机械设计 机械零件的常用材料及结构工艺性

合集下载

《机械设计基础》课程标准

《机械设计基础》课程标准

《机械设计基础》课程标准一、课程性质与定位本课程是为研究机械类产品的设计、开发、制造、维护保养等提供必要的理论基础,它是机械制造与自动化专业必修的一门专业技术基础课。

该课程定位于高等职业教育,强调对学生进行专业思维能力.专业实践能力和动手能力的培养,按照“必需、够用”为度的原则呈现课程内容的针对性和应用性,注重提高学生分析问题、解决问题的能力,把创新素质的培养贯穿于教学中。

通过采用行之有效的教学方法,注重发展学生专业思维和专业应用能力,从理论性、系统性很强的基础课和专业基础课向实践性较强的专业课过渡的一个重要转折点,在教学中具有承上启下的作用,课程知识掌握的程度直接影响到后续课程的学习。

二、课程设计与理念1、以专业教学计划培养目标为依据,以岗位需求为基本出发点,以学生发展为本位,设计课程内容。

2、让学生在了解常用机构及机械零部件的基本知识及设计方法和设计理论的基础上,能进行简单机械及传动装置的设计,培养学生初步解决工程实际问题的能力。

3、在课程实施过程中,充分利用课程特征,加大学生工程体验和情感体验的教学设计,激发学生的主体意识和学习兴趣。

三、课程目标(一)知识目标1、掌握常用机构的工作原理、特点、应用及设计的基本知识。

2、掌握通用机械零件的工作原理、特点、结构、标准。

3、掌握及通用机械零件的选用和设计的基本方法。

(二)能力目标1、分析机构和选择传动方案的能力。

2、初步具有分析、选用和设计机械零部件及简单机械传动装置的能力。

3、具有运用标准、规范、手册、图册等有关技术资料的能力。

(三)素质目标1、培养学生具有创新精神和实践能力。

2、培养严谨的科学态度和良好的职业道德。

3、在以实际操作为主的项目教学过程中,锻炼学生的团队合作能力;采用项目化教学,按项目的不同采用任务驱动、项目导向等教学模式,培养专业技术交流的表达能力;制定工作计划的方法能力;获取新知识、新技能的学习能力;解决实际问题的工作能力。

四、课程教学内容及学时分配五、教学方法与手段(一)教学方法《机械设计基础》是一门专业基础课,既有较强的理论性,如概念、公式多,又有较强的实践性,如计算题量大、试验繁琐、课程设计等。

机械设计常用材料及特性简介

机械设计常用材料及特性简介
锈钢等
结构钢是指符合特定强度和可成形性等级的钢。可成形性以抗拉试验中断后伸长率表示 。结构钢一般用于承载等用途,在这些用途中钢的强度是一个重要设计标准
模具钢大致可分为:冷轧模具钢、热轧模具钢和塑料模具钢三类,用于锻造、冲压、切 型、压铸等。由于各种模具用途不同,工作条件复杂,因此对模具用钢,按其所制造模 具的工作条件,应具有高的硬度、强度、耐磨性,足够的韧性,以及高的淬透性、淬硬 性和其他工艺性能。由于这类用途不同,工作条件复杂,因此对模具用钢的性能要求也
SUS410为马氏体不锈钢,淬透性好它具有较高的硬度,韧性,较好的耐腐性, 热强性和冷变形性能,减震性也很好。要求高温或低温回火,但应避免在370560℃之间进行回火处理 SUS420钢材高韧性,高硬度空冷淬硬高铬工具钢,比SKD钢材的硬度及韧性 好,高镜面、高耐蚀。热处理尺寸变化小,SUS420宜线割加工。 高硬度和较好的耐磨性能,在打磨时,它的缺点是粘性比较大,而且升温很 快,但它比任何碳钢都更容易打磨,用手锯切料也容易得多。440C的退火温度 很低,硬度通常达到HRC56-58,耐蚀性和韧性都很强,现更广泛应用于手制刀 及优质厂制刀具
不同
弹簧钢是指由于在淬火和回火状态下的弹性,而专门用于制造弹簧和弹性元件的钢。钢 的弹性取决于其弹性变形的能力,即在规定的范围之内,弹性变形的能力使其承受一定 的载荷,在载荷去除之后不出现永久变形。弹簧钢应具有优良的综合性能,如力学性能 (特别是弹性极限、强度极限、屈强比)、抗弹减性能(即抗弹性减退性能,又称抗松 弛性能)、疲劳性能、淬透性、物理化学性能(耐热、耐低温、抗氧化、耐腐蚀等)。 为了满足上述性能要求,弹簧钢具有优良的冶金质量(高的纯洁度和均匀性)、良好的 表面质量(严格控制表面缺陷和脱碳)、精确的外形和尺寸

