最新两角和与差的正弦余弦正切公式练习题(含答案)

合集下载

两角和与差的正弦余弦正切公式练习题(含答案)

两角和与差的正弦余弦正切公式练习题(含答案)

两角和与差的正弦余弦正切公式练习题(含答案)两角和差的正弦余弦正切公式练题一、选择题1.给出如下四个命题:①对于任意的实数α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;②存在实数α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;③公式tan(α+β)=tanα+tanβ成立的条件是α≠kπ+π(k∈Z)且β≠kπ+π(k∈Z);1-tanαtanβ/2④不存在无穷多个α和β,使sin(α-β)=sinαcosβ-cosαsinβ。

其中假命题是()A。

①②B。

②③C。

③④D。

②③④2.函数y=2sinx(sinx+cosx)的最大值是()A。

1+2B。

2-1C。

2D。

2/33.当x∈[-π/2,π/2]时,函数f(x)=sinx+3cosx的()A。

最大值为1,最小值为-1B。

最大值为1,最小值为-1/2C。

最大值为2,最小值为-2D。

最大值为2,最小值为-14.已知tan(α+β)=7,tanαtanβ=2/3,则cos(α-β)的值()A。

1/2B。

2/2C。

-2D。

±25.已知π/2<β<α<3π/4,cos(α-β)=12/13,sin(α+β)=-3/5,则sin2α=()A。

56/65B。

-56/65C。

6565/56D。

-5/66.sin15°sin30°sin75°的值等于()A。

3/4B。

3/8C。

1/8D。

1/47.函数f(x)=tan(x+π/4)+1+tanx/4,g(x)=1-tanx,h(x)=cot(π/4-x)。

其中为相同函数的是()A。

f(x)与g(x)B。

g(x)与h(x)C。

h(x)与f(x)D。

f(x)与g(x)及h(x)8.α、β、γ都是锐角,tanα=1/2,tanβ=1/5,tanγ=1/8,则α+β+γ等于()A。

π/3B。

π/4C。

π/5D。

两角和与差的正弦余弦正切公式练习题(答案)

两角和与差的正弦余弦正切公式练习题(答案)

两角和差的正弦余弦正切公式练习题知识梳理1. 两角和与差的正弦、余弦和正切公式 sin( a±3 = sin_a cos B±cos_osin 3 cos(a? 3 = cos _ocos_3sin 一 o (sin 3tan a±a n 3 tan (a±3 = . 1?tan a an 32. 二倍角的正弦、余弦、正切公式 sin 2 a= 2sin_ a os_a2 ■ 2 2 ■ 2cos 2a= cos a — sin a= 2cos a — 1 = 1 一 2sin a3. 有关公式的逆用、变形等(1)ta n a±an 3= tan( a±3(1 ?tan_ a an_ 3.4. 函数 f(M = asin a+ bcos o(a, b 为常数),可以化为 f( a = a 2 + b 2sin(a+ ©,其中 tan一、选择题1.给出如下四个命题②存在实数a,3 ,使等式 cos( ) cos cossin sin 能成立;③公式tan()tan an成立的条件是k—(k Z)且 k —(k Z);1 tan tan22④不存在无穷多个 a 和3,使 sin()sin cosco s,sin ;其中假命题是( )A.①②B.②③C. ③④D. ②③④2 .函数 y 2sin x(sin x cosx)的最大值是( )A. 1 . 2B. .. 2 1C.、2D. 2①对于任意的实数a 和3,等式cos( )cos cos sin sin 恒成立; tan 2 2ta n a1 tan 2a 2(2)cos a=1 + cos 2a2 sin 2a= 1 — COS2a2 -2(3)1 + sin 2 a= (sin a+ cos c), 1 — sin 2 a= (sin a — cos a )2, sin a±cos a= 2sin a±4t .当 x [ — ^]时,函数 f(x) sinx .. 3cosx 的 ( )A •最大值为4,最小值为—1B 最大值为1最小值为土C •最大值为2,最小值为—2D.最大值为2,最小值为—1已知tan( ) 7,ta n tan2则cos()的值( )八1 D、、2c 2D.A.—B.C. -2222已知一3,cos()123,si n( ),则 sin 2( )2413 5A565665 D.65 A.B.———C.—65655656sin15 sin30 sin 75 的值等于( )八<3c 1 D.1A.DB.C.-4884函数 f (x) tan(x)g (x )1tanx ,h(x) cot( x)其中为相同函数的是 4 丿,g (x)41tanx( )A. f (x)与 g(x)B. g(x)与 h(x)C. h(x)与f (x)D. f (x)与g(x)及h(x)1a 、B 、 都是锐角,tan—2 ,tan 1,ta n 贝U等于 ( )小 55A.—B.-C.-D.3 464设 tan 和 tan(— 4 )是方程x 2 px q 0的两个根,则 P 、q 之间的关系是()A. p+q+1=OB. p — q+仁C. p+q —仁0D. p — q —1=0已知 cosa,sin 4sin( ),则 tan( )的值是 ( )13.已知 sin( )4分,共16分,将答案填在横线上)sin( ) m ,则 cos 2cos 2 的值为A1 a 2B. —V 1 2aC.a 4D.1 a 2a 4a 4 1 a 2a 4.在厶 ABC 中, C 90o ,则tan A tanB 与1的关系为( : )A. tanA tanB 1B. tan A tanB 1C. tanA tanB 1D. 不能确定.sin 20 cos70 sin10sin50的值是( : )A.—B.3C. —D.34224、填空题(每小题3.4.5. 6.7.8.9.10111215 .若sin( 24 ) cos(24 ),则tan( 60)= _____________ . ____16. 若sinx si ny -,则cosx cosy的取值范围是2 ---------------------------------------三、解答题(本大题共74分,17— 21题每题12分,22题14分)17. 化简求值:sinq 3x) cosq 3x) cos(石 3x) sin3x).求tan( 2 )的值.19.求证:tan (x y) tan (x y)18.已知0 90 ,且cos , cos 是方程 x2, 2sin50 x sin250 0的两根,20.已知a,p€( 0,n )且 tan( )1,tan 1弓,求2的值.21.证明:tan|x眄2sin xcosx cos2x22.已知△ ABC的三个内角满足: A+C=2B1cos A1cosC2求cos^cosBsin 2x 2 ~2~cos x sin y11. 1. C 2 B 12 . 两角和差的正弦余弦正切公式练习题 .A 3 . D 4 . D A 参考答案 .C 8 . B 9 . B 10 . D 18. 19. 20. 21. 22. 13. m 14 . - 15 . 32 .3 16 .[ 帀 J i?】17.原式円叫3x)cos(3 3x) si n( 3x) cos(- 3 4 2 3x)t 6 岳i ns 。

完整版)两角和与差的正弦、余弦、正切经典练习题

完整版)两角和与差的正弦、余弦、正切经典练习题

完整版)两角和与差的正弦、余弦、正切经典练习题两角和与差的正弦、余弦、正切cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ1、求值:1)cos15°2)cos80°cos20°+sin80°sin20°3)cos130°cos10°+sin130°sin10°5)sin75°7)cos(A+B)cosB+sin(A+B)sinB2.1)证明:cos(π/2-α)=sinα4)cos105°6)求cos75°cos105°+sin75°sin105°8)cos91°cos29°-sin91°sin29°2)已知sinθ=15π,且θ为第二象限角,求cos(θ-π)的值.3)已知sin(30°+α)=√3/2,60°<α<150°,求cosα.4)化简cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°).5)已知sinα=-4/5,求cosα的值。

6)已知cosα=-3π/32,α∈(π/2,π),求sin(α+π/4)的值。

7)已知α,β都是锐角,cosα=32π/53,α∈(π/3,π/2),cosβ=-3π/52,β∈(π/6,π/4),求cos(α+β)的值。

8)已知cos(α+β)=-11/53,求cosβ的值。

9)在△ABC中,已知sinA=√3/5,cosB=1/4,求cosC的值.两角和与差的正弦sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβ利用和差角公式计算下列各式的值:1)sin72°cos42°-cos72°sin42°2)3sinx+cosx3)cos2x-sin2x证明:1)sinα+cosα=sin(α+π/2)2)cosθ+sinθ=2sin(θ+π/4)3)2(sin x+cos x)=2cos(x-π/4)1)已知sinα=-3/5,α是第四象限角,求sin(-α)的值。

两角和与差的正弦余弦正切公式练习题(含答案)[2]

两角和与差的正弦余弦正切公式练习题(含答案)[2]

(直打版)两角和与差的正弦余弦正切公式练习题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)两角和与差的正弦余弦正切公式练习题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)两角和与差的正弦余弦正切公式练习题(含答案)(word版可编辑修改)的全部内容。

两角和差的正弦余弦正切公式练习题一、选择题1.给出如下四个命题①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立;②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβαβαtan tan 1tan ⋅-+an 成立的条件是)(2Z k k ∈+≠ππα且)(2Z k k ∈+≠ππβ;④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是( )A .①②B .②③C .③④D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是 ( )A .21+B .12-C .2D . 2 3.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的( )A .最大值为1,最小值为-1B .最大值为1,最小值为21- C .最大值为2,最小值为-2 D .最大值为2,最小值为-1 4.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值( )A .21B .22 C .22-D .22±5.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( )A .6556B .-6556C .5665D .-56656. 75sin 30sin 15sin ⋅⋅的值等于( )A .43 B .83 C .81 D .417.函数)4cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=ππ其中为相同函数的是( )A .)()(x g x f 与B .)()(x h x g 与C .)()(x f x h 与D .)()()(x h x g x f 及与 8.α、β、γ都是锐角,γβαγβα++===则,81tan ,51tan ,21tan 等于 ( )A .3πB .4πC .π65D .π459.设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A .p+q+1=0B .p -q+1=0C .p+q -1=0D .p -q -1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是( )A .412--a a B .-412--a a C .214a a --±D .412--±a a 11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为( )A .1tan tan >+B A B .1tan tan <⋅B AC .1tan tan =⋅B AD .不能确定12. 50sin 10sin 70cos 20sin +的值是( )A .41B .23 C .21 D .43二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 . 14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=.15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= 。

最新两角和与差的正弦余弦正切公式练习题(答案)

最新两角和与差的正弦余弦正切公式练习题(答案)

两角和差的正弦余弦正切公式练习题知 识 梳 理1.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β. cos(α∓β)=cos_αcos_β±sin_αsin_β. tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β). (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ),其中tan φ=b a一、选择题1.给出如下四个命题①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβαβαtan tan 1tan ⋅-+an 成立的条件是)(2Z k k ∈+≠ππα且)(2Z k k ∈+≠ππβ;④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是( )A .①②B .②③C .③④D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是( )A .21+B .12-C .2D . 23.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的 ( )A .最大值为1,最小值为-1B .最大值为1,最小值为21-C .最大值为2,最小值为-2D .最大值为2,最小值为-1 4.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值 ( )A .21 B .22 C .22-D .22±5.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( )A .6556B .-6556C .5665D .-56656. 75sin 30sin 15sin ⋅⋅的值等于( )A .43 B .83 C .81D .41 7.函数)4cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=ππ其中为相同函数的是( )A .)()(x g x f 与B .)()(x h x g 与C .)()(x f x h 与D .)()()(x h x g x f 及与8.α、β、γ都是锐角,γβαγβα++===则,81tan ,51tan ,21tan 等于 ( ) A .3πB .4π C .π65 D .π459.设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A .p+q+1=0B .p -q+1=0C .p+q -1=0D .p -q -1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是( )A .412--a aB .-412--a aC .214a a --±D .412--±a a 11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为( )A .1tan tan >+B A B .1tan tan <⋅B AC .1tan tan =⋅B AD .不能确定12. 50sin 10sin 70cos 20sin +的值是( )A .41B .23C .21D .43二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 .14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=.15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,22sin sin +=+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π.18.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.19.求证:yx xy x y x 22sin cos 2sin )tan()tan(-=-++.20.已知α,β∈(0,π)且71tan ,21)tan(-==-ββα,求βα-2的值.21.证明:xx xx x 2cos cos sin 22tan 23tan +=-.22.已知△ABC 的三个内角满足:A+C=2B ,B C A cos 2cos 1cos 1-=+求2cos CA -的值.两角和差的正弦余弦正切公式练习题参考答案一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A二、13.m 14.3π15.32-- 16.]214,214[-三、17.原式=)34cos()33sin()33cos()34sin(x x x x -----ππππ=462-.18.)4550sin(2)2150(sin 4)50sin 2(50sin 222 ±=---±=x ,12sin 95cos5,sin 5cos85,x x ∴====3275tan )2tan(+==- αβ.19.证:y x y x y x y x y x y x y x y x 2222sin sin cos cos )]()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左=-=+-=yx xy x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13tan ,tan(2)1,2.34ααβαβπ=-=-=-21.左==+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22cos23cos sin 2cos 23cos 2sin23cos 2cos 23sin右.22.由题设B=60°,A+C=120°,设2CA -=α知A=60°+α, C=60°-α,22cos ,2243cos cos cos 1cos 12=-=-=+ααα即CA故222cos =-C A .。

