆心、BC 长为半径的弧,则阴影部分的面积为________ cm 2.14. 将边长分别为2、4、6的三个正三角形按如图方式排列,A 、B 、C 、D 在同一直线上,则图中阴影部分的面积的和为________.第14题图参考答案1. B 【解析】由题意知△ADC 是等腰直角三角形,AD =CD =2,则S △ACD =12AD·CD =12×2×2=2,AC =2AD =22,则EC =AC -AE =22-2,∵△MEC 是等腰直角三角形,∴S △MEC =12ME·EC =12(22-2)2=6-42,∴S阴影=S △ACD -S △MEC =2-(6-42)=42-4.2. A 【解析】由题意可知,△ABC ≌△ADE ,∵∠ACB =90°,AC =BC =1,由勾股定理得AB =2,∴S阴影=S △ADE +S 扇形BAD -S △ABC =S 扇形BAD =30·π·(2)2360=π6,故选A. 3. D 【解析】如解图,连接OC ,∵在扇形AOB 中,∠AOB =90°,点C 是AB ︵的中点,∴∠COD =45°,OD =CD =2,∴在Rt △COD 中,OC =2CD =22,∴S阴影=S 扇形BOC -S △ODC =45×π×(22)2360-12×22=π-2. 第3题解图4. C 【解析】∵C ,D 是AB ︵的三等分点,∠AOB =135°,∴∠AOC =∠COD =∠BOD =45°,∵AO =CO =DO =BO ,∴△AOC ≌△COD ≌△BOD ,如解图,过点A 作AE ⊥OC 于E ,∴在Rt △AOE 中,AE =AO ·sin45°=2×22=2,∴S △AOC =12OC·AE=12×2×2=2,∴S阴影=S 扇形AOB -3S △AOC =135π·22360-32=3π2-3 2. 第4题解图5. A 【解析】如解图,过点A 作AM ⊥A 1B 1于M ,∵六边形ABCDEF 为正六边形,∴∠B 1AA 1=120°,又∵点A 1,B1分别为AF ,AB 的中点,∴AA 1=AB 1=12×2=1,∠AA 1B 1=180°-120°2=30°,∴AM =12AA 1=12,A 1M =AA 1·cos30°=1×32=32,∴A 1B 1=2A 1M =3,则S △AA1B1=12×3×12=34,同理,S △EE 1F 1=S △CC 1D 1=34,∴阴影部分的总面积为34×3=334. 第5题解图 6. π+2-12【解析】如解图,连接OC 、CE ,∵C 为AB ︵的中点,∴AC ︵=BC ︵,∴∠DOC =∠EOC =12∠AOB =45°,又∵D 、E 分别是OA 、OB 的中点,∴OD =12OA =1,OE =12OB =1,∴OD =OE ,DE =2,∴∠ODE =45°,∴OC ⊥DE ,∵OC =OC ,∴△OCD ≌△OCE (SAS),∴S △ODE =12×1×1=12,S 扇形OBC =45π×22360=π2,∴S △OCD =12OC ·12DE =22,∴S 阴影=S 扇形OBC +S △OCD -S △ODE =π2+22-12=π+2-12. 第6题解图7. π-332 【解析】如解图,设AB ︵的中点为P ,连接OA 、OP 、AP ,则∠AOP =60°,∴△AOP 为等边三角形,S △AOP =12×32×1=34,S 扇形OAP =60π×12360=π6,S 弓形AP =S 扇形OAP -S △AOP =π6-34,∴S 阴影=6×S 弓形=6×(π6-34)=π-332.第7题解图8. B 【解析】∵四边形BDHG 是平行四边形,∴GH =BD =14BC ,GH ∥BC ,设△AGH 边GH 上的高是a ,△CGH 边GH 上的高是b ,△ABC 边BC 上的高是h ,则a +b =h ,∴S 阴影=S △AGH +S △CGH =12GH (a +b )=12BD ·h =12×14BC ·h =14S △ABC =14×16=4. 9. B 【解析】如解图,连接OD 交BE 于点F ,连接OE ,∵半圆O 与△ABC 的边AB 、AC 分别相切于点D 、E ,∴OD ⊥AB ,OE ⊥AC ,又∵在△ABC 中,∠A =90°,AB =AC =2,点O 是BC的中点,∴四边形ADOE 是正方形,△OBD 和△OCE 是等腰直角三角形,∴OD =OE =AD =BD =AE =EC =1,∠ABC =∠EOC =45°,∴AB ∥OE ,∴∠DBF =∠OEF ,∠DOE =90°,在△BDF 和△EOF 中,∴△BDF ≌△EOF (AAS),∴S △BDF =S △EOF ,∴S 阴影=S 扇形DOE =90×π×12360=π4.第9题解图10. B 【解析】∵AC 与BD 是⊙O 的两条直径,∴∠ABC =∠BCD =∠CDA =∠DAB =90°,∴四边形ABCD 是矩形,∴OA =OB ,∴∠DBA =∠BAC =36°,根据三角形的外角和定理得∠AOD =∠BOC =72°,∵矩形ABCD 对角线相等且互相平分,∴OA =OC =OD =OB =5 cm ,∴S △AOB =S △BOC =S △COD =S △AOD ,∴S阴影=S 扇形AOD +S 扇形BOC =2S 扇形AOD =2×72π×52360=10π cm 2. 11. D 【解析】如解图,过点E 分别作EP ⊥BC 于点P ,EQ ⊥CD 于点Q ,则∠EPM =∠EQN =90°,由于E 点在正方形的对角线上,则EP =EQ ,则四边形EPCQ 为正方形,从而可得∠PEM +∠MEQ =∠QEN +∠QEM =90°,∴∠PEM =∠QEN ,∴△EPM ≌△EQN (ASA),∴S 四边形EMCN =S 四边形EMCQ +S △EQN =S 四边形EMCQ +S △EPM =S 正方形EPCQ .∵EQ ∥AD ,∴EQ AD =CE CA =23,∴EQ =23a ,∴四边形EMCN 的面积为49a 2.第11题解图12. 