三输入与门集成电路设计
集成电路设计3-版图设计
版图设计的重要性
1
版图设计是集成电路制造过程中的关键环节,它 决定了集成电路的性能、功能和可靠性。
2
通过版图设计,可以将电路设计转化为实际制造 的物理结构,从而实现电路设计的目标。
3
版图设计的精度和质量直接影响到集成电路的性 能和制造良率,因此需要高度的专业知识和技能。
在芯片内部加入自测试模块,实现自动测试和 故障诊断。
可测性增强
通过增加测试访问端口和测试控制逻辑,提高芯片的可测性。
05
集成电路版图设计的挑 战与解决方案
设计复杂度挑战
总结词
随着集成电路规模不断增大,设计复杂 度呈指数级增长,对设计效率提出巨大 挑战。
VS
详细描述
随着半导体工艺的不断进步,集成电路设 计的规模越来越大,晶体管数量成倍增加 ,导致设计复杂度急剧上升。这不仅增加 了设计时间和成本,还对设计精度和可靠 性提出了更高的要求。
03
还需要考虑存储器的功耗和散热问题,以确保在各种应用场景下的稳 定运行。
04
高密度存储器版图设计需要具备高容量、高速、低功耗和高可靠性等 特点,以满足大数据、云计算等领域的需求。
THANKS FOR WATCHING
感谢您的观看
04
还需要考虑散热设计,以确保在高负载情况下CPU的 稳定运行。
案例二:低功耗MCU版图设计
低功耗MCU版图设计需要重点 关注功耗优化,采用低功耗工 艺和电路技术,如CMOS工艺
、低功耗逻辑门等。
还需要考虑低电压供电和电源 管理设计,以确保MCU在各种 应用场景下的稳定运行。
设计过程中需要优化芯片内部 结构和电路布局,降低芯片的
集成电路设计中的电路结构与布局技术
集成电路设计中的电路结构与布局技术集成电路(IC)设计是电子工程领域中一项极为关键的技术,其设计的优劣直接影响到芯片的性能、功耗、成本和可靠性集成电路设计主要可以分为电路设计、逻辑综合、电路布局和版图设计等几个阶段本文将重点介绍集成电路设计中的电路结构与布局技术1. 电路结构集成电路的电路结构通常分为几个层次,包括晶体管级别、电路网表级别、模块级别和芯片级别1.1 晶体管级别在晶体管级别,电路结构主要由MOSFET(金属-氧化物-半导体场效应晶体管)组成MOSFET是集成电路中最基本的构建块,包括NMOS和PMOS两种类型,分别用于实现逻辑高和逻辑低晶体管级别的设计涉及到晶体管的尺寸、驱动电流、阈值电压等参数的确定1.2 电路网表级别在电路网表级别,电路结构由逻辑门组成,如与门、或门、非门等逻辑门是实现逻辑函数的基本单元,其输入输出关系由逻辑真值表定义电路网表级别的设计主要包括逻辑函数的定义、逻辑门的选型和组合1.3 模块级别在模块级别,电路结构由完成特定功能的模块组成模块是由若干逻辑门组成的,具有独立的功能和输入输出接口模块级别的设计涉及到模块划分、模块之间的接口设计、模块内部时序和功耗的优化等1.4 芯片级别在芯片级别,电路结构由整个芯片的各个功能模块、存储器、输入输出接口等组成芯片级别的设计涉及到各个模块的布局、芯片整体时序和功耗的优化、电源管理等2. 布局技术集成电路的布局技术是指在满足性能、功耗、面积等要求的前提下,将电路中的各个组件合理地放置在芯片上的过程布局技术对于芯片的性能、功耗和可靠性具有重要影响布局技术主要包括以下几个方面:2.1 布局规划布局规划是根据芯片的功能需求和物理限制,对芯片进行分区,确定各个模块、存储器、输入输出接口等的位置布局规划的目标是在保证性能和可靠性的前提下,尽可能地减小芯片面积和功耗2.2 布线技术布线技术是指在布局规划的基础上,将电路中的各个组件通过导线连接起来,形成完整的电路布线技术主要包括导线的走向、交叉点处理、层间互联等布线技术的目的是在保证信号完整性的前提下,尽可能地减小导线的面积和功耗2.3 时序优化时序优化是为了保证芯片内部各个模块的信号在规定的时间内达到要求的速度和精度时序优化主要包括时序约束的设置、时钟分配、时序路径的优化等时序优化的目标是减小信号的延迟和抖动,提高芯片的性能和可靠性2.4 功耗优化功耗优化是为了减小芯片在运行过程中的功耗,提高芯片的能效比功耗优化主要包括动态功耗和静态功耗的减小动态功耗优化主要通过降低信号的摆幅、减小逻辑门的延迟等手段实现;静态功耗优化主要通过减小晶体管的尺寸、优化电源管理等手段实现2.5 热管理热管理是为了保证芯片在正常工作温度范围内运行,防止芯片过热损坏热管理主要包括热源的识别、热传导路径的设计、散热器的选择等热管理的目的是减小芯片的温升、均匀芯片的温度分布,提高芯片的可靠性和寿命3. 总结集成电路设计中的电路结构与布局技术是电子工程领域中至关重要的技术电路结构决定了芯片的功能和性能,而布局技术则影响了芯片的功耗、面积和可靠性在未来的发展中,集成电路设计将朝着更高的性能、更低的功耗、更小的面积和更高的可靠性方向发展,对电路结构与布局技术提出了更高的要求集成电路(IC)设计是现代电子工程领域的核心技术之一,其设计的优劣直接关系到芯片的性能、功耗、成本和可靠性集成电路设计主要可以分为电路设计、逻辑综合、电路布局和版图设计等几个阶段本文将重点介绍集成电路设计中的电路结构与布局技术1. 电路结构集成电路的电路结构可以从不同的层次进行划分,包括晶体管级别、电路网表级别、模块级别和芯片级别1.1 晶体管级别在晶体管级别,电路结构主要由MOSFET(金属-氧化物-半导体场效应晶体管)组成MOSFET是集成电路中最基本的构建块,包括NMOS和PMOS两种类型,分别用于实现逻辑高和逻辑低晶体管级别的设计涉及到晶体管的尺寸、驱动电流、阈值电压等参数的确定1.2 电路网表级别在电路网表级别,电路结构由逻辑门组成,如与门、或门、非门等逻辑门是实现逻辑函数的基本单元,其输入输出关系由逻辑真值表定义电路网表级别的设计主要包括逻辑函数的定义、逻辑门的选型和组合1.3 模块级别在模块级别,电路结构由完成特定功能的模块组成模块是由若干逻辑门组成的,具有独立的功能和输入输出接口模块级别的设计涉及到模块划分、模块之间的接口设计、模块内部时序和功耗的优化等1.4 芯片级别在芯片级别,电路结构由整个芯片的各个功能模块、存储器、输入输出接口等组成芯片级别的设计涉及到各个模块的布局、芯片整体时序和功耗的优化、电源管理等2. 