新课标八年级数学竞赛讲座:第三十五讲 应用题

合集下载

初二数学竞赛辅导资料(共12讲)讲义

初二数学竞赛辅导资料(共12讲)讲义

目录本内容适合八年级学生竞赛拔高使用。

重点落实在奥赛方面的基础知识和基本技能培训和提高。

本内容难度适中,讲练结合,由浅入深,讲解与练习同步,重在提高学生的数学分析能力与解题能力。

另外,在本次培训中,内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容。

其中《因式分解》为初二下册内容,但是考虑到它的重要性和工具性,将在本次培训进行具体解读。

注:有(*)标注的为选做内容。

本次培训具体计划如下,以供参考:第一讲实数(一)第二讲实数(二)第三讲平面直角坐标系、函数第四讲一次函数(一)第五讲一次函数(二)第六讲全等三角形第七讲直角三角形与勾股定理第八讲株洲市初二数学竞赛模拟卷(未装订在内,另发)第九讲竞赛中整数性质的运用第十讲不定方程与应用第十一讲因式分解的方法第十二讲因式分解的应用第十三讲考试(未装订在内,另发)第十四讲试卷讲评第1讲 实数(一)【知识梳理】一、非负数:正数和零统称为非负数 1、几种常见的非负数(1)实数的绝对值是非负数,即|a |≥0在数轴上,表示实数a 的点到原点的距离叫做实数a 的绝对值,用|a |来表示设a 为实数,则⎪⎩⎪⎨⎧<-=>=0)0(0)0(||a a a a a a绝对值的性质:①绝对值最小的实数是0②若a 与b 互为相反数,则|a |=|b |;若|a |=|b |,则a =±b ③对任意实数a ,则|a |≥a , |a |≥-a ④|a ·b |=|a |·|b |,||||||b a b a =(b ≠0) ⑤||a |-|b ||≤|a ±b |≤|a |+|b |(2)实数的偶次幂是非负数如果a 为任意实数,则n a 2≥0(n 为自然数),当n =1时,2a ≥0(3)算术平方根是非负数,即a ≥0,其中a ≥0.算术平方根的性质:()a a =2(a ≥0)||2a a ==⎪⎩⎪⎨⎧<-=>0)0(0)0(a a a a a2、非负数的性质(1)有限个非负数的和、积、商(除数不为零)是非负数 (2)若干个非负数的和等于零,则每个加数都为零 (3)若非负数不大于零,则此非负数必为零 3的式子,被开方数必须为非负数; 4a =5、利用配方法来解题:开平方或开立方时,将被开方数配成完全平方式或完全立方。

八年级数学竞赛讲座 分式方程及其应用

八年级数学竞赛讲座 分式方程及其应用

八年级数学竞赛讲座 分式方程及其应用一、知识要点:1、分式方程的定义;2、分式方程的解法;3、增根的检验;4、带有字母系数的方程根的讨论;5、列分式方程解应用题;二、典型例题:例1、解下列方程(组):①917161101-+-=-+-x x x x ②32148521761543103--+--=--+--x x x x x x x x③5353323222-+-=-+-x x x x x x④200019991001)100)(99(1)3)(2(1)2)(1(1=+++++++++++x x x x x x x⑤解关于x 的方程)0())((2≠-=-+++ab bx a b x x a ab x a b⑥ 1221553210-=--+-=-++yx y x y x y x⑦ 2223427352=++-=--+x y x y x y y x ⑧ c xz zx b z y yz a y x xy =+=+=+ (abc ≠0)例2、①若a ≠0,b ≠0,且0)(21122=++-+b a b a b a ,则b a 的值?②已知:,51,41,31=+=+=+a c ca c b bc b a ab 求ca bc ab abc ++的值?例3、m 为何值时,关于x 的方程234222+=-+-x x mx x 有增根?例4、如果要使关于x 的方程0)2(22=-+---x x x x m x x x 有唯一解,则m 必须满足什么条件?例5、要使方程21212-+=--++x x a x x x x 的解是正数,求a 的范围?例6、(1)甲船从上游的A 地顺流而下行至B 地,乙船同时从下游的B 地逆流而上,经过12小时后两船相遇,这时甲船已走了全程的一半又9千米,已知甲船在静水中的速度是每小时4千米,乙船在静水中的速度是每小时5千米,求水流速度和A 、B 两地间的距离。

(2)某项工程由甲、乙两队承包,522天可以完成,需支付1800元;由乙、丙两队承包,433天可以完成,需支付1500元;由丙、甲两队承包,762天可以完成,需支付1600元。

35新课标八年级第三十五讲 应用题

35新课标八年级第三十五讲  应用题

第三十五讲 应用题在本讲中将介绍各类应用题的解法与技巧.当今数学已经渗入到整个社会的各个领域,因此,应用数学去观察、分析日常生活现象,去解决日常生活问题,成为各类数学竞赛的一个热点. 应用性问题能引导学生关心生活、关心社会,使学生充分体会到数学与自然和人类社会的密切联系,增强对数学的理解和应用数学的信心.解答应用性问题,关键是要学会运用数学知识去观察、分析、概括所给的实际问题,揭示其数学本质,将其转化为数学模型.其求解程序如下:在初中范围内常见的数学模型有:数式模型、方程模型、不等式模型、函数模型、平面几何模型、图表模型等. 例题求解一、用数式模型解决应用题数与式是最基本的数学语言,由于它能够有效、简捷、准确地揭示数学的本质,富有通用性和启发性,因而成为描述和表达数学问题的重要方法.【例1】(2003年安徽中考题)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变。

