“牛顿第一定律”相关的物理学史
高三物理学史知识点
高三物理学史知识点物理学作为自然科学的一门重要学科,积累了丰富的历史知识。
了解物理学的发展史对于高三学生来说,既可以加深对物理学知识的理解,又可以拓宽科学史的知识面。
本文将介绍一些高三物理学史的知识点。
1. 古代物理学的发展古代物理学的发展可以追溯到古希腊时期,那时的学者们对于自然现象进行了广泛的观察和实验,形成了一些初步的物理学理论。
例如,克利斯提亚纳发现了水的比热容和比密度之间的关系,提出了保持物体平衡的力对称原理。
而阿基米德则发现了浮力的原理,提出了阿基米德定律。
2. 牛顿力学的奠基在物理学史上,牛顿力学是一个里程碑式的发展阶段。
伊萨克·牛顿在17世纪末提出了力学的三大定律,即牛顿第一定律(惯性定律)、牛顿第二定律(力的作用定律)和牛顿第三定律(作用与反作用定律)。
这些定律为解释运动物体的行为提供了基础,成为后续物理学理论的重要基石。
3. 波粒二象性的发现在20世纪初,物理学家迈克尔逊和莫雷进行了著名的干涉实验,揭示了光的波动性质。
然而,爱因斯坦的光电效应实验证实了光的粒子性质,从而引发了关于光的本质的争议。
最终,德布罗意在他的波粒二象性理论中提出,微观粒子既可以表现出波动性也可以表现出粒子性。
这一理论对于解释原子和物质的微观行为具有重要意义。
4. 爱因斯坦相对论爱因斯坦的相对论对于解释运动物体的特性和引力现象起到了重要作用。
狭义相对论描述了高速运动物体的运动规律,提出了相对论性动力学和相对论性力学定律。
广义相对论则将引力解释为时空弯曲的结果,并揭示了时空的统一性。
5. 量子力学的发展20世纪初,量子力学的理论逐渐形成。
玻尔提出了量子化假设,即电子绕原子核的轨道只能是某些特定能级,并提出了波尔理论。
之后,薛定谔方程的提出使得量子力学得以系统化发展。
量子力学在解释微观粒子的行为和描述原子结构等方面发挥了重要作用。
通过了解高三物理学史知识点,我们可以更好地理解物理学的发展脉络和思想变革。
牛顿第一定律形成过程
牛顿第一定律形成过程
1.实验现象的观察
在科学发展的早期,人们观察到当一个物体在没有任何外力作用的情况下,它将继续保持其静止状态或匀速直线运动状态。
这种观察为牛顿第一定律提供了直观的基础。
2.概念的提出
基于对实验现象的观察,科学家们开始提出一些基本概念,如“力”、“运动”和“惯性”等。
这些概念的形成,为后来定律的提出奠定了基础。
3.定律的提出
牛顿在总结前人成果的基础上,提出了牛顿第一定律,也被称为惯性定律:一个物体在不受外力作用时,将保持其静止状态或匀速直线运动状态。
这个定律简洁而准确地描述了物体的基本运动属性。
4.理论的证明
虽然实验现象和日常经验支持牛顿第一定律,但为了确保理论的严密性,科学家们进行了大量的实验和数学推导。
伽利略的斜面实验是一个经典的例子,它通过逻辑推理和实验验证了牛顿第一定律的正确性。
5.定律的应用
牛顿第一定律不仅解释了许多自然现象,而且在实际应用中有着广泛的应用。
例如,汽车的安全设计、火箭的发射、甚至太空探索都离不开对牛顿第一定律的理解和应用。
同时,该定律也是整个经典力学的基础,对后来的物理学发展产生了深远的影响。
物理学史
35.玻尔:提出了玻尔原子模型,解释了氢原子光谱和卢瑟福原子结构模型;玻尔模型的两个基本假设——定态理论和跃迁理论;提出电子的轨道是量子化的、原子的能量是量子化的,并得出氢原子能级表达式。
36.伦琴:发现了X射线。
24.赫兹:(1)用电火花实验证实了电磁波的存在,在人类历史上首先捕捉到了电磁波;(2)用实验测定了电磁波在真空中的速度等于光速,还用实验证实了电磁波跟所有波动现象一样,能产生反射、折射、干涉、衍射等现象,从而证实了麦克斯韦的电磁场理论。
25.爱因斯坦:(1)创立了狭义相对论和广义相对论;狭义相对论的两个基本假设——相对性原理和光速不变原理;广义相对论的观点:引力的实质是时空弯曲;(2)提出了光子说,发现了光电效应的规律,即—— ;(3)提出质能方程 ,质能方程表述了质量和能量之间的关系,同时公式说明物质可以转变为辐射能,辐射能也可以转变为物质。
26.维恩、瑞利——金斯:分别对黑体辐射现象做出了有效解释;维恩公式解释了短波部分,但在长波部分与实验发生分歧;瑞利——金斯公式对长波部分做出了有效解释,但短波部分与实验出现了严重分歧,将出现“紫外灾难”。
27.普朗克:为合理解释黑体辐射现象,提出了能量量子化的概念;认为电磁波发射和吸收的能量不是连续的,而是一份一份的,把能量子的概念引入物理学,破除“能量连续变化”的传统观念。
10.库仑:通过扭秤实验发现了电荷之间的相互作用规律(库仑定律),并测出了静电力常量k。
11.法拉第:(1)提出电荷或磁体在空间中产生电场或磁场,正是通过场,才把力的作用或磁作用传递到别的电荷或磁体;(2)引入电场线和磁感线的概念来描述电场和磁场,极大地促进了对电磁现象的研究;(3)发现了电磁感应现象。