布局技术集成电路的布局技术是指在满足性能、功耗、面积等要求的前提下,将电路中的各个组件合理地放置在芯片上的过程布局技术对于芯片的性能、功耗和可靠性具有重要影响布局技术主要包括以下几个方面:2.1 布局规划布局规划是根据芯片的功能需求和物理限制,对芯片进行分区,确定各个模块、存储器、输入输出接口等的位置布局规划的目标是在保证性能和可靠性的前提下,尽可能地减小芯片面积和功耗2.2 布线技术布线技术是指在布局规划的基础上,将电路中的各个组件通过导线连接起来,形成完整的电路布线技术主要包括导线的走向、交叉点处理、层间互联等布线技术的目的是在保证信号完整性的前提下,尽可能地减小导线的面积和功耗2.3 时序优化时序优化是为了保证芯片内部各个模块的信号在规定的时间内达到要求的速度和精度时序优化主要包括时序约束的设置、时钟分配、时序路径的优化等时序优化的目标是减小信号的延迟和抖动,提高芯片的性能和可靠性2.4 功耗优化功耗优化是为了减小芯片在运行过程中的功耗,提高芯片的能效比功耗优化主要包括动态功耗和静态功耗的减小动态功耗优化主要通过降低信号的摆幅、减小逻辑门的延迟等手段实现;静态功耗优化主要通过减小晶体管的尺寸、优化电源管理等手段实现2.5 热管理热管理是为了保证芯片在正常工作温度范围内运行,防止芯片过热损坏热管理主要包括热源的识别、热传导路径的设计、散热器的选择等热管理的目的是减小芯片的温升、均匀芯片的温度分布,提高芯片的可靠性和寿命3. 先进电路结构与布局技术随着集成电路技术的不断发展,出现了一些先进的设计技术和方法,进一步提高了集成电路的性能和可靠性3.1 三维集成电路设计三维集成电路设计是将多个芯片或芯片中的不同层次叠放在一起,形成三维结构三维集成电路设计可以极大地提高芯片的性能和密度,减小芯片的面积和功耗三维集成电路设计的关键技术包括垂直互联、三维布线和三维封装等3.2 新型存储器技术新型存储器技术是指相对于传统Flash和DRAM等存储器技术,具有更高密度、更低功耗和更快的读写速度的存储器技术新型存储器技术包括NAND Flash、NOR Flash、MRAM、ReRAM等新型存储器技术的发展为集成电路设计带来了新的机遇和挑战3.3 新型逻辑门技术应用场合集成电路设计中的电路结构与布局技术广泛应用于各种电子设备和系统中,特别是在高性能、低功耗和高可靠性的电子设备中以下是一些主要的应用场合:1. 智能手机和移动设备智能手机和移动设备对性能和功耗的要求非常高,因此集成电路设计中的电路结构与布局技术在这些设备中尤为关键通过优化电路结构和布局,可以提高处理器的性能,减小电池的体积,延长设备的续航时间2. 数据中心和服务器数据中心和服务器中的处理器和存储器需要高性能和低功耗,以满足大量数据处理和存储的需求集成电路设计中的电路结构与布局技术可以帮助提高处理器的计算速度,减小数据中心的占地面积,降低能源消耗3. 自动驾驶和智能交通系统自动驾驶和智能交通系统对实时性和可靠性有极高的要求通过集成电路设计中的电路结构与布局技术,可以提高传感器和控制器的性能,减小系统的体积和功耗,从而实现更高效和安全的自动驾驶和智能交通系统4. 可穿戴设备和物联网(IoT)可穿戴设备和物联网应用对尺寸、功耗和可靠性有特殊的要求集成电路设计中的电路结构与布局技术可以帮助减小设备的体积,降低功耗,提高设备的稳定性和可靠性,从而使得可穿戴设备和物联网应用更加便携和智能注意事项在应用集成电路设计中的电路结构与布局技术时,需要注意以下几个方面:1. 性能与功耗的平衡在设计集成电路时,需要根据应用场景的需求,权衡性能和功耗之间的关系对于性能要求较高的应用,可以采用先进的制程技术和高性能的电路结构;而对于功耗要求较低的应用,应采用低功耗的电路结构和布局技术2. 信号完整性在电路布局过程中,需要保证信号的完整性和稳定性避免信号在传输过程中的干扰和衰减,确保信号在规定的时间内达到要求的速度和精度3. 热管理集成电路在运行过程中会产生热量,需要通过合理的热管理措施来保证芯片的正常工作避免热源的聚集,设计良好的热传导路径,选择合适的散热器等,以减小芯片的温升和温度分布4. 可靠性与寿命集成电路的可靠性和寿命是设计过程中需要重点考虑的因素通过优化电路结构和布局,减小信号的延迟和抖动,降低功耗和温升,可以提高芯片的可靠性和寿命5. 成本控制集成电路设计的成本也是需要重点考虑的因素在满足性能、功耗和可靠性的前提下,通过合理的电路结构和布局设计,可以降低芯片的制造成本集成电路设计中的电路结构与布局技术在各种电子设备和系统中起着至关重要的作用在应用过程中,需要根据不同的应用场合和要求,综合考虑性能、功耗、信号完整性、热管理、可靠性和成本等因素,采用合适的设计技术和方法,以实现高性能、低功耗和高可靠性的集成电路。
三输入与门集成电路设计
三输入与门集成电路设计输入与门是一种基本的逻辑门电路,它在数字电子系统中起着重要的作用。
输入与门将两个或多个输入信号作为输入,并且只有当所有输入信号都为逻辑1时,输出信号才为逻辑1;否则,输出信号为逻辑0。
在本文中,我将设计一个三输入与门的集成电路。
这个电路将包括逻辑门的引脚定义、真值表、卡诺图、布尔代数和逻辑门的实际电路图。
首先,我们来定义三输入与门的引脚。