有关数据如下表所示:是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%。

问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际? 思路点拨 (1)风景区是这样计算的: 调整前的平均价格:()元1652520151010=++++,设整后的平均价格:()元16530251555=++++∵调整前后的平均价格不变,平均日人数不变. ∴平均日总收入持平.(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元) 现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元)∴平均日总收入增加了%4.9160160175≈-(3)游客的说法较能反映整体实际. 二、用方程模型解应用题研究和解决生产实际和现实生恬中有关问题常常要用到方程<组)的知识,它可以帮助人们从数量关系和相等关系的角度去认识和理解现实世界.【例2】 (重庆中考题)某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2min 内可以通过560名学生;当同时开启一道正门和一道侧门时,4mln 内可以通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定:在紧急情况下全大楼的学生应在5min 内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门整否符合安全规定?请说明理由.思路点拨 列方程(组)的关键是找到题中等量关系:两种测试中通过的学生数量.设未知数时一般问什么设什么.“符合安全规定”之义为最大通过量不小于学生总数. (1)设平均每分钟一道正门可以通过x 名学生,一道侧门可以通过y 名学生,由题意得:⎩⎨⎧=+=+800)(4560)2(2y x y x ,解得:⎩⎨⎧==80120y x(2)这栋楼最多有学生4×8×45=1440(名). 拥挤时5min4道门能通过.5×2(120+80)(1-20%)=1600(名),因1600>1440,故建造的4道门符合安全规定. 三、用不等式模型解应用题现实世界中的不等关系是普遍存在的,许多问题有时并不需要研究它们之间的相等关系,只需要确定某个量的变化范围,即可对所研究的问题有比较清楚的认识.【例3】 (苏州中考题)我国东南沿海某地的风力资源丰富,一年内月平均的风速不小于3m /s 的时间共约160天,其中日平均风速不小于6m /s 的时间占60天.为了充分利用“风能”这种“绿色资源”,该地拟建一个小型风力发电场,决定选用A 、B 两种型号的风力发电机,根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:一天的发电量)如下表:根据上面的数据回答:(1)若这个发电场购x 台A 型风力发电机,则预计这些A 型风力发电机一年的发电总量至少为 千瓦·时;(2)已知A 型风力发电机每台O.3万元,B 型风力发电机每台O.2万元.该发电场拟购置风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电场每年的发电总量不少于102000千瓦·时,请你提供符合条件的购机方案. 根据上面的数据回答:思路点拨 (1) (100×36+60×150)x=12600x ; (2)设购A 型发电机x 台,则购B 型发电机(10—x)台, 解法一根据题意得:⎩⎨⎧≥-+≤-+102000)10(7800126006.2)10(2.03.0x x x解得5≤x ≤6.故可购A 型发电机5台,B 型发电机5台;或购A 型发电机6台,B 型发电视4台. 四、用函数知识解决的应用题函数类应用问题主要有以下两种类型:(1)从实际问题出发,引进数学符号,建立函数关系;(2)由提供的基本模型和初始条件去确定函数关系式.【例4】 (扬州)杨嫂在再就业中心的扶持下,创办了“润杨”报刊零售点.对经营的某种晚报,杨嫂提供丁如下信息:①买进每份0.20元,卖出每份0.30元;②一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份; ③一个月内,每天从报社买进的报纸份数必须相同.当天卖不掉的报纸,以每份0.10元退回给报社;y 与x 的函数关系式,并求月利润的最大值.思路点拨(1)填表:20×[(0.3—0.2)x]=2x(元);其余10天可获利润: 10[(0.3-0.2)×120-0.1(x —120)]=240—x(元);故y=x+240,(120≤x ≤200), 当x=200时,月利润y 的最大值为440元.注 根据题意,正确列出函数关系式,是解决问题的关键,这里特别要注意自变量x 的取值范围.另外,初三还会提及统计型应用题,几何型应用题.【例5】 (桂林市)某公司需在一月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成. (1)求甲、乙两工程队单独完成此项工程所需的天数.(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙工程队施工,公司每日需付费用1400元.在规定时间内:A .请甲队单独完成此项工程;B .请乙队单独完成此项工程;C .请甲、乙两队合作完成此项工程.以上方案哪一种花钱最少?思路点拨 这是一道策略优选问题.工程问题中:工作量=工作效率×工时. (1)设乙工程队单独完成此项工程需x 天,根据题意得:1211011=-+x x , x=30合题意,所以,甲工程队单独完成此项工程需用20天,乙队需30天.(2)各种方案所需的费用分别为: A .请甲队需2000×20=40000元; B .请乙队需1400×30=4200元;C .请甲、乙两队合作需(2000+1400)×12=40800元.所队单独请甲队完成此项工程花钱最少.【例6】 (2全国联赛初赛题)一支科学考察队前往某条河流的上游去考察一个生态区,他们以每天17km 的速度出发,沿河岸向上游行进若干天后到达目的地,然后在生态区考察了若干天,完成任务后以每天25km 的速度返回,在出发后的第60天,考察队行进了24km 后回到出发点,试问:科学考察队的生态区考察了多少天? 思路点拨 挖掘题目中隐藏条件是关键!设考察队到生态区去用了x 天,返回用了y 天,考察用了z 天,则x+y+z=60,17x -25y=-1,即25y -17x=1. ①这里x 、y 是正整数,现设法求出①的一组合题意的解,然后计算出z 的值.为此,先求出①的一组特殊解(x 0,y 0),(这里x 0,y 0可以是负整数).用辗转相除法. 25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25. 与①的左端比较可知,x 0 =-3,y 0=-2.下面再求出①的合题意的解.由不定方程的知识可知,①的一切整数解可表示为x=-3+25t ,y=-2+17t , ∴ x+y=42t -5,t 为整数.按题意0<x+y<60,故仅当t=1时才合题意,这时x+y=42—5=37, ∴z=60—(x+y)=23.答:考察队在生态区考察的天数是23天.注 本题涉及到的未知量多,最终转化为二元一次不定方程来解,希读者仔细咀嚼所用方法. 【例7】 (江苏省第17届初中竞赛题)华鑫超市对顾客实行优惠购物,规定如下: (1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折优惠.小明两次去该超市购物,分别付款198元与554元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少? 思路点拨 应付198元购物款讨论:第一次付款198元,可是所购物品的实价,未享受优惠;也可能是按九折优惠后所付的款.故应分两种情况加以讨论.情形1 当198元为购物不打折付的钱时,所购物品的原价为198元 . 又554=450+104,其中450元为购物500元打九折付的钱,104元为购物打八折付的钱;104÷0. 8 =130(元).因此,554元所购物品的原价为130+500=630(元),于是购买小呀花198 +630=828(元)所购的全部物品,小亮一次性购买应付500×0.9+(828-500)×0.8=712.4(元).情形2 当198元为购物打九折付的钱时,所购物品的原价为198÷0.9=220(元) .仿情形1的讨论,,购220+630=850{元}物品一次性付款应为500×0.9+(850-500)×0.8=730(元).综上所述,小亮一次去超市购买小明已购的同样多的物品,应付款712.40元或730元 【例8】 (2002年全国数学竞赛题)某项工程,如果由甲、乙两队承包,252天完成,需180000元;由乙、丙两队承包,343天完成,需付150000元;由甲、丙两队承包,276天完成,需付160000元.现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?思路点拨 关键问题是甲、乙、丙单独做各需的天数及独做时各方日付工资.分两个层次考虑:设甲、乙、丙单独承包各需x 、y 、z 天完成.则⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+207111541112511x z z yy x,解得⎪⎩⎪⎨⎧===1064z y x再设甲、乙、丙单独工作一天,各需付u 、v 、w 元,则⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+160000)(720150000)(415180000)(512u w w v v u ,解得⎪⎩⎪⎨⎧===105002950045500w v u于是,由甲队单独承包,费用是45500×4=182000 (元). 由乙队单独承包,费用是29500×6= 177000 (元). 而丙队不能在一周内完成.所以由乙队承包费用最少. 学历训练(A 级)1. (河南)在防治“SARS ”的战役中,为防止疫情扩散,某制药厂接到了生产240箱过氧乙酸消毒液的任务.在生产了60箱后,需要加快生产,每天比原来多生产15箱,结果6天就完成了任务.求加快速度后每天生产多少箱消毒液? 2.(山东省竞赛题)某市为鼓励节约用水,对自来水妁收费标准作如下规定:每月每户用水中不超过10t 部分按0.45元/吨收费;超过10t 而不超过20t 部分按每吨0.8元收费;超过20t 部分按每吨1.50元收费,某月甲户比乙户多缴水费7.10元,乙户比丙户多缴水费3.75元,问甲、乙、丙该月各缴水费多少?(自来水按整吨收费)3.(江苏省竞赛题)甲、乙、丙三人共解出100道数学题,每人都解出了其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题.试问:难题多还是容易题多?多的比少的多几道题?4.某人从A 地到B 地乘坐出租车有两种方案,一种出租车收费标准是起步价10元,每千米1.2元;另一种出租车收费标准是起步价8元,每千米1.4元,问选择哪一种出租车比较合适?(提示:根据目前出租车管理条例,车型不同,起步价可以不同,但起步价的最大行驶里程是相同的,且此里程内只收起步价而不管其行驶里程是多少)(B 级)1.(全国初中数学竞赛题)江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40min 可抽完;如果用4台抽水机抽,16min 可抽完.如果要在10min 抽完水,那么至少需要抽水机 台.2.(希望杯)有一批影碟机(VCD)原售价:800元/台.甲商场用如下办法促销:乙商场用如下办法促销:每次购买1~8台,每台打九折;每次购买9~16台,每台打八五折;每次购买17~24台,每台打八折;每次购买24台以上,每台打七五折.(1)请仿照甲商场的促销列表,列出到乙商场购买VCD的购买台数与每台价格的对照表;(2)现在有A、B、C三个单位,且单位要买10台VCD,B单位要买16台VCD,C单位要买20台VCD,问他们到哪家商场购买花费较少?3.(河北创新与知识应用竞赛题)某钱币收藏爱好者想把3.50元纸币兑换成1分、2分、5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币要多于2分的硬币.请你据此设计兑换方案.4.从自动扶梯上走到二楼(扶梯本身也在行驶),如果男孩和女孩都做匀速运动且男孩每分钟走动的级数是女孩的两倍,已知男孩走了27级到达扶梯顶部,而女孩走了18级到达扶梯顶部(设男孩、女孩每次只踏—级).问:(1)扶梯露在外面的部分有多少级?(2)如果扶梯附近有一从二楼到一楼的楼梯,楼梯的级数和扶梯的级数相等,两孩子各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘扶梯(不考虑扶梯与楼梯间距离)则男孩第一次追上女孩时走了多少级台阶?5.某化肥厂库存三种不同的混合肥,第一种含磷60%,钾40%,第二种含钾10%,氮90%;第三种含钾50%,磷20%,氮30%,现将三种肥混合成含氮45%的混合肥100㎏(每种肥都必须取),试问在这三种不同混合肥的不同取量中,新混合肥含钾的取值范围.6.(黄冈竞赛题)有麦田5块A、B、C、D、E,它们的产量,(单位:吨)、交通状况和每相邻两块麦田的距离如图21-2所示,要建一座永久性打麦场,这5块麦田生产的麦子都在此打场.问建在哪快麦田上(不允许建在除麦田以外的其他地方)才能使总运输量最小?图中圆圈内的数字为产量,直线段上的字母a、b、d表示距离,且b < a<d.应用题。

初中八年级数学竞赛培优讲义全套专题15 全等三角形

初中八年级数学竞赛培优讲义全套专题15 全等三角形

初中八年级数学竞赛培优讲义全套专题15 全等三角形专题15:全等三角形全等是指两个几何图形之间的一种关系,其中最基本的关系是点的对应关系,以及对应边之间、对应角之间的相等关系。

全等三角形是研究三角形、四边形等图形性质的主要工具,是解决有关线段、角等问题的一个出发点。

证明线段相等、线段和差相等、角相等、两直线位置关系等问题总要直接或间接用到全等三角形,我们把这种应用全等三角形来解决问题的方法称为全等三角形法。

我们实际遇到的图形,两个全等三角形并不重合在一起,而是处于各种不同的位置,但其中一个是由另一个经过平移、翻折、旋转等变换而成的。

了解全等变换的这几种形式,有助于发现全等三角形、确定对应元素。

善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键,应熟悉涉及有关共边、公共角的以下两类基本图形:1.三角形2.四边形例题与求解例1】考查下列命题:①全等三角形的对应边上的中线、高、角平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上高)对应相等的两个三角形全等。

其中正确命题的个数有()解题思路:真命题给出证明,假命题举出一个反例。

例2】如图,已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB。

求证:(1)AP=AQ;(2)AP⊥AQ。

解题思路:(1)证明对应的两个三角形全等;(2)证明∠PAQ=90°。

例3】如图,已知AD为△ABC的中线,求证:AD<(AB AC)。

解题思路:三角形三边关系定理是证明线段不等关系的基本工具,关键是设法将AB,AC,AD集中到同一个三角形中,从构造2AD入手。

例4】如图,已知AC∥BD,EA、EB分别平分∠CAB、∠DBA,CD过点E。

求证:AB=AC+BD。

解题思路:本例是线段和差问题的证明,截长法(或补短法)是证明这类问题的基本方法,即在AB上截取AF,使AF=AC,以下只要证明FB=BD即可,于是将问题转化为证明两线段相等。

2020年八年级数学竞赛辅导讲义

2020年八年级数学竞赛辅导讲义

2020年八年级数学竞赛辅导讲义第一讲:因式分解(一) (2)第二讲:因式分解(二) (7)第三讲实数的若干性质和应用 (12)第四讲分式的化简与求值 (16)第五讲恒等式的证明 (21)第六讲代数式的求值 (26)第七讲根式及其运算 (30)第八讲非负数 (38)第九讲一元二次方程 (44)第十讲三角形的全等及其应用 (50)第十一讲勾股定理与应用 (56)第十二讲平行四边形 (61)第十三讲梯形 (66)第十四讲中位线及其应用 (72)第十五讲相似三角形(一) (76)第十六讲相似三角形(二) (81)第十七讲* 集合与简易逻辑 (87)第十八讲归纳与发现 (96)第十九讲特殊化与一般化 (102)第二十讲类比与联想 (109)第二十一讲分类与讨论 (115)第二十二讲面积问题与面积方法 (121)第二十三讲几何不等式 (127)第二十四讲* 整数的整除性 (134)第二十五讲* 同余式 (139)第二十六讲含参数的一元二次方程的整数根问题 (144)第二十七讲列方程解应用问题中的量 (150)第二十八讲怎样把实际问题化成数学问题 (156)第二十九讲生活中的数学(三) ——镜子中的世界 (161)第三十讲生活中的数学(四)──买鱼的学问 (199)第一讲:因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.。

八年级数学竞赛辅导讲义(2021年整理)

八年级数学竞赛辅导讲义(2021年整理)

八年级数学竞赛辅导讲义(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学竞赛辅导讲义(word 版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学竞赛辅导讲义(word版可编辑修改)的全部内容。