马顿第一定律
马顿第一定律你可能是想说牛顿第一定律。
一、牛顿第一定律的内容(人教版初中物理八年级下册)1. 定律表述- 一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。
2. 理解要点- “一切物体”:说明该定律适用于所有物体,无论是固体、液体还是气体。
- “没有受到力的作用”:这是一种理想情况,实际上物体都会受到力的作用,但可以通过一些实验来近似模拟这种情况。
例如伽利略的斜面实验,让小球从斜面上滚下,在水平面上运动时,受到的摩擦力越小,小球运动的距离越远。
- “总保持静止状态或匀速直线运动状态”:这表明物体的运动状态不需要力来维持。
如果物体原来是静止的,在不受力时就保持静止;如果物体原来是运动的,在不受力时就保持匀速直线运动。
二、牛顿第一定律的得出历程(物理学史部分)1. 亚里士多德的观点- 亚里士多德认为力是维持物体运动的原因。
例如,他观察到推一个物体时,物体才会运动,不推就会停下来,所以得出这样的结论。
2. 伽利略的理想斜面实验- 伽利略通过理想斜面实验对亚里士多德的观点提出了质疑。
- 实验设计:让小球从一个斜面滚下,然后滚上另一个斜面。
如果斜面光滑,小球会上升到与原来高度几乎相同的位置。
如果将第二个斜面的倾角减小,小球要达到原来的高度,就会运动得更远。
当第二个斜面变为水平面时,如果没有摩擦力,小球将永远运动下去。
- 意义:伽利略的实验及推理为牛顿第一定律的得出奠定了基础,他指出物体的运动不需要力来维持。
3. 笛卡尔的补充- 笛卡尔在伽利略研究的基础上进一步指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向。
4. 牛顿的总结- 牛顿在总结前人研究成果的基础上,概括出了牛顿第一定律。
物理学史基本知识点总结
物理学史基本知识点总结物理学作为自然科学的重要组成部分,不仅为人类社会的进步和发展做出了重要贡献,同时也是人类认识自然世界的基础。
在物理学的发展历史中,涌现出了许多杰出的科学家和理论,为人类开拓了新的认知空间。
本文将对物理学史的基本知识点进行总结和梳理,以便进一步了解和认识物理学的发展脉络。
一、古代物理学的发展古代物理学是人类认识自然世界的起点,其发展始于古代文明的孕育期。
古埃及、美索不达米亚、印度、中国等国家的古代学者们对自然现象进行了广泛的观察和总结,他们提出了一些原始的物理学观点和理论。
例如,古希腊的毕达哥拉斯学派提出了各种形式的宇宙观,认为万物都是由数学规律统一的。
古代印度的自然哲学家提出了五大元素理论,认为宇宙由地、水、火、风和空间构成。
古代中国的自然哲学家也对自然现象进行了深入的思考,提出了一些关于天文、地理、气象等方面的观点和理论。
二、古典物理学的兴起古典物理学的兴起与文艺复兴时期开始,这一时期的自然科学家们开始进行了广泛的实验和观察,逐渐形成了一些重要的理论和定律。
伽利略是古典物理学的开拓者之一,他进行了大量的实验和观察工作,提出了物体的自由落体定律以及摆的周期定律。
伽利略的理论和实验为力学的发展奠定了基础,同时也为牛顿的力学定律的提出提供了重要的铺垫。
伽利略时期同时期的牛顿,也是古典物理学的重要代表人物。
牛顿提出了一些重要的力学定律,包括牛顿第一定律(惯性定律)、牛顿第二定律(动力定律)、牛顿第三定律(作用与反作用定律)等。
这些定律为后来的物理学研究提供了基本的理论依据。
三、电磁学的崛起19世纪是电磁学的发展时期,许多杰出的科学家通过实验和理论分析,建立了电磁学的基本理论框架。
法拉第对电磁感应现象进行了深入的研究,提出了法拉第电磁感应定律,并开创了现代电磁学的研究。
1888年,麦克斯韦提出了麦克斯韦方程组,统一了电磁场的基本定律,从而奠定了电磁学的基础理论。
四、相对论与量子力学的兴起20世纪初,爱因斯坦提出了狭义相对论和广义相对论,彻底颠覆了牛顿力学的世界观。
物理学史
初中物理学史专题
1、牛顿---光的色散、牛顿第一定律(物体在不受力和受平衡力作用时,将处于静止或匀速直线运动状态)、力的单位。
2、亚里士多德---物体的运动需要力来维持。
3、伽利略---物体的运动不需要力来维持。
4、帕斯卡---裂桶实验、压强的单位。
5、格里克---马德堡半球实验、证明了大气压的存在
6、托里拆利---测出大气压的准确数值(支撑760mm汞柱)。
7、阿基米德---阿基米德原理(浮力等于排开液体的重力)、杠杆的平衡条件(动力乘以动力臂等于阻力乘以阻力臂)。
8、库伦---电荷间的相互作用、电荷量的单位。
9、安培---电流单位、安培定则(右手螺旋定则)。
10、伏特---电压的单位。
11、欧姆---电阻的单位、欧姆定律(揭示了电流,电压,电阻之间的关系)。
12、焦耳---焦耳定律、电流的热效应(电流做功与电流、电阻、时间的关系)。