这个电路将有三个输入引脚(A、B和C)和一个输出引脚(Y)。
接着我们来定义真值表。
真值表显示了当输入引脚取不同逻辑值时,输出引脚的逻辑值。
对于三输入与门,我们有8个可能的输入组合,因此真值表将有8行。
```A,B,C,Y---,---,---,---0,0,0,00,0,1,00,1,0,00,1,1,01,0,0,01,0,1,01,1,0,01,1,1,1```现在我们来使用卡诺图来简化这个真值表。
卡诺图是一种图形化工具,用于将布尔函数转换为逻辑门电路。
对于三输入与门,我们将有一个3×8的卡诺图。
```BC---------AC,0,0,1,1---,---,---,--0,0,0,---,---,---,--0,0,0,---,---,---,--0,0,0,---------```根据卡诺图,我们可以将布尔函数简化为Y=A'BC。
接下来,我们将使用布尔代数来表示布尔函数。
通过应用布尔代数的定律和规则,我们可以简化布尔函数。
对于三输入与门,布尔函数的表达式为Y=A'BC。
最后,我们将设计一个实际的三输入与门电路图。
在这个电路图中,我们将使用逻辑门的符号来表示逻辑门的功能。
根据布尔函数的表达式Y=A'BC,我们需要一个非门和两个与门来实现这个电路。
```ABC\,/\+---Y!v++!```通过连接两个与门的输出到一个非门的输入,我们可以实现三输入与门的功能。
在本文中,我们设计了一个三输入与门的集成电路。
集成电路的设计
集成电路的设计
集成电路的设计是指将多个电子元器件(如晶体管、电阻、电容等)集成在一个芯片上,并通过连接电路和逻辑电路对它们进行布局、布线、布图等操作,以实现特定的电路功能和性能。
集成电路设计一般包括以下几个方面:
1. 电路设计:根据电路功能的需求,选择合适的电子元器件,并进行电流、电压、功耗等参数计算和选取。
然后通过电路仿真软件进行电路拓扑设计和参数设置,确保电路能够正常工作。
2. 物理设计:包括芯片尺寸、布局和布线等设计。
根据电路需求和制造工艺要求,确定芯片尺寸,并通过CAD软件进行芯
片的布局设计。
然后根据布局结果,设计芯片内部的金属层、电源层、信号层等,进行电路的布线,确保电路信号的高质量传输。
3. 逻辑设计:将电路功能划分为模块,并对各个模块进行逻辑电路设计。
根据电路功能需求,采用不同的逻辑门(如与门、或门、非门)和触发器等组合形成电路。
通过逻辑仿真软件对电路进行验证和测试,确保电路能够正确地执行功能。
4.验证和测试:对设计完成的集成电路进行验证和测试,包括
功能验证、性能测试、功耗测试等。
通过仿真、模拟、实验等手段对电路进行测试,确保其符合设计要求和规格。
集成电路设计需要具备电路设计基础知识、数字电路和模拟电路设计知识,熟练掌握电路设计软件和EDA工具的使用,同
时需要有良好的逻辑思维能力和问题解决能力。
随着技术的不断发展,集成电路的设计也在不断创新和演进,以满足不同领域的需求。
设计三人表决电路PPT课件
• (4)由逻辑函数表达式画出逻辑电路图
学习要点:
• 1.半加器的特点是在运算时不考虑低位的进位, 而全加器则除了把本位的两个数相加外,还要考 虑低位送来的进位。全加器可由两个半加器和一 个或门组成。
• 2.组合逻辑电路的设计步骤:
操作指导
• 1.认识三人表决器电路结构及工作原理
实 物 示 意 图
电 路 组 成 框 图
图中有两个双四输入与非门CD4012和一个OC门,当三个按 钮S1、S2、S3中有两个或两个以上闭合的时候,表示成功的 灯就亮了。
元器件选择
表9-1 元器件明细表
序号 1 2
3 4 5 6
7
分类 IC1、IC2
IC3 R1~R6
R7 R8 C1~C3 S1~S3 LED
化简逻辑表达式: 根据逻辑表达式,画出逻辑图
三、设计一个三人表决电路
要求:电路供A、B、C三个人投票表决使用,每人一个按键, 赞成就按下按键,用“1”表示,不赞成就不按,用“0” 来表示。当两人或两人以上同意时,才能通过,表决结果 用发光二极管来指示,亮(通过)即“1”,不亮(不通 过)即“0”。要求用“与非门”电路来实现该逻辑功能。
• 1.二进制编码器——是用n位二进制代码对2n个信号进
行编码的电路 举例:三位二进制编码器逻辑图
由编码的逻辑电路可以得到Y2 、 Y1 、Y0 的逻辑函数表达式:
Y0 = I1 + I3 + I5 + I7 Y1 = I2 + I3 + I6 + I7 Y2 = I4 + I5 + I6 + I7
图9-14 LED数字显示器的外形图
集成电路课程设计报告三输入异或门电路
4.3a
Select Edge to ActC nt
1.000
4.4a
Select Mi nimum Width
2.000
4.4c
Select to Select Spac ing
2.000
异或门的应用范围广,在实际应用中可以用来实现奇偶发生器或模2加法器,
还可以用作加法器、异或密码、异或校检、异或门倍频器、可控反相器等等。虽
然异或不是开关代数的基本运算之一,但是在实际运用中我们依然会相当普遍地 使用到分立的异或门。因此,我们为了熟练了解、掌握异或门这一基本逻辑电路, 对异或门电路进行了这次课程设计。
2.1
Active Mi nimum Width
3.000
2.2
Active to Active Spac ing
3.000
2.3a
Source/Drain Active to Well Edge
5.000
2.3b
Source/Drain Active to Well Space
5.000
2.4a
WellCo ntact(Active) to Well Edge