4 【解析】如解图,设过点E 的垂线交BC 于点H ,交CD 于点G,过点F的垂线交BC于点I,∵E、F是对角线AC的三等分点,BC=3 cm,∴IC=1 cm,由正方形性质可得S四边形ABHE=S四边形AEGD ,S△FIC=12FI·IC=12 cm2,∴S阴影=S△ABC-S△FIC=12×3×3-12=4cm2.第12题解图13. 3【解析】如解图,连接BD,过点D作DE⊥BC,垂足为E,∵四边形ABCD是菱形,∠A=60°,∴△ABD和△BCD是等边三角形,∴S阴影=S△BCD=12BC·DE=12×2×2×sin60°=2×32= 3 cm2. 第13题解图14. 3【解析】如解图,AG分别交BE、CF、BH于点E、F、H.在三个正三角形中,∠ABE=∠BCF=∠CDG=60°,∴BE∥CF∥DG,∴CFDG=ACAD,即CF6=2+42+4+6,解得CF=3,∴第二个三角形中的阴影部分三角形的底边长为4-3=1,同理BE CF=AB AC,即BE3=22+4,解得BE=1,边长为4的等边三角形的高为4×32=23,∵阴影部分的面积的和=△BEH的面积+第二个等边三角形中阴影部分的面积,∴阴影部分的面积的和为12×1×23= 3. 第14题解图9。
五年级《圆》求阴影部分面积的十大方法
![五年级《圆》求阴影部分面积的十大方法](https://img.taocdn.com/s3/m/f09e150d58eef8c75fbfc77da26925c52dc5915f.png)
求与圆相关的阴影部分面积的十大方法(一)、相加法(分割法):将不规则图形分割成成几个基础规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例:下图只要先求出上面半圆的面积,再求出下面正方形的面积,然后相加即可。
(二)、相减法:将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。
例:下图只需先求出正方形面积再减去里面圆的面积即可。
(三)、直接求法:根据已知条件,从整体出发直接求出不规则图形面积。
例:下图阴影部分的面积,分析发现它是一个底为2,高为4的三角形,就可以直接求面积了。
(四)、重新组合法:将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可。
S 阴影=S 半圆+S 正方形S 阴影=S 正方形-S 圆S 阴影=S 三角形例:下图可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。
(五)、辅助线法:根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可。
例:下图虽然可以用相减法解决,但不如添加一条辅助线后用直接法计算2个三角形面积之和更简便。
(六)、割补法:把原图形的一部分切割下来,补在图形中的另一部分,使之成为规则图形,从而使问题得到解决。
例:下图只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半。
(七)、平移法:将图形中某一部分切割下来,平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积。
S 阴影=S 正方形-S 圆S 阴影=S 正方形÷2S 阴影=S 三角形①+S 三角形②例:下图可先沿中间切开,把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
(八)、旋转法:将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度,贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积。
小学六年级圆_阴影部分面积含答案
![小学六年级圆_阴影部分面积含答案](https://img.taocdn.com/s3/m/07da020791c69ec3d5bbfd0a79563c1ec5dad73b.png)
求阴影部分面积例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米.解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
关于圆的阴影部分面积六年级奥数题
![关于圆的阴影部分面积六年级奥数题](https://img.taocdn.com/s3/m/9467585f974bcf84b9d528ea81c758f5f61f2923.png)
关于圆的阴影部分面积一、问题描述一个圆的直径为10厘米,内切一个半径为6厘米的圆,在外部再加一条宽为2厘米的弯线,求阴影的面积。
二、问题分析1. 可以利用几何知识解题,求阴影面积。
首先求大圆和小圆的面积,再减去小圆的面积,最后再加上两个扇形的面积即可。
2. 需要注意的是,计算扇形的面积时要求小圆的圆心作为扇形的圆心,大圆上两条弧的度数分别是多少。
3. 具体求解过程需要严谨的计算,包括几何图形的均分、圆的周长和面积等运算。
三、解题步骤1. 计算大圆的半径大圆的直径为10厘米,所以半径r1=10/2=5厘米,大圆的面积S1=πr1^2。
2. 计算小圆的面积小圆的半径为6厘米,所以小圆的面积S2=πr2^2。
3. 计算弯线的长度弯线的宽度为2厘米,根据勾股定理可知,弯线的长度等于大圆的周长减去小圆的周长。
大圆的周长为2πr1,小圆的周长为2πr2,所以弯线的长度L=2πr1-2πr2。
4. 计算两个扇形的面积两个扇形的面积分别为1/2r1^2θ1和1/2r2^2θ2。
需要计算出两个扇形的圆心角度数θ1和θ2。
a. θ1=360°-2θ2b. 根据等腰三角形的性质可知,扇形的周长等于等腰三角形的周长,即2πr1θ1=2(5+2)θ1。
c. 解得θ1=120°,θ2=30°。
四、计算阴影的面积阴影的面积=大圆的面积-小圆的面积+两个扇形的面积=S1-S2+1/2r1^2θ1+1/2r2^2θ2=πr1^2-πr2^2+1/2r1^2θ1+1/2r2^2θ2=π*5^2-π*6^2+1/2*5^2*120°+1/2*6^2*30°=25π-36π+150+54=179+204=383(单位:厘米²)。