机械零件设计概论

机械零件设计概论

2. 塑料 塑料的比重小,易于制成形状复杂的零件, 而且各种不同塑料具有不同的特点,如耐蚀性、绝热 性、绝缘性、减摩性、摩擦系数大等,所以近年来在 机械制造中其应用日益广泛。 3.其它非金属材料:皮革、木材、纸板、棉、丝等。
各种材料的化学成分和力学性能可在相关国标、行标 和机械设计手册中查得。
选用原则: 优选碳素钢,其次是硅、锰、硼、钒类合金钢。
将零件的型式、规格、实验方法 、质量鉴定及标号等标准化,在 机械制造中具有重大意义。设计人员在设计时如无特殊要求,就应 当采用国家标准。
(二)机械零件设计中的标准化
零件的标准化,就是通过对零件的尺寸、结构要素、材料性能、检 验方法、设计方法、制图要求等,制定出各种各样的大家共同遵守 的标准。 1、标准化的内容 标准化工作包括三方面的内容,即标准化、系列化和通用化,简称 为机械产品的“三化”。 1)、标准化 是指对机械零件种类、尺寸、结构要素、材料性质、检验方法、公 差配合和制图规范等制定出相应的标准,供设计、制造时共同遵照 使用。 2)、系列化 将同一类产品的主要参数、型式、尺寸、基本结构等依次分档,制 成系列化产品,以较少的规格品种满足用户的广泛要求。 3)、通用化 将用途、结构相近的零部件(如轴承、螺栓等),经过统一后实现 互换。
(三)、我国标准化的分类
标准层次:国际标准、国家标准、行业标准、企业标准
代号为 ISO
GB J号) -××××(为 批准年代) 强制性国标必须严格遵照执行,否则就是违法。
推荐性国家标准:代号为GB/T ××××-××××,这类标准 占整个国标中的绝大多数。如无特殊理由和特殊需要,必须遵守这 些国标,以期取得事半功倍的效果。
1.退火 退火是将钢加热到一定温度,保温一段时间,然后工件随 炉温缓慢冷却。退火可消除因锻造、焊接等产生的内应力,降低硬 度以改善切削加工性能。

机械零件的常用材料特性及应用

机械零件的常用材料特性及应用


用 材



易耐 要
:
性易
熱度
導硬
處性

/
充 分
/



/
理 性
考考考選熱
耐慮慮用
/

磨韌成 性性本 時時時

(S45C)

(SCM440/SK2)

(SKS3/SKD11/SKH61)
2.铝合金:防 锈铝、硬铝 、 超硬铝、锻铝、 型材等。
特点: 防锈铝(抗蚀性、压力加工性与焊接性能好,
鍍Cr 高硬度,耐磨性,耐蝕性
鋼/
銅及合金
鍍Ni 耐蝕性,穩定性
鋼/
表面处理:
銅及合金
鍍Zn 防腐性,不脫落

發藍 防蝕性

染黑 防蝕性

陽極處理 鋁
防蝕性,防氧化
2.选材原则——材料的经济性
从实际出发,全面考虑机械性能、 工艺性能、生产成本。
降低成本,就近取材; 考虑材料生产、供应情况; 选材少而集中,便于采购和管理
塑料 橡胶 合成纤维
一、金属材料
常用金 属材料
铸铁 ----含碳量>2% 钢 ----含碳量≤ 2%
铜合金
铁碳合金
1.钢:结构钢、工具钢、特殊钢(不锈钢、耐热钢、 耐酸钢等)、碳素结构钢、合金结构钢、铸钢等。
特点:与铸铁相比,钢具有高的强度、韧性和塑性。 可用热处理方法改善S45C),其次是硅、锰、硼、钒类合
零件毛坯获取方法:辗压、铸造。
应用:应用范围广泛。
二、非金属材料
1. 橡胶 橡胶富于弹性,能吸收较多的冲击能量。 常用作联轴器或减震器的弹性元件、带传动的胶带等。 硬橡胶可用于制造用水润滑的轴承衬。