全国初中数学联赛一全国初中数学联赛简介中国数学会所举办的全国高中数学联赛、全国初中数学联赛,以及小学数学奥林匹克,都是群众性的数学课外活动,是大众化、普及型的数学竞赛,目前,每年有12万名学生参加。

竞赛简介奖项名称:全国初中数学联合竞赛创办时间:1984年主办单位:由各省、市、自治区联合举办,轮流做庄竞赛介绍:同时,各地都提出了举行“全国初中数学联赛”的要求。

1984年,中国数学会普及工作委员会商定,委托天津市数学会举办一次初中数学邀请赛,有14个省、市、自治区参加,当时条件较简陋,准备时间也较仓促,天津数学会在南开大学数学系和天津师范大学数学系的大力支持下,极其认真负责地把这次活动搞得很成功,为后来举办“全国初中数学联赛”摸索了很多经验。

当年11月,在宁波召开的中国数学会第三次普及工作会议时,一致通过了举办“全国初中数学联赛”的决定,并详细商定了一些具体办法,规定每年四月的第一个星期天举行“全国初中数学联赛”。

会上湖北省数学会、山西省数学会、黑龙江省数学会分别主动承担了1985年、1986年、1987年的“全国初中数学联赛"承办单位,从此,“全国初中数学联赛”也形成了制度。

“全国初中数学联赛”原来不分一试、二试.为了更好地贯彻“在普及的基础上不断提高”的方针,1989年7月,在济南召开的“数学竞赛命题研讨会”上,各地的代表商定,初中联赛也分两试进行,并对一、二试各种题型的数目,以及评分标准作出明确的规定,使初中联赛的试卷走向规范化.中国数学会所举办的全国高中数学联赛、全国初中数学联赛,以及小学数学奥林匹克,都是群众性的数学课外活动,是大众化、普及型的数学竞赛,目前,每年有12万名学生参加。

八年级奥林匹克数学竞赛超级讲义(共91页)

八年级奥林匹克数学竞赛超级讲义(共91页)

八年级奥林匹克数学竞赛超级讲义史瑞东吕梁高级实验中学目录本内容适合八年级学生竞赛拔高使用。

注重中考与竞赛的有机结合,重点落实在中考中难以上题、奥赛方面的基础知识和基本技能培训和提高。

本内容难度适中,讲练结合,由浅入深,讲解与练习同步,重在提高学生的数学分析能力与解题能力。

另外在本次培训中,内容的编排大多大于120分钟的容量,因此在实际教学过程中可以根据学生的具体状况和层次,由任课教师适当的调整顺序和选择内容(如专题复习可以提前上)。

注:有(*) 标注的为选做内容。

第一讲如何做几何证明题第二讲平行四边形(一)第三讲平行四边形(二)第四讲梯形第五讲中位线及其应用第六讲一元二次方程的解法第七讲一元二次方程的判别式第八讲一元二次方程的根与系数的关系第九讲一元二次方程的应用第十讲专题复习一:因式分解、二次根式、分式第十一讲专题复习二:代数式的恒等变形第十二讲专题复习三:相似三角形第一讲:如何做几何证明题【知识梳理】1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2、掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

八年级数学竞赛教案4篇

八年级数学竞赛教案4篇

八年级数学竞赛教案4篇八年级数学竞赛教案篇1一、学习目标:1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,灵活应用平方差公式.三、合作学习你能用简便方法计算下列各题吗(1)2023×1999 (2)998×1002导入新课:计算下列多项式的积.(1)(x+1)(x-1) (2)(m+2)(m-2)(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)结论:两个数的和与这两个数的差的积,等于这两个数的平方差. 即:(a+b)(a-b)=a2-b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)例2:计算:(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)随堂练习计算:(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)五、小结:(a+b)(a-b)=a2-b2第三十五学时:4.2.2. 完全平方公式(一)一、学习目标:1.完全平方公式的推导及其应用.2.完全平方公式的几何解释.二、重点难点:重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用难点:理解完全平方公式的结构特征并能灵活应用公式进行计算三、合作学习Ⅰ.提出问题,创设情境一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多多多少为什么Ⅱ.导入新课计算下列各式,你能发现什么规律(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;(5)(a+b)2=________;(6)(a-b)2=________.两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2四、精讲精练例1、应用完全平方公式计算:(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2例2、用完全平方公式计算:(1)1022 (2)992随堂练习第三十六学时:14.2.2 完全平方公式(二)一、学习目标:1.添括号法则.2.利用添括号法则灵活应用完全平方公式二、重点难点重点:理解添括号法则,进一步熟悉乘法公式的合理利用难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的. 三、合作学习Ⅰ.提出问题,创设情境请同学们完成下列运算并回忆去括号法则.(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号; 如果括号前是负号,去掉括号后,括号里的各项都要变号。

北师大版八年级数学上册竞赛讲义-分式方程(组)及其应用

北师大版八年级数学上册竞赛讲义-分式方程(组)及其应用

分式方程(组)及其应用竞赛热点1.分式方程的概念.分母中含有未知数的有理方程称为分式方程。

2.解分式方程的方法.解分式方程的基本思想是转化思想,即把分式方程转化为整式方程来解;转化的基本方法是;去分母,换元法等。

分式方程在转化过程中会产生增根或漏根,因此解分式方程必须验根。

3.分式方程应用题.列分式方程应用题与列整式方程应用题的思路相同,首先要注意审题,弄清未知数与已知数之间的关系,并把它们表示出来,从而转化成数学模型,要善于运用列表,画图等辅助手段帮助分析问题;但与解整式方程应用题不同的是.对所求的结果既要验根又要检验方程的根是否符合实际意义,二者缺一不可。

解题示范例1.解方程9182716x x x x x x x x -+-+=+----。

思考题1.解下列方程. ⑴13217219211211215217292x x x xx x x x ----+=+----;⑵1321121111x x x++=+++。

例2.解方程组1034331522x y x y x y x y -⎧+=⎪+⎪⎨-⎪-=-⎪+⎩。

思考题2. .解方程组 ⑴4955210x y y x⎧=+⎪⎪⎨⎪=+⎪⎩ ; ⑵345xyx y yzy z zxz x ⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩。

例3.一只虫子从A处爬到B处,如果它的速度每分钟增加1米,可提前10分钟到达;如果它的速度每分钟再增加2米,则可又提前10分钟到达,求A,B之间的路程。

思考题3.甲、乙两人做一项工程,合做4小时后,甲另有任务被调走,余下部分由乙单独做,又用了6小时才完成这项工程。

已知甲独做6小时的工作量,由乙单独做要7小时30分钟,问甲、乙单独完成这项工程各需多少小时?例4.如图,在矩形ABCD中,甲、乙二人分别从A、B两点同时出发,甲、乙速度分别为65米/分,74米/分,沿矩形A→B→C→D→A→B→……顺序前进,乙至少跑第几圈时才可能第一次追上甲?又乙至少在跑第几圈时一定又追上甲?请说明理由。

八年级数学数学竞赛培训讲义

八年级数学数学竞赛培训讲义

目录本内容适合八年级学生竞赛拔高使用。

注重中考与竞赛的有机结合,重点落实在与中考中难以上题,奥赛方面的基础知识和基本技能培训和提高。

本内容难度适中,讲练结合,由浅入深,讲解与练习同步,重在提高学生的数学分析能力与解题能力。

另外在本次培训中,内容的编排大多大于80分钟的容量,因此在实际教学过程中可以根据学生的具体状况由任课教师适当的调整顺序和选择内容。

由于《相似三角形》与其他知识的衔接较多,因此本讲义补充了初三的《相似三角形》,可根据实际情况进行必要的讲解。

注:有(*) 标注的为选做内容。

本次培训具体计划如下,以供参考:第一讲分式的运算第二讲分式的化简求值第三讲分式方程及其应用第四讲二次根式的运算第五讲二次根式的化简求值第六讲相似三角形(基础篇)第七讲相似三角形(提高篇)第八讲平行四边形(基础篇)第九讲平行四边形(提高篇)第十讲梯形、中位线及其应用第十一讲结业考试(未装订在内,另发)第十二讲试卷讲评第一讲:分式的运算【知识梳理】一、分式的意义 形如BA (B A 、为整式),其中B 中含有字母的式子叫分式。

当分子为零且分母不为零时,分式的值为零,而当分母为零时,分式没有意义。

二、分式的性质(1)分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不为零的整式)。

(2)分式的符号法则:分子、分母与分式本身的符号,改变其中的任何两个,分式的值不变。

(3)倒数的性质:1、()()011011>=⋅≠=⋅a aa a a a ,; 2、若11=⋅a a ,则11=⎪⎭⎫ ⎝⎛⋅n n a a (0≠a ,n 是整数); 3、()021>≥+a aa 。

三、分式的运算分式的运算法则有:bdbc ad d c b a c b a c b c a ±=±±=±,; n nn ba b a bc ad d c b a bd ac d c b a =⎪⎭⎫ ⎝⎛=÷=⋅,,(n 是正整数)。