五、结论所以阴影的面积为383平方厘米。
六、拓展1. 类似的题目还有,在平面几何中经常会遇到圆的阴影部分面积的求解问题,可以通过分析题目的几何特征和利用圆的性质来解决。
如何求圆的阴影面积公式
![如何求圆的阴影面积公式](https://img.taocdn.com/s3/m/1c8a4a06366baf1ffc4ffe4733687e21af45ffd4.png)
如何求圆的阴影面积公式一、引言圆是几何中最基本的图形之一,它具有许多独特的性质和特点。
在实际生活中,我们经常会遇到圆的阴影问题,比如太阳光照射到圆形物体上形成的阴影。
本文将介绍如何求解圆的阴影面积公式。
二、圆的阴影面积公式的推导要求解圆的阴影面积,首先需要了解圆的几何性质。
圆的核心特点是中心和半径,其中中心表示圆心的位置,半径表示圆的大小。
在求解圆的阴影面积时,我们可以通过计算圆与阴影的相对位置和大小来得到结果。
1. 圆的面积公式圆的面积公式是一个基本的几何定理,可以用来计算圆的面积。
根据圆的定义,圆的面积等于半径的平方乘以π(即πr^2)。
这个公式可以通过数学推导得出,也可以通过实际测量得到。
2. 圆与阴影的关系当太阳光照射到圆形物体上时,物体会产生一个阴影。
阴影的形状和大小取决于物体的形状、大小以及光源的位置和光线的方向。
对于一个圆形物体来说,它的阴影形状也是圆形的,只是大小和原来的圆形物体有所不同。
3. 求解圆的阴影面积公式为了求解圆的阴影面积公式,我们需要知道圆的半径和阴影的半径。
圆的半径可以通过测量得到,而阴影的半径可以通过几何推导得到。
当光源与圆心连线与圆的切线垂直时,阴影的半径等于圆的半径;当光源与圆心连线与圆的切线不垂直时,阴影的半径小于圆的半径。
根据这个关系,我们可以得到圆的阴影面积公式。
4. 圆的阴影面积公式根据前面的推导,圆的阴影面积公式可以表示为:阴影面积= 圆的面积 - 圆的阴影面积。
三、实例分析为了更好地理解圆的阴影面积公式,我们来看一个具体的实例。
假设有一个半径为5cm的圆形物体,太阳光照射到该物体上形成了一个阴影。
已知光源与圆心连线与圆的切线的夹角为30度,求解阴影的面积。
根据圆的面积公式,可以计算出圆的面积为25π cm^2。
然后,根据阴影的半径与圆的半径的关系,可以得到阴影的半径为5cos30度= 5 * √3 / 2 = 5√3 / 2 cm。
根据圆的阴影面积公式,可以计算出阴影的面积为:阴影面积= 25π - (5√3 / 2)^2π = 25π - 75π / 4 = 25π / 4 cm^2。
15解题技巧专题圆中求阴影部分的面积
![15解题技巧专题圆中求阴影部分的面积](https://img.taocdn.com/s3/m/9ccebc50b94ae45c3b3567ec102de2bd9705de49.png)
15解题技巧专题圆中求阴影部分的面积圆中求阴影部分的面积是一类常见的几何解题题型。
解决这类问题的关键是理解题意,找出合适的几何关系,并运用相应的公式进行计算,下面将结合一些具体的例题,介绍一些解题技巧。
首先,我们需要理解圆中求阴影部分的面积是指如何计算圆与一些几何图形的交集部分的面积。
在解题时,我们可以通过切割、旋转、改变图形位置等方式来求解阴影部分的面积。
接下来,我们将介绍三个常见的情况:正方形在圆内、矩形在圆内以及两个半圆的交集。
情况一:正方形在圆内题目描述:一个边长为a的正方形完全位于半径为r的圆内,求阴影部分的面积。
解题思路:首先,我们可以画出正方形和圆的示意图,并标明已知的边长和半径。
然后,我们来观察正方形在圆内的情况,可以发现正方形四个顶点与圆心连线的交点是正方形对角线的中点。
这给了我们一个重要的提示:我们可以通过计算正方形对角线的中点到圆心的距离来求得阴影部分的面积。
这个距离可以通过使用勾股定理计算得到。
最后,我们可以通过求解正方形对角线的中点到圆心的距离,来求得阴影部分的面积。
具体的计算步骤如下:计算中点到圆心的距离d:根据勾股定理,正方形对角线的长度为a*√2,所以中点到圆心的距离d为d=√(a^2/2)。
计算阴影部分的面积S:阴影部分的面积可以通过圆的面积减去扇形的面积得到,所以S=π*r^2-π*(d^2)/4情况二:矩形在圆内题目描述:一个长为a,宽为b的矩形完全位于半径为r的圆内,求阴影部分的面积。
解题思路:首先,我们可以画出矩形和圆的示意图,并标明已知的长、宽和半径。
然后,我们来观察矩形在圆内的情况,可以发现矩形四个顶点与圆心连线的交点是矩形边的中点。
这给了我们一个重要的提示:我们可以通过计算矩形边的中点到圆心的距离来求得阴影部分的面积。
这个距离可以通过使用勾股定理计算得到。
最后,我们可以通过求解矩形边的中点到圆心的距离,来求得阴影部分的面积。
具体的计算步骤如下:计算中点到圆心的距离d:根据勾股定理,矩形的对角线长度为√(a^2+b^2),所以中点到圆心的距离d为d=√((a^2+b^2)/4)。
圆 阴影部分面积(含答案)
![圆 阴影部分面积(含答案)](https://img.taocdn.com/s3/m/8182d93002d8ce2f0066f5335a8102d276a2616c.png)
圆阴影部分面积(含答案)求一个图形的阴影部分面积是一个基本的几何问题。
下面给出一些例子:例1:求一个圆形和一个等腰直角三角形组成的阴影部分的面积。
首先计算圆的面积,假设半径为r,则圆面积为πr²。
然后计算三角形的面积,假设直角边长为a,则三角形面积为a²/2.最终阴影部分的面积为πr²-a²/2.例2:求一个正方形中的阴影部分面积。
假设正方形面积为7平方厘米,则阴影部分可以用正方形的面积减去圆的面积来计算。
如果圆的半径为r,则圆的面积为πr²,阴影部分面积为7-πr²。
例3:求一个由四个圆和一个正方形组成的阴影部分的面积。
首先将四个圆组成一个大圆,然后用正方形的面积减去这个大圆的面积。
假设正方形边长为2,则大圆的半径为1,面积为π,阴影部分面积为2²-π=0.86平方厘米。
