测量不确定度评定(很实用)讲解学习
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
测量不确定度
注2:测量不确定度由多个分量组成。其中一些分量可用 测量列结果的统计分析估算,并用实验标准偏差表征。 另一些分量则可用基于经验或其它信息的假定概率分 布估算,也可用标准偏差表征。
注3:测量结果应理解为被测量之值的最佳估计,而所有 的不确定度分量均贡献给了分散性,包括那些由系统 效应引起的(如与修正值和参考标准有关的)分量。
16
误差
系统误差定义为:“在重复性条件下, 对同一被测量进行无限多次测量所得结 果的平均值与被测量的真值之差”
注1: 系统误差等于误差减去随机误差 注2:如真值一样,系统误差及其原因不能完全获知。 注3:对测量仪器而言,其系统误差也称为测量仪器的偏移。
计量检定中,标准器本身的误差将以固定不变的形式,传递给被 检计量器具,所以标准器的误差此时称为系统误差。
既然是一个差值,就应该是一个具有符 号的量值。既不应当,也不可以“±”号 的形式表示。
13
误差
严格意义上讲,过去通过误差分析得到 测量结果的所谓“误差”,实际上并不 是真正的误差,而是被测量不能确定的 范围,或者说是测量结果可能存在的最 大误差。
14
误差
在误差评定时,将误差划分为随机误差和系统 误差两类。
测量误差
测量不确定度
由于真值未知,往往不能准 可以由人们根据实验、资料、
4
确得到,当用约定真值代替 经验等信息进行评定,从面是 真值时,可以得到其估计值 可以定量确定。评定方法有
A,B两类
5
按性质可分为随机误差和系 统误差两类,按定义随机误 差和系统误差都是无穷多次 测量情况下的理想概念
不确定度分量评定时一般不必 区分其性质,若需要区分时应 表述为:“由随机效应引入的 不确定度分量”和“由系统效 应引入的不确定度分量”
测量不确定度简介
基本概念、 评定步骤、实例分析。
1
一、基本概念
1、什么叫测量不确定度? 国家计量技术规范:
JJF1059-1999《测量不确定度评定与表示》中 定义是:“表征合理地赋予被测量之值的分散性,
与测量结果相联系的参数”
注1:此参数可以是诸如标准偏差,或其倍数,或说明
了置信水平的区间的半宽度。
测量结果是指对测得值经过恰当处理(按一定的规则确定并剔除 测得值中的离群值)、修正(指必须加上由各种原因引起的必要 的修正值或乘以必要的修正因子)或经过必要的计算而得到的最 后提供给用户的量值。(电阻率的测量)
在对被测量进行测量时,最后给出的一个测量结果是被测量的最 佳估计值(可能是单次测量的结果,也可能是重复条件下多次测 量的平均值),而这里“被测量之值”应理解为多个测量结果。
3
测量不确定度
在不确定度的定义中的“被测量之值” 理解为“测得值”。
“测得值”有时也称为“观测值”。是 指从一次观测中由测量仪器或量具的显 示装置中所得到的单一值。一般地说, 它并不是测量结果。
4
2、什么叫测量结果
定义:由测量所得到的赋予被测量的值。测量结果仅仅是被测量 的最佳估计值,并非真值。(完整表述测量结果时,必须附带其 测量பைடு நூலகம்确定度。)
11
误差
根据误差的定义,要得到误差就必须知 道真值。但真值由无法得到,因此,严 格意义上的误差也是无法得到的。
由于真值无法知道,在实际上误差的概 念只能用于已知约定真值的情况下。
12
误差
根据误差的定义,误差是一个差值,它 是测量结果与真值或约定真值之差。在 数轴上它表示为一个点,而不是一个区 间或范围。
的真值。
间的半宽表示
以真值为中心,说明测量 以测量结果为中心,评估 结果与真值的差异程度。 测量结果与被测量【真】 (表明测量结果偏离真值) 值相符合的程度。(表明
被测量值的分散性)
客观存在,不以人的认识 与人们对被测量、影响量
程度而改变
及测量过程的认识有关
19
测量误差与测量不确定度的主要区别
序号
5
测量结果与测量不确定度
所谓多个测量结果,就是它不仅包 括通过测量得到的测量结果,还应 包括测量中没有得到但又可能出现 的测量结果。
6
测量结果与测量不确定度
例如:用一台电压表测量某一电压,且 电压表读数不加修正值,若对于该测量
点电压表的最大允许误差为 1V,用该
电压表进行了20次重复测量,则该20个 读数的平均值就是测量结果,还可以由 它们得到测量结果的分散性。
7
测量不确定度
测量不确定度是表征合理地赋予 “被测量之值”的分散性,因此, 不确定度表示一个区间,即“被测 量之值”可能分布区间。这是测量 不确定度与误差的最根本的区别。
8
3、什么叫测量误差?