八年级数学竞赛例题和差化积--因式分解的应用专题讲解

八年级数学竞赛例题和差化积--因式分解的应用专题讲解

八年级数学竞赛例题和差化积--因式分解的应用专题讲解专题05和差化积——因式分解的应用阅读与思考:因式分解是代数变形的有力工具,在以后的学习中,因式分解是学习分式、一元二次方程等知识的基础,其应用主要体现在以下几个方面:1.复杂的数值计算;2.代数式的化简与求值;3.简单的不定方程(组);4.代数等式的证明等.有些多项式分解因式后的结果在解题中经常用到,我们应熟悉这些结果:1.;2.;3.;4.;5..例题与求解【例1】已知,,那么的值为___________.(全国初中数学联赛试题)解题思路:对已知等式通过因式分解变形,寻求a,b之间的关系,代入关系求值.【例2】a,b,c是正整数,a>b,且,则等于().A.-1B.-1或-7C.1D.1或7(江苏省竞赛试题)解题思路:运用因式分解,从变形条件等式入手,在字母允许的范围内,把一个代数式变换成另一个与它恒等的代数式称代数式的恒等变形,它是研究代数式、方程和函数的重要工具,换元、待定系数、配方、因式分解又是恒等变形的有力工具.求代数式的值的基本方法有;(1)代入字母的值求值;(2)代入字母间的关系求值;(3)整体代入求值.【例3】计算:(1)(“希望杯”邀请赛试题)(2)(江苏省竞赛试题)解题思路:直接计算,则必然繁难,对于(1),不妨用字母表示数,通过对分子、分母分解因式来探求解题思路;对于(2),可以先研究的规律.【例4】求下列方程的整数解.(1);(上海市竞赛试题)(2).(四川省竞赛试题)解题思路:不定方程、方程组没有固定的解法,需具体问题具体分析,观察方程、方程组的特点,利用整数解这个特殊条件,从分解因式入手.解不定方程的常用方法有:(1)穷举法;(2)配方法;(3)分解法;(4)分离参数法.用这些方程解题时,都要灵活地运用质数合数、奇数偶数、整除等与整数相关的知识.【例5】已知,,求下列各式的值:(1);(2);(3).解题思路:先分解因式再代入求值.【例6】一个自然数恰等于另一个自然数的立方,则称自然数为完全立方数,如27=33,27就是一个完全立方数.若=19951993×199519953-19951994×199519923,求证:是一个完全立方数.(北京市竞赛试题)解题思路:用字母表示数,将分解为完全立方式的形式即可.能力训练A级1.如图,有三种卡片,其中边长为的正方形卡片1张,边长分别为,的长方形卡片6张,边长为的正方形卡片9张,用这16张卡片拼成一个正方形,则这个正方形的边长为________.(烟台市初中考试题)2.已知,则的值为__________.(江苏省竞赛试题)3.方程的整数解是__________.(“希望杯”邀请赛试题)4.如果是完全平方式,那么的值为__________.(海南省竞赛试题)5.已知(),则的值是().A.2,B.2C.D.6.当,的值为().A.-1B.0C.2D.17.已知,,则M与N的大小关系是().A.M<NB.M>NC.M=ND.不能确定(“希望杯”邀请赛试题)8.为某一自然数,代入代数式中计算其值时,四个同学算出如下四个结果,其中正确的结果只能是().A.388944B.388945C.388954D.388948(五城市联赛试题)9.计算:(1)(北京市竞赛试题)(2)(安徽省竞赛试题)10.一个自然数恰好等于另一个自然数的平方,则称自然数为完全平方数,如64=82,64就是一个完全平方数,若=19982+19982×19992+19992,求证:是一个完全平方数.(北京市竞赛试题)11.已知四个实数,,,,且,,若四个关系式,,,同时成立.(1)求的值;(2)分别求,,,的值.(湖州市竞赛试题)B级1.已知是正整数,且是质数,那么____________.(“希望杯”邀请赛试题)2.已知三个质数的乘积等于这三个质数的和的5倍,则=________. (“希望杯”邀请赛试题)3.已知正数,,满足,则=_________.(北京市竞赛试题)4.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式,因式分解的结果是,若取=9,=9时,则各个因式的值是:,于是就可以把“018162”作为一个六位数的密码,对于多项式,取=10,=10时,用上述方法产生的密码是:__________.(写出一个即可).(浙江省中考试题)5.已知,,是一个三角形的三边,则的值().A.恒正B.恒负C.可正可负D.非负(太原市竞赛试题)6.若是自然数,设,则().A.一定是完全平方数B.存在有限个,使是完全平方数C.一定不是完全平方数D.存在无限多个,使是完全平方数7.方程的正整数解有()组.A.3B.2C.1D.0(“五羊杯”竞赛试题)8.方程的整数解有()组.A.2B.4C.6D.8(”希望杯”邀请赛试题)9.设N=695+5×694+10×693+10×692+5×69+1.试问有多少个正整数是N的因数?(美国中学生数学竞赛试题)10.当我们看到下面这个数学算式时,大概会觉得算题的人用错了运算法则吧,因为我们知道.但是,如果你动手计算一下,就会发现上式并没有错,不仅如此,我们还可以写出任意多个这种算式:,,,,…你能发现以上等式的规律吗?11.按下面规则扩充新数:已有,两数,可按规则扩充一个新数,而以,,三个数中任取两数,按规则又可扩充一个新数,…每扩充一个新数叫做一次操作.现有数1和4,求:(1)按上述规则操作三次得到扩充的最大新数;(2)能否通过上述规则扩充得到新数1999,并说明理由.(重庆市竞赛试题)12.设,,为正整数.被整除所得的商分别为,.(1)若,互质,证明与互质;(2)当,互质时.求的值;(3)若,的最大公约数为5,求的值.(江苏省竞赛试题)。

八年级上数学竞赛辅导 非常规题例解(教师版)

八年级上数学竞赛辅导  非常规题例解(教师版)

非常规题例解数学竞赛中,我们经常遇到与课本习题很大不同的一类题,它很难归人初中数学某一知识点,按照常规的解题方法很难获解.我们姑且称它为非常规题.它以思想深刻与方法 巧妙为其显著特征.解题时更需要敏锐的观察、判断和推理能力.现举例介绍一些解这类题的思考方法.例1 国际象棋比赛中,共8名选手进行单循环比赛,每赛一局胜者得1分。

负者得0分,平局各得0.5分.赛完后,发现各选手得分都不相同,当选手得分由大到小排列了名次后,第4名选手得分4.5分,第2名选手得分等于最后四名选手得分的总和.前三名选手各得几分?说明理由.解:8名选手共赛了28278=⨯局,共28分.若前三名选手得分分别为321,,a a a ,那么根据题意应有321a a a ++285.42=++a ,即5.232321=++a a a ① 注意到每局得分只有0、0.5、1三种情形,可见22a 是整数,由①式知31a a 、中一个是整数,另一个是小数.由于得分最多是7分,所以5.47321>>>≥a a a又由①式知5.2341>a ,5.2343<a ,即875.51>a ,.875.53<a所以671≥≥a ,.563≥>a 于是53=a 或5.5.当53=a 时,1a 只能是小数,所以5.61=a ,由①式得1222=a ,故.62=a当5.53=a 时,1a 只能是整数,所以71=a ,由①式得1122=a ,故5.52=a ,与3a 相等了,不合题意.综上所述,前三名得分分别是6.5分,6分,5分.例2将1~8这八个数放在正方体的八个顶点上,使任一面上四个数中任意三数之和不小于10.求各面上四数之和中的最小值.解 情形1:这个面上出现数1,设其余三个数为a ,b ,c .因为,b a +c b +,a c +互不相同,且依题意加1之和不小于10,这样b a +,c b +,a c +这三个数至少不小于9,10,11.故,11109)()()(++≥+++++a c C b b a 即.15≥++c b a 加上1之后,四个数之和≥16.情形2:这个面上不出现l .显然依题意这个面上不能同时出现2,3,4,因为.109432<=++于是这些数至少有2,3,5,6,而2+3+5+6=l6.故四数之和的最小值为l6.具体作图如图例3 在一个边长为l2的正方形中,有一组直线段,使得从这个正方形中的每一点到最近的直线段的距离至多是l .求证:这些线段的总长度超过70.证明: 设有n 条直线段,第i 条直线段长为0>i x ,以i x 为中位线作一个高为2的长方形(如图).当对每一条直线段都作出了这样的长方形之后,由题设可知,原正方形内的每一点都一定落在某一个这样的长方形内.这就是说所有长方形的全体覆盖了原来的正方形.因此,所有长方形的面积必大于或等于原正方形的面积,即,14412)(2221=≥+++n x x x,7221≥+++n x x x.7021>+++n x x x即这些直线段的总长度超过70.例4 对非负整数n ,满足方程n x y x =++2的非负整数解),,(z y x 的组数记为n a .(1)求3a 的值; (2)求2001a 的值.解 (1)当n =3时,有.32=++z y x 由0,0,0≥≥≥z y x ,可得.10≤<≤z当1=z 时,1=+y x ,于是).0,1(),1,0(),(=y x当0=z 时,3=+y x ,于是),2.1(),3,0(),(=y x ).0,3(),1,2( 综上可得.63=a(2)当n =2001时,有.20012=++z y x 由0,0,0≥≥≥z y x ,可得.10000≤≤z 当1000=z 时,1=+y x ,于是)0,1(),1,0(),(=y x 有2组;当z = 999时,3=+y x ,于是)2,1(),3,0(),(=y x ,)0,3(),1,2(,有4组;当z = 998时,5=+y x ,于是=),(y x (0,5), (1,4),(2,3),(3,2),(4,1),(5,O),有6组. 当z =0时,(x ,y )=(0,2001),(1,2000),…,(2001,0),有2 002组.综上,数组(x ,y ,z )共有 2 + 4 + 6 + … + 2002 = 2(1 + 2 + 3 + … + 1001)=1003002(组).所以a 2001 = 1003002.例5 数列 0,1,1,2,2,3,3,4,4,…,r ,r ,r + 1,r + 1,…令T n 表示数列前n 项的和.(1)归纳T n 的计算公式;(2)证明;st T T t s t s =--+,这里s ,t 是正整数,s>t .解 (1)如果n 是偶数,那么T n =0 + 1 + 2 + 3 + …+(2n - 1) + 1 + 2 + 3 + … + 2n⋅=++⋅-=4)12)(2(212)12(212n n n n n 如果n 是奇数,那么212121210-++++-++++=n n T n ⋅-=---=41)121)(21)(21(22n F n n 所以⎪⎪⎩⎪⎪⎨⎧-=).(41),(422是奇数是偶数n n n n T n (2)注意到s + t 与S - t 的差是2t ,所以s + t 与S - t 同为奇数或同为偶数. 在偶数情形,;4)(42)(2St t s t s T T t s t s =--+=--+ 在奇数情形,st t s t s T T ts t s =----+=--+41)(41)(22例6 一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中的某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满意,往E 二走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别住在第2至第33层的每一层.问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯而直接从楼梯上楼)。