例4:求一个正方形中的阴影部分面积。
同样可以用正方形的面积减去圆的面积来计算。
假设正方形面积为16平方厘米,则阴影部分面积为16-πr²=3.44平方厘米。
例5:求一个由两个圆和一个正方形组成的阴影部分的面积。
将阴影部分分成两个“叶形”,每个“叶形”由两个圆和一个正方形组成。
假设圆的半径为r,则每个“叶形”的面积为2πr²-4,阴影部分的面积为2(2πr²-4)=4πr²-8.例6:已知一个小圆的半径为2厘米,大圆的半径是小圆的3倍,求空白部分甲比乙的面积多多少厘米?两个空白部分面积之差就是两圆面积之差。
假设小圆的半径为2,则小圆面积为4π,大圆面积为36π,空白部分的面积为32π-4π=28π=100.48平方厘米。
例7:求一个正方形中的阴影部分面积。
首先计算正方形的面积,假设对角线长为5,则正方形面积为25/2.然后计算圆的面积,假设圆的半径为r,则圆的面积为πr²,阴影部分的面积为πr²/4-25/2=7.125平方厘米。
圆和正方形组合求阴影部分面积的大全
![圆和正方形组合求阴影部分面积的大全](https://img.taocdn.com/s3/m/22f84ce481eb6294dd88d0d233d4b14e84243e70.png)
圆和正方形组合求阴影部分面积的大全圆和正方形是常见的几何形状,在建筑设计、工程制图等领域都有广泛应用。
在实际工作中,我们经常遇到需要求解圆和正方形组合的阴影部分面积的问题,例如临时路障的遮挡面积、屋顶采光板的遮挡面积等等。
本文将详细介绍圆和正方形组合求解阴影部分面积的方法和应用。
一、圆和正方形组合的阴影部分面积计算公式圆和正方形组合的阴影部分面积计算公式一般可以分为两种情况来计算。
第一种情况为正方形侵入圆形中央的情况,可以通过圆面积减去两个扇形面积和一个菱形面积来计算。
具体公式如下:阴影部分面积 = 圆面积 - 2 ×扇形面积 - 菱形面积其中,圆面积的计算公式为:圆面积= π × r²扇形面积的计算公式为:扇形面积= 1/2 × r² × θθ为圆心角的度数。
菱形面积的计算公式为:菱形面积 = 1/2 × d1 × d2d1和d2分别为菱形的对角线。
第二种情况为圆形侵入正方形的情况,可以通过正方形面积减去四个扇形面积来计算。
具体公式如下:阴影部分面积 = 正方形面积 - 4 ×扇形面积其中,正方形面积的计算公式为:正方形面积 = a²a为正方形的边长。
扇形面积的计算公式同上。
二、圆和正方形组合的阴影部分面积应用案例1、临时路障的遮挡面积计算临时路障常见的形状为正方形,而且路障上方往往设置了圆形的灯具,因此需要计算路障阴影部分的面积,以便于安排施工计划。
如图所示:![image](https:///uploads/images/2022/0628/150159_cab052a2_9614816.png)由于灯具圆形部分侵入正方形的中央,因此可以采用第一种情况的计算公式。
设圆形半径为r,正方形边长为a,则路障阴影部分的面积为:阴影部分面积= π × r² - 2 × 1/2 × r² × 60° - 1/2 × d1 × d2其中,d1和d2分别为正方形的对角线,可以通过勾股定理求解。
完整版)小学求阴影部分面积专题—含答案
![完整版)小学求阴影部分面积专题—含答案](https://img.taocdn.com/s3/m/3fa2d879f6ec4afe04a1b0717fd5360cba1a8dcd.png)
完整版)小学求阴影部分面积专题—含答案本文是一个小学及小升初复专题,主要介绍了圆与求阴影部分面积的相关知识。
文章提到了面积求解的两种方法,并强调了观察图形特点的重要性。
接下来列举了多个例子,要求读者求解阴影部分的面积。
最后一个例子是四个扇形的半径相等,需要求阴影部分的面积。
为了更好地理解文章,下面将对每个例子进行简单的解释和改写。
例1:给定一个图形,要求求出阴影部分的面积。
这个例子没有具体的图形,需要根据题目所给的数据进行计算。
例2:一个正方形的面积是7平方厘米,求阴影部分的面积。
这个例子需要注意正方形的面积和阴影部分的关系。
例3:给定一个图形,要求求出阴影部分的面积。
这个例子需要观察图形的特点,选择合适的方法求解面积。
例4:给定一个图形,要求求出阴影部分的面积。
同样需要观察图形的特点,选择合适的方法求解面积。
例5:给定一个图形,要求求出阴影部分的面积。
同样需要观察图形的特点,选择合适的方法求解面积。
例6:已知小圆半径为2厘米,大圆半径是小圆的3倍,问空白部分甲比乙的面积多多少。
这个例子需要根据圆的面积公式求解。
例7:给定一个图形,要求求出阴影部分的面积。
同样需要观察图形的特点,选择合适的方法求解面积。
例8:给定一个图形,要求求出阴影部分的面积。
同样需要观察图形的特点,选择合适的方法求解面积。
例9:给定一个图形,要求求出阴影部分的面积。
同样需要观察图形的特点,选择合适的方法求解面积。
例10:给定一个图形,要求求出阴影部分的面积。
同样需要观察图形的特点,选择合适的方法求解面积。
例11:给定一个图形,要求求出阴影部分的面积。
同样需要观察图形的特点,选择合适的方法求解面积。
例12:给定一个图形,要求求出阴影部分的面积。
同样需要观察图形的特点,选择合适的方法求解面积。
例13:给定一个图形,要求求出阴影部分的面积。
同样需要观察图形的特点,选择合适的方法求解面积。
例14:给定一个图形,要求求出阴影部分的面积。
2020年中考复习之圆的阴影部分面积相关计算(含答案解析)
![2020年中考复习之圆的阴影部分面积相关计算(含答案解析)](https://img.taocdn.com/s3/m/94f03aecaf1ffc4fff47ac4a.png)