13、奥斯特---发现了电流的磁效应(通电导线周围有磁场)、是第一个发现电与磁之间联系的科学家。
14、法拉第---电磁感应定律(闭合回路的一部分在磁场中做切割磁感线的运动时,电路当中会有感应电流产生)、用于制作发电机。
15、电动机---通电导线在磁场中受到力的作用。
16、沈括---磁偏角理论(地理的南北极跟地磁的N\S极并不是完全重合)。
物理学史重要史实
1、1638年,意大利物理学家伽利略①论证重物体不会比轻物体下落得快;②伽利略通过斜面理想实验和逻辑推理由牛顿总结得出牛顿第一定律;伽利略通过斜面实验得出自由落体运动位移与时间的平方成正比2、英国科学家牛顿1683年,提出了三条运动定律。
1687年,发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量;3、17世纪,伽利略理想斜面实验指出:水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;4、20爱因斯坦提出的狭义相对论经典力学不适用于微观粒子和高速运动物体。
5、17世纪德国天文学家开普勒提出开普勒三定律;6、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。
7、1752年,富兰克林命名正负电荷8、1820年,丹麦物理学家奥斯特电流可以使周围的磁针偏转的效应,称为电流的磁效应。
9、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。
10、1831年英国物理学家法拉第(1)发现了由磁场产生电流的条件和规律——电磁感应现象;(2)提出电荷周围有电场,并用简洁方法描述了电场—电场线。
11、1834年,楞次确定感应电流方向的定律。
12、1864年英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。
13.人类对天体的认识从“地心说—托勒密”到“日心说—哥白尼”到“开普勒定律”再到“牛顿的万有引力定律”。
直到1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量万有引力定律1、胡克:英国物理学家;发现了胡克定律(F弹=kx)2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。
牛顿第一定律的历史演变
牛顿第一定律的历史演变牛顿第一定律,也被称为惯性定律,是物理学中最基本和最重要的定律之一。
它确立了物体在没有外力作用时的运动状态。
牛顿第一定律的历史演变过程中经历了多位科学家的探索和实验验证,下面将对其历史演变做详细的介绍。
1. 开始牛顿第一定律的严格表述可以追溯到17世纪末期。
在之前,众多古代哲学家和科学家对运动的原因和本质进行了不同的猜测和探讨。
亚里士多德认为,运动需要外力的驱动,否则物体会停止运动。
这种观点一度被广泛接受,直到伽利略的出现。
2. 伽利略的贡献伽利略是牛顿第一定律历史演变过程中最重要的人物之一。
他在16世纪末到17世纪初期,通过实验和理论推导,得出了一系列关于运动的重要结论。
其中之一就是惯性定律的雏形。
伽利略认为,如果没有摩擦和空气阻力,物体会保持恒定的速度和方向进行直线运动。
这种观点与亚里士多德的观点形成了鲜明的对比。
3. 牛顿的发现牛顿第一定律的确立离不开伽利略的先驱性研究,然而,牛顿对惯性定律的发现和表述更加准确和完整。
在1687年,牛顿的《自然哲学的数学原理》中,系统地描述了他的力学定律,其中就包括了第一定律。
牛顿第一定律的严格表述为:“物体在没有外力作用时将保持匀速直线运动或静止状态。
”通过实验和数学推导,牛顿成功地将这一定律表述得更加明确和精确。
4. 两个重要名词的引入牛顿为了更好地表达和解释第一定律,引入了两个重要名词:质量和惯性。
质量是用来度量物体惯性大小的物理量。
牛顿认为物体越大,其惯性就越大。
质量的引入使得牛顿第一定律的表述更加准确和科学。
5. 实验验证伽利略和牛顿的理论成果需要通过实验证实。
实验验证是科学研究不可或缺的一部分,对牛顿第一定律也不例外。
许多科学家对惯性定律进行了大量的实验验证,结果无一例外地支持了这个定律的正确性。
这些实验证明,除非有外力作用于物体,否则物体会保持静止或匀速直线运动。
实验验证进一步巩固了牛顿第一定律在科学世界中的地位。
6. 应用与发展牛顿第一定律的得出不仅对物理学领域产生了重大影响,也对其他科学领域产生了深远影响。
高考三卷物理学史总结归纳
高考三卷物理学史总结归纳物理学是研究自然界中物质和能量运动规律的科学,是自然科学的重要分支。
在高考中,物理是一门重要的科目,占据了一定的分值比例。
因此,掌握物理学史对于高考备考和整体理解物理学的发展趋势非常有帮助。
本文将对高考物理学史的三卷内容进行总结归纳,以助于大家更好地理解物理学的演变过程。