机械设计基础知识点总结

机械设计基础知识点总结

绪论:机械:机器与机构的总称。

机器:机器是执行机械运动的装置,用来变换或传递能量、物料、信息。

机构:是具有确定相对运动的构件的组合。

用来传递运动和力的有一个构件为机架的用构件能够相对运动的连接方式组成的构件系统统称为机构。

构件:机构中的(最小)运动单元一个或若干个零件刚性联接而成。

是运动的单元,它可以是单一的整体,也可以是由几个零件组成的刚性结构。

零件:制造的单元。

分为:1、通用零件,2、专用零件。

一:自由度:构件所具有的独立运动的数目称为构件的自由度。

运动副:使两构件直接接触并能产生一定相对运动的可动联接。

高副:两构件通过点或线接触组成的运动副称为高副。

低副:两构件通过面接触而构成的运动副。

根据两构件间的相对运动形式,可分为转动副和移动副。

F = 3n- 2PL-PH机构的原动件(主动件)数目必须等于机构的自由度。

复合铰链:虚约束:重复而不起独立限制作用的约束称为虚约束。

计算机构的自由度时,虚约束应除去不计。

局部自由度:与输出件运动无关的自由度,计算机构自由度时可删除。

二:连杆机构:由若干构件通过低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。

铰链四杆机构:具有转换运动功能而构件数目最少的平面连杆机构。

整转副:存在条件:最短杆与最长杆长度之和小于或等于其余两杆长度之和。

构成:整转副是由最短杆及其邻边构成。

类型判定:(1)如果:lmin+lmax≤其它两杆长度之和,曲柄为最短杆;曲柄摇杆机构:以最短杆的相邻构件为机架。

双曲柄机构:以最短杆为机架。

双摇杆机构:以最短杆的对边为机架。

(2)如果:lmin+lmax>其它两杆长度之和;不满足曲柄存在的条件,则不论选哪个构件为机架,都为双摇杆机构。

急回运动:有不少的平面机构,当主动曲柄做等速转动时,做往复运动的从动件摇杆,在前进行程运行速度较慢,而回程运动速度要快,机构的这种性质就是所谓的机构的“急回运动”特性。

压力角:作用于C点的力P与C点绝对速度方向所夹的锐角α。

(完整版)机械设计基础知识点整理

(完整版)机械设计基础知识点整理

1、机械零件常用材料:普通碳素结构钢(Q屈服强度)优质碳素结构钢(20平均碳的质量分数为万分之20)、合金结构钢(20Mn2锰的平均质量分数约为2%)、铸钢(ZG230-450屈服点不小于230,抗拉强度不小于450)、铸铁(HT200灰铸铁抗拉强度)2、常用的热处理方法:退火(随炉缓冷)、正火(在空气中冷却)、淬火(在水或油中迅速冷却)、回火(吧淬火后的零件再次加热到低于临界温度的一定温度,保温一段时间后在空气中冷却)、调质(淬火+高温回火的过程)、化学热处理(渗碳、渗氮、碳氮共渗)3、机械零件的结构工艺性:便于零件毛坯的制造、便于零件的机械加工、便于零件的装卸和可靠定位4、机械零件常见的失效形式:因强度不足而断裂;过大的弹性变形或塑性变形;摩擦表面的过度磨损、打滑或过热;连接松动;容器、管道等的泄露;运动精度达不到设计要求5、应力的分类:分为静应力和变应力。

最基本的变应力为稳定循环变应力,稳定循环变应力有非对称循环变应力、脉动循环变应力和对称循环变应力三种6、疲劳破坏及其特点:变应力作用下的破坏称为疲劳破坏。

特点:在某类变应力多次作用后突然断裂;断裂时变应力的最大应力远小于材料的屈服极限;即使是塑性材料,断裂时也无明显的塑性变形。

确定疲劳极限时,应考虑应力的大小、循环次数和循环特征7、接触疲劳破坏的特点:零件在接触应力的反复作用下,首先在表面或表层产生初始疲劳裂纹,然后再滚动接触过程中,由于润滑油被基金裂纹内而造成高压,使裂纹扩展,最后使表层金属呈小片状剥落下来,在零件表面形成一个个小坑,即疲劳点蚀。

疲劳点蚀危害:减小了接触面积,损坏了零件的光滑表面,使其承载能力降低,并引起振动和噪声。

疲劳点蚀使齿轮。

滚动轴承等零件的主要失效形式8、引入虚约束的原因:为了改善构件的受力情况(多个行星轮)、增强机构的刚度(轴与轴承)、保证机械运转性能9、螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹10、自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角11、螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁性好,故常用于连接;矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动12、螺旋副的效率:η=有效功/输入功=tanλ/tan(λ+ψv)一般螺旋升角不宜大于40°。

机械设计基础

机械设计基础

第一章 机械零件常用材料和结构工艺性Q235:Q :“屈”,235:屈服点值50号钢:平均碳的质量分数为万分之50的钢第二章:机械零件工作能力计算的理论基础(必考或者二选一)+计算1, 在零件的强度计算中,为什么要提出内力和应力的概念因为要确定零件的强度条件内力:外力引起的零件内部相互作用力的改变量。

应力为截面上单位面积的内力。

2, 零件的受力和变形的基本形式有哪几种试各列出1~2个实例加以说明。

轴向拉伸和压缩;剪切和挤压;扭矩;弯曲△第四章 螺旋机构 P68四选一1、试比较普通螺纹与梯形螺纹有哪些主要区别为什么普通螺纹用于连接而梯形螺纹用于传动普通螺纹的牙型斜角β较大,β越大,越容易发生自锁,所以普通螺纹用于连接。