异或门(英语:Exclusive-OR gate,简称XOF^ate,又称EOF^ate、ExOF^ate)是数字逻辑中实现逻辑异或的逻辑门。有多个输入端、1个输出端,多输入异或
门可由2输入异或门构成。
三输入异或门在数字集成逻辑电路中主要用来实现逻辑异或的功能。对于三 输入异或门来说,若输入为偶数(此处包括0)个高电平1,则输出为低电平0; 否则输出为高电平1。
异或门的逻辑表达式:
进一步可得到一位比较器的真值表:
A
B
三输入与非门电路设计
1绪论1.1设计背景集成电路的出现与飞速发展彻底改变了人类文明和人们日常生活的面目。
近几年,中国集成电路产业取得了飞速发展。
集成电路掩模版图设计是实现集成电路制造所必不可少的设计环节,它不仅关系到集成电路的功能是否正确,而且也会极大程度地影响集成电路的性能、成本与功耗。
集成电路掩模版图设计是一门技术,它需要设计者具有电路系统原理与工艺制造方面的基础知识。
但它更需要设计者的创造性、空间想象力和耐性,需要设计者长期工作的经验和知识的积累,需要设计者对日新月异的集成电路发展密切关注和探索。
互补金属-氧化物-半导体集成电路,简称CMOS电路,是集成电路中于六十年代后期才发展起来的后起之秀。
到了六十年代,随着平面型晶体管的发展,以及人们对于半导表面性质认识的深化,特别是具有优良性能的热生长二氧化硅薄膜的成功生长,才导致MOS绝缘栅场效应晶体管和MOS集成电路的问世。
为了把设计的线路生产为集成电路,还必须进行版图设计。
即根据线路中各器件的尺寸和互连进行合理的布局。
版图设计的优劣,很大程度上决定了产品的成品率和可靠性。
在版图设计中的考虑原则是尽可能缩小有源区(即仅包括器件和互连引线部分,不包括键合点)。
这不仅可以减小芯片面积,而且有利于成品率提高。
电源线和地线的走线要通畅,减小串联电阻,保证电路的参量指标。
在可能的条件下,引线孔尽量开大,保证接触良好。
现代化的计算机辅助制版技术,能大大减小人力,做出最佳图形,特别是为大规模集成电路所必需。
中国集成电路产业已经形成了IC设计、制造、封装测试三业及支撑配套业共同发展的较为完善的产业链格局,随着IC设计和芯片制造行业的迅猛发展,国内集成电路价值链格局继续改变,其总体趋势是设计业和芯片制造业所占比例迅速上升。
1.2设计目标1.用tanner软件中的原理图编辑器S-Edit编辑三输入与门电路原理图。
2.用tanner软件中的L-Edit绘制三输入与门电路版图,并进行DRC 验证。
模拟cmos集成电路设计课后题
模拟cmos集成电路设计课后题CMOS(Complementary Metal-Oxide-Semiconductor)集成电路设计是现代电子技术的关键领域之一。
该领域涉及到各种基本电路以及整个系统的设计与优化。
本文将模拟一篇CMOS集成电路设计的课后题,其中包括对基本电路的设计以及系统级优化的考察。
第一部分:基本电路设计(2000字左右)1. 设计一个2输入与门的CMOS电路。
给出电路图,并写出相应的布尔表达式。
2. 为了减小功耗并提高响应速度,经常需要将电路设计为动态逻辑电路。
请设计一个动态逻辑的非门电路,给出电路图,并写出相应的时钟脉冲控制信号。
第二部分:CMOS集成电路设计(2000字左右)3. 设计一个3输入与门的CMOS电路,并对其功耗进行优化。
4. 设计一个4位二进制全加器的CMOS电路,并考虑功耗和面积的优化。
第三部分:系统级优化(2000字左右)5. 将两个2输入与门和一个2输入或门组合成一个3输入与门。
请给出详细的设计流程和最终的电路图。
6. 设计一个8位互补码加法器的CMOS电路,并考虑功耗、面积和延迟的优化。
第一部分:基本电路设计1. 设计一个2输入与门的CMOS电路。
给出电路图,并写出相应的布尔表达式。
CMOS与门的基本电路由PMOS管和NMOS管组成。
在输入A和B分别接入与门电路的两个输入端,而输出则连接到NMOS管和PMOS管接口的并联电路的输出端。
当A和B同时为高电平时,输出才为高电平。
其布尔表达式可以写为:Z = A * B。
2. 为了减小功耗并提高响应速度,经常需要将电路设计为动态逻辑电路。
请设计一个动态逻辑的非门电路,给出电路图,并写出相应的时钟脉冲控制信号。
动态非门电路的设计可以采用PMOS管串联的结构。
当输入S 为高电平时,NMOS管导通,输出结果为0;当输入S为低电平时,PMOS管导通,输出结果为1。
其时钟脉冲控制信号可以表示为:NAND(A, A)。
2、3、4输入或非门版图设计
《集成电路工艺与版图设计》课堂作业班级:电子科学与技术01班姓名:曾海学号:201031722、3、4输入异或门版图设计如下:一、二输入异或门:(1)原理图:<2>L-edit中进行设计的如下二输入或非门版图<3>提取后在T-SPICE中进行参数及输入输出设置如下:VA A GND BIT ({1011} pw=20N lt=10N ht=10N on=5 off=0)VB B GND BIT ({0010} pw=20N lt=10N ht=10N on=5 off=0)Vdd Vdd GND 5.tran 10N 100N.print tran v(OUT) v(A) v(B)<4>在W-EDIT中得到仿真波形图:二、三输入或非门<1>三输入异或门版图<3>参数及输入输出设置VA A GND BIT ({1011} pw=20N lt=10N ht=10N on=5 off=0) VB B GND BIT ({0010} pw=20N lt=10N ht=10N on=5 off=0)Vdd Vdd GND 5.tran 10N 100N.print tran v(OUT) v(A) v(B)<3>仿真图三、四输入或非门<1>版图设计<2>参数及输入输设置Vdd