两角和与差的正弦、余弦和正切公式专题及答案

两角和与差的正弦、余弦和正切公式专题及答案

两角和与差的正弦、余弦和正切公式专题一、选择题1.已知f (x )=sin x -cos x ,则f ⎝ ⎛⎭⎪⎫π12的值是( ) A .-62 B.12 C .-22 D.222.已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( ) A .-235 B.235 C.45 D .-453.sin47°-sin17°cos30°cos17°=( ) A .-32 B .-12 C.12 D.324.当0<x <π4时,函数y =cos 2x cos x sin x -sin 2x的最小值是( ) A.14 B.12 C .2 D .45.已知sin α=1213,cos β=45,且α是第二象限角,β是第四象限角,那么sin(α-β)等于( )A.3365B.6365 C .-1665 D .-56656.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )A.35B.45 C .±35 D .±457.在△ABC 中,tan A +tan B +3=3tan A tan B ,则C 等于( )A.π3B.2π3C.π6D.π48.若1+cos2αsin2α=12, 则tan2α等于( )A.54 B .-54 C.43 D .-439.已知cos α=13,cos(α+β)=-13,且α、β∈⎝ ⎛⎭⎪⎫0,π2,则cos(α-β)的值等于( ) A .-12 B.12 C .-13 D.232710.如图所示,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC ,ED ,则sin ∠CED =( ) A.31010 B.1010 C.510 D.515二、填空题11.3-sin70°2-cos 210°=________.12.若α∈(0,π2),且sin 2α+cos2α=14,则tan α的值等于________.13.已知tan α,tan β是lg(6x 2-5x +2)=0的两个实根,则tan(α+β)=________.14.已知α∈⎝ ⎛⎭⎪⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝ ⎛⎭⎪⎫α+π4sin2α+cos2α+1=________.三、解答题15.已知sin α+cos α=355,α∈(0,π4),sin(β-π4)=35,β∈(π4,π2).(1)求sin2α和tan2α的值;(2)求cos(α+2β)的值.16.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4+cos ⎝ ⎛⎭⎪⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.两角和与差的正弦、余弦和正切公式一、选择题1.已知f (x )=sin x -cos x ,则f ⎝ ⎛⎭⎪⎫π12的值是( ) A .-62 B.12 C .-22 D.22解析:因为f (x )=sin x -cos x =2sin(x -π4), 所以f ⎝ ⎛⎭⎪⎫π 12=2sin ⎝ ⎛⎭⎪⎫π12-π4=2sin ⎝ ⎛⎭⎪⎫-π6=-22.答案:C2.已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( ) A .-235 B.235 C.45 D .-45解析:sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435⇒sin π3cos α+cos π3sin α+sin α=435⇒32sin α+32cos α=435⇒32sin α+12cos α=45,故sin ⎝ ⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos αsin 7π6=-⎝ ⎛⎭⎪⎫32sin α+12cos α =-45.答案:D3.sin47°-sin17°cos30°cos17°=( ) A .-32 B .-12 C.12 D.32解析:sin47°=sin(30°+17°)=sin30°cos17°+cos30°sin17°, ∴原式=sin30°cos17°cos17°=sin30°=12.答案:C4.当0<x<π4时,函数y=cos2xcos x sin x-sin2x的最小值是( )A.14 B.12C.2 D.4解析:y=cos2xcos x sin x-sin2x=1tan x-tan2x,当0<x<π4时,0<tan x<1,设t=tan x,则0<t<1,y=1t-t2=1t(1-t)≥4,当且仅当t=1-t,即t=12时,等号成立.答案:D5.已知sinα=1213,cosβ=45,且α是第二象限角,β是第四象限角,那么sin(α-β)等于( )A.3365 B.6365C.-1665D.-5665解析:因为α是第二象限角,且sinα=12 13,所以cosα=-1-144169=-513.又因为β是第四象限角,cosβ=4 5,所以sinβ=-1-1625=-35.sin(α-β)=sinαcosβ-cosαsinβ=1213×45-(-513)×(-35)=48-1565=3365.答案:A6.已知θ为第二象限角,sin(π-θ)=2425,则cosθ2的值为( )A.35 B.45C.±35D.±45解析:由θ为第二象限角,可知θ2为第一或第三象限角.由sin(π-θ)=2425,可知sin θ=2425,∴cos θ=-725.∴2cos 2θ2=cos θ+1=1825,∴cos θ2=±35.答案:C7.在△ABC 中,tan A +tan B +3=3tan A tan B ,则C 等于( )A.π3B.2π3C.π6D.π4解析:由已知得tan A +tan B =-3(1-tan A tan B ),∴tan A +tan B1-tan A tan B =-3,即tan(A +B )=- 3.又tan C =tan[π-(A +B )]=-tan(A +B )=3,0<C <π,∴C =π3.答案:A8.若1+cos2αsin2α=12, 则tan2α等于( )A.54 B .-54 C.43 D .-43解析:1+cos2αsin2α=2cos 2α2sin αcos α=cos αsin α=12,∴tan α=2,∴tan2α=2tan α1-tan 2α=41-4=-43,故选D.答案:D9.已知cos α=13,cos(α+β)=-13,且α、β∈⎝ ⎛⎭⎪⎫0,π2,则cos(α-β)的值等于() A .-12 B.12 C .-13 D.2327解析:∵α∈(0,π2),∴2α∈(0,π).∵cos α=13,∴cos2α=2cos 2α-1=-79,∴sin2α=1-cos 22α=429,而α,β∈⎝ ⎛⎭⎪⎫0,π2,∴α+β∈(0,π), ∴sin(α+β)=1-cos 2(α+β)=223, ∴cos(α-β)=cos[2α-(α+β)]∴cos2αcos(α+β)+sin2αsin(α+β)=(-79)×(-13)+429×223=2327.答案:D10.如图所示,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC ,ED ,则sin ∠CED =( ) A.31010 B.1010 C.510 D.515解析:因为四边形ABCD 是正方形,且AE =AD =1,所以∠AED =π4,在Rt △EBC 中,EB =2,BC =1,所以sin ∠BEC =55,cos ∠BEC =255.sin ∠CED =sin(π4-∠BEC )=22cos ∠BEC -22sin ∠BEC =22×(255-55)=1010.答案:B二、填空题11.3-sin70°2-cos 210°=________. 解析:3-sin70°2-cos 210°=3-cos20°2-cos 210°=3-(2cos 210°-1)2-cos 210°=4-2cos 210°2-cos 210°=2. 答案:212.若α∈(0,π2),且sin 2α+cos2α=14,则tan α的值等于________.解析:由sin 2α+cos2α=14得sin 2α+1-2sin 2α=1-sin 2α=cos 2α=14,∵α∈(0,π2),∴cos α=12,∴α=π3,∴tan α=tan π3= 3. 答案: 313.已知tan α,tan β是lg(6x 2-5x +2)=0的两个实根,则tan(α+β)=________.解析:由lg(6x 2-5x +2)=0,得6x 2-5x +1=0,∴由题意知tan α+tan β=56,tan α·tan β=16,∴tan(α+β)=tan α+tan β1-tan αtan β=561-16=1.答案:114.已知α∈⎝ ⎛⎭⎪⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝ ⎛⎭⎪⎫α+π4sin2α+cos2α+1=________. 解析:由2sin 2α-sin αcos α-3cos 2α=0,得(2sin α-3cos α)·(sin α+cos α)=0,∵α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α+cos α>0,∴2sin α=3cos α,又sin 2α+cos 2α=1,∴cos α=213,sin α=313, ∴sin ⎝ ⎛⎭⎪⎫α+π4sin2α+cos2α+1=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)=268.答案:268三、解答题15.已知sin α+cos α=355,α∈(0,π4),sin(β-π4)=35,β∈(π4,π2).(1)求sin2α和tan2α的值;(2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95,即1+sin2α=95,∴sin2α=45,又2α∈(0,π2),∴cos2α=1-sin 22α=35, ∴tan2α=sin2αcos2α=43.(2)∵β∈⎝ ⎛⎭⎪⎫π4,π2,β-π4∈(0,π4),sin(β-π4)=35, ∴cos(β-π4)=45.于是sin2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4cos ⎝ ⎛⎭⎪⎫β-π4=2425. 又sin2⎝ ⎛⎭⎪⎫β-π4=-cos2β,∴cos2β=-2425. 又2β∈⎝ ⎛⎭⎪⎫π2,π,∴sin2β=725, 又cos 2α=1+cos2α2=45,α∈⎝ ⎛⎭⎪⎫0,π4, ∴cos α=255,sin α=55.∴cos(α+2β)=cos αcos2β-sin αsin2β =255×(-2425)-55×725=-11525.16.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4+cos ⎝ ⎛⎭⎪⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. 解:(1)∵f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4-2π+sin ⎝ ⎛⎭⎪⎫x -3π4+π2 =sin ⎝ ⎛⎭⎪⎫x -π4+sin ⎝ ⎛⎭⎪⎫x -π4=2sin ⎝ ⎛⎭⎪⎫x -π4. ∴T =2π,f (x )的最小值为-2.(2)证明:∵cos(β-α)=45,cos(β+α)=-45,∴cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45,两式相加,得2cos βcos α=0,∵0<α<β≤π2,∴β=π2.由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎫x -π4, ∴[f (β)]2-2=4sin 2π4-2=4×⎝ ⎛⎭⎪⎫222-2=0.。