测量误差(简称为误差)的定义为: “测量结果减去被测量的真值”
误差应该是一个确定的值,是客观存在的测量 结果与真值之间差。 但由于真值往往不知道,故误差无法准确得到。
随机误差是“测量结果与在重复性条件下,对 同一被测量进行无限多次测量所得结果的平均 值之差”
注1:随机误差等于误差减去系统误差; 注2:因为只能进行有限次数,故可能确定的只是随机误差的估计值
15
误差
随机误差一般由许多微小变化的因素造成的,如: 计量器具固有(基本)误差、环境条件偏离、人员读数 微小因素,其影响时而相加,时而相互抵消,时而这个 影响大一些,时而那个影响大一些,呈现随机性,表 现在测量值上就是随机误差。对于某一次测量而言, 随机误差的大小和符号都是不可预知的,而作为多次 测量总体而言,它服从一定的统计规律。因此,可用 数理统计的方法估计随机误差对测量结果的影响。
9
误差
虽然误差的概念早已出现,但在用传统 方法对测量结果进行误差评定时,还存 在一些问题。。简单地说,大体上遇到 两个方面的问题:逻辑概念上的问题和 评定方法的问题。
10
误差
我们把被测量在观测时所具有的大小称 为真值,因而只是一个理想的概念,只 有通过完善的测量才有可能得到真值。 但是任何测量都会存在缺陷,因而真正 完善的测量是不存在的,也就是说,严 格意义上的真值是无法得到的。
17
误差
随机误差用测量结果的标准偏差来表示, 如果有一个以上的随机误差分量,则将 它们按方和根法进行合成,得到的结果 称为总随机误差。
18
4、测量误差与测量不确定度的主要区别
序号 1
2 3
测量误差
测量不确定度
有正号或负号的量值,其 无符号的参数,用标准差
值为测量结果减去被测量 或标准差的倍数或置信区
测量不确定度
注2:测量不确定度由多个分量组成。其中一些分量可用 测量列结果的统计分析估算,并用实验标准偏差表征。 另一些分量则可用基于经验或其它信息的假定概率分 布估算,也可用标准偏差表征。
注3:测量结果应理解为被测量之值的最佳估计,而所有 的不确定度分量均贡献给了分散性,包括那些由系统 效应引起的(如与修正值和参考标准有关的)分量。
16
误差
系统误差定义为:“在重复性条件下, 对同一被测量进行无限多次测量所得结 果的平均值与被测量的真值之差”
注1: 系统误差等于误差减去随机误差 注2:如真值一样,系统误差及其原因不能完全获知。 注3:对测量仪器而言,其系统误差也称为测量仪器的偏移。
计量检定中,标准器本身的误差将以固定不变的形式,传递给被 检计量器具,所以标准器的误差此时称为系统误差。
既然是一个差值,就应该是一个具有符 号的量值。既不应当,也不可以“±”号 的形式表示。
13
误差
严格意义上讲,过去通过误差分析得到 测量结果的所谓“误差”,实际上并不 是真正的误差,而是被测量不能确定的 范围,或者说是测量结果可能存在的最 大误差。
14
误差
在误差评定时,将误差划分为随机误差和系统 误差两类。
测量误差
测量不确定度
由于真值未知,往往不能准 可以由人们根据实验、资料、
4
确得到,当用约定真值代替 经验等信息进行评定,从面是 真值时,可以得到其估计值 可以定量确定。评定方法有
A,B两类
5
按性质可分为随机误差和系 统误差两类,按定义随机误 差和系统误差都是无穷多次 测量情况下的理想概念
不确定度分量评定时一般不必 区分其性质,若需要区分时应 表述为:“由随机效应引入的 不确定度分量”和“由系统效 应引入的不确定度分量”
测量不确定度简介
基本概念、 评定步骤、实例分析。
1
一、基本概念
1、什么叫测量不确定度? 国家计量技术规范:
JJF1059-1999《测量不确定度评定与表示》中 定义是:“表征合理地赋予被测量之值的分散性,
与测量结果相联系的参数”
注1:此参数可以是诸如标准偏差,或其倍数,或说明
了置信水平的区间的半宽度。