Vdd GND 5VA A GND BIT ({1001} pw=20N lt=10N ht=10N o n=5 off=0)VB B GND BIT ({1010} pw=20N lt=10N ht=10N o n=5 off=0)VC C GND BIT ({1011} pw=20N lt=10N ht=10N o n=5 off=0)VD D GND BIT ({1011} pw=20N lt=10N ht=10N o n=5 off=0).tran 20N 100N.print tran v(OUT) v(A) v(B) v(C) v(D)<3>仿真图4、版图设计总结(1)本次设计中,由仿真图可以看出,仿真波形不是标准的方波图形,而是有相应的误差,可能是由于版图的设计中,布线或器件的放置不合理导致的。
集成电路课程设计报告三输入异或门电路
二、设计原理:
异或门(英语:Exclusive-OR gate,简称XOF^ate,又称EOF^ate、ExOF^ate)是数字逻辑中实现逻辑异或的逻辑门。有多个输入端、1个输出端,多输入异或
门可由2输入异或门构成。
三输入异或门在数字集成逻辑电路中主要用来实现逻辑异或的功能。对于三 输入异或门来说,若输入为偶数(此处包括0)个高电平1,则输出为低电平0; 否则输出为高电平1。
2.000
4.3a
Select Edge to ActC nt
1.000
4.4a
Select Mi nimum Width
2.000
4.4c
Select to Select Spac ing
2.000
2.1
Active Mi nimum Width
3.000
2.2
Active to Active Spac ing
3.000
2.3a
Source/Drain Active to Well Edge
5.000
2.3b
Source/Drain Active to Well Space
5.000
2.4a
WellCo ntact(Active) to Well Edge
异或门的逻辑表达式:
进一步可得到一位比较器的真值表:
A
B
C
Y
F
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
1
0
0
1
0
1
0
集成电路课程设计--含2个 2-4线译码器的74HC139芯片
集成电路课程设计----含2个2-4线译码器的74HC139芯片一.目的与任务本课程设计是《集成电路分析与设计》的实践课程,其主要目的是为了在了解了集成电路的基本结构的基础上进一步的学习集成电路的设计,本次设计通过对TANNER TOOLS PRO工具的使用让我们能够从简单入手到能设计一个完整的芯片,。
并进行电路仿真对比。
二.课程设计题目、内容及要求2.1 设计题目1.器件名称:一个3-8译码器的74HC138芯片;2.要求的电路性能指标:(1)可驱动10个LSTTL电路(相当于15pF电容负载);(2)输出高电平时,︱IoH︱≤20uA,Voh,min=4.4V;(3)输出低电平时,︱IoL︱≤4mA,Vol,max=0.4V;(4)输出级充放电时间tr = tf,tpd<25ns;(5)工作电源5V,常温工作,工作频率fwork =30MHz,总功耗Pmax=150mW。
2.2 设计内容(1)功能分析及逻辑设计(2)电路设计(3)估算功耗与延时(4)电路模拟与仿真(5)版图设计(全手工、层次化设计)(6)版图检查:DRC与LVS(7)后仿真(选做)(8)版图数据提交2.3 设计要求(1)独立完成设计74HC138 芯片的全过程;(2)设计时使用的工艺及设计规则:MOSIS:mamin08;(3)根据所用的工艺,选取合理的模型库;(4)选用以lambda(λ)为单位的设计规则;(5)全手工、层次化设计版图;(6)达到指导书提出的设计指标要求。
三、74HC139电路简介3.1 通用74HC139芯片的引脚图74HC139芯片包含两个2-4译码器,它的通用引脚图入图1其中,(1A0、1A1)和(2A0、2A1)分别为两个译码器的地址输入端,而1E (以下取名为Csa )和2E (以下取名为Csb )分别为两个译码器的使能端(低电平有效),1Y0~1Y7和2Y0~2Y7为译码器的数据输出端。
3.2通用74HC139的真值表 通用74HC139的真值表如表一3.3通用74HC139的逻辑表达式根据表一,我们可以很容易得到一下的逻辑表达式 Y0=E+A1+A0=01A A E ∙∙ Y1=E+A1+0A =01A A E ∙∙ Y2=E+1A +A0=01A A E ∙∙ Y3=E+1A +0A =01A A E ∙∙3.4通用74HC139的逻辑图,如图2所示图二所示为通用74HC139芯片的其中一个译码器的逻辑图。
【精品】集成电路课程设计74hc138
目录【摘要】.................................................... 错误!未指定书签。
1。
设计目的与任务........................................... 错误!未指定书签。
2。
设计要求及内容........................................... 错误!未指定书签。
3。
设计方法及分析........................................... 错误!未指定书签。
3.174HC138芯片简介...................................... 错误!未指定书签。