高一数学两角和与差的正弦余弦和正切公式试题答案及解析

高一数学两角和与差的正弦余弦和正切公式试题答案及解析

高一数学两角和与差的正弦余弦和正切公式试题答案及解析1.已知,则()A.B.C.D.【答案】C【解析】根据诱导公式有【考点】本小题主要考查诱导公式的应用.点评:解决此类问题关键是尽量用已知角来表示未知角.2. (2010·河南南阳调研)在△ABC中,3sin A+4cos B=6,4sin B+3cos A=1,则C等于() A.30°B.150°C.30°或150°D.60°或120°【答案】A【解析】两式平方后相加得sin(A+B)=,∴A+B=30°或150°,又∵3sin A=6-4cos B>2,∴sin A>>,∴A>30°,∴A+B=150°,此时C=30°.3. (2010·鞍山一中)已知a=(sinα,1-4cos2α),b=(1,3sinα-2),α∈,若a∥b,则tan=()A.B.-C.D.-【答案】B【解析】∵a∥b,∴1-4cos2α=sinα(3sinα-2),∴5sin2α+2sinα-3=0,∴sinα=或sinα=-1,∵α∈,∴sinα=,∴tanα=,∴tan==-.4.求值:=________.【答案】-4【解析】======-4.5. (2009~2010·浙江嵊泗中学高一期末)已知定义在区间上的函数y=f(x)的图象关于直线x=-对称,当x∈时,函数f(x)=A sin(ωx+φ)(A>0,ω>0,- <φ<)的图象如图所示.(1)求函数y=f(x)在上的表达式;(2)求方程f(x)=的解.【答案】(1)∴f(x)=(2) x=-,-,-,或即为所求【解析】(1)当x∈时,由图象知,A=1,=-=,∴T=2π,∴ω=1.又f(x)=sin(x+φ)过点,则+φ=kπ,k∈Z,∵-<φ<,∴φ=,∴f(x)=sin当-π≤x<-时,-≤-x-≤,∴f=sin=-sin x而函数y=f(x)的图象关于直线x=-对称,则f(x)=f∴f(x)=-sin x,-π≤x<-,∴f(x)=.(2)当-≤x≤时,≤x+≤π,∵f(x)=sin=,∴x+=或,∴x=-或,当-π≤x<-时,∵f(x)=-sin x=,∴sin x=-,x=-或-,∴x=-,-,-,或即为所求.6.设α和β是一个钝角三角形的两个锐角,下列四个不等式中不正确的是() A.tanα·tanβ<1B.sinα+sinβ<C.cosα+cosβ>1D.tan(α+β)<tan【答案】D【解析】取特例,令α=β=可得,tan(α+β)=,tan=,∴tan(α+β)>tan,∴D不正确.7.已知α、β为锐角,cosα=,tan(α-β)=-,则tanβ的值为() A.B.C.D.【答案】B【解析】∵α是锐角,cosα=,故sinα=,tanα=∴tanβ=tan[α-(α-β)]==.8.在△ABC中,若tan B=,则这个三角形是()A.锐角三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形【答案】B【解析】因为△ABC中,A+B+C=π,所以tan B===,即=,∴cos(B+C)=0,∴cos(π-A)=0,∴cos A=0,∵0<A<π,∴A=,∴这个三角形为直角三角形,故选B.9.若cosθ>0,且sin2θ<0,则角θ的终边所在象限是________.【答案】第四象限【解析】∵sin2θ=2sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.10.如果tan=2010,那么+tan2α=______.【答案】2010【解析】∵tan=2010,∴+tan2α=+====tan=2010.11.化简:.【答案】1【解析】原式====1.12.已知锐角α、β满足cosα=,cos(α+β)=-,则cosβ=()A.B.-C.D.-【答案】A【解析】∵α、β为锐角,cosα=,cos(α+β)=-,∴sinα=,sin(α+β)=. ∴cosβ=cos[(α+β)-α]=cos(α+β)·cosα+sin(α+β)·sinα=-×+×=.13.已知cosθ=,θ∈,则cos=()A.B.C.D.【答案】B【解析】∵cosθ=,θ∈,∴sinθ=,∴cos=cosθ·cos+sinθ·sin=×+×=.14. (08·山东理)已知cos(α-)+sinα=,则sin(α+)的值是() A.-B.C.-D.【答案】C【解析】∵cos(α-)+sinα=cosαcos+sinαsin+sinα=cosα+sinα=,∴cosα+sinα=,∴sin(α+)=-sin=-cos=-sinα-cosα=-.故选C.15. cos+sin的值为()A.-B.C.D.【答案】B【解析】∵cos+sin=2=2=2cos=2cos=.16.化简=________.【答案】【解析】===.17.已知△ABC中,sin C=,cos B=-,求cos A.【答案】【解析】在△ABC中,由cos B=-,可得sin B=,且B为钝角,∴C为锐角,∴cos(A+B)=cos(π-C)=-cos C=-=-.sin(A+B)=sin(π-C)=sin C=,∴cos A=cos[(A+B)-B]=-×+×=.[点评]本题易错点为忽视角范围的讨论,错误得出cos(A+B)=而致误.18.若α、β均为锐角,sinα=,sin(α+β)=,则cosβ等于()A.B.C.或D.-【答案】B【解析】∵α与β均为锐角,且sinα=>sin(α+β)=,∴α+β为钝角,又由sin(α+β)=得,cos(α+β)=-,由sinα=得,cosα=,∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-×+×=,故选B.19.已知<β<α<,cos(α-β)=,sin(α+β)=-,求sin2α的值.【答案】-.【解析】∵<β<α<,∴π<α+β<,0<α-β<.∴sin(α-β)===.∴cos(α+β)=-=-=-.则sin2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=×+×=-.20.在△ABC中,若sin A=,cos B=,求cos C.【答案】【解析】∵0<cos B=<,且0<B<π.∴<B<,且sin B=.又∵0<sin A<<,且0<A<π,∴0<A<或π<A<π.若π<A<π,则有π<A+B<π,与已知条件矛盾,∴0<A<,且cos A=.∴cos C=cos[π-(A+B)]=-cos(A+B)=sin A sin B-cos A cos B=×-×=.[点评]本题易忽视对角范围的讨论,直接由sin A=得出cos A=±,导致错误结论cos C=或.。

两角和与差的正弦+余弦和正切公式 习题训练与答案解析

两角和与差的正弦+余弦和正切公式 习题训练与答案解析

62
6
66
6
值-1.
5
5
5
7.已知
为第三象限的角,cos
2
3 5
求tan
(
4
2 ) 的值.
分析:本题主要考查了角的象限的判断及三角函数值符号的判断、同角三角函数关系、两角和
的正切公式.
解:∵ 为第三象限的角,2k + 2k 3 k Z, 2
∴4k +2 2 4k +3 (k Z).
又cos 2 3 ∴sin 2 4 tan 2 4 .
4
24
方法二:y= g(x) f (2x) 1 cos (4x ) x [0 ] .g′(x)=-2sin (4x )
2
3
4
3
令g′
(
x)
0
x
[0
4
]
解得
x
12
g(0) 1 g( ) 1 g( ) 1 4 12 2 4 4
故函数g(x)在区间
[0
4
]
上的最大值和最小值分别为
强化训练
1.tan20 +tan40 3 tan20 tan40 等于( )
A.1
B.
3 3
C. 3
答案:D
解析:∵tan60
=tan(20
+40
)
tan20 tan40 1 tan20 tan40
∴tan20 +tan40 3 3 tan20 tan40 ,
即tan20 +tan40 3 tan20 tan40 3 .
3 5
则tan
2
.
答案: 24 7
解析:∵

最新两角和与差的正弦余弦正切公式练习题(含答案)

最新两角和与差的正弦余弦正切公式练习题(含答案)

两角和差的正弦余弦正切公式练习题一、选择题1.给出如下四个命题①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβαβαtan tan 1tan ⋅-+an 成立的条件是)(2Z k k ∈+≠ππα且)(2Z k k ∈+≠ππβ;④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是( )A .①②B .②③C .③④D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是( )A .21+B .12-C .2D . 2 3.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的( ) A .最大值为1,最小值为-1 B .最大值为1,最小值为21-C .最大值为2,最小值为-2D .最大值为2,最小值为-1 4.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值 ( )A .21 B .22 C .22-D .22±5.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( )A .6556B .-6556C .5665D .-56656. 75sin 30sin 15sin ⋅⋅的值等于( )A .43 B .83 C .81D .41 7.函数)4cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=ππ其中为相同函数的是 ( )A .)()(x g x f 与B .)()(x h x g 与C .)()(x f x h 与D .)()()(x h x g x f 及与8.α、β、γ都是锐角,γβαγβα++===则,81tan ,51tan ,21tan 等于 ( )A .3π B .4π C .π65D .π459.设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A .p+q+1=0B .p -q+1=0C .p+q -1=0D .p -q -1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是( )A .412--a aB .-412--a aC .214a a --±D .412--±a a11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为( )A .1tan tan >+B A B .1tan tan <⋅B AC .1tan tan =⋅B AD .不能确定12. 50sin 10sin 70cos 20sin +的值是( )A .41B .23C .21D .43二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 . 14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=.15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,22sin sin +=+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π.18.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.19.求证:yx xy x y x 22sin cos 2sin )tan()tan(-=-++.20.已知α,β∈(0,π)且71tan ,21)tan(-==-ββα,求βα-2的值.21.证明:xx xx x 2cos cos sin 22tan 23tan +=-.22.已知△ABC 的三个内角满足:A+C=2B ,B C A cos 2cos 1cos 1-=+求2cos CA -的值.两角和差的正弦余弦正切公式练习题参考答案一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A二、13.m 14.3π15.32-- 16.]214,214[-三、17.原式=)34cos()33sin()33cos()34sin(x x x x -----ππππ=462-.18.)4550sin(2)2150(sin 4)50sin 2(50sin 222 ±=---±=x ,12sin 95cos5,sin 5cos85,x x ∴====3275tan )2tan(+==- αβ.19.证:yx y x y x y x y x y x y x y x 2222sin sin cos cos )]()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左=-=+-=yx xy x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13tan ,tan(2)1,2.34ααβαβπ=-=-=-21.左==+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22cos23cos sin 2cos 23cos 2sin23cos 2cos 23sin右.22.由题设B=60°,A+C=120°,设2CA -=α知A=60°+α, C=60°-α,22cos ,2243cos cos cos 1cos 12=-=-=+ααα即CA故222cos =-C A .。