β越小,传动效率越高,固梯形螺纹用于传动。

2、在螺旋机构中,将转动转变为移动及把移动转变为转动有什么条件限制请用实例来说明螺母与螺杆的相对运动关系。

转动变移动升角要小,保证可以自锁;而升角大的情况下,移动可转为转动3、具有自锁性的机构与不能动的机构有何本质区别自锁行的机构自由度不为0,而不能动的机构自由度为04、若要提高螺旋的机械效率,有哪些途径可以考虑降低摩擦,一定范围内加大升角,降低牙型斜角;采用多线螺旋结构EAL F L N=∆第五章平面连杆1、为什么连杆机构又称为低副机构它有那些特点因为连杆机构是由若干构件通过低副连接而成的特点是能实现多种运动形式的转换2、铰链四连杆机构有哪几种重要形式它们之间只要区别在哪里1,曲柄摇杆机构2,双曲柄机构3,双摇杆机构区别:是否存在曲柄,曲柄的数目,以及最短杆的位置不同。

3、何谓“整转副”、“摆转副”铰链四杆机构中整转副存在的条件是什么整转副:如果组成转动副的两构件能作整周相对转动,则该转动副称为整转副摆转副:如果组成转动副的两构件不能作整周相对转动……条件:1,最长杆长度+最短杆长度≤其他两杆长度之和(杆长条件)2,组成整转副的两杆中必有一个杆为四杆中的最短杆。

机械零件的常用材料和结构工艺性(共40张PPT)

机械零件的常用材料和结构工艺性(共40张PPT)

4、工程塑料
在工程中用来作结构或传动件材料的塑料,具有较高 的强度,质量轻,绝缘性、减摩耐磨/3
3、有色金属
1) 铜及铜合金 黄铜:Cu与Zn(≥15%)合金 青铜 锡青铜:Cu与Sn的合金 无锡青铜:Cu与Al、Si、Pb等的合金 铜的力学性能很低,在机械工业中的应用并不多。 2) 铝及铝合金 形变铝合金:防锈铝、锻铝等 铸造铝合金 (应用最广的轻金属)
2019/2/3
9
1)铜及铜合金
15 12 砂 模 金属模 砂 模 金属模 棒 材


中等强度零件及焊接件,如 螺栓、铆钉、接头、骨架等 高强度零件、大梁、框架等 中等强度、形状复杂的零件, 如支架、客体、发动机附件 等
222
1
铝及铝合金是应用最广的轻金属,纯铝有良好的塑性、耐 蚀性、导电性、导热性和焊接性。
2019/2/3 11


315~430 335~450 375~500
33 31 26
冲压件、焊接件及受载小的机械零件,如垫圈, 开口销、地脚螺栓等 焊接件、金属结构件及螺栓、螺母、铆钉、销 轴、连杆、支座等受载不大的机械零件
410~550 490~630
255 275
24 20
金属结构件及螺栓、螺母、垫圈、楔、转轴、 心轴、链轮、吊钩、连杆等受力较大的机械零 件
抗拉强度 σb /MPa 450 500
屈服点σs /MPa 230 270
伸长率δ /% 22 18


机座、机盖、箱体等。焊接性良好 飞轮、机架、蒸汽锤、联轴器、水压机 工作缸,焊接性尚好
570
640
310
340
15
10
联轴器、气缸、齿轮、重载荷机架

常用机加工材料

常用机加工材料

常用机加工材料机加工材料是指用于机械加工制造的各种金属和非金属材料。

在机加工过程中,选择合适的材料对于产品的质量、成本和生产效率都起着至关重要的作用。

下面将介绍一些常用的机加工材料及其特点。

1. 钢材。

钢材是最常见的机加工材料之一。

它具有优良的机械性能和加工性能,适用于各种机械零部件的加工制造。

钢材的种类繁多,包括碳素钢、合金钢、不锈钢等。

碳素钢具有良好的强度和硬度,适用于制造强度要求较高的零部件;合金钢具有较高的强度和耐磨性,适用于制造耐磨零部件;不锈钢具有良好的耐腐蚀性能,适用于制造要求耐腐蚀的零部件。