2020中考复习——之圆的阴影部分面积相关计算(含答案解析)一.选择题(共5小题)1.(2018•抚顺)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A.B.C.πD.2π2.(2016•朝阳)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π3.(2017•朝阳)如图,在正方形ABCD中,O为对角线交点,将扇形AOD绕点O顺时针旋转一定角度得到扇形EOF,则在旋转过程中图中阴影部分的面积()A.不变B.由大变小C.由小变大D.先由小变大,后由大变小4.(2017•重庆)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.5.(2017•兰州)如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为()A.π+1B.π+2C.π﹣1D.π﹣2二.填空题(共1小题)6.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为.三.解答题(共8小题)7.(2015•沈阳)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)8.(2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.(1)求证:AC是⊙O的切线;(2)若CE=AE=2,求阴影部分的面积.9.(2019•衡阳)如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.(1)求证:BD是⊙O的切线;(2)求图中阴影部分的面积.10.(2015•本溪)如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB 为直径作⊙O,分别交边AC、BC于点E、点F(1)求证:AD是⊙O的切线;(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与围成的阴影部分的面积S.11.(2017•新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.12.(2013•本溪)如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).13.(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.14.(2015•福州模拟)如图,AB为⊙O的直径,弦AC=2,∠ABC=30°,∠ACB的平分线交⊙O于点D,求:(1)BC、AD的长;(2)图中两阴影部分面积的和.2020中考复习——之圆的阴影部分面积相关计算(含答案解析)参考答案与试题解析一.选择题(共5小题)1.(2018•抚顺)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A.B.C.πD.2π【考点】M5:圆周角定理;MO:扇形面积的计算.【分析】根据圆周角定理可以求得∠BOD的度数,然后根据扇形面积公式即可解答本题.【解答】解:∵∠BCD=30°,∴∠BOD=60°,∵AB是⊙O的直径,CD是弦,OA=2,∴阴影部分的面积是:=,故选:B.【点评】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2.(2016•朝阳)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π【考点】L3:多边形内角与外角;MO:扇形面积的计算.【分析】圆心角之和等于n边形的内角和(n﹣2)×180°,由于半径相同,根据扇形的面积公式S=计算即可求出圆形中的空白面积,再用5个圆形的面积减去圆形中的空白面积可得阴影部分的面积.【解答】解:n边形的内角和(n﹣2)×180°,圆形的空白部分的面积之和S==π=π=π.所以图中阴影部分的面积之和为:5πr2﹣π=5π﹣π=π.故选:C.【点评】此题考查扇形的面积计算,正确记忆多边形的内角和公式,以及扇形的面积公式是解决本题的关键.3.(2017•朝阳)如图,在正方形ABCD中,O为对角线交点,将扇形AOD绕点O顺时针旋转一定角度得到扇形EOF,则在旋转过程中图中阴影部分的面积()A.不变B.由大变小C.由小变大D.先由小变大,后由大变小【考点】LE:正方形的性质;MO:扇形面积的计算;R2:旋转的性质.【分析】根据正方形的性质得出OA=OD=OC,∠AOD=90°,再根据图形判断即可.【解答】解:过O点作CD的垂线交CD于G,过O点作BC的垂线交BC于H,记扇形EOF于正方形交点分别为M、N,如图,∴OH=OG=CD,∵∠HOG=∠HOM+∠GOM=90°,∠NOM=∠NOG+∠GOM=90°,∴∠HOM=∠NOG,∴Rt△OHM≌Rt△OGN,∴S四边形CMON=S四边形CMOG+S△OGN=S四边形CMOG+S△OHM=S四边形OHCG=OH2=S正方形ABCD,∵S△AOD=×CD•AD=S正方形ABCD∴S△AOD=S四边形CMON,∵S扇形=S阴影+S△AOD=S′阴影+S四边形CMON∴S阴影=S′阴影=S扇形﹣S△AOD=﹣S正方形ABCD=AD2﹣S正方形ABCD=S正方形ABCD,∴在旋转过程中图中阴影部分的面积不变,故选:A.【点评】本题考查了扇形的面积、旋转的性质、正方形的性质等知识点,能根据正方形的性质和旋转的性质进行判断是解此题的关键.4.(2017•重庆)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.【考点】LB:矩形的性质;MO:扇形面积的计算.【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EBF,求出答案.【解答】解:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EBF=1×2﹣×1×1﹣=﹣.故选:B.【点评】此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE的长以及∠EBC的度数是解题关键.5.(2017•兰州)如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为()A.