4.5-两角和与差的正弦、余弦、正切练习题

4.5-两角和与差的正弦、余弦、正切练习题

§4.5 两角和与差的正弦、余弦、正切一、选择题1.cos13计算sin43cos 43-sin13的值等于( )A.12C.2解析 原式=1sin (43-13)=sin 30=2,故选A. 答案 A2.已知锐角α满足cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,则sin 2α等于( )A.12 B .-12 C.22 D .-22解析:由cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α得(cos α-sin α)(cos α+sin α)=22(cos α+sin α) 由α为锐角知cos α+sin α≠0. ∴cos α-sin α=22,平方得1-sin 2α=12. ∴sin 2α=12.答案:A3.已知x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45,则tan 2x 等于( ).A.724 B .-724 C.247 D .-247 解析 ∵x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45.∴sin x =-35,∴tan x =-34.∴tan 2x =2tan x 1-tan 2x =2×⎝ ⎛⎭⎪⎫-341-⎝ ⎛⎭⎪⎫-342=-247.答案 D4.已知α,β都是锐角,若sin α=55,sin β=1010,则α+β= ( ). A.π4B.3π4C.π4和3π4D .-π4和-3π4解析 由α,β都为锐角,所以cos α=1-sin 2α=255,cos β=1-sin 2β=31010.所以cos(α+β)=cos α·cos β-sin α·sin β=22,所以α+β=π4. 答案 A 5.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝⎛⎭⎪⎫α+β2=( ). A.33B .-33 C.539D .-69解析 对于cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,而π4+α∈⎝ ⎛⎭⎪⎫π4,3π4,π4-β2∈⎝ ⎛⎭⎪⎫π4,π2,因此sin ⎝ ⎛⎭⎪⎫π4+α=223,sin ⎝⎛⎭⎪⎫π4-β2=63, 则cos ⎝ ⎛⎭⎪⎫α+β2=13×33+223×63=539.答案 C6.已知α是第二象限角,且sin(π+α)=-35,则tan2α的值为( )A.45 B .-237 C .-247 D .-83解析 由sin (π+α)=-35,得sin α=35,又α是第二象限角,故cos α=-1-sin 2α=-45,∴tan α=-34,tan 2α=2tan α1-tan 2α=2×⎝ ⎛⎭⎪⎫-341-⎝ ⎛⎭⎪⎫-342=-247.答案 C7.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( ).A .-235 B.236 C .-45 D.45解析 cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎪⎫α+π6=45,所以sin ⎝⎛⎭⎪⎫α+7π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45. 答案 C 二、填空题8.已知cos ⎝ ⎛⎭⎪⎫α+π4=13,α∈⎝ ⎛⎭⎪⎫0,π2,则cos α=________.解析:∵α∈⎝ ⎛⎭⎪⎫0,π2,∴α+π4∈⎝ ⎛⎭⎪⎫π4,3π4,∴sin ⎝ ⎛⎭⎪⎫α+π4=223.故cos α=cos [⎝⎛⎭⎪⎫α+π4-π4]=cos ⎝ ⎛⎭⎪⎫α+π4cos π4+sin ⎝ ⎛⎭⎪⎫α+π4sin π4=13×22+223×22=4+26.答案:4+269.化简[2sin50°+sin10°(1+3tan10°)]·2sin 280°的结果是________.解析 原式=2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°·2sin 80°=⎣⎢⎡⎦⎥⎤2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°·2cos 10°=⎣⎢⎡⎦⎥⎤2sin 50°+2sin 10°·cos -cos 10°·2cos 10° =22(sin 50°cos 10°+sin 10°cos 50°)=22sin 60°= 6. 答案 610.已知tan ⎝ ⎛⎭⎪⎫π4+θ=3,则sin 2θ-2cos 2θ的值为________. 解析 法一 ∵tan ⎝ ⎛⎭⎪⎫π4+θ=3, ∴1+tan θ1-tan θ=3, 解得tan θ=12.∵sin 2θ-2cos 2 θ=sin 2θ-cos 2θ-1 =2sin θcos θsin 2θ+cos 2θ-cos 2θ-sin 2θsin 2θ+cos 2θ-1 =2tan θ1+tan 2 θ-1-tan 2 θ1+tan 2 θ-1 =45-35-1=-45. 法二 sin 2θ-2cos 2 θ=sin 2θ-cos 2θ-1 =-cos ⎝ ⎛⎭⎪⎫π2+2 θ-sin ⎝ ⎛⎭⎪⎫π2+2θ-1=-1-tan 2⎝ ⎛⎭⎪⎫π4+θ1+tan 2⎝ ⎛⎭⎪⎫π4+θ-2tan ⎝ ⎛⎭⎪⎫π4+θ1+tan 2⎝ ⎛⎭⎪⎫π4+θ-1=-1-91+9-2×31+9-1=-45.答案 -4511.函数f (x )=2cos 2x +sin 2x 的最小值是________.解析 ∵f (x )=2cos 2x +sin 2x =1+cos 2x +sin 2x =1+2sin ⎝⎛⎭⎪⎫2x +π4,∴f (x )min =1- 2. 答案 1- 212.若cos(α+β)=15,cos(α-β)=35,则tan αtan β=________.解析 由已知,得cos αcos β-sin αsin β=15,cos αcos β+sin αsinβ=35,则有cos αcos β=25,sin αsin β=15,sin αsin βcos αcos β=12,即tan αtanβ=12.答案12三、解答题13.已知sin ⎝ ⎛⎭⎪⎫π4+x =513,且x ∈⎝ ⎛⎭⎪⎫π4,3π4,求1-tan x 1+tan x .解析 ∵x ∈⎝⎛⎭⎪⎫π4,3π4,∴π4+x ∈⎝ ⎛⎭⎪⎫π2,π, ∴cos ⎝ ⎛⎭⎪⎫π4+x =-1213,∴tan ⎝ ⎛⎭⎪⎫π4+x =-512,∴1-tan x1+tan x=1tan ⎝⎛⎭⎪⎫x +π4=-125. 14.设函数f (x )=sin ωx +sin ⎝⎛⎭⎪⎫ωx -π2,x ∈R.(1)若ω=12,求f (x )的最大值及相应的x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.解析 (1)f(x)=sin ωx +sin ⎝⎛⎭⎪⎫ωx -π2=sin ωx -cos ωx ,当ω=12时,f(x)=sin x 2-cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2-π4,而-1≤sin ⎝ ⎛⎭⎪⎫x 2-π4≤1,所以f(x)的最大值为2,此时,x 2-π4=π2+2k π,k ∈Z ,即x =3π2+4k π,k ∈Z ,相应的x的集合为⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫x =3π2+4k π,k ∈Z .(2)因为f (x )=2sin ⎝⎛⎭⎪⎫ωx -π4,所以,x =π8是f (x )的一个零点⇔f ⎝ ⎛⎭⎪⎫π8=sin ⎝⎛⎭⎪⎫ωπ8-π4=0, 即ωπ8-π4=k π,k ∈Z ,整理,得ω=8k +2,又0<ω<10,所以0<8k +2<10,-14<k <1,而k ∈Z ,所以k =0,ω=2,f (x )=2sin ⎝⎛⎭⎪⎫2x -π4,f (x )的最小正周期为π.15.在△ABC 中,A 、B 、C 为三个内角,f (B )=4cos B ·sin 2⎝ ⎛⎭⎪⎫π4+B 2+3cos 2B-2cos B .(1)若f (B )=2,求角B ;(2)若f (B )-m >2恒成立,求实数m 的取值范围.解析 (1)f (B )=4cos B ×1-cos ⎝ ⎛⎭⎪⎫π2+B 2+3cos 2B -2cos B=2cos B (1+sin B )+3cos 2B -2cos B =2cos B sin B +3cos 2B=sin 2B +3cos 2B =2sin ⎝ ⎛⎭⎪⎫2B +π3.∵f (B )=2,∴2sin ⎝⎛⎭⎪⎫2B +π3=2,π3<2B +π3<73π,∴2B +π3=π2.∴B =π12. (2)f (B )-m >2恒成立,即2sin ⎝ ⎛⎭⎪⎫2B +π3>2+m 恒成立.∵0<B <π,∴2sin ⎝ ⎛⎭⎪⎫2B +π3∈[-2,2],∴2+m <-2.∴m <-4.16. (1)①证明两角和的余弦公式C (α+β):cos(α+β)=cos αcos β-sin αsin β; ②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β.(2)已知cos α=-45,α∈⎝ ⎛⎭⎪⎫π,32π,tan β=-13,β∈⎝ ⎛⎭⎪⎫π2,π,求cos(α+β).解析 (1)证明 ①如图,在直角坐标系xOy 内作单位圆O ,并作出角α,β与-β,使角α的始边为Ox 轴非负半轴,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3,角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α),P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)).由P 1P 3=P 2P 4及两点间的距离公式,得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2,展开并整理,得2-2cos(α+β)=2-2(cos αcos β-sin αsin β). ∴cos(α+β)=cos αcos β-sin αsin β.②由①易得,cos ⎝ ⎛⎭⎪⎫π2-α=sin α,sin ⎝ ⎛⎭⎪⎫π2-α=cos α. sin(α+β)=cos ⎣⎢⎡⎦⎥⎤π2-α+β=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-α+-β=cos ⎝ ⎛⎭⎪⎫π2-αcos(-β)-sin ⎝ ⎛⎭⎪⎫π2-αsin(-β)=sin αcos β+cos αsin β.∴sin(α+β)=sin αcos β+cos αsin β. (2)∵α∈⎝ ⎛⎭⎪⎫π,32π,cos α=-45,∴sin α=-35.∵β∈⎝ ⎛⎭⎪⎫π2,π,tan β=-13,∴cos β=-31010,sin β=1010. cos(α+β)=cos αcos β-sin αsin β=⎝ ⎛⎭⎪⎫-45×⎝⎛⎭⎪⎫-31010-⎝ ⎛⎭⎪⎫-35×1010=31010.。