一、高考物理学史总述高考物理学史主要包括三卷:“力与运动”、“电磁学”和“物理学中的能量转化”。
这三卷涵盖了物理学的核心内容,从力学到电磁学再到能量转化,逐渐展示了物理学在各个领域的发展历程。
通过学习这三卷内容,我们可以了解到物理学历史上的重要科学家以及他们提出的理论和实验成果。
二、力与运动“力与运动”卷主要介绍了牛顿力学的发展历程和基本定律。
牛顿是物理学史上最重要的科学家之一,他的三大定律对于力学的发展起到了决定性作用。
在这一卷中,我们将学习到牛顿第一定律的惯性概念,牛顿第二定律的力、质量和加速度之间的关系,以及牛顿第三定律的作用与反作用原理。
此外,我们还将了解到其他物理学家在力学领域的重要贡献,如伽利略的相对运动观念和达尔文的进化论对力学的影响。
三、电磁学“电磁学”卷重点介绍了电磁学的发展历程和重要理论。
电磁学是物理学中的一个重要分支,研究电磁力和磁场对物质的影响。
在这一卷中,我们将学习到库仑定律、电场和磁场的概念,以及电磁感应和电磁波等重要理论。
此外,我们还将了解到麦克斯韦方程组和电磁辐射等电磁学的重要理论发展,以及其他物理学家对电磁学的重要贡献,如法拉第的电磁感应定律和埃尔米特的电磁辐射理论。
四、物理学中的能量转化“物理学中的能量转化”卷主要介绍了能量转化和守恒定律的基本原理。
能量是物理学中一个重要的概念,研究能量的转化和守恒规律对于理解自然界中的各种现象非常重要。
在这一卷中,我们将学习到机械能守恒定律、动量守恒定律和能量守恒定律等重要理论。
此外,我们还将了解到热学、光学和原子物理等领域中的能量转化和守恒原理,以及相关物理学家的重要贡献,如开尔文的热力学第一定律和爱因斯坦的能量-质量关系。
4.“牛顿第一定律”相关的物理学史
“牛顿第一定律”相关的物理学史在《牛顿第一定律》一节梳理物理学史时,很多老师由于对物理学史的生疏,导致读不懂教材,进而给学生讲解这段历史时,也是糊里糊涂的,笔者就此问题作一简单澄清,希望对各位有用。
一、亚里士多德他提出了物体基于“本性”的“自然运动”和在外在作用(推、拉、提、举)下违逆物体本性的“受迫运动”概念。
依其本性不同,他将物体分为三类:一类是地面上的物体,其本性是“好逸恶劳”,其自然运动是静止;一类是空中的物体,其本性是“回到家乡”——重的物体家在大地,轻的物体家在天上,其自然运动是重落轻升;一类是天体,其本性是神圣的,其自然运动就是最完美的最和谐的匀速圆周运动。
物体要违逆本性做受迫运动,必须要外在作用来维持。
——这就是高中课本中所说的:地面上的物体的运动需要“力”来维持,否则它就会停下来。
但其实,亚里士多德并没有提出科学的“力”的概念,他使用的是推、拉、提、举等具体的人格化的词。
二、伽利略伽利略敏锐的把握住了亚里士多德关于地面物体运动的错误之处是在于亚里士多德没有注意摩擦的影响。
伽利略通过理想斜面实验指出,地面上的物体之所以会停下来,是因为物体受到了摩擦;如果没有摩擦等作用,地面上的物体会一直运动下去。
伽利略为了解释物体一直运动下去的原因,提出了“惯性”的概念;伽利略指出,基于惯性,地面上的物体的“自然运动”是匀速运动。
特别提醒,伽利略也没有提出“力”的概念,他用的是摩擦。
但是,他第一次提出了“惯性”的概念。
不过要说明的是,伽利略所谓的地面,实际上是个球面,伽利略提出的“惯性”也可维持地面上的物体绕地球做匀速圆周运动,这和笛卡尔、牛顿的“惯性”概念是有区别的。
另一方面,伽利略通过落体运动的研究,指出了亚里士多德的另一个错误——空中的物体并不是重落轻升,而是下落一样快,伽利略借此实验提出了速度和加速度概念,指出所有落体运动的加速度相同;之所以重落轻升,是因为空气的作用。
三、笛卡尔伽利略是意大利人,笛卡尔是法国人,伽利略是实验物理学家,笛卡尔是集大成的哲学家。
牛顿第一定律物理学史
伽利略的斜面实验在伽利略的落体运动定律的形成过程中,斜面实验起过重要作用。
他在《两门新科学》中对这个实验描述得十分具体,写道“取长约12库比(1库比=45.7厘米)、宽约半库比,厚约三指的木板,在边缘上刻一条一指多宽的槽,槽非常平直,经过打磨,在直槽上贴羊皮纸,尽可能使之平滑,然后让一个非常圆的、硬的光滑黄铜球沿槽滚下,我们将木板的一头抬高一、二库比,使之略呈倾斜,再让铜球滚下,用下述方法记录滚下所需时间。
我们不止一次重复这一实验,使两次观测的时间相差不致超过脉搏的十分之一。
在完成这一步骤并确证其可靠性之后,就让铜球滚下全程的1/4,并测出下降时间,我们发现它刚好是滚下全程所需时间的一半。
接着我们对其他距离进行实验,用滚下全程所用时间同滚下一半距离、三分之二距离、四分之三距离或任何部分距离所用时间进行比较。
这样的实验重复了整整一百次,我们往往发现,经过的空间距离恒与所用时间的平方成正比例。
这对于平面(也即铜球下滚的槽)的各种斜度都成立。
我们也观测到,对于不同的斜度,下降的时间互相间的关系正如作者预计并证明过的比例一样。