八年级(下)数学竞赛班辅导讲义.docx

八年级(下)数学竞赛班辅导讲义.docx

八年级(下)数学竞赛班辅导资料(1)原班级:姓名:等腰三角形的性质( 1)【一】等腰三角形有哪些性?(1)等腰三角形两底角 ____________;(2)等腰三角形具有“三合一”的性;“三”指_____________________________________.(3)称性:等腰三角形是 ______ 称形 .A 【二】例精例 1(1)等腰三角形两个内角的度数之比1:2 ,个等腰三角形底角的度数_______________;45 或 72( 2)等腰△ ABC的三 a、 b、 c 均整数,且足 a bc b ca 24 ,的三角形共有 ___________个 . 3个例 2如,若AB=AC,BG=BH,AK=KG,∠ BAC的度数 ________________.BCHK36G例 3(2012?淮安)理解如 1,△ ABC中,沿∠ BAC的平分AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分A1B2折叠,剪掉重复部分;⋯;将余下部分沿∠B n A n C 的平分A n B n+1折叠,点B n与点 C 重合,无折叠多少次,只要最后一次恰好重合,∠BAC是△ ABC的好角.小展示了确定∠BAC是△ ABC的好角的两种情形.情形一:如2,沿等腰三角形ABC角∠ BAC的平分 AB1折叠,点 B 与点 C 重合;情形二:如3,沿∠ BAC的平分AB1折叠,剪掉重复部分;将余下部分沿∠ B1A1C的平分A1B2折叠,此点B1与点 C重合.探究(1)△ ABC中,∠ B=2∠ C,两次折叠,∠BAC是不是△ ABC的好角? ________(填“是”或“不是”).(2)小三次折叠了∠ BAC是△ ABC的好角,探究∠ B 与∠ C(不妨∠ B>∠ C)之的等量关系.根据以上内容猜想:若 n 次折叠∠ BAC是△ ABC的好角,∠ B 与∠ C(不妨∠ B>∠ C)之的等量关系_____________________ .(3)小找到一个三角形,三个角分 15°、 60°、 105°, 60°和 105°的两个角都是此三角形的好角.你完成,如果一个三角形的最小角是 4°,求出三角形另外两个角的度数,使三角形的三个角均是此三角形的好角.分析:( 1)在小丽展示的情形二中,如图3,根据根据三角形的外角定理、折叠的性质推知∠B=2∠ C;( 2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠ C+∠ A2B2C=2∠C;根据四边形的外角定理知∠BAC+2∠ B- 2C=180°①,根据三角形 ABC的内角和定理知∠BAC+∠ B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠ C;(3)利用( 2)的结论知∠ B=n∠ C,∠ BAC是△ ABC的好角,∠ C=n∠ A,∠ ABC是△ ABC的好角,∠ A=n∠ B,∠ BCA是△ ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是4、 172; 8、 168; 16、160; 44、 132;88°、 88°.解答:解:(1)△ ABC中,∠ B=2∠ C,经过两次折叠,∠BAC是△ ABC的好角;理由如下:小丽展示的情形二中,如图3,∵沿∠ BAC的平分线AB1折叠,∴∠ B=∠ AA1B1;又∵将余下部分沿∠B1A1C 的平分线 A1B2折叠,此时点B1与点 C 重合,∴∠ A1B1C=∠ C;∵∠ AA1B1=∠ C+∠ A1B1C(外角定理),∴∠ B=2∠ C,∠ BAC是△ ABC的好角.故答案是:是;( 2)∠ B=3∠ C;如图所示,在△ ABC中,沿∠ BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线 A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C 的平分线 A2B3折叠,点 B2与点 C 重合,则∠ BAC是△ ABC的好角.证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠ C=∠ A2B2C,∠ A1B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠ C+∠A2B2C=2∠ C;∵根据四边形的外角定理知,∠BAC+∠ B+∠ AA1B1- ∠A1 B1C=∠ BAC+2∠ B-2 ∠C=180°,根据三角形 ABC的内角和定理知,∠ BAC+∠ B+∠C=180°,∴∠ B=3∠ C;由小丽展示的情形一知,当∠B=∠ C 时,∠ BAC是△ ABC的好角;由小丽展示的情形二知,当∠B=2∠ C 时,∠ BAC是△ ABC的好角;由小丽展示的情形三知,当∠B=3∠ C 时,∠ BAC是△ ABC的好角;故若经过 n 次折叠∠ BAC是△ ABC的好角,则∠ B 与∠ C(不妨设∠ B>∠ C)之间的等量关系为∠B=n∠ C;( 3)由( 2)知设∠ A=4°,∵∠ C 是好角,∴∠ B=4n°;∵∠ A 是好角,∴∠ C=m∠B=4mn°,其中m、 n 为正整数得4+4n+4mn=180∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.点评:本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质.难度较大.【三】练一练1.等腰三角形一腰上的高与另一腰的角36 ,等腰三角形的底角的度数___________.63 或272.如, AA、 BB 分是EAB、 DBC 的平分,若 AA BB AB,BAC 的度数_____.EA C B'B DA 'E, 且 AE=1BD.求:3.如,在△ ABC中,AC=BC,ACB 90,D 是 AC上一点,AE BD 交的延于BD是ABC的角平分 .2AED4. 某数学趣小开展了一次活,程如下:C B ∠ BAC=θ(0 °<θ< 90° ) .把小棒依次放在两射之,并使小棒两端分落在射AB, AC上.活一:如甲所示,从点A1开始,依次向右放小棒,使小棒与小棒在端点互相垂直,A1A2第 1 根小棒.数学思考:(1)小棒能无限下去?答:______. ( 填“能”或“不能” )(2)11223AA=A A =A A =1.① θ =______度;②若小棒A2n-1 A2n的度a n(n 正整数,如 A1A2=a1,A3A4=a2,⋯)求出此a2,a3的,并直接写出a n( 用含 n 的式子表示 ) .活二:如乙所示,从点A1开始,用等的小棒依次向右放,其中A1A2第 1 根小棒,且A1A2=AA1.数学思考:(3)若已放了 3 根小棒,θ1=______,θ2=______,θ3=______; ( 用含θ的式子表示 )(4)若只能放 4 根小棒,求θ的范.解:( 1)∵根据已知条件∠BAC=θ( 0°<θ< 90°)小棒两端能分落在两射上,(2)①∵ A1A2 =A2A3, A1A2⊥ A2A3,∴∠ A2A1A3=45°,∴∠ AA2A1+∠θ=45°,∵∠ AA2A1=∠ θ,∴∠ θ=22.5 °;②∵ AA=A A=AA=1,AA⊥AA∴AA=, AA=1+,112231223133又∵ A A ⊥A A ,A A ∥AA ,同理; A A ∥A A ,∴∠ A=∠AAA =∠AAA =∠AAA ,∴ AA=A A ,AA=A A 23341234345621436533455623433335235352356522+1)2∴ a =A A =AA=1+, a =AA+AA =a +A A ,∵ A A = a ,∴ a =A A =AA=a + a =(∴ a n=(+1) n-1;(3)∵ A1A2=AA1,∴∠ A1AA2=∠ AA2A1=θ,∴∠ A2A1A3=θ1=θ+θ,∴θ1=2θ同理可得:θ2 =3θ,θ3=4θ;(4)如图:∵A4A3=A4A5,∴∠ A4A3A5=∠ A4A5A3=4θ °,∵根据三角形内角和定理和等腰三角形的性质,当∠ A5A4B 是钝角或直角时,不能继续摆放小棒了,∴当∠ A4A3A5是锐角,∠ A5A4B=5θ是钝角或直角时,只能摆放 4 根小棒,∴ 5θ ≥ 90°, 4θ<90°,即,∴18°≤ θ< 22.5 °.( 1)能;(2)①∠θ =22.5 °;② a =(n-1;( 3) 2θ;3θ; 4θ;+1)n(4) 18°≤ θ< 22.5 °.本题主要考查了相似三角形的判定和性质,在解题时要注意根据题意找出规律并与相似三角形的性质相结合八年级(下)数学竞赛班辅导资料(2)原班级:姓名:等腰三角形的性质( 2)一、例题讲解:如图,已知内角度数的三个三角形,请用直尺和圆规作一条直线,把△ABC分割成两个等腰三角形.C C90°84°24°A 24°A B B36°C104°72°52°BBA C二、练一练1.如图,点 O 是等边△ ABC 内一点.将△ BOC 绕点 C 按顺时针方向旋转60°得△ ADC ,连接 OD .已知∠ AOB=110 °.(1)求证:△ COD 是等边三角形;(2)当α=150°时,试判断△ AOD 的形状,并说明理由;(3)探究:当α为多少度时,△ AOD 是等腰三角形.解:( 1)证明:∵ CO=CD ,∠ OCD=60 °,∴△ COD 是等边三角形;(3 分)(2)解:当α=150°,即∠ BOC=150 °时,△ AOD 是直角三角形.( 5 分)∵△ BOC≌△ ADC ,∴∠ ADC= ∠BOC=150 °,又∵△ COD 是等边三角形,∴∠ODC=60 °,∴∠ ADO=90 °,即△ AOD 是直角三角形;( 7 分)(3)解:①要使 AO=AD ,需∠ AOD= ∠ ADO .∵∠ AOD=360 °﹣∠ AOB ﹣∠ COD ﹣α=360 °﹣ 110°﹣ 60°﹣α=190°﹣α,∠ ADO= α﹣ 60°,∴190°﹣α=α﹣ 60°,∴ α=125°;②要使 OA=OD ,需∠ OAD= ∠ ADO .∵∠ AOD=190 °﹣α,∠ ADO= α﹣ 60°,∴∠ OAD=180 °﹣(∠ AOD+ ∠ADO )=50 °,∴α﹣ 60°=50 °,∴ α=110°;③要使 OD=AD ,需∠ OAD= ∠ AOD .∵190°﹣α=50 °,∴α=140 °.综上所述:当α的度数为125°,或 110°,或 140°时,△ AOD 是等腰三角形.(12 分)点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力2.( 2014?宁波)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成 3 张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图 1 是其中的一种方法:定义:如果两条线段将一个三角形分成 3 个等腰三角形,我们把这两条线段叫做这个三角形的三分线.( 1)请你在图 2 中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成 3 对全等三角形,则视为同一种)( 2)△ ABC 中,∠B=30 °,AD 和 DE 是△ ABC 的三分线,点 D 在 BC 边上,点 E 在 AC 边上,且 AD=BD ,DE=CE ,设∠ C=x °,试画出示意图,并求出 x 所有可能的值;(3)如图 3,△ ABC 中, AC=2 , BC=3 ,∠ C=2 ∠B ,请画出△ ABC 的三分线,并求出三分线的长.考点:相似形综合题;图形的剪拼分析:( 1) 45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形,则易得一种情况.第二种情形可以考虑题例中给出的方法,试着同样以一底角作为新等腰三角形的底角,则另一底脚被分为45°和 22.5°,再以 22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形.即又一三分线作法.( 2)用量角器,直尺标准作30°角,而后确定一边为BA ,一边为 BC,根据题意可以先固定BA 的长,而后可确定 D 点,再标准作图实验﹣﹣分别考虑 AD 为等腰三角形的腰或者底边,兼顾 AEC 在同一直线上,易得 2 种三角形 ABC .根据图形易得 x 的值.(3)因为∠ C=2∠ B ,作∠ C 的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图 4 图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,求解方程可知各线的长.解答:解:( 1)如图 2 作图,(2)如图 3 ①、②作△ ABC .①当 AD=AE 时,∵2x+x=30+30 ,∴ x=20 .②当 AD=DE 时,∵30+30+2x+x=180 ,∴ x=40 .( 3)如图 4, CD、 AE 就是所求的三分线.设∠ B=a,则∠ DCB= ∠ DCA= ∠ EAC=a ,∠ ADE= ∠ AED=2a ,此时△ AEC ∽△ BDC ,△ ACD ∽△ ABC ,设 AE=AD=x ,BD=CD=y ,∵△ AEC ∽△ BDC ,∴ x: y=2: 3,∵△ ACD ∽△ ABC ,∴ 2:x= ( x+y ): 2,x : y 2 :3,即三分线长分别是和.