3.2工艺和规则及模型文件的选择........................... 错误!未指定书签。
3。
3电路设计............................................ 错误!未指定书签。
3.3.1输出级电路设计................................. 错误!未指定书签。
3.3。
2.内部基本反相器中的各MOS尺寸的计算........... 错误!未指定书签。
3.3。
3.四输入与非门MOS尺寸的计算................... 错误!未指定书签。
3.3。
4.三输入与非门MOS尺寸的计算................... 错误!未指定书签。
3。
3.5.输入级设计................................... 错误!未指定书签。
3。
3.6.缓冲级设计................................... 错误!未指定书签。
3。
3.7.输入保护电路设计............................. 错误!未指定书签。
3.4。
功耗与延迟估算..................................... 错误!未指定书签。
三输入或门版图设计的
1绪论1。
1 设计背景随着集成电路技术的日益进步,使得计算机辅助设计(CAD)技术已成为电路设计师不可缺少的有力工具[1].国内外电子线路CAD软件的相继推出与版本更新,使CAD技术的应用渗透到电子线路与系统设计的各个领域,如芯片版图的绘制、电路的绘图、模拟电路仿真、逻辑电路仿真、优化设计、印刷电路板的布线等。
CAD技术的发展使得电子线路设计的速度、质量和精度得以保证。
在众多的CAD 工具软件中,Spice程序是精度最高、最受欢迎的软件工具,tanner是用来IC 版图绘制软件,许多EDA系统软件的电路模拟部分是应用Spice程序来完成的,而tanner软件是一款学习阶段应用的版图绘制软件,对于初学者是一个上手快,操作简单的EDA软件。
Tanner集成电路设计软件是由Tanner Research 公司开发的基于Windows 平台的用于集成电路设计的工具软件.该软件功能十分强大,易学易用,包括S-Edit,T-Spice,W-Edit,L—Edit与LVS,从电路设计、分析模拟到电路布局一应俱全。
其中的L—Edit版图编辑器在国内应用广泛,具有很高知名度。
L—Edit Pro是Tanner EDA软件公司所出品的一个IC设计和验证的高性能软件系统模块,具有高效率,交互式等特点,强大而且完善的功能包括从IC设计到输出,以及最后的加工服务,完全可以媲美百万美元级的IC设计软件。
L-Edit Pro包含IC设计编辑器(Layout Editor)、自动布线系统(Standard Cell Place & Route)、线上设计规则检查器(DRC)、组件特性提取器(Device Extractor)、设计布局与电路netlist的比较器(LVS)、CMOS Library、Marco Library,这些模块组成了一个完整的IC设计与验证解决方案[2]。
L—Edit Pro丰富完善的功能为每个IC设计者和生产商提供了快速、易用、精确的设计系统。
三输入异或门版图设计
三输入CMOS异或门
版图设计
学院:
专业:集成电路
姓名:何 宝 华
学号: vbop25@ __
课程名称: VLSI 导论
日期:2011年 12月16日
1名称
三输入CMOS异或门版图设计
2目的
绘制三输入一输出CMOS异或门的版图设计,并对其进行DRC检测和T-Spice模拟仿真。
3设备和工具
PC计算机一台,Tanner软件。
4版图设计要求
(1)0.25u工艺
(2)3输入xor
(3)原理图
(4)原理图有spice仿真
(5)版图
(6)LVS
(7)有封皮
5 S-Edit电路图
电路图1
电路图2
6 T-Spice模拟
7 T-Spice仿真
8 真值表
0011
0101
10
9 验证结果
结合T-Spice仿真图和真值表,表明电路图设计是正确的。
10 L-Edit版图设计
11 DRC检测
12 LVS比较
13 结论
三输入一输出异或门版图设计是正确的。
半导体器件中的集成电路与逻辑门设计
半导体器件中的集成电路与逻辑门设计随着科技的不断进步和发展,电子设备已经融入到我们生活的方方面面。
而这些电子设备的核心,就是集成电路。
集成电路是由半导体材料制成,内部集成了多种电子元件,包括晶体管、电阻器、电容器等。
它的设计和制造经过了复杂而精密的过程,而其中的逻辑门设计则是整个集成电路的核心。
在半导体器件中,逻辑门是用来处理和控制电信号的基本电路。
它们的设计关乎到电子设备能否正常运行和高效工作。
逻辑门的设计涉及到多种技术和方法,让我们一起来探讨一下各种逻辑门的设计原理和特点。
首先,我们来了解一下最基本的逻辑门——与门。
与门具有两个输入端和一个输出端,当且仅当两个输入端都为高电平时,输出端才为高电平,否则输出端为低电平。
与门的设计可以通过多种方式实现,其中最常见的是基于晶体管的设计。
晶体管可以分为两种类型:NPN和PNP。
与门的设计就是通过正确连接NPN和PNP 晶体管,使得输入端与输出端之间的电流正确地从开关电路中流动,从而实现采用布尔代数的逻辑操作。
而或门又是另一种常见的逻辑门。
它也是由两个输入端和一个输出端组成,但是当且仅当两个输入端都为低电平时,输出端才为低电平,否则输出端为高电平。
或门的设计可以通过串联晶体管来实现,其中输入端的电流通过晶体管的开关控制输出端的电平。
在逻辑门的设计中,还有一种重要的门电路——非门。
非门也被称为反相器,它接受一个输入信号,并输出其相反的信号。