2. 铝合金。

铝合金是一种轻质、耐腐蚀的材料,具有良好的导热性和导电性。

它适用于制造要求轻量化和散热性能的零部件,如航空航天零部件、汽车零部件等。

铝合金的加工性能较好,易于进行切削加工和焊接。

3. 铜材。

铜材具有良好的导电性和导热性,适用于制造电气零部件和散热器等产品。

铜材的加工性能较好,但硬度较低,易产生划痕,因此在加工过程中需要采取适当的措施来保护表面质量。

4. 钛合金。

钛合金具有良好的耐腐蚀性和高强度,适用于制造要求耐腐蚀和高强度的零部件,如航空航天零部件、医疗器械等。

钛合金的加工性能较差,硬度高、切削难度大,需要采用适当的切削工艺和刀具。

5. 塑料。

塑料是一种非金属材料,具有良好的绝缘性能和耐腐蚀性能,适用于制造电气绝缘零部件和化工设备零部件。

塑料的加工性能较好,易于成型加工和表面处理,但强度和硬度较低。

总结:以上所述的材料仅是常用的机加工材料中的一部分,随着科技的发展,新型材料的出现将为机加工行业带来更多的选择。

在选择机加工材料时,需要根据产品的要求和工艺特点来综合考虑材料的机械性能、物理性能、化学性能和加工性能等因素,以求达到最佳的加工效果和经济效益。

希望本文所介绍的常用机加工材料能够为广大机械加工制造者提供一些参考和帮助。

机械材料手册

机械材料手册

机械材料手册机械材料是指用于制造机械零部件的材料,其性能直接影响着机械产品的质量和使用寿命。

在机械制造领域,选择合适的材料对于提高产品的性能和降低成本至关重要。

因此,本手册将介绍一些常见的机械材料,包括金属材料、塑料材料和复合材料,以及它们的特性、用途和加工工艺。

首先,金属材料是机械制造中最常用的材料之一。

常见的金属材料包括钢、铝、铜、铸铁等。

钢是一种铁碳合金,具有优良的机械性能和加工性能,广泛用于制造各种零部件。

铝具有较低的密度和良好的耐腐蚀性,常用于制造航空器和汽车零部件。

铜具有良好的导电性和导热性,常用于制造电气设备和导热器材。

铸铁具有良好的铸造性能和低成本,广泛用于制造机床床身、发动机缸体等。

其次,塑料材料在机械制造中也占据重要地位。

塑料材料具有较低的密度、良好的耐腐蚀性和电绝缘性,广泛用于制造各种零部件。

常见的塑料材料包括聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯等。

聚乙烯具有良好的韧性和耐磨性,常用于制造容器、管道等。

聚丙烯具有良好的耐热性和化学稳定性,常用于制造化工设备和管道。

聚氯乙烯具有良好的耐候性和耐腐蚀性,常用于制造建筑材料和电缆。

聚苯乙烯具有良好的绝缘性和抗震性,常用于制造包装材料和保温材料。

最后,复合材料是由两种或两种以上的材料组合而成的材料,具有优异的综合性能,广泛用于制造高性能零部件。

常见的复合材料包括玻璃钢、碳纤维复合材料、陶瓷复合材料等。

玻璃钢具有良好的耐腐蚀性和绝缘性,常用于制造化工设备和船舶。

碳纤维复合材料具有较高的强度和刚度,广泛用于制造航空器和汽车零部件。

陶瓷复合材料具有良好的耐高温性和耐磨性,常用于制造发动机零部件和刀具。

综上所述,机械材料是机械制造中不可或缺的一部分,选择合适的材料对于提高产品的性能和降低成本至关重要。

本手册介绍了一些常见的机械材料,包括金属材料、塑料材料和复合材料,希望能对机械制造领域的从业人员有所帮助。

机械产品设计中装配结构工艺性

机械产品设计中装配结构工艺性

机械产品设计中零件装配工艺性1、引言零件装配和维修结构工艺性对于产品的整个生产过程有很大影响。

它是评定机器设计好坏的标志之一。

装配过程的难易、成本的高低、以及机器使用质量是否良好,在很大程度上取决于它本身的结构。

机器的装配工艺性要求机器结构在装配过程中,使相互联接的零部件不用或少用修配和机械加工,就能按要求顺利地、花比较少的劳动量装配起来并达到规定的装配精度。

装配对零部件结构工艺性的要求,主要是使装配周期最短、劳动量最少、而且操作方便容易达到装配精度要求。

2、装配单元的划分整台机器应能分拆成若干可以单独装配的单元一部件、组合件。

由于各部件、组合件构成的装配单元可平行作业,因此可缩短装配周期,且便于维修(只需要将检修的部分拆下)。

采用这种设计法,常需要增加一些连接零件,但装配工艺性有很大改善,故在实际生产中常常应用。