所以联立得方程组,解得2 : x( x y) :2点评:本题考查了学生学习的理解能力及动手创新能力,知识方面重点考查三角形内角、外角间的关系及等腰三角形知识,是一道很锻炼学生能力的题目.八年级(下)数学竞赛班辅导资料(3)原班级:姓名:等腰三角形的判定( 1)一、知识要点1.等腰三角形的判定方法:(1)两 _____相等的三角形是等腰三角形.简称__________________ ;( 2)两 _____相等的三角形是等腰三角形.简称______________________ .2.解题技巧:构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用方法有:( 1)“角平分线+平行线”构造等腰三角形;(2)“角平分线+垂线”构造等腰三角形;( 3)用“垂直平分线”构造等腰三角形;(4)用“三角形中角的 2 倍关系”构造等腰三角形.3.等腰三角形中长作的辅助线:(1)底边上的高;(2)底边上的中线;(3)顶角的平分线.二、例题精讲例 1 在△ ABC中 AB=AC ,∠ BAC=80°, O为△ ABC内一点,且∠ OBC=10°,∠ OCA=20° .求∠ BAO的度数.A70°OB C例 2 如图,在△ ABC中, AB=7, AC=11,点 M是 BC的中点, AD是∠ BAC的平分线, MF∥ AD,求 FC的长 .A9FB D M C三、练一练1.如图,已知 Rt △ ABC中,∠ C=90°,∠ BAC=30°,在直线 BC或 AC上取一点 P,使得△ PAB是等腰三角形,则符合条件的P 点有()C AA.2个B.4个C.6个D.8个2. 如图,△ ABC中, AD平分∠ BAC,AB+BD=AC,求B : C 的值. 2:1A B CB D C2. 如图,在△ ABC 中,BAC BCA44 ,M为△ABC内一点,使得MCA 30 , MAC 16 .求BMC 的度数.(北京市竞赛题)150°BMA C八年级(下)数学竞赛班辅导资料(4)原班级:姓名:等腰三角形的判定( 2)一、例题精讲两个全等的含 30°, 60°角的三角板 ADE 和三角板 ABC 如图所示放置, E, A ,C 三点在一条直线上,连接 BD ,取 BD 的中点 M ,连接 ME , MC .试判断△ EMC 的形状,并说明理由.解:△ EMC 是等腰直角三角形.理由如下:连接MA .∵∠ EAD=30 °,∠ BAC=60 °,∴∠ DAB=90 °,∵△ EDA ≌△ CAB ,∴ DA=AB , ED=AC ,∴△ DAB 是等腰直角三角形.又∵M 为 BD 的中点,∴∠MDA= ∠ MBA=45 °, AM ⊥ BD (三线合一),1AM=BD=MD ,(直角三角形斜边上的中线等于斜边的一半)∴∠EDM= ∠ MAC=105 °,2在△ MDE 和△ CAM 中, ED=AC ,∠ MDE= ∠ CAM ,MD=AM ,∴△ MDE ≌△ MAC .∴∠ DME= ∠ AMC ,ME=MC ,又∵∠ DMA=90 °,∴∠ EMC= ∠ EMA+ ∠ AMC= ∠ EMA+ ∠ DME= ∠DMA=90 °.∴△ MEC 是等腰直角三角形.二、练一练1.如图 (1), Rt△ABC 中,∠ ACB=-90 °, CD ⊥AB ,垂足为 D. AF 平分∠ CAB ,交 CD 于点 E,交 CB 于点F(1)求证: CE=CF.(2)将图( 1)中的△ AD E 沿 AB 向右平移到△ A’D ’E’的位置,使点 E’落在 BC 边上,其它条件不变,如图( 2)所示.试猜想: BE'与 CF 有怎样的数量关系 ?请证明你的结论.( 1)证明:略( 2)解:相等证明:如图,过点 E 作 EG⊥ AC 于 G.又∵AF 平分∠ CAB , ED⊥ AB ,∴ ED=EG .由平移的性质可知:D’E’=DE ,∴ D’E’=GE .∵∠ ACB=90 °.∴∠ ACD+ ∠DCB=90 °[来源:Z|xx|]∵CD⊥AB 于 D.∴∠ B+ ∠ DCB=90 °.∴ ∠ ACD= ∠ B在 Rt△ CEG 与 Rt△ BE’D’中,∵∠ GCE= ∠ B ,∠ CGE= ∠BD ’E’, CE=D ’E’∴△ C EG≌△BE ’D’∴ CE=BE ’由( 1)可知 CE=CF, (其它证法可参照给分 ).2.如图,已知△BAD 和△ BCE 均为等腰直角三角形,∠BAD= ∠ BCE=90 °,点 M 为 DE 的中点,过点E 与 AD 平行的直线交射线AM 于点 N.( 1)当 A , B, C 三点在同一直线上时(如图1),求证: M 为 AN 的中点;( 2)将图 1 中的△ BCE 绕点 B 旋转,当 A ,B , E 三点在同一直线上时(如图 2),求证:△ ACN 为等腰直角三角形;(3)将图 1 中△ BCE 绕点 B 旋转到图 3 位置时,( 2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.DMA B图 3C(1 )证明:如图1,∵EN∥ AD ,∴∠ MAD= ∠MNE ,∠ ADM= ∠NEM .∵点 M 为 DE 的中点,∴ DM=EM .在△ ADM 和△ NEM 中,∴.∴△ ADM ≌△ NEM .∴ AM=MN .∴ M 为 AN 的中点.( 2)证明:如图2,∵△ BAD 和△ BCE 均为等腰直角三角形,∴AB=AD , CB=CE ,∠ CBE= ∠ CEB=45 °.∵AD ∥ NE,∴∠ DAE+ ∠ NEA=180 °.∵∠ DAE=90 °,∴∠ NEA=90 °.∴∠ NEC=135 °.∵A , B, E 三点在同一直线上,∴∠ ABC=180 °﹣∠ CBE=135 °.∴∠ ABC= ∠ NEC .∵△ ADM ≌△ NEM (已证),∴ AD=NE .∵ AD=AB ,∴ AB=NE .在△ ABC 和△ NEC 中,∴△ ABC ≌△ NEC .∴ AC=NC ,∠ ACB= ∠ NCE.∴∠ ACN= ∠ BCE=90 °.∴△ ACN 为等腰直角三角形.( 3)△ ACN 仍为等腰直角三角形.证明:如图3,此时 A 、 B、 N 三点在同一条直线上.∵AD ∥ EN,∠ DAB=90 °,∴∠ ENA= ∠ DAN=90 °.∵∠ BCE=90 °,∴∠ CBN+ ∠ CEN=360 °﹣ 90°﹣ 90°=180 °.∵ A 、 B、 N 三点在同一条直线上,∴∠ABC+ ∠ CBN=180 °.∴∠ ABC= ∠ NEC .∵△ ADM ≌△ NEM (已证),∴ AD=NE .∵AD=AB ,∴ AB=NE .在△ ABC 和△ NEC 中,N E∴△ ABC ≌△ NEC .∴ AC=NC ,∠ ACB= ∠ NCE.∴∠ ACN= ∠ BCE=90 °.八年级(下)数学竞赛班辅导资料(5)原班级:姓名:等边三角形( 1)一、知识要点1.等边三角形的性质:( 1)三边相等,三角相等,每个角等于60°;( 2)每条边上的高线、中线、所对角的平分线互相重合.简称“” ;( 3)等边三角形内任意一点到三边距离和是一个定值,等于一边上的高.2.判定等边三角形的基本方法:( 1)从边入手,证明三边相等;(2)从角入手,证明三角相等或证明两个角都为60°;(3)从边角入手,有一个角为 60°的等腰三角形是等边三角形.二、例题精讲如图,△ ABC 中,∠ B=60 °,延长 BC 到 D,延长 BA 到 E,使 AE=BD ,连 CE、DE,若 CE=DE .求证:△ ABC 是等边三角形.EAB C D三、练一练1.如图,一个六边形的每个角都是120°,连续四边的长依次是 2.7, 3,5,2,则该六边形的周长是____. 20.72.如图, P 是等边△ ABC 内部一点,∠ APB 、∠ BPC 、∠ CPA的大小之比是 5:6:7,则以 PA、PB、PC 为边的三角形的三个角的大小之比(从小到大)是______________.2:3:4A5232.7PB C3.(2013?北京)在△ ABC 中, AB=AC ,∠ BAC= α( 0°<α<60°),将线段 BC 绕点 B 逆时针旋转 60°得到线段 BD.(1)如图 1,直接写出∠ ABD 的大小(用含α的式子表示);(2)如图 2,∠ BCE=150 °,∠ ABE=60 °,判断△ABE 的形状并加以证明;(3)在( 2)的条件下,连接 DE,若∠ DEC=45 °,求α的值.解:( 1)∵ AB=AC ,∠ A= α,∴∠ ABC= ∠ ACB=(180°﹣∠ A)=90°﹣α,∵∠ ABD= ∠ ABC ﹣∠ DBC ,∠ DBC=60 °,即∠ ABD=30 °﹣α;( 2)△ ABE 是等边三角形,证明:连接AD , CD ,ED,∵∠ ABE=60 °,∴∠ ABD=60 °﹣∠ DBE= ∠ EBC=30 °﹣α,且△BCD为等边三角形,在△ ABD 与△ ACD 中∴△ ABD≌△ ACD,∴∠ BAD=∠ CAD=∠ BAC=α,∵∠ BCE=150 °,∴∠ BEC=180 °﹣( 30°﹣α)﹣150°=α=∠ BAD,在△ABD 和△EBC 中∴△ ABD ≌△ EBC,∴ AB=BE ,∴△ ABE 是等边三角形;(3)∵∠ BCD=60 °,∠ BCE=150 °,∴∠ DCE=150 °﹣ 60°=90 °,∵∠ DEC=45 °,∴△ DEC 为等腰直角三角形,∴DC=CE=BC ,∵∠ BCE=150 °,∴∠ EBC=(180°﹣150°)=15°,∵∠ EBC=30 °﹣α=15°,∴ α=30°.4.【探究发现】如图 1,△ ABC 是等边三角形,∠ AEF=60 °, EF 交等边三角形外角平分线 CF 所在的直线于点F,当点 E 是 BC 的中点时,有 AE=EF 成立;【数学思考】某数学兴趣小组在探究AE 、EF 的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点 E 是直线 BC 上( B ,C 除外)任意一点时(其它条件不变),结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点 E 是线段 BC 上的任意一点”;“点E时线段BC延长线上的任意一点”;“点 E 时线段 BC 反向延长线上的任意一点”三种情况中,任选一种情况,在图 2 中画出图形,并证明 AE=EF .解答:证明:如图一,在 B 上截取 AG ,使 AG=EC ,连接 EG,∵△ ABC 是等边三角形,∴AB=BC ,∠ B=∠ ACB=60 °.∵ AG=EC ,∴ BG=BE ,∴△ BEG 是等边三角形,∠BGE=60 °,∴∠ AGE=120 °.∵ FC 是外角的平分线,∠ECF=120 °=∠ AGE .∵∠ AEC 是△ ABE 的外角,∴∠AEC= ∠ B+ ∠GAE=60 °+∠GAE .∵∠ AEC= ∠ AEF+ ∠ FEC=60 °+∠ FEC,∴∠ GAE= ∠FEC.在△AGE 和△ECF 中,∴△ AGE ≌△ ECF( ASA ),∴ AE=EF ;八年级(下)数学竞赛班辅导资料(6)原班级:姓名:等边三角形( 2)1.背景:某外学小在一次学研中,得到如下两个命:①如 1,在正三角形 ABC中,M、N分是 AC、AB 上的点, BM与 CN相交于点 O,若∠ BON=60°, BM=CN.②如 2,在正方形 ABCD中, M、N 分是 CD、AD上的点, BM与 CN相交于点 O,若∠ BON=90°, BM=CN.然后运用比的思想提出了如下的命:③如 3,在正五形 ABCDE中, M、N 分是 CD、 DE上的点, BM与 CN相交于点 O,若∠ BON=108°,BM=CN.任要求:(1)你从①、②、③三个命中一个行明;(2)你完成下面的探索:①如 4,在正 n( n≥ 3)形 ABCDEF⋯中, M、N分是 CD、DE上的点, BM与 CN相交于点 O,当∠ BON 等于多少度,BM=CN成立?(不要求明)②如 5,在五形ABCDE中, M、 N 分是 DE、 AE上的点, BM与 CN相交于点 O,当∠ BON=108° ,BM=CN是否成立?若成立,予明;若不成立,明理由.解:( 1)命①明:在 1 中,∵∠ BON=60°,∴∠ CBM+∠ BCN=60°,∵∠ BCN+∠ACN=60°,∴∠ CBM=∠ ACN,又∵ BC=CA,∠ BCM=∠ CAN=60°,∴△ BCM≌△ CAN,∴ BM=CN,命②,明:在 2 中,∵∠ BON=90°,∴∠ CBM+∠ BCN=90°,∵∠ BCN+∠DCN=90°,∴∠ CBM=∠ DCN,又∵ BC=CD,∠ BCM=∠ CDN=90°,∴△ BCM≌△ CDN,∴ BM=CN,命③ 明:在 3 中,∵∠ BON=108°,∴∠ CBM+∠BCN=108°,∵∠ BCN+∠DCN=108°,∴∠ CBM=∠ DCN,又∵ BC=CD,∠ BCM=∠ CDN=108°,∴△ BCM≌△ CDN,∴ BM=CN;( 2)①当∠ BON=,BM=CN成立,② BM=CN成立,明:如5, BD、CE,在△ BCD和△ CDE中,∵ BC=CD,∠ BCD=∠ CDE=108°,CD=DE,∴△ BCD≌△ CDE,∴ BD=CE,∠ BDC=∠ CED,∠ DBC=∠ ECD,∵∠ OBC+∠ OCB=108°,∠ OCB+∠ OCD=108°,∴∠ MBC=∠ NCD,又∵∠ DBC=∠ ECD=36°,∴∠ DBM=∠ ECN,∴△ BDM≌△ ECN。