例如,当输入为高电平时,输出为低电平,反之亦然。
非门的设计可以通过晶体管和电阻器来实现,其中电阻器可以将输入端的电流引导到晶体管的基极,从而控制输出端的电平。
除了以上的逻辑门之外,还有许多其他种类的逻辑门,例如与非门、或非门、异或门等。
它们使用的设计原理和方法也各不相同,但目的都是为了实现电子设备的逻辑操作和控制。
总之,半导体器件中的集成电路与逻辑门设计是电子设备运行的关键环节。
逻辑门的设计原理和特点涉及到多种技术和方法,是一门深奥而且精密的学问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
院课程设计三输入与门设计学生姓名:学院:专业班级:专业课程:集成电路设计基础指导教师:年月日目录一、概述 (2)二、设计要求 (3)三、设计原理 (3)四、设计思路 (4)4.1非门电路 (4)4.2三输入与非门电路 (4)五、三输入与门电路设计 (6)5.1原理图设计 (6)5.2仿真分析 (6)六、版图设计 (8)6.1 PMOS管版图设计 (8)6.2 NMOS管版图设计 (10)6.3与门版图设计 (11)七、LVS比对 (15)八、心得体会 (16)参考文献 (17)一、概述随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。
而对于现代信息产业和信息社会的基础来讲,集成电路是改造和提升传统产业的核心技术。
随着全球信息化、网络化和知识经济浪潮的到来,集成电路产业的地位越来越重要,它已成为事关国民经济、国防建设、人民生活和信息安全的基础性、战略性产业。
集成电路有两种。
一种是模拟集成电路。
另一种是数字集成电路。
从制造工艺上可以将目前使用的数字集成电路分为双极型、单极型和混合型三种。
而在数字集成电路中应用最广泛的就是CMOS集成电路,CMOS集成电路出现于20世纪60年代后期,随着其制造工艺的不断进步,CMOS电路逐渐成为当前集成电路的主流产品。
本文便是讨论的CMOS与门电路的设计仿真及版图等的设计。
版图(Layout)是集成电路设计者将设计并模拟优化后的电路转化成的一系列几何图形,包含了集成电路尺寸大小、各层拓扑定义等有关器件的所有物理信息。
集成电路制造厂家根据版图来制造掩膜。
版图的设计有特定的规则,这些规则是集成电路制造厂家根据自己的工艺特点而制定的。
不同的工艺,有不同的设计规则。
设计者只有得到了厂家提供的规则以后,才能开始设计。
版图在设计的过程中要进行定期的检查,避免错误的积累而导致难以修改。
很多集成电路的设计软件都有设计版图的功能,L-Edit软件的的版图设计软件帮助设计者在图形方式下绘制版图。
对于复杂的版图设计,一般把版图设计分成若干个子步骤进行:(1)划分为了将处理问题的规模缩小,通常把整个电路划分成若干个模块。
(2)版图规划和布局是为了每个模块和整个芯片选择一个好的布图方案。
(3)布线完成模块间的互连,并进一步优化布线结果。
(4)压缩是布线完成后的优化处理过程,他试图进一步减小芯片的面积。
二、设计要求1、要求:用MOS器件来设计三输入与门电路。
2、内容:用Tanner13.0软件进行电路原理图的绘制,并进行瞬态分析。
3、用L-Edit软件进行电路版图的制作及进行LVS匹配度的检查。
三、设计原理三输入与门有三个输入端A、B和C以及一个输出端F,只有当A端、B端和C端同时为高电平时输出才为高电平,否则输出都为低电平,即F=ABC。
与门的真值表如表1所示。
表1 与门真值表A B C F0 0 0 00 0 1 00 1 0 00 1 1 01 0 0 01 0 1 01 1 0 01 1 1 1由于此次是用CMOS管构建的三输入与门,而CMOS管的基本门电路有非门、与非门、或非门等,所以要想实现用CMOS管搭建出三输入与门电路,由关系式F=((ABC)')'可知可以用一个三输入与非门和一个反相器连接,这样就可以实现一个三输入与门的电路。
本次设计就是用一个三输入与非门加一个反相器从而实现了三输入与门的功能。
四、设计思路4.1非门电路CMOS非门即反相器是由一个N管和一个P管组成的,P管源极接Vdd,N 管源极接GND,若输入IN为低电平,则P管导通,N管截止,输出OUT为高电平。
若输入IN为高电平,则N管导通,P管截止,输出OUT为低电平。
从而该电路实现了非的逻辑运算,构成了CMOS反相器。
CMOS反相器的电路图如图1所示。
图1 CMOS反相器电路图还有就是CMOS电路的优点:(1)微功耗。
CMOS电路静态电流很小,约为纳安数量级。
(2)抗干扰能力很强。
输入噪声容限可达到VDD/2。
(3)电源电压范围宽。
多数CMOS电路可在3~18V的电源电压范围内正常工作。
(4)输入阻抗高。
(5)负载能力强。
CMOS电路可以带50个同类门以上。
(6)逻辑摆幅大(低电平0V,高电平VDD )。
4.2三输入与非门电路三输入CMOS与非门电路,其中包括三个串联的N沟道增强型MOS管和三个并联的P沟道增强型MOS管。
每个输入端连到一个N沟道和一个P沟道MOS 管的栅极。
当输入端A、B、C中只要有一个为低电平时,就会使与它相连的NMOS 管截止,与它相连的PMOS管导通,输出为高电平;仅当A、B、C全为高电平时,才会使三个串联的NMOS管都导通,使三个并联的PMOS管都截止,输出为低电平。
设计电路图如下图2所示。
图2 CMOS与非门电路如上图2中所示,设CMOS管的输出高电平为“1”,低电平为“0”,图中三个串联的NMOS管,三个并联的PMOS管,每个输入端(A、B或C)都直接连到配对的NMOS管(驱动管)和PMOS(负载管)的栅极。