为了多快好省地装配机器,必须最大限度缩短装配周期,而把机器分成若干个装配单元是缩短装配周期的基本措施。

因为机器分拆成若干个装配单元后,可以在装配工作上组织平行装配作业,扩大装配工作面,而且能使装配按流水线组织生产。

同时,各装配单元能预先调整试验。

各部分能以较完善的状态送去总装,有利于保证机器的最终质量。

将机器分拆成若干独立装配单元,除上述优点外,还有:1)便于部件规格化、系列化和标准化,并可减少劳动量,提高装配生产率和降低成本。

2)有利于机器质量不断的改进和提高。

这对重型机器尤为重要,因为它们寿命周期较长,不会轻易报废。

随着科学技术进步和要求的不断提高,经常在使用过程中需加以改进。

若机器具有独立装配单元,则改进起来很方便。

3)便于协作生产。

可由各专业工厂分别生产独立单元,然后再集中进行装配。

4)给重型机械包装运输带来很大方便。

5)装配工作中,可在组织平行装配作业基础上安排流水作业生产。

6)各独立装配单元可预先进行调整实验,各部分以比较完善状态进入总装,有利于保证产品质量和总装顺利进行。

机械零件 10-6

机械零件 10-6

机械零件 10-6概述机械零件是组成机械设备的基本单元,由硬质材料制成,具有特定的形状和功能。

机械零件在工业生产中起着至关重要的作用,它们通过组合和配合,实现了机械设备的各项功能。

本文将介绍机械零件的分类、设计要点以及常见的制造工艺。

分类机械零件可以按照其功能、形状、用途等进行分类,以下是常见的机械零件分类:1.运动副:主要由轴、轴套、轴承等组成,用于传递力和运动。

2.连接件:包括螺栓、螺母、销钉、销轴等,用于连接和固定零件。

3.传动件:如齿轮、带轮、链轮等,用于传递运动和力量。

4.导向件:如滑轨、滚轮等,用于指导和限制运动方向。

5.传感器:用于感知和传递信息,如温度传感器、压力传感器等。

6.密封件:用于封闭和防止泄漏,如密封圈、密封垫等。

设计要点设计机械零件时需要考虑以下要点,以确保零件能够满足其设计目标和功能需求:1.强度和刚度:机械零件需要足够强度和刚度,以承受外部力和负载,并保持稳定运动。

2.性能要求:根据零件的具体功能需求,确定其材料、表面处理、摩擦系数等性能要求。

3.材料选择:根据零件所处的使用环境和工作条件,选择适合的材料,如铁、铜、铝、塑料等。

4.精度要求:确定零件的尺寸、形状和位置的精度要求,以确保零件的互换性和配合性。

5.可维护性:设计零件时要考虑到维护和更换的方便性,尽量减少拆装零件的复杂性。

6.成本控制:在保证零件质量和性能的前提下,尽量控制制造成本,选择合适的加工工艺和材料。

制造工艺机械零件的制造通常涉及以下几个主要的工艺步骤:1.材料选择:根据零件的功能需求和使用环境,选择适合的材料,例如金属、塑料等。

2.加工方法:根据零件的形状和精度要求,选择合适的加工方法,如铣削、车削、钻孔等。

3.热处理:有些机械零件需要进行热处理,如淬火、回火等,以提高其强度和硬度。

4.表面处理:根据零件的要求,对其进行表面处理,如镀铬、喷涂等,以提高其耐腐蚀性和装饰性。

5.组装和检测:将各个零件按照设计要求进行组装,并进行检测,确保零件的质量和性能。

机械设计基础课程标准

机械设计基础课程标准

《机械设计基础》课程标准一、课程基本情况课程编号开课系别机械系授课学期第三学期课程名称机械设计基础授课层次高职课程性质必修课课程类别专业基础课考核方式平时+期中+期末课程设计2周总学时88 理论学时80 实训学时8前导课程高等数学、机械制图、工程力学、公差配合与测量技术、金属工艺学适用专业机械制造及自动化、模具专业、数控专业二、课程定位1. 为研究机械类产品的设计、开发、制造、维护保养等提供必要的理论基础。

2. 是机电一体化专业、数控专业、模具设计与制造等专业必修的一门专业技术基础课。

3. 课程定位于高等职业教育,强调对学生进行专业思维能力.专业实践能力和动手能力的培养。

4. 按照“必需、够用”为度的原则呈现课程内容的针对性和应用性.注重提高学生分析问题、解决问题的能力。

5.把创新素质的培养贯穿于教学中。

采用行之有效的教学方法,注重发展学生专业思维和专业应用能力。

6. 是从理论性、系统性很强的基础课和专业基础课向实践性较强的专业课过渡的一个重要转折点,在教学中具有承上启下的作用,课程知识掌握的程度直接影响到后续课程的学习。