“为了测量时间,我们把一只盛水的大容器置于高处,在容器底部焊上一根口径很细的管子,用小杯子收集每次下降时由细管流出的水,不管是全程还是全程的一部分,都可收集到。
然后用极精密的天平称水的重量;这些水重之差与比值就给出时间之差与比值。
精确度如此之高,以至于重复许多遍,结果都没有明显的差别。
”这个实验设计是安排得何等巧妙啊!许多年来,人们都确信伽利略就是按他所述的方案做的。
在历史博物馆中甚至还陈列着据说是伽利略当年用过的斜槽与铜球。
但是,当人们重复伽利略上述实验时,却发现很难得到如此高的精确度。
更不能使斜槽的倾斜度任意提高。
有人证明,贴了羊皮纸的木槽,实验误差反而更大了。
20世纪中叶,科学史专家库依雷(Koyré)提出一种见解,认为伽利略的斜面实验与他在书上描述的其它许多实验一样,都是虚构的,伽利略的运动定律源于逻辑推理与理想实验。
牛顿第一定律学情分析
《牛顿第一定律》学情分析《牛顿第一定律》是第十二章《运动和力》的第五节的内容,是《运动和力》的核心内容。
《力和运动》是力学的基础也是力学中较重要的部分。
这一章首先讲述了自然界的普遍规律、最简单的运动——机械运动,而后通过力的作用效果过对力有简单的认识,最后通过牛顿第一定律来认识运动和力的关系。
由于实际中物体处于平衡态并非不受力,所以,本章的最后一节《平衡力》又补充了运动和力的关系。
《牛顿第一定律》教材分三个标题:“维持运动需要力吗?”“牛顿第一定律”“惯性”。
三个标题的关系是连续递进的。
“维持运动需要力吗?”是对现象的思考判断;“牛顿第一定律”是通过现象的分析、“阻力对运动影响”的实验结论、概括前人的经验,推理得出的规律。
“惯性”是和规律有关又不同于规律的一种现象。
三者的关系非常紧密又有所不同。
同样是现象意义也不同,“维持运动需要力吗?”是自然现象,“惯性”现象是伴随规律生成的,作为物理概念出现的。
在教学上,同是现象,教学处理不同。
学生脑中对于运动和力的关系多与亚里士多德的观点相同,而牛顿第一定律又是理想定律,是物体不受力的情况下的,与生活实际有距离,这就引起学生在理解上会出现故障。
也是历来学生在做这部分习题时容易出现问题的原因。
惯性现象是自然界、生活中的普遍现象,现象的具体的但是概念是抽象的,“惯性”概念对学生又是一个难点,尤其是对于惯性现象的解释。
【教学建议】一、“维持运动需要力吗?”教材这一部分先从生活中常见的现象入手,如“在平地上骑自行车的时候,即使不睬脚踏板,车也会前进一段距离,但是没有继续用力,它最终会停下来”包括两个含义物体不受力也会继续运动,最后停下来需要力的作用。
但是如果断章取义就会得出亚里士多德的观点。
此处绝好的人文教育题材,关于运动和力的关系的讨论经历了2000多年,从亚里士多德,到伽利略等其他学家,再到牛顿,说明一个规律的发现需要经历多人的不懈努力,经过否定、完善建立起来。
牛顿第一定律的发展
牛顿第一定律的发展作者:张欣怡来源:《读与写·教育教学版》2018年第12期摘要:牛顿第一定律的发展不仅经历了亚里士多德、伽利略、笛卡儿和牛顿,中间还经过许多人的努力,才使得它不断的发展和完善,在教学中呈现一个完整的牛顿第一定律发展史具有重要的教育意义。
关键词:牛顿第一定律物理学史教育意义中图分类号:G642 文献标识码:A 文章编号:1672-1578(2018)12-0039-01一般人们认为牛顿第一定律的发展仅仅经历亚里士多德、伽利略、笛卡儿和牛顿,这个认识是不完整的,它的发展和完善还经过许多人的努力,这值得探讨。
1 亚里士多德的运动观亚里士多德把运动分为自然运动和强迫运动。
他错误的把力与速度直接联系起来,表面上能解释一些日常现象,还包含静止惯性的观点,但实际是错误的。
这是由于当时生产力不发达,思想受宗教束缚,没掌握科学的方法致使他得到错误的结论。
并延续了2000多年,阻碍科学的进步,但无法忽略他在学术领域的成就和影响。
他是当时的集大成者,在科学上做出了巨大的贡献,不应把他看作阻碍科学进步的代表,一味地进行批判,可借鉴哈佛大学的校训来客观评价。
2 古代对惯性定律的认识公元前342-270,伊壁鸠鲁曾猜想:原子在虚空运动而没任何东西与它们发生碰撞时,一定以相等的速度运动,直到有东西从外部阻止它们,或原子本身的重量与打击它的物体发生反作用而受阻。
他把等速运动看作惯性运动的一种表述,这实际是对惯性运动最早的表述,但这只是一个猜想。
3 冲力说的作用公元6世纪,约翰.菲劳波诺斯在否认天体是神推动时,提出上帝赋予天体一种冲力,它不随时间消逝,维持物体永远运动。
奥姆卡从磁现象中想到超距作用,运动的物体不一定需要另一物体维持推动。
布里丹又提出两条论证:陀螺旋转时并不改变位置,也没持续不断的形成虚空,但它仍在外力消失时转动;一根尾端切平的标枪并不比一根尾端也是尖的标枪飞得更快,他认为这是冲力在起作用,冲力大小和物体密度、体积以及初速度成正比。