π+1B.π+2C.π﹣1D.π﹣2【考点】MM:正多边形和圆;MO:扇形面积的计算.【分析】根据对称性可知阴影部分的面积等于圆的面积减去正方形的,求出圆内接正方形的边长,即可求解.【解答】解:连接AO,DO,∵ABCD是正方形,∴∠AOD=90°,AD==2,圆内接正方形的边长为2,所以阴影部分的面积=[4π﹣(2)2]=(π﹣2)cm2.故选:D.【点评】本题考查正多边形与圆、正方形的性质、圆的面积公式、扇形的面积公式等知识,解题的关键是利用对称性可知阴影部分的面积等于圆的面积减去正方形的,也可以用扇形的面积减去三角形的面积计算,属于中考常考题型.二.填空题(共1小题)6.(2019•内江)如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为.【考点】L5:平行四边形的性质;MO:扇形面积的计算.【分析】连接OE,作OF⊥DE,先求出∠COE=2∠D=60°、OF=OD=1,DF=OD cos ∠ODF=,DE=2DF=2,再根据阴影部分面积是扇形与三角形的面积和求解可得.【解答】解:如图,连接OE,作OF⊥DE于点F,∵四边形ABCD是平行四边形,且∠A=150°,∴∠D=30°,则∠COE=2∠D=60°,∵CD=4,∴CO=DO=2,∴OF=OD=1,DF=OD cos∠ODF=2×=,∴DE=2DF=2,∴图中阴影部分的面积为+×2×1=+,故答案为:+.【点评】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S=是解题的关键.三.解答题(共8小题)7.(2015•沈阳)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)【考点】M6:圆内接四边形的性质;MO:扇形面积的计算;T7:解直角三角形.【分析】(1)根据四边形ABCD是⊙O的内接四边形得到∠ABC+∠D=180°,根据∠ABC=2∠D得到∠D+2∠D=180°,从而求得∠D=60°,最后根据OA=OC得到∠OAC=∠OCA=30°;(2)首先根据∠COB=3∠AOB得到∠AOB=30°,从而得到∠COB为直角,然后利用S阴影=S扇形OBC﹣S△OEC求解.【解答】解:(1)∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠ABC=2∠D,∴∠D+2∠D=180°,∴∠D=60°,∴∠AOC=2∠D=120°,∵OA=OC,∴∠OAC=∠OCA=30°;(2)∵∠COB=3∠AOB,∴∠AOC=∠AOB+3∠AOB=120°,∴∠AOB=30°,∴∠COB=∠AOC﹣∠AOB=90°,在Rt△OCE中,OC=2,∴OE=OC•tan∠OCE=2•tan30°=2×=2,∴S△OEC=OE•OC=×2×2=2,∴S扇形OBC==3π,∴S阴影=S扇形OBC﹣S△OEC=3π﹣2.【点评】本题考查了扇形面积的计算,圆内接四边形的性质,解直角三角形的知识,在求不规则的阴影部分的面积时常常转化为几个规则几何图形的面积的和或差.8.(2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.(1)求证:AC是⊙O的切线;(2)若CE=AE=2,求阴影部分的面积.【考点】M5:圆周角定理;ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)连接OA,过O作OF⊥AE于f,得到∠EAO+∠AOF=90°,根据等腰三角形的性质和圆周角定理得到∠EDA=∠AOF,推出OA⊥AC,得到AC是⊙O的切线;(2)根据等腰三角形的性质得到∠C=∠EAC,得到∠AEO=2∠EAC,推出△OAE是等边三角形,根据扇形的面积公式得到S扇形AOE==2π,求得S△AOE=AE•OF=3=3,于是得到结论.【解答】(1)证明:连接OA,过O作OF⊥AE于F,∴∠AFO=90°,∴∠EAO+∠AOF=90°,∵OA=OE,∴∠EOF=∠AOF=AOE,∵∠EDA=AOE,∴∠EDA=∠AOF,∵∠EAC=∠EDA,∴∠EAC=∠AOF,∴∠EAO+∠EAC=90°,∵∠EAC+∠EAO=∠CAO,∴∠CAO=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵CE=AE=2,∴∠C=∠EAC,∵∠EAC+∠C=∠AEO,∴∠AEO=2∠EAC,∵OA=OE,∴∠AEO=∠EAO,∴∠EAO=2∠EAC,∵∠EAO+∠EAC=90°,∴∠EAC=30°,∠EAO=60°,∴△OAE是等边三角形,∴OA=AE,∠EOA=60°,∴OA=2,∴S扇形AOE==2π,在Rt△OAF中,OF=OA•sin∠EAO=2=3,∴S△AOE=AE•OF=3=3,∴阴影部分的面积=2π﹣3.【点评】本题考查了切线的判定和性质,扇形的面积的计算,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.9.(2019•衡阳)如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.(1)求证:BD是⊙O的切线;(2)求图中阴影部分的面积.【考点】M5:圆周角定理;ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)连接OC,根据圆周角定理求出∠COA,根据三角形内角和定理求出∠OCA,根据切线的判定推出即可;(2)根据平行线的性质得到∠=30°,解直角三角形求出BD,分别求出△BOD的面积和扇形AOB的面积,即可得出答案.【解答】(1)证明:连接OB,交CA于E,∵∠C=30°,∠C=∠BOA,∴∠BOA=60°,∵∠BCA=∠OAC=30°,∴∠AEO=90°,即OB⊥AC,∵BD∥AC,∴∠DBE=∠AEO=90°,∴BD是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠D=∠CAO=30°,∵∠OBD=90°,OB=8,∴BD=OB=8,∴S阴影=S△BDO﹣S扇形AOB=×8×8﹣=32﹣.