八年级数学下学期精英班竞赛讲座分式方程及其应用测试试题

八年级数学下学期精英班竞赛讲座分式方程及其应用测试试题

卜人入州八九几市潮王学校城金海双语实验八年级下学期数学精英班竞赛讲座〔分式
方程及其应用〕测试
【分类解析】
例1.解方程:
例2.解方程:
例3.解方程:
中考题解:
例1.假设解分式方程产生增根,那么m的值是〔〕
A. B.
C. D.
例2.甲、乙两班同学参加“绿化祖国〞活动,乙班每小时比甲班多种2棵树,甲班种60棵所用的时间是与乙班种66棵树所用的时间是相等,求甲、乙两班每小时各种多少棵树?
题型展示:
例1. 轮船在一次航行中顺流航行80千米,逆流航行42千米,一共用了7小时;在另一次航行中,用一样的时间是,顺流航行40千米,逆流航行70千米。

求这艘轮船在静水中的速度和水流
速度
例2.m为何值时,关于x的方程会产生增根?
【实战模拟】
1.甲、乙两地相距S千米,某人从甲地出发,以v千米/小时的速度步行,走了a小时后改乘汽车,又过b 小时到达乙地,那么汽车的速度〔〕
A. B.
C. D.
2.假设关于x的方程
A. B. C. D.3
3.解方程:
4.求x为何值时,代数式的值等于2?
5.甲、乙两个工程队一共同完成一项工程,乙队先单独做1天后,再由两队2天就完成了全部工程。

甲队单独完成工程所需的天数是乙队单独完成所需天数的,求甲、乙两队单独完成各需多少天?。

八年级数学竞赛讲座35设而不求的未知数试题

八年级数学竞赛讲座35设而不求的未知数试题

卜人入州八九几市潮王学校竞赛讲座35-“设而不求〞的未知数所谓“设而不求〞的未知数,又叫辅助元素,它是我们为解决问题增设的一些参数,它能起到沟通数量关系,架起连接量和未知量的桥梁作用.例1假设==求c十y十z的值。

分析条件是以连比的形式出现时,往往引进一个比例参数来表示这个连比.解令===k那么:x=k(a-b),y=k(b-c),z=k(c-a).所以x+y+z=k(a-b)+k(b-c)+k(c-a)=0.说明本例中所设的k,就是“设而不求〞的未知数.例2甲、乙二人在一圆形跑道上跑步,甲用40秒钟就能跑完一圈,乙反向跑,每15秒钟和甲相遇一次,求乙跑完一圈需要多少时间是分析要求乙跑完一圈需要多少时间是,就必须知道他的速度V米/秒,因此可以选择V作参数.解设乙跑完一圈需x秒,乙跑步的速度是V米/秒,根据题意,那么一圈的总路程可以用vx表示,甲的速度可用表示.∴(*15)+15V=Vx.∵V≠0,∴(*15)+15V=x.∴x=24.答:乙跑完一圈需要24秒。

说明这里V是"设而不求"的未知数.例3有一片牧场,草每天都在匀速生长(草每天增长量相等).假设放牧24头牛,那么6天吃完牧草;假设放牧21头牛,那么8天吃完牧草,设每头牛吃草的量是相等的,问假设放牧16头牛,几天可以吃完牧草.解设每头牛每天吃草量是x,草每天增长量是y,16头牛z天吃完牧草,再设牧场原有草量是a.根据题意,得②-①,得y=12x④③-②,得(z-8)y=8x(2z-21).⑤由④、⑤,得z=18。

答:假设放牧16头牛,那么18天可以吃完牧草.说明列含参数的方程解应用题,一般情况下应用题之答案与参数的值无关,我们可以把参数消去,从而得到应用题之答案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三十五讲 应用题在本讲中将介绍各类应用题的解法与技巧.当今数学已经渗入到整个社会的各个领域,因此,应用数学去观察、分析日常生活现象,去解决日常生活问题,成为各类数学竞赛的一个热点. 应用性问题能引导学生关心生活、关心社会,使学生充分体会到数学与自然和人类社会的密切联系,增强对数学的理解和应用数学的信心.解答应用性问题,关键是要学会运用数学知识去观察、分析、概括所给的实际问题,揭示其数学本质,将其转化为数学模型.其求解程序如下:在初中范围内常见的数学模型有:数式模型、方程模型、不等式模型、函数模型、平面几何模型、图表模型等. 例题求解一、用数式模型解决应用题数与式是最基本的数学语言,由于它能够有效、简捷、准确地揭示数学的本质,富有通用性和启发性,因而成为描述和表达数学问题的重要方法.【例1】(2003年安徽中考题)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变。