_两角和与差的正弦、正切练习题含答案

_两角和与差的正弦、正切练习题含答案

两角和与差的正弦、正切练习题含答案1. cos70∘sin80∘+cos20∘sin10∘=()A.−√32B.√32C.−12D.122. 函数f(x)=2cos2x+sin x cos x−1的最大值是________.3. 已知x∈(0, π2),y∈(0, π2),cos x+sin xcos x−sin x=1−cos2ysin2y,则()A.y−x=π4B.2y−x=π4C.y−x=π2D.2y−x=π24. sin105∘的值为()A. √3+√22B.√6+√24C.1+√22D.√6−√245. 已知θ∈(0,π2)且cos(θ+π6)=35,则sinθ等于()A.4√3−310B.4√3+310C.3√3+410D.3√3−4106. cos(−240∘)=( )A.−√32B.√32C.−12D.127. 函数f(x)=sin2x+√3cos2x图象的一个对称中心是()A.(7π12,0) B.(π2,0) C.(π3,0) D.(π12,0)8. 已知α∈(−π2,π2),tanα=sin76∘cos46∘−cos76∘sin46∘,则sinα=()A.√55B.−√55C.2√55D.−2√559. (广东金山中学、广雅中学、佛山一中三校联考)若tanα−1tanα=32,且α∈(π4,π2),则sin(2α+π6)的值为()A.3 10B.4√310C.4√3+310D.4√3−31010. 已知sinθ+cosθ=43,θ∈(π4,π2),则sinθ−cosθ=()A.√23B.−√23C.13D.−1311. 若f(x)=cos x−√3sin x在[−a, a]上是减函数,则实数a的取值范围是()A.(0,π6] B.(0,π4] C.(0,π3] D.(0,π2]12. 已知M,N是函数f(x)=2cos(ωx+φ)(ω>0)图像与直线的两个不同的交点.若|MN|的最小值是,则ω=()A.6B.4C.2D.113. 在△ABC中,角A,B,C的对边分别为a,b,c,且b cos A=(2c−a)cos B. (1)求角B的值;(2)若a=4,△ABC的面积为√3,求△ABC的周长.14. 一位创业青年租用了一块边长为1百米的正方形田地ABCD来养蜂、产蜜与售蜜,他在正方形的边BC,CD上分别取点E,F(不与正方形的顶点重合),连接AE,EF,FA,使得∠EAF=45∘.现拟将图中阴影部分规划为蜂源植物生长区,△AEF部分规划为蜂巢区,△CEF部分规划为蜂蜜交易区.若蜂源植物生长区的投入约为2×105元/百米2,蜂巢区与蜂蜜交易区的投入约为105元/百米2,则这三个区域的总投入最少需要多少元?15. 在△ABC中,角A、B、C所对的边分别为a、b、c,已知m→=(2,1),n→=(c cos C,a cos B+b cos A),且m→⊥n→.(1)求C;(2)若c2=7b2,且S△ABC=2√3,求b的值.参考答案与试题解析两角和与差的正弦、正切练习题含答案一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【答案】D【考点】两角和与差的三角函数【解析】已知利用诱导公式,两角和的正弦函数公式,特殊角的三角函数值即可计算得解.【解答】cos70∘sin80∘+cos20∘sin10∘=sin20∘cos10∘+cos20∘sin10∘=sin(20∘+10∘)=sin30∘=12.2.【答案】√52【考点】求两角和与差的正弦【解析】此题暂无解析【解答】解:因为f(x)=2cos2x+sin x cos x−1,所以f(x)=1+cos2x+12sin2x−1=cos2x+12sin2x≤√1+(12)2=√52,即最大值是√52.故答案为:√52.3.【答案】A【考点】两角和与差的三角函数【解析】由二倍角公式可得cos x+sin xcos x−sin x =sin ycos y,变形后,利用三角函数和差角公式可得cos(x−y)=sin(y−x),进而得解.【解答】cos x+sin x1−cos2y∴cos x+sin xcos x−sin x =1−(1−2sin2y)2sin y cos y=sin ycos y,∴cos x cos y+sin x cos y=cos x sin y−sin x sin y,∴cos(x−y)=sin(y−x),∵x∈(0, π2),y∈(0, π2),∴y−x=π4.4.【答案】B【考点】两角和与差的正弦公式【解析】此题暂无解析【解答】解:sin105∘=sin(60∘+45∘) =sin60∘cos45∘+cos60∘sin45∘=√32×√22+12×√22=√6+√24.故选B.5.【答案】A【考点】同角三角函数间的基本关系两角和与差的三角函数【解析】由已知可求范围θ+π6∈(π6, 2π3),利用同角三角函数基本关系式可求sin(θ+π6)的值,进而根据两角差的正弦函数公式可求sinθ的值.【解答】∵θ∈(0,π2),cos(θ+π6)=35,∴θ+π6∈(π6, 2π3),∴sin(θ+π6)=√1−cos2(θ+π6)=45,∴sinθ=sin[(θ+π6)−π6]=sin(θ+π6)cosπ6−cos(θ+π6)sinπ6=45×√32−35×12=4√3−310.6.【答案】C运用诱导公式化简求值【解析】此题暂无解析【解答】解:cos(−240∘)=cos(−180∘−60∘)=−cos60∘=−12.故选C.7.【答案】C【考点】三角函数中的恒等变换应用【解析】利用辅助角公式化简,结合三角函数的性质即可求解对称中心.【解答】函数f(x)=sin2x+√3cos2x=2sin(2x+π3),令2x+π3=kπ,k∈Z,可得x=12kπ−π6,当k=1时,可得x=π3,那么图象的一个对称中心是(π3, 0).8.【答案】A【考点】两角和与差的三角函数【解析】由已知求得tanα,再由同角三角函数基本关系式结合角的范围求解.【解答】由tanα=sin76∘cos46∘−cos76∘sin46∘=sin(76∘−46∘)=sin30∘=12,且α∈(−π2,π2),∴α∈(0, π2),联立{sinαcosα=12sin2α+cos2α=1,解得sinα=√55.9.【答案】D【考点】两角和与差的正弦公式同角三角函数间的基本关系此题暂无解析 【解答】由tan α−1tan α=32,得sin αcos α−cos αsin α=sin 2α−cos 2αsin αcos α=−2cos 2αsin 2α=32,即tan 2α=−43.因为α∈(π4,π2),所以2α∈(π2,π),所以sin 2α=45,cos 2α=−35,所以sin (2a +π6)=45×√32+(−35)×12=4√3−310,故选D .【一题多解】由tan α−1tan α=32,且α∈(π4,π2),解得tan α=2,所以sin α=2√55,cos α=√55,所以sin (2a +π6)=√32sin 2α+12cos 2α=√3sin αcos α+12(cos 2α−sin 2α)=4√3−310,故选D . 本题考查同角三角函数的基本关系式、两角和的正弦公式. 10.【答案】 A【考点】两角和与差的三角函数 【解析】直接利用三角函数关系式的变换和同角三角函数关系式的应用求出结果. 【解答】已知sin θ+cos θ=43,θ∈(π4,π2),所以1+2sin θ⋅cos θ=169,整理得2sin θ⋅cos θ=79,由于θ∈(π4,π2),故sin θ>cos θ,所以sin θ−cos θ=√(sin θ−cos θ)2=√1−79=√23. 11.【答案】 C【考点】两角和与差的三角函数 【解析】由题意利用两角和差的三角公式花简f(x)的解析式,再利用余弦函数的单调性,求得实数a 的取值范围. 【解答】若f(x)=cos x −√3sin x =2cos (x +π3) 在[−a, a]上是减函数,∴ a >0. 且−a +π3≥0,a +π3≤π,综合可得,0<a ≤π3,故实数a 的取值范围为(0, π3],【答案】B【考点】三角函数的周期性【解析】此题暂无解析【解答】此题暂无解答二、解答题(本题共计 3 小题,每题 5 分,共计15分)13.【答案】解:(1)由已知b cos A=(2c−a)cos B及余弦定理可得:b⋅b2+c2−a22bc =(2c−a)⋅a2+c2−b22ac,化简得a2+c2−b2=ac,余弦定理可得2ac cos B=ac. 因为ac≠0,所以cos B=12.因为0<B<π,所以B=π3.(2)由S△ABC=12ac sin B得√3=12×4×c×√32,所以c=1.又由余弦定理:b2=a2+c2−2ac cos B,b2=42+12−2×4×1×12=13,得b=√13,故△ABC的周长为5+√13.【考点】余弦定理正弦定理【解析】无无【解答】解:(1)由已知b cos A=(2c−a)cos B及余弦定理可得:b⋅b2+c2−a22bc =(2c−a)⋅a2+c2−b22ac,化简得a2+c2−b2=ac,余弦定理可得2ac cos B=ac. 因为ac≠0,所以cos B=1.因为0<B<π,所以B=π3.(2)由S△ABC=12ac sin B得√3=12×4×c×√32,所以c=1.又由余弦定理:b2=a2+c2−2ac cos B,b2=42+12−2×4×1×12=13,得b=√13,故△ABC的周长为5+√13.14.【答案】解:设阴影部分面积为S,三个区域的总投入为T.则T=2×105S+105(1−S)=105(S+1),从而只要求S的最小值.设∠EAB=α(0∘<α<45∘),在△ABE中,因为AB=1,∠B=90∘,所以BE=tanα,则S△ABE=12AB⋅BE=12tanα;又∠DAF=45∘−α,所以S△ADF=12tan(45∘−α);所以S=12[tanα+tan(45∘−α)]=12(tanα+1−tanα1+tanα).令x=tanα∈(0, 1),则S=12(x−x−1x+1)=12[(x+1)+2x+1−2]≥12(2√2−2)=√2−1.当且仅当x+1=2x+1,即x=√2−1时取等号,从而三个区域的总投入T的最小值约为√2×105元.【考点】两角和与差的正切公式基本不等式在最值问题中的应用【解析】此题暂无解析【解答】解:设阴影部分面积为S,三个区域的总投入为T.则T=2×105S+105(1−S)=105(S+1),从而只要求S的最小值.设∠EAB=α(0∘<α<45∘),在△ABE中,因为AB=1,∠B=90∘,则S △ABE =12AB ⋅BE =12tan α;又∠DAF =45∘−α,所以S △ADF =12tan (45∘−α); 所以S =12[tan α+tan (45∘−α)]=12(tan α+1−tan α1+tan α).令x =tan α∈(0, 1),则S =12(x −x−1x+1)=12[(x +1)+2x+1−2] ≥12(2√2−2)=√2−1. 当且仅当x +1=2x+1,即x =√2−1时取等号, 从而三个区域的总投入T 的最小值约为√2×105元. 15. 【答案】 由m →⊥n →,∴ 2c cos C +a cos B +b cos A =0,由正弦定理得:2sin C cos C +sin A cos B +sin B cos A =0, ∴ 2sin C cos C +sin (A +B)=0; 2sin C cos C +sin C =0; 由sin C ≠0, ∴ cos C =−12, ∴ C =2π3;由c 2=a 2+b 2−2ab cos C , ∴ 7b 2=a 2+b 2−2ab cos C , ∴ a 2+ab −6b 2=0, ∴ a =2b ; 由S △ABC =2√3知,12ab sin C =2√3,∴ 12∗2b ∗b ∗√32=2√3,∴ b =2.【考点】 三角形求面积 【解析】(1)直接利用向量的数量积和三角函数的关系式的恒等变换求出C 的值. (2)直接利用(1)的结论和余弦定理及三角形的面积求出结果. 【解答】 由m →⊥n →,∴ 2c cos C +a cos B +b cos A =0,∴2sin C cos C+sin(A+B)=0;2sin C cos C+sin C=0;由sin C≠0,∴cos C=−12,∴C=2π3;由c2=a2+b2−2ab cos C,∴7b2=a2+b2−2ab cos C,∴a2+ab−6b2=0,∴a=2b;由S△ABC=2√3知,12ab sin C=2√3,∴12∗2b∗b∗√32=2√3,∴b=2.试卷第11页,总11页。

两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式

tan a=C . 10a是第三象限的角,tan a =sin a=tan a, cos aSin a+ cos a= 1 ,也血」丄n-5 ,贝y sin a+/i3:'1010,选择c.答案:c所以cos尸一1 =^51 + tan2a 5 'sin a=冗4」冗=sin ocos4 + coses in'n=-曽迁-乂3.[优质试题河北三市联考]若2sin 9+n3」=3sin(凭 9,则全国名校高考数学复习优质学案专题汇编(附详解)两角和与差的正弦、余弦和正切公式[基础达标]一、选择题1.计算—sin 133 °s197 - cos47 &os73 的结果为( A1 B亚A.2B. 3C.22D.j解析:—sin 133 cos197°—cos47°cos73°=—sin47(—cos17 ) —cos47 sin17 °1 =sin(47 —17°) = sin 30 = 3 答案:A2.[优质试题唐山联考]已知a是第三象限的角,且(n2,则sin a+ 4 =( )A―血B迈A. 10B. 10 3伍D 3^1010 D.解析:因为C 233 解析:4.[优质试题=1,则7 9 925因为 2sinx + cos 才―xacos2x = 1 — 2sin 2x = 故选 C. 解析: =1,所以 3sinx = 1,所以 sinx 2 . 2cos a — Sin a 22 i - 2 = ,tan B 等于()乎B 挣 由已知得 sin 6+ 3cos 6= 3sin 6, 即 2sin 6=Q 3cos 6,所以tan 6= *.故选 B. 答案:B冗 福州市高三期末]若2sinx + cosQ — x cos2x =( )A —87 C・9 D . 1=3,所以 答案:5.[优质试题全国卷I ]已知角a 的顶点为坐标原点,始边 与x 轴的非负半轴重合,终边上有两点A(1, a), B(2, b),且cos 2 a= 3,则 |a — b|=()1 皐 A-5B-5 C. 口D . 15解析:由 cos2 a= 3,得 cos 2 a — Sin 2 a= [, •1— tan a 2 5 b — a. 5 即祜=2, -tan - ±5,即二=斗,yJ 3 ( n2,贝U cosx + cosx — 3納希 丄i n i 〕3. 3 逸解析:cosx+ cos x —3 1= cosx + qcosx+^si nx =^cosx 冗 6.已知cosx — 6」sinx = 3 答案:—17t'] cos’ — 6=® - 3 j 7.[优质试题全国卷II ]已知tan=1,则 tan5a=解析: tan a — 5n/ \ ntan a —T =< 4丿 tan a — 1 i 1 + tan a * 58.[优质试题 洛阳统考]已知sin a+ cos a= 25,则 cos4 a=•- |a — b|=罟. 故选B. 答案:B二、填空题3 解得tan a= 2 答案:2冗12」全国名校高考数学复习优质学案专题汇编(附详解)(1)求f—4J的值;⑵若cos 6= 5,ee 0,扌,求f 2 6-n的值. k 2k 3丿解析:((n 1厂6尸-1n ....(2)f 2 6-3 |= sin 2 6-^ + —=¥=sinnsin 2 6—7< 4丿因为所以(sin2 6—cos2®.4cos 6= 5,3 sin 6=5,24sin2 6= 2sin 6cos 6= 25,2 2 7cos2 6= cos 6—sin 6= oc,所以f 2 6—3 = 2^(sin2 6—cos26)辺x。