【点评】本题考查了平行线的性质,圆周角定理,扇形的面积,三角形的面积,解直角三角形等知识点的综合运用,题目比较好,难度适中.10.(2015•本溪)如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB 为直径作⊙O,分别交边AC、BC于点E、点F(1)求证:AD是⊙O的切线;(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与围成的阴影部分的面积S.【考点】KM:等边三角形的判定与性质;MD:切线的判定;MO:扇形面积的计算.【分析】(1)求出∠DAC=30°,即可求出∠DAB=90°,根据切线的判定推出即可;(2)连接OE,分别求出△AOE、△AOC,扇形OEG的面积,即可求出答案.【解答】(1)证明:∵△ABC为等边三角形,∴AC=BC,又∵AC=CD,∴AC=BC=CD,∴△ABD为直角三角形,∴AB⊥AD,∵AB为直径,∴AD是⊙O的切线;(2)解:连接OE,∵OA=OE,∠BAC=60°,∴△OAE是等边三角形,∴∠AOE=60°,∵CB=BA,OA=OB,∴CO⊥AB,∴∠AOC=90°,∴∠EOC=30°,∵△ABC是边长为4的等边三角形,∴AO=2,由勾股定理得:OC==2,同理等边三角形AOE边AO上高是=,S阴影=S△AOC﹣S等边△AOE﹣S扇形EOG==.【点评】本题考查了等边三角形的性质和判定,勾股定理,三角形面积,扇形的面积,切线的判定的应用,能综合运用定理进行推理和计算是解此题的关键.11.(2017•新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.【考点】ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)连接BO,根据△OBC和△BCE都是等腰三角形,即可得到∠BEC=∠OBC =∠OCB=30°,再根据三角形内角和即可得到∠EBO=90°,进而得出BE是⊙O的切线;(2)在Rt△ABC中,根据∠ACB=30°,BC=3,即可得到半圆的面积以及Rt△ABC的面积,进而得到阴影部分的面积.【解答】解:(1)如图所示,连接BO,∵∠ACB=30°,∴∠OBC=∠OCB=30°,∵DE⊥AC,CB=BD,∴Rt△DCE中,BE=CD=BC,∴∠BEC=∠BCE=30°,∴△BCE中,∠EBC=180°﹣∠BEC﹣∠BCE=120°,∴∠EBO=∠EBC﹣∠OBC=120°﹣30°=90°,∴BE是⊙O的切线;(2)当BE=3时,BC=3,∵AC为⊙O的直径,∴∠ABC=90°,又∵∠ACB=30°,∴AB=tan30°×BC=,∴AC=2AB=2,AO=,∴阴影部分的面积=半圆的面积﹣Rt△ABC的面积=π×AO2﹣AB×BC=π×3﹣××3=﹣.【点评】本题主要考查了切线的判定以及扇形面积的计算,解题时注意:经过半径的外端且垂直于这条半径的直线是圆的切线.12.(2013•本溪)如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).【考点】MD:切线的判定;MO:扇形面积的计算.【分析】(1)连结OD,根据圆周角定理得∠ABD=∠ACD=45°,∠ADB=90°,可判断△ADB为等腰直角三角形,所以OD⊥AB,而DE∥AB,则有OD⊥DE,然后根据切线的判定定理得到DE为⊙O的切线;(2)先由BE∥AD,DE∥AB得到四边形ABED为平行四边形,则DE=AB=8cm,然后根据梯形的面积公式和扇形的面积公式利用S阴影部分=S梯形BODE﹣S扇形OBD进行计算即可.【解答】解:(1)DE与⊙O相切.理由如下:连结OD,BD,则∠ABD=∠ACD=45°,∵AB是直径,∴∠ADB=90°,∴△ADB为等腰直角三角形,∵点O为AB的中点,∴OD⊥AB,∵DE∥AB,∴OD⊥DE,∵OD是半径,∴DE为⊙O的切线;(2)∵BE∥AD,DE∥AB,∴四边形ABED为平行四边形,∴DE=AB=8cm,∴S阴影部分=S梯形BODE﹣S扇形OBD=(4+8)×4﹣=(24﹣4π)cm2.【点评】本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和扇形的面积公式.13.(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【考点】MC:切线的性质;MO:扇形面积的计算.【分析】(1)连接OD,根据已知和切线的性质证明△OCD为等腰直角三角形,得到∠DOC=45°,根据S阴影=S△OCD﹣S扇OBD计算即可;(2)连接AD,根据弦、弧之间的关系证明DB=DE,证明△AMD≌△ABD,得到DM=BD,得到答案.【解答】(1)解:如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=2,OA=OD,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,【点评】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.14.(2015•福州模拟)如图,AB为⊙O的直径,弦AC=2,∠ABC=30°,∠ACB的平分线交⊙O于点D,求:(1)BC、AD的长;(2)图中两阴影部分面积的和.【考点】KQ:勾股定理;M5:圆周角定理;MO:扇形面积的计算.【分析】(1)根据直径得出∠ACB=∠ADB=90°,根据勾股定理求出BC,根据圆周角定理求出AD=BD,求出AD即可;(2)根据三角形的面积公式,求出△AOC和△AOD的面积,再求出S扇形COD,即可求出答案.【解答】解:(1)∵AB是直径,∴∠ACB=∠ADB=90°(直径所对的圆周角是直角),在Rt△ABC中,∠ABC=30°,AC=2,∴AB=4,∴BC==2,∵∠ACB的平分线交⊙O于点D,∴∠DCA=∠BCD∴=,∴在Rt△ABD中,AD=BD=AB=2;(2)连接OC,OD,∵∠ABC=30°,∴∠AOC=∠2∠ABC=60°,∵OA=OB,∴S△AOC=S△ABC=××AC×BC=××2×2=,由(1)得∠AOD=90°,∴∠COD=150°,S△AOD=×AO×OD=×22=2,∴S阴影=S扇形COD﹣S△AOC﹣S△AOD=﹣﹣2=π﹣﹣2.【点评】本题考查了勾股定理、圆周角定理、三角形的面积等知识点的应用,关键是求出∠ACB=∠ADB=90°,题型较好,通过做此题,培养了学生运用定理进行推理的能力.。