三、课程设计思路1.以专业教学计划培养目标为依据,以岗位需求为基本出发点,以学生发展为本位,设计课程内容。

2.让学生在了解常用机构及机械零部件的基本知识及设计方法和设计理论的基础上,能进行简单机械及传动装置的设计,培养学生初步解决工程实际问题的能力。

3.在课程实施过程中,充分利用课程特征,加大学生工程体验和情感体验的教学设计,激发学生的主体意识和学习兴趣。

四、课程目标(一)基本知识教学目标通过本课程的学习,应使学生达到下列基本要求:1. 掌握常用机构的工作原理、特点、应用及设计的基本知识。

2. 掌握通用机械零件的工作原理、特点、结构、标准。

3. 掌握及通用机械零件的选用和设计的基本方法。

(二)能力目标1. 初步具有分析机构和选择传动方案的能力。

2. 初步具有分析、选用和设计机械零部件及简单机械传动装置的能力。

机械零件设计师必须要掌握的结构工艺性要求

机械零件设计师必须要掌握的结构工艺性要求

机械零件设计师必须要掌握的结构工艺性要求!机械零件结构工艺性是指所设计的零件在能满足使用要求的前提下,制造的可行性和经济性。

结构工艺性好的零件,不仅能方便地生产出来,而且零件的缺陷少,成本低,在市场上具有较强的竞争力。

因此,在机械设计时,必须研究机器零件的结构工艺性设计。

机械零件结构工艺性设计的基本原则:・与所选定的结构材料相适应;・与毛坯成形方法相适应;・与生产工艺过程相适应,与零件加工工艺路线相适应;・与生产批量相适应;・与质量技术指标相适应;・与生产的具体条件和具体生产工艺相适应;机械零件结构工艺性贯穿于零件的材料选择、毛坯制作、热处理、切削加工、机器装配及维修等生产过程的各个阶段。

设计零件的结构时,通常使零件的结构形状与生产规模、生产条件、零件材料、毛坯制作、工艺技术等诸多方面相适应。

应从以下几方面加以考虑:1.零件形状简单合理一般来讲,零件的结构和形状越复杂,制造、装配和维修将越困难,成本也越高。

所以,在满足使用要求的情况下,零件的结构形状应尽量简单。

满足使用要求的条件下,力求减少加工表面的数量和加工的面积。

2.合理选用毛坯类型根据零件尺寸大小、生产批量的多少和结构的复杂程度来确定齿轮的毛坯类型:尺寸小、结构简单、批量大时用模锻毛坯;结构复杂、批量大时采用铸造毛坯;单件或少量生产时则可采用焊接件或自由锻毛坯。

3.铸件的结构工艺性铸造毛坯的采用较为广泛,设计其结构时应注意壁厚均匀、过渡平缓,以防产生缩孔和裂纹,保证铸造质量;要有适当的结构斜度及拔模斜度,以便于起模;铸件各面的交界处要采用圆角过渡;为增强刚度,应设置必要的加强筋。

4.锻件的结构工艺性设计其结构时应注意力求零件形状简单、不应有很深的凹坑,要留有适当的锻造斜度及圆角半径,尽量设计成对称形状;对于自由锻件应避免带有锥形和楔性,不允许有加强筋,不允许在基体上有凸台。