物理学史
物理学简史1、我国春秋战国时期的墨子在《墨经》中最早记录了小孔成像。
2、我国宋代沈括在《梦溪笔谈》中最早记录了磁偏角。
3、英国物理学家焦耳测定了热和机械功之间的当量关系;1840年通过实验最先精确确定电流的热量跟电流、电阻和通电时间的关系(即焦耳定律),因此功和能量的单位命名为“焦耳”(J)。
4、1820年丹麦物理学家奥斯特发现通电导体周围存在磁场,即发现了电流的磁效应(即首先发现电和磁有联系)。
5、1831年英国科学家法拉第发现电磁感应现象(进一步揭示电和磁的联系),导致发动机的发明,实现了机械能转化为电能。
6、1897年英国物理学家汤姆生发现“电子”,卢瑟福提出了原子核式结构模型,类似太阳系。
7、英国物理学家牛顿建立了牛顿第一定律(又叫惯性定律)、用三棱镜做光的色散实验,提出自然光是复色光。
为了纪念他,力的单位命名为“”牛顿(N)8、法国物理学家帕斯卡发现了帕斯卡定律,为了纪念他,压强的单位命名为“帕斯卡”(Pa)9、法国科学家安培被后人誉为“电学的牛顿”,他发明了电流表、总结了判定通电螺线管的极性跟电流方向关系的法则(即安培定则),为了纪念他,电流的单位命名为“安培”(A)。
10、德国物理学家欧姆首先通过实验得到电流跟电压、电阻定量关系(即欧姆定律),为了纪念他,电阻的单位命名为“欧姆”(Ω)。
11、1864年英国青年物理学家麦克斯韦预言了电磁波的存在,建立了电磁场理论;1888年德国青年物理学家赫兹第一次用实验证实了电磁波的存在,为了纪念他,频率的单位命名为“赫兹”(Hz)12、意大利物理学家伏特发明了伏打电池,为了纪念他,电压的单位命名为“伏特”(V)13、英国物理学家瓦特改进了蒸汽机,为了纪念他,功率的单位命名为“瓦特”(W)14、意大利物理学家托里拆利第一次用实验测出了大气压强的值,由于首先发现了真空,被称为“真空的鼻祖”。
15、意大利伽利略发现了等时性原理、首先用望远镜观察、总结了天体运动规律,被誉为“经典力学和实验物理学的先驱”。
高中物理学史试题及答案
高中物理学史试题及答案一、选择题1. 牛顿第一定律,也被称为惯性定律,它描述了物体在没有外力作用时的运动状态。
请问牛顿第一定律是由哪位科学家提出的?A. 伽利略B. 牛顿C. 爱因斯坦D. 法拉第答案:B2. 电磁感应现象是由哪位科学家首次发现的?A. 奥斯特B. 法拉第C. 麦克斯韦D. 特斯拉答案:B3. 光的波粒二象性是指光既具有波动性又具有粒子性。
这一理论的提出者是:A. 牛顿B. 爱因斯坦C. 普朗克D. 波尔答案:B二、填空题4. 法拉第发现了电磁感应现象,并提出了______定律,这是电磁学的基础之一。
答案:法拉第电磁感应5. 爱因斯坦的相对论包括狭义相对论和广义相对论,其中狭义相对论的核心原理是______和______。
答案:相对性原理;光速不变原理三、简答题6. 简述牛顿的三大运动定律及其意义。
答案:牛顿的三大运动定律包括:第一定律(惯性定律),即物体在没有外力作用时,总保持静止或匀速直线运动状态;第二定律(加速度定律),即物体的加速度与作用力成正比,与物体的质量成反比;第三定律(作用与反作用定律),即对于每一个作用力,都有一个大小相等、方向相反的反作用力。
这三大定律是经典力学的基础,对物理学和工程学的发展产生了深远影响。
7. 描述麦克斯韦方程组的主要内容及其在电磁学中的重要性。
答案:麦克斯韦方程组包括四个方程:高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定理(包含麦克斯韦修正项)。
这组方程描述了电场、磁场与电荷、电流之间的关系。
麦克斯韦方程组是电磁学的基础,它不仅解释了电磁现象,还预言了电磁波的存在,对现代通信和无线技术的发展起到了关键作用。
四、计算题8. 已知一个物体的质量为2kg,受到的外力为10N,根据牛顿第二定律计算该物体的加速度。
答案:根据牛顿第二定律,F=ma,其中F为力,m为质量,a为加速度。
将已知数值代入公式,得到a = F/m = 10N / 2kg = 5m/s²。
高中物理学史
高中物理学史1、1638年,意大利物理学家伽利略①论证重物体不会比轻物体下落得快;②伽利略的通过斜面理想实验和牛顿逻辑推理得出牛顿第一定律;伽利略通过斜面实验得出自由落体运动位移与时间的平方成正比③伽利略发现摆的等时性(周期只与摆的长度有关),惠更斯根据这个原理制成历史上第一座摆钟2、英国科学家牛顿1683年,提出了三条运动定律。
1687年,发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量;3、17世纪,伽利略理想实验法指出:水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;4、20爱因斯坦提出的狭义相对论经典力学不适用于微观粒子和高速运动物体。