高一 两角和与差的余弦、正弦、正切公式知识点+例题+练习 含答案

高一 两角和与差的余弦、正弦、正切公式知识点+例题+练习 含答案

1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β))cos(α+β)=cos αcos β-sin αsin β (C (α+β))sin(α-β)=sin αcos β-cos αsin β (S (α-β))sin(α+β)=sin αcos β+cos αsin β (S (α+β))tan(α-β)=tan α-tan β1+tan αtan β(T (α-β)) tan(α+β)=tan α+tan β1-tan αtan β(T (α+β)) 2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=2tan α1-tan 2α. 3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ )1.化简cos 40°cos 25°1-sin 40°= . 答案 2解析 原式=cos 40°cos 25°1-cos 50°=cos (90°-50°)cos 25°·2sin 25°=sin 50°22sin 50°= 2. 2.若sin α+cos αsin α-cos α=12,则tan 2α= . 答案 34解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3, 则tan 2α=2tan α1-tan 2α=34. 3.(2015·重庆改编)若tan α=13,tan(α+β)=12,则tan β= . 答案 17解析 tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17. 4.(教材改编)sin 347°cos 148°+sin 77°cos 58°= .答案 22 解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°=(-cos 77°)·(-sin 58°)+sin 77°cos 58°=sin 58°cos 77°+cos 58°sin 77°=sin(58°+77°)=sin 135°=22. 5.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为 . 答案 17250解析 ∵α为锐角,cos(α+π6)=45, ∴α+π6∈⎝⎛⎭⎫π6,2π3,∴sin(α+π6)=35, ∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425, ∴cos(2α+π3)=2cos 2(α+π6)-1=725, ∴sin(2α+π12)=sin(2α+π3-π4) =22[sin(2α+π3)-cos(2α+π3)]=17250.题型一 三角函数公式的基本应用例1 (1)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)= . (2)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是 .答案 (1)-75(2) 3 解析 (1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π, ∴cos α=-45. ∴原式=-75. (2)∵sin 2α=2sin αcos α=-sin α,∴cos α=-12, 又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2 α=-231-(-3)2= 3. 思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)若α∈(π2,π),tan(α+π4)=17,则sin α= . (2)已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是 . 答案 (1)35(2)-1 解析 (1)∵tan(α+π4)=tan α+11-tan α=17, ∴tan α=-34=sin αcos α, ∴cos α=-43sin α. 又∵sin 2α+cos 2α=1,∴sin 2α=925. 又∵α∈(π2,π),∴sin α=35. (2)cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x ) =3cos(x -π6)=-1. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为 . (2)求值:cos 15°+sin 15°cos 15°-sin 15°= . 答案 (1)22(2) 3 解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=22. (2)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为 .(2)函数f (x )=2sin 2(π4+x )-3cos 2x 的最大值为 . 答案 (1)π4(2)3 解析 (1)由题意知:sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C=-1=-tan A ,所以A =π4.(2)f (x )=1-cos ⎣⎡⎦⎤2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin ⎝⎛⎭⎫2x -π3+1, 可得f (x )的最大值是3.题型三 角的变换问题例3 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β= . (2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是 . 答案 (1)2525 (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45. 又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β).因为45>55>-45, 所以cos(α+β)=-45. 于是cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525. (2)∵cos(α-π6)+sin α=453, ∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453, ∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45. 思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. 若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2= . 答案 539解析 cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2, ∵0<α<π2,∴π4<π4+α<3π4, ∴sin ⎝⎛⎭⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2, ∴sin ⎝⎛⎭⎫π4-β2=63. 故cos ⎝⎛⎭⎫α+β2=13×33+223×63=539.5.三角函数求值忽视角的范围致误典例 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,则cos(α+β)的值为 .(2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A = . 易错分析 (1)角α2-β,α-β2的范围没有确定准确,导致开方时符号错误. (2)对三角形中角的范围挖掘不够,忽视隐含条件,B 为钝角.解析 (1)∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π, ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=459,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1 =2×49×5729-1=-239729. (2)在△ABC 中,∵cos B =-34, ∴π2<B <π,sin B =1-cos 2B =74. ∵π2<B <A +B <π,sin(A +B )=23, ∴cos(A +B )=-1-sin 2(A +B )=-53, ∴cos A =cos [(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B=⎝⎛⎭⎫-53×⎝⎛⎭⎫-34+23×74=35+2712. 答案 (1)-239729 (2)35+2712温馨提醒 在解决三角函数式的求值问题时,要注意题目中角的范围的限制,特别是进行开方运算时一定要注意所求三角函数值的符号.另外,对题目隐含条件的挖掘也是容易忽视的问题,解题时要加强对审题深度的要求与训练,以防出错.[方法与技巧]1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[失误与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.A 组 专项基础训练(时间:40分钟)1.cos 85°+sin 25°cos 30°cos 25°= . 答案 12解析 原式=sin 5°+32sin 25°cos 25°=sin (30°-25°)+32sin 25°cos 25°=12cos 25°cos 25°=12. 2.若θ∈[π4,π2],sin 2θ=378,则sin θ= . 答案 34解析 由sin 2θ=378和sin 2θ+cos 2θ=1得 (sin θ+cos θ)2=378+1=(3+74)2, 又θ∈[π4,π2],∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34. 3.若tan θ=3,则sin 2θ1+cos 2θ= . 答案3 解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3. 4.已知cos α=-55,tan β=13,π<α<32π,0<β<π2,则α-β的值为 . 答案 54π 解析 因为π<α<32π,cos α=-55,所以sin α=-255,tan α=2,又tan β=13,所以tan(α-β)=2-131+23=1,由π<α<32π,-π2<-β<0得π2<α-β<32π,所以α-β=54π. 5.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4= . 答案 322解析 因为α+π4+β-π4=α+β, 所以α+π4=(α+β)-⎝⎛⎭⎫β-π4, 所以tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322. 6.sin 250°1+sin 10°= .答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α= . 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)= . 答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈(0,π4),得2θ∈(0,π2), 所以cos 2θ=1-sin 22θ=35, 所以sin(2θ+π4) =sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210. 9.已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值.解 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35 =-43+310. B 组 专项能力提升(时间:20分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)= . 答案 -255解析 由tan(α+π4)=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0, 所以sin α=-1010. 故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α =-255. 12.已知α∈⎝⎛⎭⎫0,π2,且sin 2α-sin αcos α-2cos 2α=0,则tan ⎝⎛⎭⎫π3-α= . 答案 8-5311解析 ∵sin 2α-sin αcos α-2cos 2α=0,cos α≠0,∴tan 2α-tan α-2=0.∴tan α=2或tan α=-1,∵α∈⎝⎛⎭⎫0,π2,∴tan α=2, tan ⎝⎛⎭⎫π3-α=tan π3-tan α1+tan π3tan α =3-21+23=(3-2)(23-1)(23-1)(23+1)=8-5312-1=8-5311. 13.已知cos 4α-sin 4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3= . 答案 2-156解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23, 又α∈⎝⎛⎭⎫0,π2, ∴2α∈(0,π),∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 14.设f (x )=1+cos 2x 2sin ⎝⎛⎭⎫π2-x +sin x +a 2sin ⎝⎛⎭⎫x +π4的最大值为2+3,则常数a = . 答案 ±3解析 f (x )=1+2cos 2x -12cos x+sin x +a 2sin ⎝⎛⎭⎫x +π4=cos x +sin x +a 2sin ⎝⎛⎭⎫x +π4 =2sin ⎝⎛⎭⎫x +π4+a 2sin ⎝⎛⎭⎫x +π4 =(2+a 2)sin ⎝⎛⎭⎫x +π4. 依题意有2+a 2=2+3, ∴a =±3.15.已知函数f (x )=1-2sin ⎝⎛⎭⎫x +π8 ·⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8. (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤-π2,π12,求函数f ⎝⎛⎭⎫x +π8的值域. 解 (1)函数f (x )=1-2sin ⎝⎛⎭⎫x +π8[sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8] =1-2sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π8cos ⎝⎛⎭⎫x +π8 =cos ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x +π4=2sin ⎝⎛⎭⎫2x +π2 =2cos 2x ,所以f (x )的最小正周期T =2π2=π. (2)由(1)可知f ⎝⎛⎭⎫x +π8=2cos ⎝⎛⎭⎫2x +π4. 由于x ∈⎣⎡⎦⎤-π2,π12, 所以2x +π4∈⎣⎡⎦⎤-3π4,5π12, 所以cos ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, 则f ⎝⎛⎭⎫x +π8∈[-1,2], 所以f ⎝⎛⎭⎫x +π8的值域为[-1,2].。

(完整版)两角和与差的正弦、余弦、正切经典练习题

(完整版)两角和与差的正弦、余弦、正切经典练习题

两角和与差的正弦、余弦、正切一、两角和与差的余弦βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-1、求值:(1) 15cos (2) 20802080sin sin cos cos +(3) 1013010130sin sin cos cos +(4)cos105°(5)sin75°(6)求cos75°cos105°+sin75°sin105°(7)cos (A +B )cosB +sin (A +B )sinB .(8) 29912991sin sin cos cos -2. (1)求证:cos (2π-α) =sin α.(2)已知sin θ=1715,且θ为第二象限角,求cos (θ-3π)的值. (3)已知sin (30°+α)=,60°<α<150°,求cos α.3. 化简cos (36°+α)cos (α-54°)+sin (36°+α)sin (α-54°).4. 已知32=αsin ,⎪⎭⎫ ⎝⎛∈ππα,2,53-=βcos ,⎪⎭⎫ ⎝⎛∈23ππβ,,求)cos(βα+的值.5.已知1312-=αcos ,⎪⎭⎫ ⎝⎛∈23ππα,,求)cos(4πα+的值。

6. 已知α,β都是锐角,31=αcos ,51-=+)cos(βα,求βcos 的值。

7.在△ABC 中,已知sin A =53,cos B =135,求cos C 的值.二、两角和与差的正弦sin()sin cos cos sin αβαβαβ+=+sin()sin cos cos sin αβαβαβ-=-1利用和差角公式计算下列各式的值(1)sin 72cos 42cos 72sin 42︒︒-︒︒ (2)13cos sin 22x x -(3)3sin cos x x + (4)22cos 2sin 222x x -二、证明: )4cos(2)cos (sin 2)3()4sin(2sin cos )2()6sin(cos 21sin 23)1(ππθθθπααα-=++=++=+x x x3(1)已知3sin 5α=-,α是第四象限角,求sin()4πα-的值。

两角和与差的正弦、余弦、正切及答案(一)

两角和与差的正弦、余弦、正切及答案(一)