测量结果是指对测得值经过恰当处理(按一定的规则确定并剔除 测得值中的离群值)、修正(指必须加上由各种原因引起的必要 的修正值或乘以必要的修正因子)或经过必要的计算而得到的最 后提供给用户的量值。(电阻率的测量)
在对被测量进行测量时,最后给出的一个测量结果是被测量的最 佳估计值(可能是单次测量的结果,也可能是重复条件下多次测 量的平均值),而这里“被测量之值”应理解为多个测量结果。
3
测量不确定度
在不确定度的定义中的“被测量之值” 理解为“测得值”。
“测得值”有时也称为“观测值”。是 指从一次观测中由测量仪器或量具的显 示装置中所得到的单一值。一般地说, 它并不是测量结果。
4
2、什么叫测量结果
定义:由测量所得到的赋予被测量的值。测量结果仅仅是被测量 的最佳估计值,并非真值。(完整表述测量结果时,必须附带其 测量பைடு நூலகம்确定度。)
11
误差
根据误差的定义,要得到误差就必须知 道真值。但真值由无法得到,因此,严 格意义上的误差也是无法得到的。
由于真值无法知道,在实际上误差的概 念只能用于已知约定真值的情况下。
12
误差
根据误差的定义,误差是一个差值,它 是测量结果与真值或约定真值之差。在 数轴上它表示为一个点,而不是一个区 间或范围。
的真值。
间的半宽表示
以真值为中心,说明测量 以测量结果为中心,评估 结果与真值的差异程度。 测量结果与被测量【真】 (表明测量结果偏离真值) 值相符合的程度。(表明
被测量值的分散性)
客观存在,不以人的认识 与人们对被测量、影响量
程度而改变
及测量过程的认识有关
19
测量误差与测量不确定度的主要区别
序号
5
测量结果与测量不确定度
所谓多个测量结果,就是它不仅包 括通过测量得到的测量结果,还应 包括测量中没有得到但又可能出现 的测量结果。
6
测量结果与测量不确定度
例如:用一台电压表测量某一电压,且 电压表读数不加修正值,若对于该测量
点电压表的最大允许误差为 1V,用该
电压表进行了20次重复测量,则该20个 读数的平均值就是测量结果,还可以由 它们得到测量结果的分散性。
7
测量不确定度
测量不确定度是表征合理地赋予 “被测量之值”的分散性,因此, 不确定度表示一个区间,即“被测 量之值”可能分布区间。这是测量 不确定度与误差的最根本的区别。
8
3、什么叫测量误差?
测量误差(简称为误差)的定义为: “测量结果减去被测量的真值”
误差应该是一个确定的值,是客观存在的测量 结果与真值之间差。 但由于真值往往不知道,故误差无法准确得到。
随机误差是“测量结果与在重复性条件下,对 同一被测量进行无限多次测量所得结果的平均 值之差”
注1:随机误差等于误差减去系统误差; 注2:因为只能进行有限次数,故可能确定的只是随机误差的估计值
15
误差
随机误差一般由许多微小变化的因素造成的,如: 计量器具固有(基本)误差、环境条件偏离、人员读数 微小因素,其影响时而相加,时而相互抵消,时而这个 影响大一些,时而那个影响大一些,呈现随机性,表 现在测量值上就是随机误差。对于某一次测量而言, 随机误差的大小和符号都是不可预知的,而作为多次 测量总体而言,它服从一定的统计规律。因此,可用 数理统计的方法估计随机误差对测量结果的影响。
9
误差
虽然误差的概念早已出现,但在用传统 方法对测量结果进行误差评定时,还存 在一些问题。。简单地说,大体上遇到 两个方面的问题:逻辑概念上的问题和 评定方法的问题。
10
误差
我们把被测量在观测时所具有的大小称 为真值,因而只是一个理想的概念,只 有通过完善的测量才有可能得到真值。 但是任何测量都会存在缺陷,因而真正 完善的测量是不存在的,也就是说,严 格意义上的真值是无法得到的。
17
误差
随机误差用测量结果的标准偏差来表示, 如果有一个以上的随机误差分量,则将 它们按方和根法进行合成,得到的结果 称为总随机误差。
18
4、测量误差与测量不确定度的主要区别
序号 1
2 3
测量误差
测量不确定度
有正号或负号的量值,其 无符号的参数,用标准差
值为测量结果减去被测量 或标准差的倍数或置信区