5、17世纪德国天文学家开普勒提出开普勒三定律;6、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。
7、1752年,富兰克林(1)过风筝实验验证闪电是电的一种形式,把天电与地电统一起来,并发明避雷针。
(2)命名正负电荷(3)1751年富兰克林发现莱顿瓶放电可使缝衣针磁化8、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。
9、1911年荷兰科学家昂尼斯大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。
10、1841~1842年焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律。
11、1820年,丹麦物理学家奥斯特电流可以使周围的磁针偏转的效应,称为电流的磁效应。
12、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。
13、1831年英国物理学家法拉第(1)发现了由磁场产生电流的条件和规律——电磁感应现象;(2)提出电荷周围有电场,并用简洁方法描述了电场—电场线。
14、1834年,楞次确定感应电流方向的定律。
15、1832年,亨利发现自感现象。
16、1864年英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。
牛顿第一定律的发展史简述
牛顿第一定律的发展史简述下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!牛顿第一定律,也被称为惯性定律,是牛顿力学的基础之一。
牛顿第一定律的发展史简述
牛顿第一定律的发展史简述牛顿第一定律,也被称为“惯性定律”,是经典力学的基本定律之一。
它最早由古希腊的哲学家亚里士多德提出,后来在17世纪由英国科学家伽利略和伽利略的学生伽利略·伽利莱进一步发展并得到了普及。
然而,真正将这个定律系统化并加以阐述的是英国科学家艾萨克·牛顿,他于1687年在《自然哲学的数学原理》中首次提出了这个定律。
牛顿第一定律的内容是:任何物体都将继续保持静止状态或匀速直线运动状态,除非受到外力的作用,这个外力将改变物体的状态。
换言之,一个物体要么保持静止,要么保持匀速直线运动,直到有力量改变它们的状态。
这个定律描述了物体的惯性,即物体具有保持其原有状态的倾向。
在牛顿第一定律的发展史上,有一些关键的里程碑事件,如下所述:1. 伽利略的实验:伽利略在16世纪后期进行了一系列的实验,研究自由落体运动以及斜面上的物体运动。
通过这些实验,伽利略提出了物体在没有受到外力的情况下会保持匀速直线运动的观点。
这为牛顿的第一定律奠定了基础。
2. 牛顿的贡献:牛顿在他的《自然哲学的数学原理》中详细阐述了物体的运动定律,其中包括第一定律。
牛顿将伽利略的观点系统化,并提出了一个全面的力学体系,打下了经典力学的基础。
3. 惯性观念的确立:牛顿第一定律的提出,确立了物体的惯性观念。
这个观念影响深远,不仅推动了力学的发展,还对其他科学领域产生了影响,如相对论和量子力学等。
4. 实验验证:随着科学技术的发展,人们通过实验验证牛顿第一定律的正确性。
例如,人们通过在真空条件下运行实验,证明物体在没有外力作用下将保持匀速直线运动。
总的来说,牛顿第一定律的发展史是一个渐进的过程,经历了从古代哲学家的思辨到伽利略的实验研究,再到牛顿的系统阐述,最终到实验验证的过程。
这个过程中,科学家们不断探索和丰富物体的运动规律,为现代科学的发展奠定了坚实的基础。
牛顿第一定律的提出,对于整个自然科学领域的发展起到了积极的推动作用,成为了经典力学的基石之一。
《牛顿第一定律》选择题
《牛顿第一定律》选择题1.下列有关物理学史的说法正确的是()A.牛顿第一定律是伽利略总结牛顿等人的研究结果得出的B.阿基米德原理就是杠杆的平衡条件C.欧姆发现了同一段导体中的电流跟电压和电阻之间的定量关系D.法拉第电磁感应实验表明,电流的周围存在磁场2.许多交通事故是因物体惯性造成的.下列交通规则与惯性无关的是()A.系安全带 B.保持车距 C.限速行驶 D.靠右行驶3.下列关于惯性的说法正确的是()A.高速行驶的火车不容易停下来,说明速度越大惯性越大B.跳高运动员助跑起跳是为了增大惯性C.羽毛球容易被扣杀是因为它的惯性小D.宇宙飞船在太空中运行时没有惯性4.下列现象中,不能用惯性知识解释的是()A.司机开车时需要系安全带 B.运动员跳远时需要助跑C.骑自行车时为了减速捏紧车闸 D.投出的铅球离开手后继续向前运动5.下列说法正确的是()A、运动的物体有惯性,静止的物体没有惯性B、彼此不相互接触的物体不可能发生力的作用C、在平衡力的作用下,物体一定处于静止状态D、静止在水平桌面上的书,书的重力和桌面对书的支持力是一对平衡力6.将一块平放于地面的砖,改为竖放于地面,则下列说法不正确的是()A.质量不变;B.密度不变;C.惯性不变;D.对地压强不变。