当三个输入中有一个或一个以上为低电平“0”时,与低电平相连接的NMOS管仍截止,而PMOS管导通,使输出F为高电平,只有当三个输入端同时为高电平“1”时,PMOS管均导通,NMOS管都截止,输出F为低电平。
由以上分析可知,该电路实现了逻辑与非功能,即F=(ABC) '。
五、三输入与门电路设计5.1原理图设计首先打开Tanner软件选择其中的S-Edit子软件,进行原理图的设计。
进入工作界面之后在菜单栏中选择File按钮然后选择New选项下面的子选项Designer来建立新的工程,点击OK之后就能进入工作界面,点击菜单栏中的ADD按钮选择调出元件库,然后点击加载需要用到的一些元件库,之后就可以进行原理图的设计。
最后画好的电路原理图如下图3中所示。
图3 三输入与门电路原理图5.2仿真分析电路原理图画好之后接下来便是仿真分析了,Tanner软件提供了交流分析等几种分析模式。
然而本次我们做的是门电路,输入输出信号都是电平信号,研究的是输入输出信号随时间的变化关系,所以只需要做瞬态分析就行了。
首先在已经设计好的原理图中添加必要的电源、电平信号,其次要进行比要的参数设置,具体如图4、5中所示。
图4 参数设置图5 参数设置参数设置完成后就可以进行原理图的瞬时分析,分析结果如图6所示。
图6 瞬时分析六、版图设计6.1 PMOS管版图设计由于L-Edit软件在进行电路版图设计之前首先得进行元器件版图的设计,而在本次电路中用到的元器件有PMOS管和NMOS管,所以在画与门版图之前首先要先绘制好PMOS管和NMOS管的版图。
(1)打开L-Edit程序:L-Edit会自动将工作文件命名为Layout1.tdb 并显示在窗口的标题栏上。
(2)另存为新文件:选择执行File/Save As子命令,打开“另存为”对话框,在“保存在”下拉列表框中选择存贮目录,在“文件名”文本框中输入新文件名称。
(3)替换设置信息:用于将已有的设计文件的设定(如格点、图层等)应用于当前的文件中。
选择执行File/Replace Setup子命令打开对话框,单击“From File”栏填充框的右侧的Browser按钮,选择X: \ Ledit1.1\Samples\SPR\example1\lights.tdb文件,如下图7所示,单击OK 就将lights.tdb文件中的格点、图层等设定应用在当前文件中。
图7 替换设置信息窗口设置好这些之后其它的都选择系统默认的值就行,然后就可以开始元件版图的绘制了。
首先绘制PMOS管的N Well层,在Layers面板的下拉列表中选取N Well选项,再从Drawing工具栏中选择按钮,在Cell0编辑窗口画出横向24格纵向15格的方形即为N Well,如图8中所示。
图8 L-Edit工作窗口画好N Well层之后然后再继续按照规则一步步绘制好Active层、P Select 层、Ploy层、Active Contact层、Metal1层等,每设计好一层并将其摆放到规定的位置,然后进行一次DRC检查,确认是否有错误,一切都无误之后就能保存了,制作好的PMOS版图如图9中所示。
图9 PMOS管版图6.2 NMOS管版图设计在PMOS管设计好并保存之后就能开始绘制NMOS管的版图了,新建NMOS 单元:选择Cell/New命令,打开Create New Cell对话框,在其中的New cell name栏中输入nmos,单击OK按钮。
绘制NMOS单元:根据绘制PMOS单元的过程,依次绘制Active图层、N Select图层、Ploy图层、Active Contact图层与Metal1图层,完成后的NMOS 单元如图10中所示。
其中,Active宽度为14个栅格,高为5个栅格;Ploy 宽为2个栅格,高为9个栅格;N Select宽为18个栅格,高为9个栅格;两个Active Contact的宽和高皆为2个栅格;两个Metal1的宽和高皆为4个栅格。
图10 NMOS管版图6.3与门版图设计在前两步中分别已经做好了PMOS管和NMOS管的版图设计,接下来就能开始进行与门版图的搭建和连线了。
启动L-Edit程序,将文件另存为EX2,将文件lights.tdb应用在当前的文件中,设定坐标和栅格。
复制单元:执行Cell/Copy命令,打开Select Cell to Copy对话框,将Ex1.tdb中的nmos单元和pmos单元复制到Ex2.tdb文件中。
引用nmos和pmos单元:执行Cell/Instance命令,打开Select Cell to Instance对话框,选择nmos单元单击OK按钮,可以在编辑画面出现一个nmos 单元;再选择pmos单元单击OK,在编辑画面多出一个与nmos重叠的pmos单元,可以用Alt键加鼠标拖曳的方法分开pmos和nmos,如图11中所示。
图11 元件引用由于本次绘制与门电路需要用到4个PMOS管和4个NMOS管,所以上步中的引用pmos和nmos单元分别需要进行四次,然后再进行元器件之间的电路连接。
连接pmos和nmos的漏极:由于反相器pmos和nmos的漏极是相连的,可利用Metal1将nmos与pmos的右边扩散区有接触点处相连接,绘制出Metal1宽为4个栅格、高为11个栅格,进行电气检查,没有错误,如图12中所示。
图12 版图DRC检查按照电路原理图一步一步将所有的线路都连接好,然后再标出Vdd、GND 节点以及输入输出端口A、B、C、F等节点。
例如标注Vdd和GND节点的方法是单击插入节点图标,再到绘图窗口中用鼠标左键拖曳出一个与上方电源线重叠的宽为39栅格、高为5个栅格的方格后,将自动出现Edit Object(s)对话框,在“On”框的下拉列表中选择Metal1,如图13中所示。