求圆中阴影部分面积的方法
![求圆中阴影部分面积的方法](https://img.taocdn.com/s3/m/cc2b3aa980c758f5f61fb7360b4c2e3f56272510.png)
求圆中阴影部分面积的方法要求计算圆中阴影部分的面积,我们需要先了解阴影的形成原理和计算方法。
在圆中,阴影部分的形成是由于有一个遮挡物挡住了部分光线,导致该部分产生了阴影。
求解阴影部分的面积,可以采用几何方法或者数学方法进行计算。
下面将详细介绍这两种方法。
一、几何方法:几何方法通过将阴影部分与已知的几何图形进行比较,来求解阴影部分的面积。
1.1若遮挡物为一个小圆,则阴影部分可近似看作扇形与小圆的差。
我们来具体说明一下:假设有一个半径为R的圆,圆心为O,遮挡物为半径为r的小圆,小圆与大圆的圆心距离为d。
此时可以将阴影部分近似看作一个扇形加上一个梯形。
我们可以分别计算出扇形和梯形的面积,再求和即可得到阴影部分的面积。
1.2若遮挡物不是一个小圆,而是其他几何图形,我们需要先找到该几何图形的面积,再进行相应的几何运算来求解阴影部分的面积。
二、数学方法:数学方法通过数学公式与运算来求解阴影部分的面积。
2.1通过积分法求解:假设有一个圆形区域,当有一个遮挡物产生阴影时,我们需要求解被阴影遮盖的圆形区域的面积。
首先,我们需要定义一个圆心角θ,该圆心角为横坐标轴和遮挡物之间的夹角。
接下来,我们需要确定整个圆形区域的边界,设定一个高度h,并根据高度h与圆形的半径r的关系,求解出遮挡物上的横坐标x1和x2,即横跨遮挡物的圆弧的两边界点。
然后,我们就可以设置相应的积分方程来求解阴影部分的面积,即将对应的函数积分,并限定积分的上下限为x1到x2,最终得到阴影部分的面积。
2.2通过几何约束条件求解:在一些特殊情况下,我们可以通过几何约束条件来求解阴影部分的面积。
例如,假设圆的半径为R,有一个直径为r的小圆与大圆的切点与圆上其中一点相连构成一条直线,该直线与小圆的交点为P。
此时,我们可以通过几何关系求解出大圆上的点P的坐标,然后可以根据点P与小圆上的点与圆心的连线的关系,进一步求解出整个阴影部分的面积。
总结:求解圆中阴影部分的面积可以采用几何方法或数学方法来进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习2.如图,扇形OAB中,∠AOB=100°,OA=12, C是OB的中点,CD⊥OB交弧AB于点D,以OC为半 径的弧CE交OA于点E,求图中阴影部分的面积.
S阴=S扇形OAD+S△OCD-S扇形OEC
转化
不规则图形Байду номын сангаас
规则图形
割补法
S阴=S总体-S空白
题型二 用等积变换法求图形面 积
例2.如图,半圆的直径AB=40,C,D是半圆的三等分点,
与S3各= 圆π重叠/2部分面.S积4=之和π记为SS1n0,0则= 49π .(结果
保留π)
不规则图形
转化 整体思想
规则图形
题型四 用整体思想求图形面积
练习1.如图正方形边长为2,则图中阴影部分面积
为 4-π .
练习2.如图所示,分别以n边形的顶点为圆心,以单位1
为半径画圆,则图中阴影部分的面积之和为 π .
《圆中阴影部分面积的计算》
题型一 用割补法求图形面积
例1.如图,AB是⊙O的直径,C是AB延长线上一点,CD 与⊙O相切于点E,AD⊥CD于点D.若AB=4,∠ABE=60°, 求出图中阴影部分的面积.
S阴=S扇形OAE-S△OAE
转化 不规则图形
割补法
S阴=S总体-S空白
规则图形
题型一 用割补法求图形面积
个平方单位.
课堂小结
不规则图形面积
转化
规则图形
割补法 等积变换法 几何变换法 整体思想
题型三 用几何变换法求图形面积
练习1.如图,小正方形的边长为2,则图中阴影部分
的面积为 π+2 .
练习2.如图,正方形的四个顶点在直径为4的大圆圆 周上,四条边与小圆都相切,AB,CD过圆心O,
且AB⊥CD,则图中阴影部分的面积是 π .
题型四 用整体思想求图形面积
例4.如图,依次以三角形、四边形、……、n边形的 各顶点为圆心画半径为1的圆,且圆与圆之间两两不 相交。把三角形与各圆重叠部分面积之和记为S3,四 边形与各圆重叠部分面积之和记为S4,……,n边形
不规则图形
转化 等积变换法 规则图形
S阴=S总体-S空白
题型三 用几何变换法求图形面积
例3.如图,在两个半圆中,大圆的弦MN与小圆相切
于点D,MN∥AB,MN=8cm,OA、OC分别是两圆
的半径,求阴影部分的面积。
M
N
A
(C) O
S阴=S半圆⊙O-S半圆⊙转C 化
不规则图形 几何变换法
规则图形
(平移或旋转或翻折)
求弦AC,AD与弧CD围成的阴影部分的面积.
S△ACD=S△OCD S阴影=S扇形OCD
不规则图形
转化 等积变换法 规则图形
题型二 用等积变换法求图形面 积
练习1.圆心角都是90°的扇形OAB与扇形OCD如下
图所示那样叠放在一起,连接AC,BD.
若OA=3cm,OC=1cm,求阴影部分的面积.
S阴=S扇形OAB+S△AOC-S扇形OCD-S△BOD =S扇形OAB-S扇形OCD
练习1.如图,扇形AOB的圆心角为直角,若OA=4,
以AB为直径作半圆,求阴影部分的面积.
法1:S阴=S半圆+S△AOB-S扇形OAB
法2:S阴=S半圆-S弓形 =S半圆-(S扇形OAB-S△AOB) =S半圆-S扇形OAB+S△AOB
转化
不规则图形
规则图形
S阴=S总体-S空白
割补法
题型一 用割补法求图形面积