两角和与差的正弦、余弦、正切(一)●作业导航掌握两角和与两角差的正弦、余弦和正切公式,能由两个单角的三角函数值求出两角和与两角差的三角函数值.一、选择题(本大题共5小题,每小题3分,共15分) 1.下列四个命题中,真命题的个数是( ) ①存在这样的角α和β,使得cos(α+β)=cos αcos β+sin αsin β ②不存在无穷多个角α和β,使cos(α+β)=cos αcos β+sin αsin β ③对于任意的角α和β,cos(α+β)=cos αβcos -sin αsin β ④不存在这样的角α和β,使得cos(α+β)≠cos αcos β-sin αsin β A .1个 B .2个 C .3个 D .4个 2.△ABC 中,内角A 和B 满足关系式cos ∠A cos ∠B >sin ∠A sin ∠B ,那么△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .任意三角形3.sin70°sin65°-sin20°sin25°等于( )A .-22B .22C .21D .234.若a =tan100°,b =tan25°,c =tan55°,则a ,b ,c 之间应满足( ) A .a +b +c =abc B .ab +bc +ca =1C .ab +bc +ca =a +b +cD .ab +bc +ca =a 2+b 2+c 25.已知sin ∠A +sin ∠B +sin ∠C =cos ∠A +cos ∠B +cos ∠C =0,则cos(∠B -∠C )等于( )A .-21B .21C .-1D .1二、填空题(本大题共5小题,每小题3分,共15分)1.已知α、β是锐角,且sin α=1010sin ,55=β,则α+β=________.2.已知cos θ=-53,且θ∈(π,23π),则tan(θ-4π)=________. 3.cos(α+β)cos β+sin(α+β)sin β的化简结果是________.4.已知tan ∠A =2,tan ∠B =3,那么tan(∠A +∠B )=________. 5.sin555°的值是________.三、解答题(本大题共5小题,每小题6分,共30分)1.若点P (-3,4)在角α的终边上,点Q (-1,-2)在角β的终边上,求cos(α+β)的值.2.已知sin α-sin β=41,cos α+cos β=31,求cos(α+β).3.已知sin(α+β)=21,sin(α-β)=31,求tan αcot β的值.4.化简)sin(sin cos )cos(sin sin y x x y y x x y +-++.5.已知非零实数a ,b 满足ab b a b a 求,158tan5sin5cos5cos 5sin πππππ=-+的值.参考答案一、选择题(本大题共5小题,每小题3分,共15分)1.C 分析:当α=2k π,β=2k π+3π,k ∈Z 时,cos(α+β)=cos(2k π+2k π+3π)=cos 3π,cos αcos β+sin αsin β=cos2k πcos(2k π+3π)+sin2k πsin(2k π+3π)=cos 3π. 故②不对.2.C 分析:cos ∠A cos ∠B -sin ∠A sin ∠B =cos(∠A +∠B )>0∴ 0<∠A +∠B <2π,∴ ∠C >2π.3.B 分析:原式=sin70°cos25°-cos70°sin25°=sin45°=22. 4.A 分析:tan100°=-tan80°=-︒︒-︒+︒25tan 55tan 125tan 55tan∴ -tan80°+tan80°tan55°tan25°=-(tan55°+tan25°) ∴ -tan100°tan55°tan25°=-(tan100°+tan55°+tan25°) ∴ tan100°+tan55°+tan25°=tan100°tan55°tan25°.5.A 分析:sin ∠B +sin ∠C =-sin ∠A ,cos ∠B +cos ∠C =-cos ∠A两式平方相加得2cos(B -C )=-1,cos(B -C )=-21. 二、填空题(本大题共5小题,每小题3分,共15分)1.4π分析:先算出cos α,cos β,再用cos(α+β)=cos αcos β-sin αsin β,得cos(α+β)=22∵ 0<α+β<π,∴ α+β=4π.2.71分析:∵ cos θ=-53,θ∈(π,23π)∴ tan θ=34,∴ tan(θ-4π)=71341134tan 11tan =+-=+-θθ3.cos α 分析:原式=cos [(α+β)-β]=cos α.4.-1 分析:tan(∠A +∠B )=6132Btan A tan 1Btan A tan -+=∠∠-∠+∠=-1.5.462-分析:sin555°=-sin15°=-sin(45°-30°).三、解答题(本大题共5小题,每小题6分,共30分)1.解:r 1=|OP |=54)3(22=+- r 2=|OQ |=5)2()1(22=-+-∴ cos α=-53,sin α=54cos β=-51,sin β=-52∴ cos(α+β)=cos αcos β-sin αsin β=-25511)52(54)51(53=-⋅--⋅2.解:∵ ⎪⎪⎩⎪⎪⎨⎧=+=-31cos cos 41sin sin βαβα ∴ ⎪⎪⎩⎪⎪⎨⎧=++=+-91cos cos cos 2cos 161sin sin sin 2sin 2222ββααββαα 两式相加,得2+2(cos αcos β-sin αsin β)=14425∴ cos(α+β)=-.2882633.解:∵ sin(α+β)=21,∴ sin αcos β+cos αsin β=21①又sin(α-β)=31∴ sin αcos β-cos αsin β=31②由①②解得sin αcos β=125,cos αsin β=121∴ βαβαsin cos cos sin =tan αcot β=5.4.解:原式=)sin(sin ])cos[()cos(sin ])sin[(y x x z x y y x x x x y +--+++-+).tan()cos()sin()sin(sin sin )sin(cos )cos()cos(sin )cos(sin cos )sin(x y x y x y x y x x x y x x y y x x x y x x x y +=++=+-++++++-+=5.解:由题给条件知,a ≠0,b ≠0. ∴ 所给等式可化为158cos158sin 5sin5cos5cos 5sin ππππππ=-+ab a b将a b作为一个未知数,解这个方程得33t a n 3c o s3s i n)5158cos()5158sin(5sin158sin 5cos158cos 5sin 158cos 5cos 158sin ===--=+-=πππππππππππππππab。

两角和与差的正弦、余弦和正切专题及答案

两角和与差的正弦、余弦和正切专题及答案

两角和与差的正弦、余弦和正切专题一、选择题1. 已知锐角α满足cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,则sin 2α等于( ) A.12 B .-12 C.22 D .-22 2.若1+cos 2αsin 2α=12,则tan 2α等于 ( ).A.54 B .-54 C.43 D .-43 3.已知α,β都是锐角,若sin α=55,sin β=1010,则α+β= ( ).A.π4B.3π4C.π4和3π4 D .-π4和-3π4 4.已知sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,则sin θ-cos θ的值为( ).A.23 B .-23 C.13 D .-135.若tan α=lg(10a ),tan β=lg ⎝ ⎛⎭⎪⎫1a ,且α+β=π4,则实数a 的值为 ( ). A .1 B.110 C .1或110D .1或10 6.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( ). A .-235 B.236 C .-45 D.45二、填空题7.已知cos ⎝ ⎛⎭⎪⎫α+π4=13,α∈⎝ ⎛⎭⎪⎫0,π2,则cos α=________.8.设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则 sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.9.函数f (x )=2cos 2x +sin 2x 的最小值是________.10.方程x 2+3ax +3a +1=0(a >2)的两根为tan A ,tan B ,且A ,B ∈⎝ ⎛⎭⎪⎫-π2,π2,则A +B =________.三、解答题11.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+sin ⎝ ⎛⎭⎪⎫2x -π3+2cos 2x -1,x ∈R. (1)求函数f (x )的最小正周期;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值和最小值.12.已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2. (1)求sin 2α和tan 2α的值; (2)求cos(α+2β)的值.13.函数f (x )=6cos 2ωx2+3sin ωx -3(ω>0)在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且△ABC 为正三角形. (1)求ω的值及函数f (x )的值域;(2)若f (x 0)=8 35,且x 0∈⎝ ⎛⎭⎪⎫-103,23,求f (x 0+1)的值.14.(1)①证明两角和的余弦公式C(α+β):cos(α+β)=cos αcos β-sin αsin β;②由C(α+β)推导两角和的正弦公式S(α+β):sin(α+β)=sin αcos β+cos αsin β.(2)已知cos α=-45,α∈⎝⎛⎭⎪⎫π,32π,tan β=-13,β∈⎝⎛⎭⎪⎫π2,π,求cos(α+β).两角和与差的正弦、余弦和正切专题及答案一、选择题1. 已知锐角α满足cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,则sin 2α等于( )A.12 B .-12 C.22 D .-22 解析由cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α得(cos α-sin α)(cos α+sin α)=22(cos α+sin α) 由α为锐角知cos α+sin α≠0.∴cos α-sin α=22,平方得1-sin 2α=12.∴sin 2α=12.答案A 2.若1+cos 2αsin 2α=12,则tan 2α等于 ( ).A.54 B .-54 C.43 D .-43 解析 1+cos 2αsin 2α=2cos 2α2sin αcos α=cos αsin α=12,∴tan α=2,∴tan 2α=2tan α1-tan 2α=41-4=-43,故选D. 答案 D3.已知α,β都是锐角,若sin α=55,sin β=1010,则α+β= ( ). A.π4 B.3π4 C.π4和3π4 D .-π4和-3π4 解析 由α,β都为锐角,所以cos α=1-sin 2α=255,cos β=1-sin 2β=31010.所以cos(α+β)=cos α·cos β-sin α·sin β=22,所以α+β=π4.答案 A4.已知sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,则sin θ-cos θ的值为( ). A.23 B .-23 C.13 D .-13解析 ∵sin θ+cos θ=43,∴(sin θ+cos θ)2=1+sin 2θ=169,∴sin 2θ=79,又0<θ<π4,∴sin θ<cos θ.∴sin θ-cos θ=-(sin θ-cos θ)2=-1-sin 2θ=-23. 答案 B5.若tan α=lg(10a ),tan β=lg ⎝ ⎛⎭⎪⎫1a ,且α+β=π4,则实数a 的值为 ( ).A .1 B.110 C .1或110D .1或10 解析 tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg (10a )+lg ⎝ ⎛⎭⎪⎫1a 1-lg (10a )·lg ⎝ ⎛⎭⎪⎫1a =1⇒lg 2a +lg a =0,所以lg a =0或lg a =-1,即a =1或110. 答案 C6.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin⎝ ⎛⎭⎪⎫α+7π6的值是( ). A .-235 B.236 C .-45 D.45解析 cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎪⎫α+π6=45, 所以sin ⎝ ⎛⎭⎪⎫α+7π6=-sin ⎝ ⎛⎭⎪⎫α+π6=-45. 答案 C 二、填空题7.已知cos ⎝ ⎛⎭⎪⎫α+π4=13,α∈⎝⎛⎭⎪⎫0,π2,则cos α=________.解析∵α∈⎝ ⎛⎭⎪⎫0,π2,∴α+π4∈⎝ ⎛⎭⎪⎫π4,3π4, ∴sin ⎝ ⎛⎭⎪⎫α+π4=223.故cos α=cos [⎝⎛⎭⎪⎫α+π4-π4]=cos ⎝ ⎛⎭⎪⎫α+π4cos π4+sin ⎝ ⎛⎭⎪⎫α+π4sin π4=13×22+223×22=4+26. 答案4+268.设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则 sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.解析 ∵α为锐角且cos ⎝ ⎛⎭⎪⎫α+π6=45,∴α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,∴sin ⎝ ⎛⎭⎪⎫α+π6=35.∴sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4 =sin 2⎝ ⎛⎭⎪⎫α+π6cos π4-cos 2⎝ ⎛⎭⎪⎫α+π6sin π4=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6-22⎣⎢⎡⎦⎥⎤2cos 2⎝ ⎛⎭⎪⎫α+π6-1=2×35×45-22⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫452-1=12225-7250=17250.答案172509.函数f (x )=2cos 2x +sin 2x 的最小值是________.解析 ∵f (x )=2cos 2x +sin 2x =1+cos 2x +sin 2x =1+2sin ⎝ ⎛⎭⎪⎫2x +π4,∴f (x )min =1-2. 答案 1- 210.方程x 2+3ax +3a +1=0(a >2)的两根为tan A ,tan B ,且A ,B ∈⎝ ⎛⎭⎪⎫-π2,π2,则A +B =________.解析 由题意知tan A +tan B =-3a <-6,tan A ·tan B =3a +1>7,∴tan A <0,tan B <0, tan(A +B )=tan A +tan B 1-tan A tan B =-3a1-(3a +1)=1.∵A ,B ∈⎝ ⎛⎭⎪⎫-π2,π2,∴A ,B ∈⎝ ⎛⎭⎪⎫-π2,0,∴A +B ∈(-π,0),∴A +B =-3π4. 答案 -3π4三、解答题11.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+sin ⎝ ⎛⎭⎪⎫2x -π3+2cos 2x -1,x ∈R.(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值和最小值.解 (1)f (x )=sin 2x ·cos π3+cos 2x ·sin π3+sin 2x ·cos π3-cos 2x ·sin π3+cos 2x =sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4. 所以,f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π8上是增函数,在区间⎣⎢⎡⎦⎥⎤π8,π4上是减函数.又f ⎝ ⎛⎭⎪⎫-π4=-1,f ⎝ ⎛⎭⎪⎫π8=2,f ⎝ ⎛⎭⎪⎫π4=1,故函数f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值为2,最小值为-1. 12.已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2. (1)求sin 2α和tan 2α的值; (2)求cos(α+2β)的值.解 (1)由题意得(sin α+cos α)2=95,即1+sin 2α=95,∴sin 2α=45.又2α∈⎝ ⎛⎭⎪⎫0,π2,∴cos 2α=1-sin 22α=35,∴tan 2α=sin 2αcos 2α=43. (2)∵β∈⎝ ⎛⎭⎪⎫π4,π2,β-π4∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,∴cos ⎝ ⎛⎭⎪⎫β-π4=45,于是sin 2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4cos ⎝ ⎛⎭⎪⎫β-π4=2425.又sin 2⎝ ⎛⎭⎪⎫β-π4=-cos 2β,∴cos 2β=-2425,又2β∈⎝ ⎛⎭⎪⎫π2,π,∴sin 2β=725,又cos 2α=1+cos 2α2=45,α∈⎝ ⎛⎭⎪⎫0,π4, ∴cos α=255,sin α=55.∴cos(α+2β)=cos αcos 2β-sin αsin 2β =255×⎝ ⎛⎭⎪⎫-2425-55×725=-11525. 13.函数f (x )=6cos 2ωx2+3sin ωx -3(ω>0)在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且△ABC 为正三角形. (1)求ω的值及函数f (x )的值域; (2)若f (x 0)=8 35,且x 0∈⎝ ⎛⎭⎪⎫-103,23,求f (x 0+1)的值. 解 (1)由已知可得,f (x )=3cos ωx +3sin ωx =23sin ⎝ ⎛⎭⎪⎫ωx +π3,又正三角形ABC 的高为23,从而BC =4, 所以函数f (x )的周期T =4×2=8,即2πω=8,ω=π4.函数f (x )的值域为[-23,23]. (2)因为f (x 0)=835, 由(1)有f (x 0)=23sin ⎝ ⎛⎭⎪⎫πx 04+π3=835,即sin ⎝ ⎛⎭⎪⎫πx 04+π3=45.由x 0∈⎝ ⎛⎭⎪⎫-103,23,知πx 04+π3∈⎝ ⎛⎭⎪⎫-π2,π2, 所以cos ⎝ ⎛⎭⎪⎫πx 04+π3=1-⎝ ⎛⎭⎪⎫452=35.故f (x 0+1)=23sin ⎝ ⎛⎭⎪⎫πx 04+π4+π3=23sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫πx 04+π3+π4 =23⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫πx 04+π3cos π4+cos ⎝ ⎛⎭⎪⎫πx 04+π3sin π4 =23×⎝ ⎛⎭⎪⎫45×22+35×22=765.14.(1)①证明两角和的余弦公式C (α+β):cos(α+β)=cos αcos β-sin αsin β; ②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β.(2)已知cos α=-45,α∈⎝ ⎛⎭⎪⎫π,32π,tan β=-13,β∈⎝ ⎛⎭⎪⎫π2,π,求cos(α+β).解(1)证明 ①如图,在直角坐标系xOy 内作单位圆O ,并作出角α,β与-β,使角α的始边为Ox 轴非负半轴,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3,角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α),P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)).由P 1P 3=P 2P 4及两点间的距离公式,得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2,展开并整理,得2-2cos(α+β)=2-2(cos αcos β-sin αsin β). ∴cos(α+β)=cos αcos β-sin αsin β.②由①易得,cos ⎝ ⎛⎭⎪⎫π2-α=sin α,11sin ⎝ ⎛⎭⎪⎫π2-α=cos α. sin(α+β)=cos ⎣⎢⎡⎦⎥⎤π2- α+β =cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-α+ -β =cos ⎝ ⎛⎭⎪⎫π2-αcos(-β)-sin ⎝ ⎛⎭⎪⎫π2-αsin(-β) =sin αcos β+cos αsin β.∴sin(α+β)=sin αcos β+cos αsin β.(2)∵α∈⎝⎛⎭⎪⎫π,32π,cos α=-45,∴sin α=-35. ∵β∈⎝ ⎛⎭⎪⎫π2,π,tan β=-13, ∴cos β=-31010,sin β=1010. cos(α+β)=cos αcos β-sin αsin β=⎝ ⎛⎭⎪⎫-45×⎝⎛⎭⎪⎫-31010-⎝ ⎛⎭⎪⎫-35×1010=31010.。