有关数据如下表所示:是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%。

问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际? 思路点拨 (1)风景区是这样计算的:调整前的平均价格:()元1652520151010=++++,设整后的平均价格:()元16530251555=++++∵调整前后的平均价格不变,平均日人数不变. ∴平均日总收入持平.(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元) 现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元)∴平均日总收入增加了%4.9160160175≈- (3)游客的说法较能反映整体实际. 二、用方程模型解应用题研究和解决生产实际和现实生恬中有关问题常常要用到方程<组)的知识,它可以帮助人们从数量关系和相等关系的角度去认识和理解现实世界.【例2】 (重庆中考题)某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2min 内可以通过560名学生;当同时开启一道正门和一道侧门时,4mln 内可以通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定:在紧急情况下全大楼的学生应在5min 内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门整否符合安全规定?请说明理由.思路点拨 列方程(组)的关键是找到题中等量关系:两种测试中通过的学生数量.设未知数时一般问什么设什么.“符合安全规定”之义为最大通过量不小于学生总数.(1)设平均每分钟一道正门可以通过x 名学生,一道侧门可以通过y 名学生,由题意得: ⎩⎨⎧=+=+800)(4560)2(2y x y x ,解得:⎩⎨⎧==80120y x(2)这栋楼最多有学生4×8×45=1440(名). 拥挤时5min4道门能通过.5×2(120+80)(1-20%)=1600(名),因1600>1440,故建造的4道门符合安全规定. 三、用不等式模型解应用题现实世界中的不等关系是普遍存在的,许多问题有时并不需要研究它们之间的相等关系,只需要确定某个量的变化范围,即可对所研究的问题有比较清楚的认识.【例3】 (苏州中考题)我国东南沿海某地的风力资源丰富,一年内月平均的风速不小于3m /s 的时间共约160天,其中日平均风速不小于6m /s 的时间占60天.为了充分利用“风能”这种“绿色资源”,该地拟建一个小型风力发电场,决定选用A 、B 两种型号的风力发电机,根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:根据上面的数据回答:(1)若这个发电场购x 台A 型风力发电机,则预计这些A 型风力发电机一年的发电总量至少为 千瓦·时;(2)已知A 型风力发电机每台O.3万元,B 型风力发电机每台O.2万元.该发电场拟购置风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电场每年的发电总量不少于102000千瓦·时,请你提供符合条件的购机方案. 根据上面的数据回答:思路点拨 (1) (100×36+60×150)x=12600x ;(2)设购A 型发电机x 台,则购B 型发电机(10—x)台, 解法一根据题意得:⎩⎨⎧≥-+≤-+102000)10(7800126006.2)10(2.03.0x x x 解得5≤x ≤6.故可购A 型发电机5台,B 型发电机5台;或购A 型发电机6台,B 型发电视4台. 四、用函数知识解决的应用题函数类应用问题主要有以下两种类型:(1)从实际问题出发,引进数学符号,建立函数关系;(2)由提供的基本模型和初始条件去确定函数关系式.【例4】 (扬州)杨嫂在再就业中心的扶持下,创办了“润杨”报刊零售点.对经营的某种晚报,杨嫂提供丁如下信息:①买进每份0.20元,卖出每份0.30元;②一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份; ③一个月内,每天从报社买进的报纸份数必须相同.当天卖不掉的报纸,以每份0.10元退回给报社;y 与x 的函数关系式,并求月利润的最大值.思路点拨(1)填表:(2)由题意可知,一个月内的20天可获利润: 20×[(0.3—0.2)x]=2x(元);其余10天可获利润: 10[(0.3-0.2)×120-0.1(x —120)]=240—x(元);故y=x+240,(120≤x ≤200), 当x=200时,月利润y 的最大值为440元.注 根据题意,正确列出函数关系式,是解决问题的关键,这里特别要注意自变量x 的取值范围.另外,初三还会提及统计型应用题,几何型应用题.【例5】 (桂林市)某公司需在一月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成. (1)求甲、乙两工程队单独完成此项工程所需的天数.(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙工程队施工,公司每日需付费用1400元.在规定时间内:A .请甲队单独完成此项工程;B .请乙队单独完成此项工程;C .请甲、乙两队合作完成此项工程.以上方案哪一种花钱最少?思路点拨 这是一道策略优选问题.工程问题中:工作量=工作效率×工时. (1)设乙工程队单独完成此项工程需x 天,根据题意得:1211011=-+x x , x=30合题意, 所以,甲工程队单独完成此项工程需用20天,乙队需30天.(2)各种方案所需的费用分别为: A .请甲队需2000×20=40000元; B .请乙队需1400×30=4200元;C .请甲、乙两队合作需(2000+1400)×12=40800元. 所队单独请甲队完成此项工程花钱最少.【例6】 (2全国联赛初赛题)一支科学考察队前往某条河流的上游去考察一个生态区,他们以每天17km 的速度出发,沿河岸向上游行进若干天后到达目的地,然后在生态区考察了若干天,完成任务后以每天25km 的速度返回,在出发后的第60天,考察队行进了24km 后回到出发点,试问:科学考察队的生态区考察了多少天? 思路点拨 挖掘题目中隐藏条件是关键!设考察队到生态区去用了x 天,返回用了y 天,考察用了z 天,则x+y+z=60,17x -25y=-1,即25y -17x=1. ①这里x 、y 是正整数,现设法求出①的一组合题意的解,然后计算出z 的值.为此,先求出①的一组特殊解(x 0,y 0),(这里x 0,y 0可以是负整数).用辗转相除法. 25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25. 与①的左端比较可知,x 0 =-3,y 0=-2. 下面再求出①的合题意的解.由不定方程的知识可知,①的一切整数解可表示为x=-3+25t ,y=-2+17t , ∴ x+y=42t -5,t 为整数.按题意0<x+y<60,故仅当t=1时才合题意,这时x+y=42—5=37, ∴z=60—(x+y)=23.答:考察队在生态区考察的天数是23天. 注 本题涉及到的未知量多,最终转化为二元一次不定方程来解,希读者仔细咀嚼所用方法. 【例7】 (江苏省第17届初中竞赛题)华鑫超市对顾客实行优惠购物,规定如下: (1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折优惠.小明两次去该超市购物,分别付款198元与554元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少? 思路点拨 应付198元购物款讨论:第一次付款198元,可是所购物品的实价,未享受优惠;也可能是按九折优惠后所付的款.故应分两种情况加以讨论.情形1 当198元为购物不打折付的钱时,所购物品的原价为198元 . 又554=450+104,其中450元为购物500元打九折付的钱,104元为购物打八折付的钱;104÷0. 8 =130(元).因此,554元所购物品的原价为130+500=630(元),于是购买小呀花198 +630=828(元)所购的全部物品,小亮一次性购买应付500×0.9+(828-500)×0.8=712.4(元). 情形2 当198元为购物打九折付的钱时,所购物品的原价为198÷0.9=220(元) .仿情形1的讨论,,购220+630=850{元}物品一次性付款应为500×0.9+(850-500)×0.8=730(元).综上所述,小亮一次去超市购买小明已购的同样多的物品,应付款712.40元或730元 【例8】 (2002年全国数学竞赛题)某项工程,如果由甲、乙两队承包,252天完成,需180000元;由乙、丙两队承包,343天完成,需付150000元;由甲、丙两队承包,276天完成,需付160000元.现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?思路点拨 关键问题是甲、乙、丙单独做各需的天数及独做时各方日付工资.分两个层次考虑:设甲、乙、丙单独承包各需x 、y 、z 天完成. 则⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+207111541112511x z z y y x ,解得⎪⎩⎪⎨⎧===1064z y x再设甲、乙、丙单独工作一天,各需付u 、v 、w 元, 则⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+160000)(720150000)(415180000)(512u w w v v u ,解得⎪⎩⎪⎨⎧===105002950045500w v u于是,由甲队单独承包,费用是45500×4=182000 (元). 由乙队单独承包,费用是29500×6= 177000 (元).而丙队不能在一周内完成.所以由乙队承包费用最少. 学历训练(A 级)1. (河南)在防治“SARS ”的战役中,为防止疫情扩散,某制药厂接到了生产240箱过氧乙酸消毒液的任务.在生产了60箱后,需要加快生产,每天比原来多生产15箱,结果6天就完成了任务.求加快速度后每天生产多少箱消毒液?2.(山东省竞赛题)某市为鼓励节约用水,对自来水妁收费标准作如下规定:每月每户用水中不超过10t 部分按0.45元/吨收费;超过10t 而不超过20t 部分按每吨0.8元收费;超过20t 部分按每吨1.50元收费,某月甲户比乙户多缴水费7.10元,乙户比丙户多缴水费3.75元,问甲、乙、丙该月各缴水费多少?(自来水按整吨收费)3.(江苏省竞赛题)甲、乙、丙三人共解出100道数学题,每人都解出了其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题.试问:难题多还是容易题多?多的比少的多几道题?4.某人从A 地到B 地乘坐出租车有两种方案,一种出租车收费标准是起步价10元,每千米1.2元;另一种出租车收费标准是起步价8元,每千米1.4元,问选择哪一种出租车比较合适?(提示:根据目前出租车管理条例,车型不同,起步价可以不同,但起步价的最大行驶里程是相同的,且此里程内只收起步价而不管其行驶里程是多少)(B 级)1.(全国初中数学竞赛题)江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40min 可抽完;如果用4台抽水机抽,16min 可抽完.如果要在10min 抽完水,那么至少需要抽水机 台.2.(乙商场用如下办法促销:每次购买1~8台,每台打九折;每次购买9~16台,每台打八五折;每次购买17~24台,每台打八折;每次购买24台以上,每台打七五折.(1)请仿照甲商场的促销列表,列出到乙商场购买VCD 的购买台数与每台价格的对照表;(2)现在有A 、B 、C 三个单位,且单位要买10台VCD ,B 单位要买16台VCD ,C 单位要买20台VCD ,问他们到哪家商场购买花费较少?3.(河北创新与知识应用竞赛题)某钱币收藏爱好者想把3.50元纸币兑换成1分、2分、5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币要多于2分的硬币.请你据此设计兑换方案.4.从自动扶梯上走到二楼(扶梯本身也在行驶),如果男孩和女孩都做匀速运动且男孩每分钟走动的级数是女孩的两倍,已知男孩走了27级到达扶梯顶部,而女孩走了18级到达扶梯顶部(设男孩、女孩每次只踏—级).问: (1)扶梯露在外面的部分有多少级?(2)如果扶梯附近有一从二楼到一楼的楼梯,楼梯的级数和扶梯的级数相等,两孩子各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘扶梯(不考虑扶梯与楼梯间距离)则男孩第一次追上女孩时走了多少级台阶? 5.某化肥厂库存三种不同的混合肥,第一种含磷60%,钾40%,第二种含钾10%,氮90%;第三种含钾50%,磷20%,氮30%,现将三种肥混合成含氮45%的混合肥100㎏(每种肥都必须取),试问在这三种不同混合肥的不同取量中,新混合肥含钾的取值范围.6.(黄冈竞赛题)有麦田5块A 、B 、C 、D 、E ,它们的产量,(单位:吨)、交通状况和每相邻两块麦田的距离如图21-2所示,要建一座永久性打麦场,这5块麦田生产的麦子都在此打场.问建在哪快麦田上(不允许建在除麦田以外的其他地方)才能使总运输量最小?图中圆圈内的数字为产量,直线段上的字母a 、b 、d 表示距离,且b < a<d .应用题。

相关文档
最新文档