7.物体在一水平拉力作用下沿水平面做匀速直线运动,现突然撤去拉力,物体将()A.继续做匀速直线运动B.立即停止C.立即减速直到静止D.运动方向立即发生变化8.举重比赛要求运动员将杠铃举过头顶后,在空中至少静止3秒钟,在这3秒钟内()A.杠铃受到的重力和人对它的支持力是平衡力B.运动员所受的重力和地面对他的支持力是平衡力C.运动员在用力向上支持杠铃,因此他对杠铃做了功D.杠铃对运动员的压力和人对它的支持力是平衡力9.一位司机驾驶大货车在某路段行驶,由于超速被警察拦住,警察对司机说:“先生,刚才你的车速为70km/h,超速了。
”这位司机不满地说:“为什么小车的限速为80km/h,而大车的限速却为60km/h,不合理!”如果让你从物理学角度向司机解释,你会告诉他,这是由于()A.物体的惯性跟速度和质量有关B.摩擦力的大小跟速度和质量有关C.物体的动能跟速度和质量有关D.压强的大小跟速度和质量有关10.人类在探索自然规律的过程中,总结许多科学研究方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“牛顿第一定律”相关的物理学史
湖北省恩施高中陈恩谱
在《牛顿第一定律》一节梳理物理学史时,很多老师由于对物理学史的生疏,导致读不懂教材,进而给学生讲解这段历史时,也是糊里糊涂的,笔者就此问题作一简单澄清,希望对各位有用。
一、亚里士多德
他提出了物体基于“本性”的“自然运动”和在外在作用(推、拉、提、举)下违逆物体本性的“受迫运动”概念。
依其本性不同,他将物体分为三类:一类是地面上的物体,其本性是“好逸恶劳”,其自然运动是静止;一类是空中的物体,其本性是“回到家乡”——重的物体家在大地,轻的物体家在天上,其自然运动是重落轻升;一类是天体,其本性是神圣的,其自然运动就是最完美的最和谐的匀速圆周运动。
物体要违逆本性做受迫运动,必须要外在作用来维持。
——这就是高中课本中所说的:地面上的物体的运动需要“力”来维持,否则它就会停下来。
但其实,亚里士多德并没有提出科学的“力”的概念,他使用的是推、拉、提、举等具体的人格化的词。
二、伽利略
伽利略敏锐的把握住了亚里士多德关于地面物体运动的错误之处是在于亚里士多德没有注意摩擦的影响。
伽利略通过单斜面实验和双斜面实验指出,地面上的物体之所以会停下来,是因为物体受到了摩擦;如果没有摩擦等作用,地面上的物体会一直运动下去。
伽利略为了解释物体一直运动下去的原因,提出了“惯性”的概念;伽利略指出,基于惯性,地面上的物体的“自然运动”是匀速运动。
特别提醒,伽利略也没有提出“力”的概念,他用的是摩擦。
但是,他第一次提出了“惯性”的概念。
另一方面,伽利略通过落体运动的研究,指出了亚里士多德的另一个错误——空中的物体并不是重落轻升,而是下落一样快,伽利略借此实验提出了速度和加速度概念,指出所有落体运动的加速度相同;之所以重落轻升,是因为空气的作用。
三、笛卡尔
伽利略是意大利人,笛卡尔是法国人,伽利略是实验物理学家,笛卡尔是集大成的哲学家。
笛卡尔了解同时代的伽利略的工作,他用他哲学家的敏锐眼光看到了伽利略工作的伟大意义,并对伽利略的结论进行了哲学式的推广:自然界一切物体都具有相同的本性——惯性,自然界一切物体基于惯性的自然运动都是匀速直线运动!笛卡尔把这一原则称之为他的自然哲学的第一定律,他认为第一定律是新物理学的基础。
可以说,是伽利略打开了新物理学的大门,是笛卡尔开创了新物理学的理论基础。
在此也要指出,笛卡尔也没有建立科学的力的概念。
笛卡尔为物理学建立了一个描述运动多少的守恒量——动量mv。
四、牛顿
牛顿站在巨人们的肩膀上,用他欧氏几何的理论建构精神,建立起了他的运动定律体系;他建立的牛顿第一定律,巩固了笛卡尔关于自然界一切物体本性和自然运动的认知,并进一步创造了科学的“力”的概念——使物体违逆自然本性做变速运动(受迫运动)的原因,叫做力,即力是产生加速度的原因。
牛顿的最大贡献,就是建立了力的概念,并以第二定律的形式,定量的给出了力的大小的定义——力的大小等于物体动量对时间的变化率,从而为新物理学奠定了坚实而便捷的理论分析基础。
当然,牛顿第一定律建立力的概念,牛顿第二定律定量的定义了力的大小,但是这两个定律却没有揭示力的来源与本性,牛顿进一步建立了力的本性中的最通用原则——力的作用是相互的,即牛顿第三定律。
牛顿据此研究了天体的运动,在开普勒行星运动定律的基础上,利用第二、第三定律,牛顿得出了物理学史上第一相互作用——万有引力的决定式,指出了质量作为力的一个来源的事实。
开普勒的贡献是打破了天体做匀速圆周运动的神话,牛顿的贡献是将天上地下的物体统一了起来,它们本性一样,自然运动一样,受迫运动的规律也是一样的,宇宙万物都在牛顿运动定律的统治下运动。