两角和与差的正弦余弦正切公式练习题(答案)之欧阳治创编

两角和与差的正弦余弦正切公式练习题(答案)之欧阳治创编

两角和差的正弦余弦正切公式练习题知识梳理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin_αcos_β±cos_αsin_β.cos(α∓β)=cos_αcos_β±sin_αsin_β.tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式sin 2α=2sin_αcos_α.cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.tan 2α=2tan α1-tan2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β).(2)cos2α=1+cos 2α2,sin2α=1-cos 2α2.(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cosα)2,sin α±cos α=2sin ⎝⎛⎭⎪⎪⎫α±π4. 4.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a2+b2sin(α+φ),其中tan φ=ba一、选择题1.给出如下四个命题①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立;②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立;③公式=+)tan(βαβαβαtan tan 1tan ⋅-+an 成立的条件是)(2Z k k ∈+≠ππα且)(2Z k k ∈+≠ππβ;④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-;其中假命题是 ( )A .①②B .②③C.③④D .②③④2.函数)cos (sin sin 2x x x y +=的最大值是 ( )A .21+B .12- C.2D . 23.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的 ( )A .最大值为1,最小值为-1B .最大值为1,最小值为21- C .最大值为2,最小值为-2D .最大值为2,最小值为-14.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值 ( )A .21 B .22 C .22- D .22±5.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( )A .6556B .-6556C .5665 D .-56656. 75sin 30sin 15sin ⋅⋅的值等于( )A .43 B .83 C.81 D .41 7.函数)4cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=ππ其中为相同函数的是( )A .)()(x g x f 与B .)()(x h x g 与 C.)()(x f x h 与D .)()()(x h x g x f 及与 8.α、β、γ都是锐角,γβαγβα++===则,81tan ,51tan ,21tan 等于( )A .3π B .4πC .π65D .π459.设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A .p+q+1=0B .p -q+1=0C .p+q -1=0D .p -q -1=010.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是( )A .412--a a B .-412--a a C .214a a --±D .412--±a a 11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为( )A .1tan tan >+B A B .1tan tan <⋅B AC .1tan tan =⋅B AD .不能确定12. 50sin 10sin 70cos 20sin +的值是( )A .41B .23C.21 D .43 二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为.14.在△ABC中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=. 15.若),24cos()24sin(θθ-=+则)60tan( +θ=.16.若y x y x cos cos ,22sin sin +=+则的取值范围是. 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π.18.已知0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.19.求证:yx xy x y x 22sin cos 2sin )tan()tan(-=-++.20.已知α,β∈(0,π)且71tan ,21)tan(-==-ββα,求βα-2的值. 21.证明:xx x x x 2cos cos sin 22tan 23tan+=-.22.已知△ABC 的三个内角满足:A+C=2B ,B C A cos 2cos 1cos 1-=+求2cos CA -的值. 两角和差的正弦余弦正切公式练习题参考答案一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B9.B 10.D 11.B 12.A二、13.m 14.3π15.32--16.]214,214[-三、17.原式=)34cos()33sin()33cos()34sin(x x x x -----ππππ=462-.18.)4550sin(2)2150(sin 4)50sin 2(50sin 222 ±=---±=x ,3275tan )2tan(+==- αβ.19.证:yx y x y x y x y x y x y x y x 2222sin sin cos cos )]()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左 =-=+-=yx xy x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13tan ,tan(2)1,2.34ααβαβπ=-=-=-21.左==+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22cos23cos sin 2cos 23cos 2sin23cos 2cos 23sin右.22.由题设B=60°,A+C=120°,设2CA -=α知A=60°+α, C=60°-α,22cos ,223cos cos cos 1cos 12=-=-=+ααα即CA 故222cos =-C A .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角和差的正弦余弦正切公式练习题
、选择题
给出如下四个命题
①对于任意的实数a和B,等式cos (> • J =cos :・cos? -sin〉sin —:恒成立;
②存在实数a , B,使等式COS (: • J =COS : COS 1
③公式tan (::亠》令去成立的条件是竹尹Z)且一)
④不存在无穷多个a和B,使sin(: -)二sin : cos
其中假命题是
A.①②
B.②0) C -③④
2.函数y = 2sin x(sin x - cosx)的最大值是
sin : sin —:能成立; :-cos sin -;
B. 2-1
C. 2
D. 2
3.当x [-32 ]时,函数 f (x) = sin x . 3cosx 的
A・最大值为1 ,最小值为一1 B.最大值为1,
C •最大值为2,最小值为D•最大值为
2
,则cos ( > ・■)
Q 2,
最小值为…
2
最小值为・1
4-已知tang )-7,tan : tan : 的值
A.
::一二COS(:
B.—色
65 3
一,则sin
D. — 65
56
7.
7.
B
、丫都是锐角,恥已伽叫伽⑴,则a + 0+丫等于(
6.
sin15 si n30
sin 75的值等于
A.— 4
B.—
8
函数 f (x)二 tan(x ), g(x)
4
D.- 4
tanX
, h(x)二cot( x)其中为相同函数的是 -ta nx 4
C.
A. f (x)与 g(x)
B. g(x)与
h(x)
c. h(x)与 f(x) D. f (x)与 g(x)及 h(x)
8.
A.
9.设tan :和tan(---v)是方程x*2 - px- q=0的两个根,
『\
rrtrr x _____
、填空题(每小题4分,共16分,将答案填在横线上)
13•已知 sin(:;亠『.)sin( I : :;) = m ,则 cosmos 2 :的值为
B.
P 、q 之间的尖系是 A. p+q+1 =0 B. p — q+仁 0 C. p+q —仁 0
D. p — q — 1=0
A r\
11.
12.
f 2
A.心
a —4
C. a_4 -.1-a 2
D.
1 — 2
— a
在厶ABC 中,C90 ;,则tan A tanB 与1的尖系为
A. tanA tanB 1 C. tanA tanB =1
B. tanA tanB : D.不能确宗
sin 20 cos70 sin10 sin50 的值是 A. 1
4
B._2
2
C. 1
2
D.
14•在△ ABC 中,tanAtanBtanC = 3、. 3 '七玄扁=tanA tanC 別 / B=
19.求证:tan(x y) tan(x - y)
sin 2x cos2 x sin2 y
20. 已知a , B€(0, n)且tanC ・:) ,tan
,求2■■的值.
21. 证明:tan?x-tan r
2 cosx+cos2x
22.
内角满足:A+C=2B +
已知△ ABC勺三个c的值.
=一L仝求cos —
cos A cosC cosB 2
2
22 •由题设 B=60°, A+C=120 、设 a
知 A=60 ° + a ,
C=60 ° -a,
两角和差的正弦余弦正切公式练习题参考答案 、1. C2. A3. D4. D5. B6. C7. C8. B9. B10. D11. B 12 .
二、13 . m 14 . 115 . —2—J3 16 .【
3
17 •原式=sin( 3x)cos( 3x) -sin(
4 3 3x) 3
3X )=¥
<2sin50 ± i(-V2sin 50)-4(sin 50「・_)
18 . x
sin(50
±45 ),
•为=sin95、二cos5 :
x A sin5£=cos85M ,
tan( 1 -2:) =tan75>2
. 3 .
19 证: 左 sin(x y) sin(x ・ y)
sin[(x y) (x ・ y)]
cos(x y) cos(x - y) cos x cos y sin x sin y sin2x
cos 12 x -(cos 2x 亠 sin? x)sin 2y
sin 2x
2 :~2~ cos x-sin v
2° tan :二一,tan (2 圧卜)=1,
3
3 x sin XCOS
3
• x ・cos xsi n
— 22 X
cos —
2
X c
n X si 3)s 22sin x cosx 亠 cos2x
A —C
15
16.
17.
18.
L・
cos A cosC
cos =-2 2,即cos 2故cos 心
2
若sin( j 24 )二cos(24 ・ v),则tan(v ■ 60 ) = ________
J2
若sinx・ siny,则cosx cosy的取值范围是
2
解答题(本大题共74分,17— 21题每题12分,22题14分)
八r、zr ・31 31 31 JI
化间求值:sinq -3x) cos(§ -3x) ・cos(石3x) sin( : 3x).
已知一<90 ,且如,8「是方程八如50心『5。

闰二。

的两根,求tanr -2 )的值.。

相关文档
最新文档