5.切削加工工艺性在机床上加工零件时,切削加工工艺性主要应从三方面考虑:①提高切削效率:②便于切削加工;③减少切削加工量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机座、机盖、箱体等。焊接性良好
270 18 飞轮、机架、蒸汽锤、联轴器、水压机 工作缸,焊接性尚好
310 15 联轴器、气缸、齿轮、重载荷机架等
ZG340-640 640 340 10 起重运输机中的齿轮、联轴器等重要机 件
表4-6 灰铸铁
牌号 铸铁壁厚/mm
HT150 10~20
HT200 HT250 HT300 HT350
835
540
1080 885
伸长率 δ%
用途
10
10
用于要求心部强度较高,承受磨损, 尺寸较大的渗碳零件
制造齿轮等渗碳零件
40Cr
980
785
40CrNiMoA 980
835
45Mn2 885
735
9 用于较重要的调质零件,如连杆、重 要齿轮、曲轴等
12 用于制造承受冲击载荷的高强度 零件
10 可代替40Cr钢制造齿轮、轴类零 件
195
Q215 335~450
215
Q235 375~500
235
Q255 410~550
255
Q275 490~630
275
33 冲压件、焊接件及受载小的机械零件, 如垫圈、开口销、铆钉、地脚螺栓等
31 焊接件、金属结构件及螺栓、螺母、铆 钉、销轴、连杆、支座等受载不大的机
26 械零件
24 金属结构件及螺栓、螺母、垫圈、楔、 键、转轴、心轴、链轮、吊钩、连杆等
5 250℃以下的耐热弹簧 10 大截面高强度弹簧
(5)铸钢
表4-5一般工程用铸造碳钢
牌号
力学性能
抗拉强 度σb
Mpa
Байду номын сангаас
屈服点 σs
Mpa
伸长率 δ%
用途
ZG200-400 400
ZG230-450 450
ZG270-500 500 ZG310-570 570
200 25
230 22
各种形状的机件,如机座、变速器箱壳 等
Q390 490~650 390 Q420 520~680 420
20
桥梁、船舶、中压容器、起重设备
19
大型桥梁、高压容器、大型船舶
Q460 550~720 460
17 中温高压容器、大型桥及船
(4)合金结构钢
表4-4合金结构钢
牌号
20Cr
20MnVB
力学性能
抗拉强 度σb
Mpa
屈服点σs Mpa
4.1 机械零件的常用材料及其选用
4.1.1机械零件的常用材料
机械零件所用机械工程材料的钢材基本情况介绍
1、钢
(1)普通质量非合金结构钢(普通碳素结构钢)
表4-1普通质量非合金结构(普通碳素结构钢)
牌号
力学性能(不小于)
抗拉强度σb 屈服点σs 伸长率δ
Mpa
Mpa %
用途
Q195 315~430
220
150 490 300
3
受冲击载荷的耐磨件,如齿轮、蜗轮、轴瓦、
衬套、丝杆螺母等
5 受重载的轴承、轴瓦等
10 重要的轴承、轴套、轮缘及大型铸件等
50 冷冲压件,如法兰盘、支架、散热器外壳等
H62(黄铜)
370 49 螺母、垫圈、铆钉、弹簧等
(8)铝及铝合金
表4-8 铝及铝合金
牌号
力学性能
用途
(7)铜合金
表4-7 铜合金
牌号
ZCuSn5Pb5Zn5 (5-5-5锡青铜)
力学性能
用途
抗拉强 度σb
Mpa
伸长率δ %
200 13
受载较大的零件,如轴套、轴承、螺母
等耐磨件
ZCuSn10P1 (10-1锡青铜)
ZCuPb20Sn5 (20-5锡青铜)
ZCuAl10Fe3 (10-3铝青铜)
H68(黄铜)
氰化零件,如套筒、短轴等
冷冲压件、联接件及渗碳零件, 如心轴、套筒、螺栓、螺母、吊 钩、摩擦片、离合器盘等
调质零件,如齿轮、套筒、连杆、 轴类零件及联接件等
表4-2续表
牌号
力学性能
用途
抗拉强度σb 屈服点σs 伸长率δ
Mpa
Mpa %
45
600
50
630
60
675
70
715
85
1130
355
16 调质零件,如齿轮、套筒、连杆、
(LC4,超硬铝)
ZL101 (铸铝硅合金)
222
1 中等强度形状复杂的零件,如支架、壳体、
发动机附件等
表4-9 工程塑料
(9)工程塑料
名称
力学性能
用途
抗拉强度 σb
Mpa
伸长 率δ
%
丙烯腈,丁二 烯、苯乙烯
(ABS)
61.7(高强 ---
度中冲击
型)
作一般结构或耐磨受力传动零件和耐磨蚀设备, 用ABS制成泡沫夹层板可做不轿车车身
20 受力较大的机构零件
(2) 优质非合金钢结构钢(优质碳素结构钢)
表4-2优质非合金钢结构钢(优质碳素结构钢)
牌号
力学性能(不小于)
抗拉强度σb Mpa
屈服点σs Mpa
伸长率δ %
用途
08 325
10
335
20
410
30
490
40
570
195 33
205
31
245
25
295
21
335
19
管子、垫片、要求不高的渗碳或
375
14 轴类零件及联接件等
400
12 弹簧、弹性垫圈、凸轮及易磨
9 损零件
420
6
980
(3)低合金高强度结构钢
表4-3低合金高强度结构钢
牌号
Q295
力学性能
抗拉强度σb 屈服点σs
Mpa
Mpa
390~570 295
伸长率δ
用途
%
23
桥梁、车辆、容器、焊管
Q345 470~630 345
21 桥梁、车辆、压力容器、船舶
10~20 10~20 10~20 10~20
(6)铸铁
抗拉强度 σb Mpa
145
195
240
290 340
用途
承受中等载荷的零件,如端盖、轴承座、阀 壳、管子附件、一般机床床身、滑座、工作 台等 承受较大载荷和要求有一定的气密性或耐蚀 性等较重要的零件,如汽缸、齿轮、机床、 飞轮、齿条、衬筒、液压筒、泵的壳体、阀 壳、油缸、气缸、联轴器、机体、齿轮、齿 轮箱外壳、飞轮、凸轮、轴承座等 承受高载荷、耐磨和高气密性重要零件,如 重型机床、剪床、齿轮、凸轮、车床卡盘、 压力机的床身、导板、增压液压筒、泵的壳 体等
表4-2续表
牌号
力学性能
用途
35CrMo
40CrMnMo
65Mn
抗拉强度 σb Mpa
980
980
980
屈服点σs Mpa
835
785 785
伸长率 δ%
12 制造大截面齿轮、轴类零件 10 制造高强度调质零件
8 截面小于20mm的冷卷弹簧
60Si2Mn 50CrVA
1275
1275
1175 1130
5A02(LF2, 防锈铝)
抗拉强 度σb Mpa
190
伸长率 δ%
23 中等强度的焊接件、冷冲压件、管道、容器、
铆钉等
2A50 (LD5,锻铝)
420
2A11
420
(LY11,硬铝)
13 形状复杂的冲压件、锻压件
15 中等强度零件及焊接件,如螺栓、铆钉、接 头、骨架等
7A04
600
12 高强度零件、大梁、框架等
相关文档
最新文档